Class 21: More Maps

Goals for the day:

- 1. Find the equations of the curves running through the logistic map orbit diagram.
- 2. Rescale a map.
- 3. Work with a functional equation.

- 1. (10.3.13) In the diagram above there are dark tracks of points running through the chaotic regions. The logistic map is given by $x_{n+1} = rx_n(1-x_n)$. The function f(x;r) = rx(1-x) has its maximum at $x = \frac{1}{2}$. This means that many values of x map to close to $f(\frac{1}{2};r) = \frac{r}{4}$.
 - (a) One of these dark tracks is the curve $(r, f(\frac{1}{2}, r))$. What are the other curves?
 - (b) Set up an equation to find the value of r at the corner where a bunch of the dark track intersect.
- 2. (10.7.2) Consider a general map

$$y_{n+1} = f(y_n; r).$$

Let $x_n = \alpha y_n$, so the variables x_n are rescalings of y_n . By rescaling y_{n+1} and y_n show that

$$f^2(y;R)$$
 becomes $\alpha f^2(\frac{x}{\alpha};R)$.

What does rescaling do to a map?

3. A **functional equation** is an equation whose solution is a function (usually the term is used when the equation can't be reduced to an algebraic equation). Consider the functional equation

$$g(x) = \alpha g^2 \left(\frac{x}{\alpha}\right), \quad g(0) = 1.$$

This functional equation has a boundary condition to help specify the solution.

- (a) Use the functional equation to show that $\alpha = 1/g(1)$.
- (b) (10.7.3) Show that if g is a solution to the functional equation above, that $h(x) = \mu g(x/\mu)$ is a solution as well (with the same value of α , with a different initial value).

Some answers:

1. Since f(x;r) is often near r/4, $f^2(x;r)$ is often near f(r/4;r), etc. These curves are given by $f^m(\frac{1}{2};r)$.

Clear[r, x]
f[x_, r_] = r x (1 - x);
Plot[{f[0.5, r], f[f[0.5, r], r], f[f[f[0.5, r], r], r],
 f[f[f[f[0.5, r], r], r],
 f[f[f[f[f[0.5, r], r], r], r], f[r, 2.95, 4}]

At the intersection, $f^3(1/2;r) = f^4(1/2,r)$. Let $u = f^3(1/2;r)$. Then the intersection happens when f(u,r) = u. This is a fixed point of the logistic map, so u = 0 or u = 1 - 1/r. It must be that u = 1 - 1/r. So $f^3(1/2;r) = 1 - 1/r$ is our equation. Expanding:

Expand[f[f[f[1/2, r], r], r] - 1 + 1/r] Solve[Expand[f[f[f[1/2., r], r], r] - 1 + 1/r] == 0, r]

$$-1 + \frac{1}{r} + r^3/4 - r^4/16 - r^5/16 + r^6/32 - r^7/256 = 0.$$

This factors into $(r-2)^4(r+2)(r^3-2r^2-4r-8)=0$ so $r\approx 3.67857$.

2. $x_{n+1}/\alpha = f(x_n/\alpha; R) \Rightarrow x_{n+1} = \alpha f(x_n/\alpha; R)$. $y_{n+2} = x_{n+2}/\alpha = f(x_{n+1}/\alpha; R)$ so $x_{n+2} = \alpha f(x_{n+1}/\alpha; R) = \alpha f(f(x_n/\alpha; R); R) = \alpha f^2(x_n/\alpha; R)$

so $f^2(y;R)$ becomes $\alpha f^2(x/\alpha;R)$ after rescaling. Rescaling expands or contracts our coordinate. Thinking of the map in terms of a graph from y_n to y_{n+1} , the rescaling expands both axes. We can think of it as just changing the numbers on the axes without changing the shape of the graph.

3. $1 = g(0) = \alpha g(g(0)) = \alpha g(1)$ so $\alpha = 1/g(1)$. Let g satisfy $g = \alpha g^2(x/\alpha)$. Consider h(x).

$$g(x) = \alpha g^2(x/\alpha)$$
 so $g(x/\mu) = \alpha g^2(x/(\mu\alpha)) = h(x)/\mu$.

 $h(0) = \mu g(0) = \mu$ (different initial value).

 $h(x) = \mu g(x/\mu) = \mu \alpha g(g(x/(\mu\alpha))) = \alpha \mu g(g(x/(\mu\alpha))) = \alpha \mu g((\mu g(x/(\alpha\mu)))/\mu) = \alpha h(\mu g(x/(\alpha\mu))) = \alpha h^2(x/\alpha).$