AM147 11:30am

Class 14: small perturbations to simple harmonic oscillation
Goals for the day:

1
2
3
4

. Review and understand the van der Pol oscillator in the large p (strongly nonlinear) case.

. What is a weakly nonlinear oscillator?

. How does averaging theory allow us to determine the long time evolution of oscillations?

. What does it mean to have multiple timescales in a system?

In class:

1. Review the van der Pol problem from last time.

2. Summarize the method of averaging.

Team problems:

1. Consider a differential equation

We define 7(t) and ¢(t) such that x(t) ~ Fcos(t + ¢) and & ~ —7sin(
asymptotically approximated by”, so lim, o =

Z+x+eh(r,i)=0, 0<e<x]1.

+ ¢). Here ~ means “is
olt) ) = 7 cos(t + @) + O(e2).

t
Toos(trg) = 1+ Specifically z(t

From the method of averaging, we have

(a)

(b)

(c)

(d)

dr . -
d—é =e (hsin(t + ¢)) + O(€%)

d¢ 7 2
i (heos(t + @) + O(€?).

7:
Consider the equation & + z — ez# = 0. Show that # = 0 + O(2) and 7¢ = 0 + O(¢2).
Recall that (cos™tsint) = 0 for the time average over a single period of sint. And similarly
for (sin™ t cost) .
Consider the equation i + z + ez? = 0. Show that 7 = 0 + O(€?) and Fgg =0+ O(e?).
Note that (cos™t) =0 for n an odd integer.

Consider the equation & + z + €i® = 0. Find #(¢) and then z(, €) to first order in e.

i —ie\ 4
Note that sin* t = (%)
1 (e4it _ feBite—it | GeRite—2it _ fpit—3it | €—4it)
Tlﬁ (e4zt + e—4zt _ 4(621t + e—Qlt) + 6)
= 1—1600$4t — %cos%—l— %.

-

Consider the equation & + x 4+ ex™, n € Z,. Write a conjecture for when you think the

correction term at order e will be nonzero for either the 7 equation or the 7¢.

2. In the method of multiple time scales, we create new time variables: t — 7 + T where 7 is t,
the short time scale, and T' = et, the long time scale. We could define more timescales, such as
T, = €%t, an even longer time scale. We assume two time scales is enough, however.

dr dr
at — an— + EBT = 67- + CaT.

Consider the differential equation

&+ x+eh(z, i) =0.

Using our new multiple time scales, this equation becomes

Tor + 2ex,7 + ET7T + T + eh(z,x, + exp) = 0.



Sorting by scales, we have
Trr + x4 2ex,7 + e(h(z, 2, + xp) + 2xpr = 0.

Assume our solution is of the form (7, T, €) = zo(7,T) + ex1(7,T) + ...

Substituting this in, we have

Torr + €T1rr + € T2y
+ 2o+ exy + e2x2
+ 2exor1 + 26T 1,7
+ eh(z0, Tor) + €*from h term
+ E2zorr
+0O(3) = 0.

Sorting by order, our equations are
ZTorr + 20 =0

€(T177 + o1 + 23077 + h(T0, 7o) = 0
Solving the order 1 equations, we find zo(7,T) = R(T)cos(T + ¢(T')). This can also be written
xo(1,T) = A(T) cosT + B(T) sin 7).
We have zg, = —R(T)sin(7 + ¢(T)) and zo,r = —Rrsin(r + ¢(T)) — R(T) sin(1 + ¢(T))¢r.
Plugging in to the order € equations, we find

Tirr + 21 = —2%0;T — h(x()?xOT))

= ZT17r + 21 = 2Rp sin(7 + ¢) + 2Rsin(7 + ¢)dpr — h(Rcos(t + ¢), —Rsin(t + ¢))).

We choose R and ¢ to avoid resonant forcing on the right hand side, so we want all sin7 and cos 7
terms to disappear.
Use this method to find x(t, T ¢) for & + x + ei® = 0.

Note: cos®t = % cost + icos 3t.
cos?tsint = i sint + i sin 3t.

costsin®t = icost — icos3t.
sin®t = 3sint — Lsin3t.

Answers to 1:

1. (a) We have 7 = ¢ (hsin(t + ¢)) + O(e?). In the equation & + x — exd: = 0, the function h(z, ) is
given by —zi. We have defined 7 and ¢ such that x ~ 7 cos(t + ¢) and y ~ —7sin(t + ¢), so
h is —72 cos(t + ¢) sin(t + ¢) + O(e). Substituting in,

7= e(rsin®(t + @) cos(t + ¢)) + O(e?) = er® (sin®(t + ¢) cos(t + ¢)) + O(€?).
.92 N n 1 t+2m . 9 " n .
Because (sin®(t + @) cos(t 4+ ¢)) = 5= [} sin’(7 + @) cos(T + ¢)dr = 0, we are left with
F=0+0().
In this case things work out very similarly for 7¢.
(b) Now h = x2. This gives us
¥ = e(Fsin(t + @) cos®(t + ¢)) + O(€?),

F(E =€ <F2 cos® (t + o))+ O(€?).
Since {cos®(t + ¢)) = 2 (cos(t + ¢)) + 1 (cos3(t + ¢)) , this is 0. Similarly for 7.



(c) Now h = i3.

7= —e(rsin'(t+¢)) + O(e?),
which gives us something that will be nonzero in the time average at order e. Exciting!! We

have (sin’(t + ¢)) = 25 (cosd(t + @) — L (cos2(t + ¢)) + 2 = 3. This gives us

= fgef?’ + O(é?).

The origin is now an attracting fixed point (but the timescale is set by %e so it is slowly
attracting). We can actually solve this differential equation to find 7(¢).

To set C, let 7(0) = ro. Then %r&Q = C. Solving for 7, we have

3
1
)= +—m—"s] .
®) (iet+r02>

As t gets large (note that et won’t matter much until ¢ is of order % for ro of order 1, so ¢ isn’t
large until £ < ¢), this will approach 0, as it should.

Thinking for generally, let h = . This puts a sin”(t + ¢) sin(t + @) in the time average, so if
n+ 1 is even this will have a nonzero time average. Thus for n odd there should be a nonzero
order € evolution of the 7 equation.



