
AM108 1:00pm
Class 22: Universality
Goals for the day:

1. Explore the renormalization process and identify limiting functions.

2. Work with the functional equation g(x) = αg2
(
x
α

)
Problems:

1. Consider the map f(x) = r(x+ 1/2)− r(x+ 1/2)2 − 1/2. Show that this map is a shifted logistic
map with maximum at xm = 0. Make the case that the xm = 0 fixed point is superstable when
f(0) = 0.

2. (Exploring the renormalization process) For the map above, argue that superstable 2k-cycles occur

when f2
k

(0;Rk) = 0 and k is the smallest integer where this expression holds at a given Rk.

I find these values in Mathematica:

R0 = r /. FindRoot[Nest[f, 0, 1] == 0, {r, 2}]

R1 = r /. FindRoot[Nest[f, 0, 2] == 0, {r, 3}]

R2 = r /. FindRoot[Nest[f, 0, 4] == 0, {r, 3.49}]

R3 = r /. FindRoot[Nest[f, 0, 8] == 0, {r, 3.55}]

R4 = r /. FindRoot[Nest[f, 0, 16] == 0, {r, 3.566}]

(R3 - R2)/(R4 - R3)

4.66296

In the period-doubling regions of the logistic map, we are seeing a phenomenon that is repeating
at smaller and smaller length scales. The period-doubling diagram is approximately self similar,
meaning that if we zoom in on a small part, it has the same topology (same stable orbit structure
occurring at the same transition points) as the whole diagram.

The renormalization-group algorithm defines a transformation to do this zooming.

Define the following maps:

a = -2.502907875;

f0[x_] = r (x + 1/2) - r (x + 1/2)^2 - 0.5;

f1[x_] = a f0[f0[x/a]];

f2[x_] = a f1[f1[x/a]];

f3[x_] = a f2[f2[x/a]];

f4[x_] = a f3[f3[x/a]] /. r -> R4;

These maps are encoding the renormalization-group algorithm. The results for the value of r
corresponding to each superstable orbit are show below (so f0 is plotted for r = R0, f1 for r = R1,
etc).
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What is happening to the function as the map is iterated?

Plotting code:

p0 = Plot[{(f0[x] /. r -> R0)}, {x, -0.5, 0.5}, PlotLabel -> "1,R0",

PlotStyle -> {Dashed}];

p1 = Plot[{(f1[x] /. r -> R1)}, {x, -0.5, 0.5}, PlotLabel -> "2,R1",

PlotStyle -> {Black}];

p2 = Plot[{(f2[x] /. r -> R2)}, {x, -0.5, 0.5}, PlotLabel -> "4,R2",

PlotStyle -> {Red}];

p3 = Plot[{(f3[x] /. r -> R3)}, {x, -0.5, 0.5}, PlotLabel -> "8,R3",

PlotStyle -> {Green}];

p4 = Plot[{(f4[x])}, {x, -0.5, 0.5}, PlotLabel -> "16,R4"];

GraphicsGrid[{{p0, p1, p2}, {p3, p4,

Show[p0, p1, p2, p3, p4, PlotLabel -> All]}}]

In the limit of this process, g0(x) = lim
n→∞

αnf (2
n)( x

αn ;Rn).

3. How do you guess the set of plots might be different if we plotted f(x,R1) instead of f(x,R0), and
αf2( xα ;R2) instead of αf2( xα ;R1), etc?

In the limit of this process, g1(x) = lim
n→∞

αnf (2
n)( x

αn ;Rn+1).

4. Let gi(x) = lim
n→∞

αnf (2
n)( x

αn ;Rn+i).

Consider g∞(x). Since Rn is no longer changes, g∞(x) = αg2∞( xα ;R∞).

Let g(x) satisfy g(x) = αg2( xα ). This is a functional equation, and its solution is the function g(x).
We can get a sense of this function. We know g(0) 6= 0 because the functions were plotted at values
of r that didn’t coincide with their superstable fixed point. If g(x) is a solution to g(x) = αg2( xα )
then µg(x/µ) is as well. (Optional: show this).

(10.7.1a) Approximate g(x). Start by assuming it is even with a quadratic maximum of 1 at x = 0.
So suppose g(x) ≈ 1 + c2x

2 for small x. Neglect O(x4) terms and solve for α and c2.

Note that
√

3 ≈ 1.732. Compare your values to α ≈ −2.5029..., c2 ≈ −1.527...

5. (10.7.4) Near the origin, g(x) has a parabolic approximation but it is actually a wiggly function
over the real line. To see this, show that if x∗ is a fixed point of g(x) then so is αx∗. This means
that the function has infinitely many crossings of the line y = x. Because it is an even function, it
also has infinitely many crossings of the line y = −x. To be convinced that it has one crossing, see
the figure below.
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On the left is a 10th order polynomial
approximation to g(x). On the right is the error term, g(x)− αg2( xα ).

Some Answers:

1.

2. Superstable cycles occur when x = 0 is one of the points involved in the cycle, so f (2
k)(0;Rk) = 0

at a superstable cycle. We need an extra condition so that it is actually a 2k cycle and not also a
2k−1 cycle.
The function is approaching some limiting distribution.

3. We would no longer be at the parameter value with the superstable fixed point, g1(0) 6= 0.

4. Substitute into the equation so 1 + c2x
2 = αg(g( xα )). We have g( xα ) = 1 + c2

x2

α2 . This means

g(g( xα )) = 1 + c2

(
1 + c2

x2

α2

)2

. Expanding, we find g(g( xα )) = 1 + c2 + 2
c22
α2x

2 +O(x4). Substituting

this into our first equation and truncating, 1 + c2x
2 = α(1 + c2) +

2c2x
α x2. Matching terms, c2 =

2c22
α ⇒ c2 = α

2 and 1 = α(1 + c2), so 1 = α + α2/2. We can solve this quadratic equation to find

α ≈ −1−
√

3 ≈ −2.732. Dividing by 2, c2 ≈ −1.336. These are off by about 0.2 or 10%, which is
not terrible!

5. We have x∗ such that g(x∗) = x∗. Now consider g(αx∗). We have g(αx∗) = αg(g(αx
∗

x∗ )). ⇒
g(αx∗) = αg(g(x∗)) = αg(x∗) = αx∗, so αx∗ is a fixed point of g(x)!
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