
AM147 11:30am
Class 14: small perturbations to simple harmonic oscillation
Goals for the day:

1. Review and understand the van der Pol oscillator in the large µ (strongly nonlinear) case.

2. What is a weakly nonlinear oscillator?

3. How does averaging theory allow us to determine the long time evolution of oscillations?

4. What does it mean to have multiple timescales in a system?

In class:

1. Review the van der Pol problem from last time.

2. Summarize the method of averaging.

Team problems:

1. Consider a differential equation

ẍ+ x+ εh(x, ẋ) = 0, 0 ≤ ε� 1.

We define r(t) and φ(t) such that x(t) ∼ r̄ cos(t + φ̄) and ẋ ∼ −r̄ sin(t + φ̄). Here ∼ means “is

asymptotically approximated by”, so limε↓0
x(t)

r̄ cos(t+φ̄)
= 1. Specifically x(t) = r̄ cos(t+ φ̄) +O(ε2).

From the method of averaging, we have

dr̄

dt
=ε
〈
h sin(t+ φ̄)

〉
+O(ε2)

r̄
dφ̄

dt
=ε
〈
h cos(t+ φ̄)

〉
+O(ε2).

(a) Consider the equation ẍ+ x− εxẋ = 0. Show that ˙̄r = 0 +O(ε2) and r̄ ˙̄φ = 0 +O(ε2).

Recall that 〈cosn t sin t〉 = 0 for the time average over a single period of sin t. And similarly
for 〈sinn t cos t〉 .

(b) Consider the equation ẍ+ x+ εx2 = 0. Show that ˙̄r = 0 +O(ε2) and r̄ ˙̄φ = 0 +O(ε2).

Note that 〈cosn t〉 = 0 for n an odd integer.

(c) Consider the equation ẍ+ x+ εẋ3 = 0. Find r̄(t) and then x(t, ε) to first order in ε.

Note that sin4 t =
(
eit−e−it

2i

)4

= 1
16

(
e4it − 4e3ite−it + 6e2ite−2it − 4eite−3it + e−4it

)
= 1

16

(
e4it + e−4it − 4(e2it + e−2it) + 6

)
= 1

16 cos 4t− 1
4 cos 2t+ 3

8 .

(d) Consider the equation ẍ + x + εẋn, n ∈ Z+. Write a conjecture for when you think the

correction term at order ε will be nonzero for either the ˙̄r equation or the r̄ ˙̄φ.

2. In the method of multiple time scales, we create new time variables: t → τ + T where τ is t,
the short time scale, and T = εt, the long time scale. We could define more timescales, such as
T1 = ε2t, an even longer time scale. We assume two time scales is enough, however.

∂t →
dτ

dt
∂τ +

dT

dt
∂T = ∂τ + ε∂T .

Consider the differential equation
ẍ+ x+ εh(x, ẋ) = 0.

Using our new multiple time scales, this equation becomes

xττ + 2εxτT + ε2xTT + x+ εh(x, xτ + εxT ) = 0.
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Sorting by scales, we have

xττ + x+ 2εxτT + ε(h(x, xτ + εxT ) + ε2xTT = 0.

Assume our solution is of the form x(τ, T, ε) = x0(τ, T ) + εx1(τ, T ) + ...

Substituting this in, we have

x0ττ + εx1ττ + ε2x2ττ

+ x0 + εx1 + ε2x2

+ 2εx0τT + 2ε2x1τT

+ εh(x0, x0τ ) + ε2from h term

+ ε2x0TT

+O(ε3) = 0.

Sorting by order, our equations are
x0ττ + x0 = 0

ε(x1ττ + x1 + 2x0τT + h(x0, x0τ )) = 0

Solving the order 1 equations, we find x0(τ, T ) = R(T ) cos(τ + φ(T )). This can also be written
x0(τ, T ) = A(T ) cos τ +B(T ) sin τ).

We have x0τ = −R(T ) sin(τ + φ(T )) and x0τT = −RT sin(τ + φ(T )) − R(T ) sin(τ + φ(T ))φT .
Plugging in to the order ε equations, we find

x1ττ + x1 = −2x0τT − h(x0, x0τ ))

⇒ x1ττ + x1 = 2RT sin(τ + φ) + 2R sin(τ + φ)φT − h(R cos(τ + φ),−R sin(τ + φ))).

We choose R and φ to avoid resonant forcing on the right hand side, so we want all sin τ and cos τ
terms to disappear.

Use this method to find x(t, T, ε) for ẍ+ x+ εẋ3 = 0.

Note: cos3 t = 3
4 cos t+ 1

4 cos 3t.
cos2 t sin t = 1

4 sin t+ 1
4 sin 3t.

cos t sin2 t = 1
4 cos t− 1

4 cos 3t.

sin3 t = 3
4 sin t− 1

4 sin 3t.

Answers to 1:

1. (a) We have ˙̄r = ε
〈
h sin(t+ φ̄)

〉
+O(ε2). In the equation ẍ+ x− εxẋ = 0, the function h(x, ẋ) is

given by −xẋ. We have defined r and φ such that x ≈ r̄ cos(t+ φ̄) and y ≈ −r̄ sin(t+ φ̄), so
h is −r̄2 cos(t+ φ̄) sin(t+ φ̄) +O(ε). Substituting in,

˙̄r = ε
〈
r̄2 sin2(t+ φ̄) cos(t+ φ̄)

〉
+O(ε2) = εr̄2

〈
sin2(t+ φ̄) cos(t+ φ̄)

〉
+O(ε2).

Because
〈
sin2(t+ φ̄) cos(t+ φ̄)

〉
= 1

2π

∫ t+2π

t
sin2(τ + φ̄) cos(τ + φ̄)dτ = 0, we are left with

˙̄r = 0 +O(ε2).

In this case things work out very similarly for r̄ ˙̄φ.

(b) Now h = x2. This gives us

˙̄r = ε
〈
r̄2 sin(t+ φ̄) cos2(t+ φ̄)

〉
+O(ε2),

r̄ ˙̄φ = ε
〈
r̄2 cos3(t+ φ̄)

〉
+O(ε2).

Since
〈
cos3(t+ φ̄)

〉
= 3

4

〈
cos(t+ φ̄)

〉
+ 1

4

〈
cos 3(t+ φ̄)

〉
, this is 0. Similarly for ˙̄r.
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(c) Now h = ẋ3.
˙̄r = −ε

〈
r̄3 sin4(t+ φ̄)

〉
+O(ε2),

which gives us something that will be nonzero in the time average at order ε. Exciting!! We
have

〈
sin4(t+ φ̄)

〉
= 1

16

〈
cos 4(t+ φ̄)

〉
− 1

4

〈
cos 2(t+ φ̄)

〉
+ 3

8 = 3
8 . This gives us

˙̄r = −3

8
εr̄3 +O(ε2).

The origin is now an attracting fixed point (but the timescale is set by 3
8ε so it is slowly

attracting). We can actually solve this differential equation to find r̄(t).

−r̄−3 ˙̄r =
3

8
ε

⇒ 1

2
r̄−2 =

3

8
εt+ C.

To set C, let r̄(0) = r0. Then 1
2r
−2
0 = C. Solving for r̄, we have

r̄(t) =

(
1

3
4εt+ r−2

0

) 1
2

.

As t gets large (note that εt won’t matter much until t is of order 1
ε for r0 of order 1, so t isn’t

large until 1
ε � t), this will approach 0, as it should.

(d) Thinking for generally, let h = ẋn. This puts a sinn(t+ φ̄) sin(t+ φ̄) in the time average, so if
n+ 1 is even this will have a nonzero time average. Thus for n odd there should be a nonzero
order ε evolution of the r̄ equation.
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