AM147 11:30am

Class 10: 2D conservative systems

Goals for the day:

- 1. How do we find a conserved quantity?
- 2. What are the implications of having a conserved quantity?

Team problems:

- 1. (6.5.1) Consider the system $\ddot{x} = -\mu x + x^3$.
 - (a) Rewrite this as a first order system.
 - (b) Find an expression for $\frac{dy}{dx}$ by taking $\frac{dy}{dt}/\frac{dx}{dt}$. When this results in a separable differential equation, you can solve the equation to find a conserved quantity. Use this method to find a conserved quantity for this system.
 - (c) For systems of the form $m\ddot{x} + \frac{dV}{dx} = 0$, $\frac{1}{2}m\dot{x}^2 + V(x)$ is a conserved quantity. Use this to check your result.
 - (d) Find the equilibrium points of the system and classify them as saddles or centers.
 - (e) For $\mu = 1$, the eigenvalues of the system $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ are $\lambda_{\pm} = \pm \sqrt{2}$, $\mathbf{v}_{\pm} = \begin{pmatrix} \mp \sqrt{2}/2 \\ 1 \end{pmatrix}$. Use this information to sketch the phase portrait for this case.
 - (f) Identify any homoclinic or heteroclinic orbits, and find an equation for them.
 - (g) Identify any regions of the phase space where oscilliations will occur.
 - (h) This system is a model of a nonlinear spring. Add a small amount of drag, so $\dot{y} = -x + x^3 \epsilon y$ with $\epsilon > 0$. What happens to the system? Attempt to sketch a new phase portrait.
- 2. Consider the system

$$\dot{x} = -\mu y + xy$$

 $\dot{y} = \mu x + \frac{1}{2}(x^2 - y^2).$

Assume $\mu > 0$.

- (a) Find a conserved quantity for this system.
- (b) Find the fixed points of the system.