
AM108 1:00pm
Class 23: Fractals
Goals for the day:

1. Use similarity dimension to determine fractal dimensions.

2. Find a basin of attraction in a map.

3. Identify a condition for stability of a fixed point in 2D maps.

Problems:

1. (11.1.1) Consider the diagonal argument used to show that S = {x : 0 ≤ x < 1} is an uncountable
set. Why doesn’t this argument also show that the rational numbers are uncountable?

2. (11.2.1) We want to find the total length of the points in the Cantor set. To do this, consider the
lengths of the intervals that we removed to construct the set. First we removed an interval of length
1
3 . Then we removed two intervals, each of length 1

9 , etc. Show that the total length of all of the
removed intervals is 1 and this the leftover points making up the Cantor set have length 0.

3. (Example 4.9, Alligood et al) Consider the tent map xn+1 = T3(xn), defined as

xn+1 =

{
3xn, 0 ≤ xn ≤ 1

2
3(1− xn), 1

2 ≤ xn ≤ 1.

For the slope-3 tent map, the basin of attraction of infinity is related to the Cantor set. The basin
of attraction is the set of initial conditions that will converge to ∞ or −∞ with iteration of T3.

(a) Sketch the map.

(b) Convince your team that initial conditions outside of [0, 1] converge to −∞ under iteration of
T3. In addition, note that initial conditions in (1/3, 2/3) do the same.

(c) Convince your team that the basin of infinity of T3 is the complement in R1 of the middle-third
Cantor set, meaning that the basin is the set of points in R1 that are left if we remove the
Cantor set.

(d) What is the long term behavior if your initial condition is 1/3k for k = 1, 2, ...? What if it is
2/3k? Guess the basin of attraction for 0 in this system.

4. (11.3.7) The von Koch snowflake curve is shown below. It is made by starting with an equilateral
triangle and then replacing each side using the von Koch procedure.

(a) Show that the snowflake curve has infinite arc length.

(b) Assuming that the initial side lengths are 1, find the area of the region enclosed by the snowflake.

(c) Find the similarity dimension of the snowflake. Recall that # copies = (scale)d.

5. (11.3.8) The Sierpinski carpet is formed by dividing a closed unit box into nine equal boxes, removing
the central (open) box, and repeating.

1. Find the similarity dimension.

2. Show the Sierpinski carpet has zero area.



6. We will be using 2D maps to make connections between fractal structure and chaos, so we will begin
to work with 2D maps today.
(12.1.1) Consider the 2D linear map

xn+1 = axn

yn+1 = byn,

a, b ∈ R. Identify the possible patterns of orbits near the origin depending on the signs and sizes of a
and b. Draw the possible patterns for orbits that converge to the origin. Note that the map is linear
and uncoupled.

7. (12.1.2) Now consider the 2D linear map

xn+1 = axn + byn, yn+1 = cxn + dyn,

a, b, c, d ∈ R. Find conditions on the parameters so that the origin is globally attracting (globally
asymptotically stable).

A linear algebra interlude: this equation can be written xn+1 = Axn. Any matrix A can be trans-
formed in the following way: A = P−1DP where D is diagonal or A = P−1CP where C is an upper
triangular matrix and the diagonal entries of C or D are the eigenvalues of A. Here, C or D is
known as the Jordan normal form of the matrix, and P,D,C may be over the complex numbers.

We have P−1P = PP−1 = I; if D =

(
α 0
0 β

)
then Dk =

(
αk 0
0 βk

)
; if C =

(
α 1
0 β

)
then

Ck =

(
αk γk
0 βk

)
for some γk ∈ C.

8. (11.3.10) A fat fractal has nonzero measure (length for d < 1, area for 1 < d < 2). Consider the
set created by starting with [0, 1], deleting the open middle 1

2 , then the open middle 1
4 of the two

remaining subintervals, then the open middle 1
8 , etc.

(a) Show that the length of the limiting set is greater than zero.

(b) Show that the set is a topological Cantor set. First show it is “totally disconnected”. To do
this, pick any two points in the set, and argue that they are in different “halves” of the set at
some point. Then show that it has no “isolated points”. To do this, show that for any point in
the set, p, and any neighborhood length, ε, there is a second point within distance ε of p.
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Some Answers:

1. We make a list of all of the rational numbers with their decimal expansions. As we construct a
new number that is not on the list (and this is definitely something we can do), it is not clear that
the new number is rational - it definitely does not have a finite decimal expansion and there is no
reason the decimals would be repeating.

2. We remove L = 1
3 + 2 1

9 + 4 1
27 + ... =

∑∞
1

2n−1

3n . So 2
3L = 2

9 + 4
27 + .... Thus L − 2

3L = 1
3 . This

means 1
3L = 1

3 , so L = 1.

3. Points (−∞, 0) ∪ (1/3, 2/3) ∪ (1,∞) will go off to infinity. This is the complement of S1 in R1.
Which points map to there? (1/9, 2/9) (and its mirror image interval, (7/9, 8/9), across x = 1/2).
Assume that an interval ( a

3k
, a+1

3k
) will go off to infinity. Clearly ( a

3k+1 ,
a+1
3k+1 ) ∈ [0, 12 ) will, too. As

will its mirror image across x = 1/2. So each interval of length 1/3k corresponds to two intervals
of length 1/3k+1 that also diverge. These intervals are all distinct and make up the set of intervals
removed in constructing the Cantor set.

4. The number of line segments is a sequence 3, 4 ∗ 3, 4 ∗ 4 ∗ 3, ..., 4k3, ... so nk = 4k3, k = 0, 1, 2, ....
Length of a line segment at step k gives a sequence 1, 13 ,

1
9 , ...,

1
3k
, ..., so lk = 1

3k
, k = 0, 1, 2, ....

Total length at each iterate is nklk, so 3, 4, 4 4
3 , ..., 4

4k−1

3k−1 , .... In the limit k →∞, this is unbounded.

For the area, we start with area A0 in the triangle. Then the next structure adds n0 triangles each
with area 1

9 the original area. Area sequence is

A0, A0 + 3
1

9
A0, A0 +

1

3
A0 + 4 ∗ 3

1

34
A0, ..., A0 +

k∑
r=1

nr−1lr
2A0, ...

So ak = A0(1 +
∑k

r=1 4r−13 1
32r ) = A0(1 + 1

3

∑k−1
r=0( 4

9 )r). The area of the fractal is A = A0(1 +
1
3

∑∞
r=0( 4

9 )r). 4
9A = A0( 4

9 + 1
3

∑∞
r=1( 4

9 )r), so A− 4
9A = A0( 5

9 + 1
3 ). Thus A = 9

5
8
9A0 = 8

5A0.

Still scaling down by 3 and making 4 copies, so d = ln 4
ln 3 ≈ 1.26.

5.

6. The map is uncoupled, so we can tackle x and y separately. For x, if |a| > 1 then orbits diverge.
If |a| < 1 then orbits converge. For a > 0, the change in x is monotonic. For a < 0, we alternate
sides of the origin. All of the same is true for y, so there are sixteen possibilities. There are four
possibilities that lead to convergence: {(a, b) : |a| < 1, |b| < 1} is the interior of the unit square and
the qualitative possibilities correspond to points in each of the four quadrants.

7. P and P−1 serve as an invertible pair of transformations. We can think about the system Pxn+1 =

CPxn. If Pxn approaches the origin then xn does as well. Let zn = Pxn. z0 =

(
r
s

)
. zk =

Dkz0 =

(
αkr
βks

)
. In this case it is clear that we need |α| < 1 and |β| < 1 so we need both

eigenvalues of the matrix to be less than 1.

The nondiagonal case is slightly trickier. zk = Ckz0 =

(
αkr + cks

βks

)
. It is not obvious how

to deal with the cks term. We can see it is not a problem by iterating another k times. z2k =

CkCkz0 = Ck

(
αkr + cks

βks

)
=

(
αk(αkr + cks) + ckβ

ks
β2ks

)
. In this case, in the limit as k →∞,

we still need |α| < 1 and |β| < 1 to approach the origin.
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