
AM108 1:00pm
Class 24: 2D Maps
Goals for the day:

1. Show that the Hénon map is not area preserving via composition of transformations.

2. Explore the Baker’s map.

Two-dimensional maps can represent flow in a three-dimensional space. For example, a Poincaré section
in in 3D flow would lead to a 2D map (since we would find the map on a 2D region transverse to the
flow). Invertible 2D maps can be useful models of chaotic systems (see notes of Michael Cross, Caltech).

1. The Baker’s map is given by

B(xn, yn) = (xn+1, yn+1) =

{
(2xn, ayn) for 0 ≤ xn ≤ 1

2
(2xn − 1, ayn + 1

2 ) for 1
2 ≤ xn ≤ 1

.

It is illustrated by Figure 12.1.4 of the text, shown below.

EXAMPLE 12.1 .1 :
The baker's map B of the square 0 x 1 , 0 Y 1 to itself is given by

{
(2x", ay,,) for 0 x" <+

(x"+I'Y"+I)= (2 -1 +1.)" 1.< <1x" , ay" 2 lor 2 - x" -

where a is a parameter in the range 0 < a +.Illustrate the geometric action of B
by showing its effect on a face drawn in the unit square.

Solution: The reluctant experimental subject is shown in Figure 12.1.4a.
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Figure 12.1.4

As we'll see momentarily, the transformation may be regarded as a product of two
simpler transformations. First the square is stretched and flattened into a 2 x a rec-
tangle (Figure 12.I.4b). Then the rectangle is cut in half, yielding two I x a rectan-
gles, and the right half is stacked on top of the left half such that its base is at the
level Y= +(Figure 12.1.4c).
Why is this procedure equivalent to the formulas for B? First consider the left

half of the square, where 0 x" < +. Here (x,,+I'Y,,+I) = (2x"., ay,,), so the horizon-
tal direction is stretched by 2 and the vertical direction is contracted by a, as
claimed. The same is true for the right half of the rectangle, except that the image
is shifted left by 1 and up by +, since (xll+l , Y"+l) = (2x", ay,,) +(-1,+). This shift is
equivalent to the stacking just claimed. _

The baker's map exhibits sensitive dependence on initial conditions, thanks to
the stretching in the x-direction. It has many chaotic orbits-uncountably many, in
fact. These and other dynamical properties of the baker's map are discussed in the
exercises.

426 STRANGE ATTRACTORS

The Baker’s map is a simple model with chaotic dynamics. It can be expressed via symbolic
dynamics, or dynamics that are represented via shifts on sequences of numbers.

(a) Explain why the map is equivalent to the procedure of stretching by 2 and flattening by a, then
cutting and stacking, that is shown in the figure.

(b) Sketch what will happen after one more iterate of the map shown in the figure. (Include the
face!)

(c) This process should remind you of forming the Cantor set. Consider covering the nth iterate of
the map with square boxes of side length an. Note that the first iterate has 2 stripes and the
second has 4. The box dimension is given by d = limε→0

lnN
ln 1

ε

where N is the number of boxes

needed to cover the set and ε is the side length of the boxes. Compute the box dimension for
the limiting set of the Baker’s map.

(d) In the case a = 1
2 , your box dimension should be 2 because the map is area preserving. Check

that this is the case.

(e) (12.1.5) Symbolic dynamics involve understanding the map via sequences of numbers. For the
area preserving Baker’s map, consider a binary representation of a point in the unit square:

(x, y)2 = (0.a1a2a3..., 0.b1b2b3...)

where a1 = 0 indicates the point has 0 ≤ x < 1
2 and a1 = 1 indicates the point has 1

2 ≤ x < 1.
Find the binary representation of B(x, y).

Multiplying a coordinate by 2 has the effect of shifting the decimal place once to the right.



(f) Represent the point (x, y) as ...b3b2b1.a1a2a3.... In this notation, what is B(x, y)?

(g) Use the binary version of the map to show that B has a period-2 orbit. Plot the locations of
the two points involved in the orbit in the unit square.

2. The Hénon map is given by xn+1 = 1 + yn−ax2n and yn+1 = bxn. Consider the series of transforma-
tions (from the video) T ′ : x′ = x, y′ = 1 + y − ax2, T ′′ : x′′ = bx′, y′′ = y′, T ′′′ : x′′′ = y′′, y′′′ = x′′.
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Figure 1: The transformations T ′, T ′′ and T ′′′ are composed from left to right, with T ′ operating on the
rectangle on the far left.

(a) (12.2.1) Show that composing this series (T ′′′T ′′T ′) of transformations yields the Hénon map.

(b) (12.2.2) Show that the transformations T ′ and T ′′ are area preserving but T ′′ is not.

A vector calculus interlude: think of the map T ′ as a coordinate transformation from coordi-
nates xy to coordinates x′y′. We are interested in the area of a region of the xy plane after

it undergoes the coordinate transformation. Recall:
∫∫
R
dx dy =

∫∫
S

∣∣∣ ∂(x,y)∂(x′,y′)

∣∣∣ dx′dy′ where

∂(x,y)
∂(x′,y′) =

∣∣∣∣∣ ∂x
∂x′

∂x
∂y′

∂y
∂x′

∂y
∂y′

∣∣∣∣∣ .
(c) (12.2.4) Find the fixed points of the Hénon map, and show that they exist only if a > a0.

(d) (12.2.5) Determine the stability of the fixed points as a function of a and b by finding the
Jacobian and determining whether |λ| < 1. This seems pretty ugly, so just make a contour plot
of the eigenvalues to figure out the region.

Some Answers:

1. (a) For the unit square, consider the sets S0 = {(x, y) : 0 ≤ x < 1
2 , 0 ≤ y < 1} and S1 = {(x, y) :

1
2 ≤ x < 1, 0 ≤ y < 1}. Under the action of the map, in the x direction, S0 is stretched
by a factor of two to take up the whole range 0 ≤ x < 1 and y is squished by a factor of a.
It is clear that this is the same thing as what happens to S0 under a stretching by 2 and a
flattening by a and then cutting, as S0 is not impacted by the cutting and stacking procedure.
For S1, it is also stretched and flattened. Then ( 1

2 , 0) corner of S1 is placed at (0, 12 ), setting
the placement of the whole stretched/flattened set. This is equivalent to what happens to the
set under flattening/stretching and cutting/stacking.

(b)

(c) We have 2n stripes and need 1
an boxes to cover a single stripe (stripes are of width an), so

there are
(
2
a

)n
boxes being used and the box size is an. d = limn→∞

( 2
a )
n

ln 1
an

= 1− ln 2
ln a

(d) If we plug in a = 1
2 we have d = 1− ln 2

− ln 2 = 2.

(e) The x coordinate should be right shifted by the stretch, so it becomes a1.a2a3a4.... Cutting and
stacking turns it into 0.a2a3a4.... For the y coordinate, it depends on the x coordinate. If a1 =
0 then y becomes 0.0b1b2... while if a1 = 1 then y becomes 0.1b1b2.... So (0.a1a2a3, 0.b1b2b3) 7→
(0.a2a3..., 0.a1b1b2...).

(f) ...b3b2b1.a1a2a3... 7→ ...b2b1a1.a2a3a4... so the map acts as a shift map on this representation.
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(g) For a period-2 orbit, we are looking for a binary number that returns to itself after two shifts.
These are the repeating fractions ...101010.101010... and ...010101.010101.... Their coordinates
are given by x = 1

2 + 1
8 + ..., y = 1

4 + 1
16 +. .. and vice versa. Thus x− 1

4x = 1
2 ⇒ x1 = 2

3 and
y − 1

4y = 1
4 ⇒ y = 1

3 . The points are ( 2
3 ,

1
3 ) and (1

3 ,
2
3 ).

2. (a) T ′(x, y) = x, 1 + y− ax2. T ′′(T ′(x, y)) = (bx, 1 + y− ax2). T ′′′(T ′′(T ′(x, y))) = T ′′′(bx, 1 + y−
ax2) = (1 + y − ax2, bx).

(b)

(c) No fixed points when a = 0, b = 1. Otherwise, x∗ = b−1
2a ±

√
(1−b)2

4a + 1, y∗ = bx∗. Need
(1−b)2

4a + 1 ≤ 0 so −(1− b)2/4 ≤ a.
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