AM147 11:30am

Class 14: small perturbations to simple harmonic oscillation

Goals for the day:

1. Review and understand the van der Pol oscillator in the large μ (strongly nonlinear) case.
2. What is a weakly nonlinear oscillator?
3. How does averaging theory allow us to determine the long time evolution of oscillations?
4. What does it mean to have multiple timescales in a system?

In class:

1. Review the van der Pol problem from last time.
2. Summarize the method of averaging.

Team problems:

1. Consider a differential equation

$$
\ddot{x}+x+\epsilon h(x, \dot{x})=0, \quad 0 \leq \epsilon \ll 1
$$

We define $r(t)$ and $\phi(t)$ such that $x(t) \sim \bar{r} \cos (t+\bar{\phi})$ and $\dot{x} \sim-\bar{r} \sin (t+\bar{\phi})$. Here \sim means "is asymptotically approximated by", so $\lim _{\epsilon \downarrow 0} \frac{x(t)}{\bar{r} \cos (t+\bar{\phi})}=1$. Specifically $x(t)=\bar{r} \cos (t+\bar{\phi})+\mathcal{O}\left(\epsilon^{2}\right)$. From the method of averaging, we have

$$
\begin{aligned}
\frac{d \bar{r}}{d t} & =\epsilon\langle h \sin (t+\bar{\phi})\rangle+\mathcal{O}\left(\epsilon^{2}\right) \\
\bar{r} \frac{d \bar{\phi}}{d t} & =\epsilon\langle h \cos (t+\bar{\phi})\rangle+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

(a) Consider the equation $\ddot{x}+x-\epsilon x \dot{x}=0$. Show that $\dot{\bar{r}}=0+\mathcal{O}\left(\epsilon^{2}\right)$ and $\bar{r} \dot{\bar{\phi}}=0+\mathcal{O}\left(\epsilon^{2}\right)$.

Recall that $\left\langle\cos ^{n} t \sin t\right\rangle=0$ for the time average over a single period of $\sin t$. And similarly for $\left\langle\sin ^{n} t \cos t\right\rangle$.
(b) Consider the equation $\ddot{x}+x+\epsilon x^{2}=0$. Show that $\dot{\bar{r}}=0+\mathcal{O}\left(\epsilon^{2}\right)$ and $\dot{\bar{r}} \dot{\bar{\phi}}=0+\mathcal{O}\left(\epsilon^{2}\right)$.

Note that $\left\langle\cos ^{n} t\right\rangle=0$ for n an odd integer.
(c) Consider the equation $\ddot{x}+x+\epsilon \dot{x}^{3}=0$. Find $\bar{r}(t)$ and then $x(t, \epsilon)$ to first order in ϵ.

Note that $\sin ^{4} t=\left(\frac{e^{i t}-e^{-i t}}{2 i}\right)^{4}$
$=\frac{1}{16}\left(e^{4 i t}-4 e^{3 i t} e^{-i t}+6 e^{2 i t} e^{-2 i t}-4 e^{i t} e^{-3 i t}+e^{-4 i t}\right)$
$=\frac{1}{16}\left(e^{4 i t}+e^{-4 i t}-4\left(e^{2 i t}+e^{-2 i t}\right)+6\right)$
$=\frac{1}{16} \cos 4 t-\frac{1}{4} \cos 2 t+\frac{3}{8}$.
(d) Consider the equation $\ddot{x}+x+\epsilon \dot{x}^{n}, n \in \mathbb{Z}_{+}$. Write a conjecture for when you think the correction term at order ϵ will be nonzero for either the $\dot{\bar{r}}$ equation or the $\bar{r} \dot{\bar{\phi}}$.
2. In the method of multiple time scales, we create new time variables: $t \rightarrow \tau+T$ where τ is t, the short time scale, and $T=\epsilon t$, the long time scale. We could define more timescales, such as $T_{1}=\epsilon^{2} t$, an even longer time scale. We assume two time scales is enough, however.

$$
\partial_{t} \rightarrow \frac{d \tau}{d t} \partial_{\tau}+\frac{d T}{d t} \partial_{T}=\partial_{\tau}+\epsilon \partial_{T}
$$

Consider the differential equation

$$
\ddot{x}+x+\epsilon h(x, \dot{x})=0 .
$$

Using our new multiple time scales, this equation becomes

$$
x_{\tau \tau}+2 \epsilon x_{\tau T}+\epsilon^{2} x_{T T}+x+\epsilon h\left(x, x_{\tau}+\epsilon x_{T}\right)=0 .
$$

Sorting by scales, we have

$$
x_{\tau \tau}+x+2 \epsilon x_{\tau T}+\epsilon\left(h\left(x, x_{\tau}+\epsilon x_{T}\right)+\epsilon^{2} x_{T T}=0 .\right.
$$

Assume our solution is of the form $x(\tau, T, \epsilon)=x_{0}(\tau, T)+\epsilon x_{1}(\tau, T)+\ldots$
Substituting this in, we have

$$
\begin{aligned}
x_{0 \tau \tau} & +\epsilon x_{1 \tau \tau}+\epsilon^{2} x_{2 \tau \tau} \\
& +x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2} \\
& +2 \epsilon x_{0 \tau T}+2 \epsilon^{2} x_{1 \tau T} \\
& +\epsilon h\left(x_{0}, x_{0 \tau}\right)+\epsilon^{2} \text { from h term } \\
& +\epsilon^{2} x_{0 T T} \\
& +\mathcal{O}\left(\epsilon^{3}\right)=0
\end{aligned}
$$

Sorting by order, our equations are

$$
\begin{gathered}
x_{0 \tau \tau}+x_{0}=0 \\
\epsilon\left(x_{1 \tau \tau}+x_{1}+2 x_{0 \tau T}+h\left(x_{0}, x_{0 \tau}\right)\right)=0
\end{gathered}
$$

Solving the order 1 equations, we find $x_{0}(\tau, T)=R(T) \cos (\tau+\phi(T))$. This can also be written $\left.x_{0}(\tau, T)=A(T) \cos \tau+B(T) \sin \tau\right)$.
We have $x_{0 \tau}=-R(T) \sin (\tau+\phi(T))$ and $x_{0 \tau T}=-R_{T} \sin (\tau+\phi(T))-R(T) \sin (\tau+\phi(T)) \phi_{T}$. Plugging in to the order ϵ equations, we find

$$
\begin{gathered}
\left.x_{1 \tau \tau}+x_{1}=-2 x_{0 \tau T}-h\left(x_{0}, x_{0 \tau}\right)\right) \\
\left.\Rightarrow x_{1 \tau \tau}+x_{1}=2 R_{T} \sin (\tau+\phi)+2 R \sin (\tau+\phi) \phi_{T}-h(R \cos (\tau+\phi),-R \sin (\tau+\phi))\right)
\end{gathered}
$$

We choose R and ϕ to avoid resonant forcing on the right hand side, so we want all $\sin \tau$ and $\cos \tau$ terms to disappear.
Use this method to find $x(t, T, \epsilon)$ for $\ddot{x}+x+\epsilon \dot{x}^{3}=0$.
Note: $\cos ^{3} t=\frac{3}{4} \cos t+\frac{1}{4} \cos 3 t$.
$\cos ^{2} t \sin t=\frac{1}{4} \sin t+\frac{1}{4} \sin 3 t$.
$\cos t \sin ^{2} t=\frac{1}{4} \cos t-\frac{1}{4} \cos 3 t$.
$\sin ^{3} t=\frac{3}{4} \sin t-\frac{1}{4} \sin 3 t$.
Answers to 1 :

1. (a) We have $\dot{\bar{r}}=\epsilon\langle h \sin (t+\bar{\phi})\rangle+\mathcal{O}\left(\epsilon^{2}\right)$. In the equation $\ddot{x}+x-\epsilon x \dot{x}=0$, the function $h(x, \dot{x})$ is given by $-x \dot{x}$. We have defined r and ϕ such that $x \approx \bar{r} \cos (t+\bar{\phi})$ and $y \approx-\bar{r} \sin (t+\bar{\phi})$, so h is $-\bar{r}^{2} \cos (t+\bar{\phi}) \sin (t+\bar{\phi})+\mathcal{O}(\epsilon)$. Substituting in,

$$
\dot{\bar{r}}=\epsilon\left\langle\bar{r}^{2} \sin ^{2}(t+\bar{\phi}) \cos (t+\bar{\phi})\right\rangle+\mathcal{O}\left(\epsilon^{2}\right)=\epsilon \bar{r}^{2}\left\langle\sin ^{2}(t+\bar{\phi}) \cos (t+\bar{\phi})\right\rangle+\mathcal{O}\left(\epsilon^{2}\right)
$$

Because $\left\langle\sin ^{2}(t+\bar{\phi}) \cos (t+\bar{\phi})\right\rangle=\frac{1}{2 \pi} \int_{t}^{t+2 \pi} \sin ^{2}(\tau+\bar{\phi}) \cos (\tau+\bar{\phi}) d \tau=0$, we are left with $\dot{\bar{r}}=0+\mathcal{O}\left(\epsilon^{2}\right)$.
In this case things work out very similarly for $\bar{r} \dot{\bar{\phi}}$.
(b) Now $h=x^{2}$. This gives us

$$
\begin{gathered}
\dot{\bar{r}}=\epsilon\left\langle\bar{r}^{2} \sin (t+\bar{\phi}) \cos ^{2}(t+\bar{\phi})\right\rangle+\mathcal{O}\left(\epsilon^{2}\right), \\
\bar{r} \dot{\bar{\phi}}=\epsilon\left\langle\bar{r}^{2} \cos ^{3}(t+\bar{\phi})\right\rangle+\mathcal{O}\left(\epsilon^{2}\right) .
\end{gathered}
$$

Since $\left\langle\cos ^{3}(t+\bar{\phi})\right\rangle=\frac{3}{4}\langle\cos (t+\bar{\phi})\rangle+\frac{1}{4}\langle\cos 3(t+\bar{\phi})\rangle$, this is 0 . Similarly for $\dot{\bar{r}}$.
(c) Now $h=\dot{x}^{3}$.

$$
\dot{\bar{r}}=-\epsilon\left\langle\bar{r}^{3} \sin ^{4}(t+\bar{\phi})\right\rangle+\mathcal{O}\left(\epsilon^{2}\right)
$$

which gives us something that will be nonzero in the time average at order ϵ. Exciting!! We have $\left\langle\sin ^{4}(t+\bar{\phi})\right\rangle=\frac{1}{16}\langle\cos 4(t+\bar{\phi})\rangle-\frac{1}{4}\langle\cos 2(t+\bar{\phi})\rangle+\frac{3}{8}=\frac{3}{8}$. This gives us

$$
\dot{\bar{r}}=-\frac{3}{8} \epsilon \bar{r}^{3}+\mathcal{O}\left(\epsilon^{2}\right)
$$

The origin is now an attracting fixed point (but the timescale is set by $\frac{3}{8} \epsilon$ so it is slowly attracting). We can actually solve this differential equation to find $\bar{r}(t)$.

$$
\begin{gathered}
-\bar{r}^{-3} \dot{\bar{r}}=\frac{3}{8} \epsilon \\
\Rightarrow \frac{1}{2} \bar{r}^{-2}=\frac{3}{8} \epsilon t+C .
\end{gathered}
$$

To set C, let $\bar{r}(0)=r_{0}$. Then $\frac{1}{2} r_{0}^{-2}=C$. Solving for \bar{r}, we have

$$
\bar{r}(t)=\left(\frac{1}{\frac{3}{4} \epsilon t+r_{0}^{-2}}\right)^{\frac{1}{2}}
$$

As t gets large (note that ϵt won't matter much until t is of order $\frac{1}{\epsilon}$ for r_{0} of order 1 , so t isn't large until $\frac{1}{\epsilon} \ll t$), this will approach 0 , as it should.
(d) Thinking for generally, let $h=\dot{x}^{n}$. This puts a $\sin ^{n}(t+\bar{\phi}) \sin (t+\bar{\phi})$ in the time average, so if $n+1$ is even this will have a nonzero time average. Thus for n odd there should be a nonzero order ϵ evolution of the \bar{r} equation.

