AM108 1:00pm
Class 22: Universality
Goals for the day:

1. Explore the renormalization process and identify limiting functions.

2. Work with the functional equation g(z) = ag? (£)

Problems:

1. Consider the map f(x) = r(x + 1/2) — r(z + 1/2)? — 1/2. Show that this map is a shifted logistic
map with maximum at x,, = 0. Make the case that the z,, = 0 fixed point is superstable when
1(0)=0.

2. (Exploring the renormalization process) For the map above, argue that superstable 2*-cycles occur
when f2k (0; Rk) = 0 and k is the smallest integer where this expression holds at a given Rk.

I find these values in Mathematica:

RO = r /. FindRoot[Nest[f, 0, 1] == 0, {r, 2}]

R1 = r /. FindRoot[Nest[f, 0, 2] == 0, {r, 3}]

R2 = r /. FindRoot [Nest[f, 0, 4] == 0, {r, 3.49}]
R3 = r /. FindRoot [Nest[f, 0, 8] == 0, {r, 3.55}]
R4 = r /. FindRoot[Nest[f, 0, 16] == 0, {r, 3.566}]

(R3 - R2)/(R4 - R3)
4.66296

In the period-doubling regions of the logistic map, we are seeing a phenomenon that is repeating
at smaller and smaller length scales. The period-doubling diagram is approximately self similar,
meaning that if we zoom in on a small part, it has the same topology (same stable orbit structure
occurring at the same transition points) as the whole diagram.

The renormalization-group algorithm defines a transformation to do this zooming.

Define the following maps:

a = -2.502907875;

folx.] =r (x+1/2) - r (x + 1/2)"2 - 0.5;
f1[x_] = a fO[f0[x/all;

f2[x_] = a f1[f1[x/all;

£3[x_] = a f2[f2[x/all;

f4[x_] = a £3[£f3[x/al] /. r -> R4;

These maps are encoding the renormalization-group algorithm. The results for the value of r
corresponding to each superstable orbit are show below (so f0 is plotted for r = RO, f1 for r = R1,

ete).
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What is happening to the function as the map is iterated?
Plotting code:

pO = Plot[{(f0[x] /. r -> RO)}, {x, -0.5, 0.5}, PlotLabel -> "1,R0O",
PlotStyle -> {Dashed}];

pl = Plot[{(f1[x] /. r -> R1)}, {x, -0.5, 0.5}, PlotLabel -> "2,R1",
PlotStyle —> {Black}];

p2 = Plot[{(f2[x] /. r -> R2)}, {x, -0.5, 0.5}, PlotLabel -> "4,R2",
PlotStyle -> {Red}];

p3 = Plot[{(£f3[x] /. r -> R3)}, {x, -0.5, 0.5}, PlotLabel -> "8,R3",
PlotStyle -> {Green}];
p4 = Plot[{(£f4[x])}, {x, -0.5, 0.5}, PlotLabel -> "16,R4"];
GraphicsGrid[{{p0, pl, p2}, {p3, p4,
Show[p0, pl, p2, p3, p4, PlotLabel -> A11]3}}]

In the limit of this process, go(z) = lim o™ fZ")(Z:R,).
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. How do you guess the set of plots might be different if we plotted f(z, R;) instead of f(x, Ryp), and
af?(£; Ry) instead of af?(£; Ry), etc?

In the limit of this process, g;(v) = lim o™ f®") (2 R, 11).
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4. Let gi(z) = lim a"f@) (2 R, yy).
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Consider goo(x). Since R,, is no longer changes, goo(2) = ag? (£; Rso).

Let g(x) satisfy g(x) = ag®(£). This is a functional equation, and its solution is the function g(z).
We can get a sense of this function. We know ¢g(0) # 0 because the functions were plotted at values
of  that didn’t coincide with their superstable fixed point. If g(z) is a solution to g(z) = ag?(%)

then pug(z/p) is as well. (Optional: show this). :

(10.7.1a) Approzimate g(x). Start by assuming it is even with a quadratic maximum of 1 at = = 0.
So suppose g(z) = 1 + caz? for small z. Neglect O(z*) terms and solve for a and cz.

Note that /3 ~ 1.732. Compare your values to o =~ —2.5029..., ¢y ~ —1.527...

. (10.7.4) Near the origin, g(z) has a parabolic approximation but it is actually a wiggly function
over the real line. To see this, show that if z* is a fixed point of g(x) then so is ax*. This means
that the function has infinitely many crossings of the line y = . Because it is an even function, it
also has infinitely many crossings of the line y = —x. To be convinced that it has one crossing, see
the figure below.
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On the left is a 10th order polynomial

approximation to g(z). On the right is the error term, g(x) — ag?(2).
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Some Answers:

1.
2.

Superstable cycles occur when z = 0 is one of the points involved in the cycle, so f (Qk)((); Rk)=0
at a superstable cycle. We need an extra condition so that it is actually a 2* cycle and not also a
2F=1 cycle.

The function is approaching some limiting distribution.

We would no longer be at the parameter value with the superstable fixed point, g;(0) # 0.

. Substitute into the equation so 1 + co2? = ag(g(£)). We have g(£) = 1 + 022—2. This means

z z
a a

2 2
9(9(2)) =1+co (1 + 02%2) . Expanding, we find g(g(£)) = 1+ ¢z + 2% 2+ O(z*). Substituting

2

2
this into our first equation and truncating, 1 + co2? = (1 + ¢2) + %w . Matching terms, co =

2
% = ;=% and 1 = a(l +¢2), s0 1 = a+ a?/2. We can solve this quadratic equation to find

a~ —1—+/3~ —2.732. Dividing by 2, ¢o ~ —1.336. These are off by about 0.2 or 10%, which is
not terrible!

We have z* such that g(z*) = z*. Now consider g(az*). We have g(az*) = ag(g(o;ﬁ*)). =
glaz*) = ag(g(z*)) = ag(z*) = ax*, so ax* is a fixed point of g(z)!



