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SUMMARY

Recently suggested procedures for simulating from the posterior density of states given
a Gaussian state space time series are refined and extended. We introduce and study
the simulation smoother, which draws from the multivariate posterior distribution of the
disturbances of the model, so avoiding the degeneracies inherent in state samplers. The
technique is important in Gibbs sampling with non-Gaussian time series models, and for
performing Bayesian analysis of Gaussian time series.
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1. INTRODUCTION

This paper introduces a simple and efficient method, the simulation smoother, for sam-
pling from the smoothing density associated with time series models. The simulation
smoother exploits the common structure which most time series models possess.

Simulation smoothing comes up in a number of papers, e.g. Frtlhwirth-Schnatter (1994,
1995), Carter & Kohn (1994), Shephard (1994), Chib & Greenberg (1994), and may be
of importance in future time series work. One area of application is the Markov chain
Monte Carlo method or Gibbs sampling, described by Smith & Roberts (1993) and Ripley
(1987, pp. 113-6). General time series papers using these methods are by Carlin, Poison
& Stoffer (1992), Carter & Kohn (1994) and Shephard (1994). Papers tackling specific
cases of models using this framework include Chib (1993), Jacquier, Poison & Rossi
(1994), Albert & Chib (1993), Shumway & Stoffer (1991) and Frtlhwirth-Schnatter (1994).
Its application to robust nonparametric regression, which exploits the state space form
for computational convenience, has been suggested by Carter & Kohn (1994).

The objective of Gibbs sampling (Tierney, 1995; Tanner, 1991, pp. 89-106) is to produce
draws from the 'smoothing' density p(a, co\y), where y is the vector of observed data. The
vectors a and co contain quantities of interest or facilitate the estimation of the same. They
are viewed as unobserved 'latent' data. There is flexibility in choosing a and co, depending
on the structure of the model, objectives of the analysis and estimation method. With
Gibbs sampling, draws from p(a, co\y) are produced by cycling over the steps a ~p(a\y, co)
and co~p(co\y, a), where each draw serves to redefine the conditioning variable on the
next draw.

In time series applications a is usually defined as the stack of state vectors with respect
to a state space form and p(a\y, co) is typically Gaussian. Carlin et al. (1992) propose that
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the draw from p(jx\y,co) be replaced by the 'single-state' Gibbs sampler which samples
from p(oLt\y, a?, co), where a* is a excluding a, and cycling over t and likewise for the
individual elements of co. With the single-state sampler each draw serves to redefine a
single state a, in contrast to the 'multi-state' Gibbs sampler where the entire a is drawn
at once from p{a\y, co).

Recently there has been a series of papers which suggest that the single state Gibbs
sampler may be extremely inefficient for a class of time series models which includes many
of the most interesting non-Gaussian and nonlinear models. In response, Carter & Kohn
(1994) and Frtihwirth-Schnatter (1994) have independently suggested a direct imple-
mentation of multi-state sampling for time series models. The implementation is based on
the identity:

p(a\y, co) = p{an\y, cw)p(an_1|}', an, co)... pi^y, a x , . . . , a,, co). (1)

A draw from p(a\y,co) can thus be constructed recursively provided the subdraws from
the densities in the right of (1) are practical. Carter & Kohn (1994) and Frtihwirth-
Schnatter (1994) show how to implement these subdraws if p{a\y, co) is Gaussian.

The multi-state sampler is simpler to implement than the single-state sampler and more
efficient in that there is less correlation between successive a or co draws and so it converges
more quickly: see Liu, Kong & Wong (1994), who show that generating variables from
reduced conditionals produces faster convergence. Shortcomings of the multi-state sampler
as implemented by Carter & Kohn (1994) and FrQhwirth-Schnatter (1994) flow from the
fact that a draw from p{a\y, co) is constructed recursively in terms of a,. Typically a is of
very high dimension with many identities Unking the state variables. The identities are a
consequence of forcing the model into state space form. These identities must be kept
track of in the direct recursive construction of the draw, necessitating mechanisms for
dealing with degeneracies and imposing a large computational overhead.

In this paper we develop an alternative multi-state Gibbs sampler for time series models,
in which it is disturbances rather than states which are drawn. Drawing disturbances is
not subject to automatic identities, and is typically simpler. All random variables in the
state space model are linear combinations of the disturbances, and hence can be con-
structed from simulated disturbances as required.

Section 2 illustrates the advantages of multi-state over single-state sampling. The multi-
state sampler is constructed in terms of the disturbance draws. Section 3 gives the general
algorithm for the disturbance sampler. Section 4 discusses some examples, and § 5 deals
with regression effects. An appendix proves the correctness of the algorithm.

2. SINGLE VERSUS MULTI-STATE SAMPLING

2-1. Illustration
To illustrate the importance of multi-state sampling, consider the stochastic volatility

model:

y , = e, exp (fa), a1+1 = <t>ixt + T]t,

where e, and q, are mutually and serially independent Gaussian random variables with
zero means and variances 1 and a2 respectively. This non-Gaussian state space model
has been used to generalise the Black-Scholes option pricing equation to allow the
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variance to change over time (Hull & White, 1987; Chesney & Scott, 1989; Melino &
Turnbull, 1990).

The single-state sampler involves drawing a,, ideally from its conditional distribution

pfoK y) = p(ar|ot_1) a,+1, yt) =

where c, the constant of proportionality, is unknown. A good approach to overcoming
the problem is suggested by Jacquier et al. (1994), building on the accept/reject Metropolis
work of Carlin et al. (1992). However, we are going to avoid using this by noting that
log {p(at\of, y)} is concave in a,. This means we can directly sample from p(a,|a,_1, a,+1, yt)
using the routine of Wild & Gilks (1993), and so use the single-state Gibbs sampler.

This Gibbs sampler will converge to drawings from p(a \ y) so long as a2 > 0. However,
the speed of convergence may be slow, in the sense of taking a large number of draws.
To illustrate these features, Fig. 1 reports some results using two sets of parameter values:
<l> = 0-9, a2 = 0-05 and <f> = 099, a2 = 001. These lines report the average over 1000 repli-
cations of a, for t = 0 , 1 , . . . , 100 after k iterations, all initialised at zero. The experiment
shows how long the initial conditions last in the single-state sampler and so reflect the
memory or correlation in the sampler. Figure 2 shows the results from running a single
sampler for 100 000 iterations, discarding the first 10 000. The resulting correlogram of
that series, recording the draw for a50, compactly presents the correlation in the sampler
in equilibrium.

The results of Fig. 1 show that as <\> increases, and similarly as a1 -> 0, the sampler slows
up, reflecting the increased correlation amongst the states drawn. This unfortunate charac-
teristic of the single-state Gibbs sampler is common in state space models. If a component,
such as a,, changes slowly and persistently, the single-state sampler will be slow.

2-2. Multi-state sampling
To use the simulation smoother in this context we transform the Stochastic Volatility

model (Harvey, Ruiz & Shephard, 1994; Shephard, 1994):

Carter & Kohn (1993) and Shephard (1994) have suggested using the multi-state samplers
on this model by approximating the distribution of log (e?) by a mixture of normals, so
that p{log(ef)|(u,} is Gaussian with mean n(cot) and variance (^{(o,), where the cot are
assumed independent and identically distributed integer random variables. The advantage
of this representation of the model is that, conditionally on the cot, the state space model
is Gaussian. It is possible to directly draw from p(a\y, co) using the simulation smoother
developed in this paper. The smoother, specialised to the current model, is based on
running forwards, for t = 1, 2 , . . . , n, the Kalman filter

(^(co,) pt

e, = \og(yf)-n(cot)-at, dt = p, + —^-, *r = 7 j .

at+l=(f>at + k1e,, pt+1 = l+(f>p,(l-kt),

with starting conditions ax = 0, py — 1/(1 — <f>2). On the forward pass, only the scalars et,
d, and kt are stored. These are respectively the innovation, innovation variance, and
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Kalman gain. Then setting rn = 0, wn = 0, we compute, for t = n, n — 1 , . . . , 1,

c, = 1 - wt, r\t ~ N(rt, t^c,), v, = wt(<)> - fc,),

e, v,(y, - rt) 1 v?
r,-i = j + (<t> - K)r, , w,_! = - + (<f> - k,fwt + — ,

d, ct d, c,
where r\t ~ N(rt, c^c,) indicates that r\t is drawn from a Gaussian density with mean rt and
variance c^c,. The final t}0 is drawn from N{pir0, o^p^l — Pi>v0)}. The simulated a vector
is then constructed via the recursion a,+1 = <f>at + T]t (t = 0 , 1 , . . . , n — 1) starting with

The simulation smoother is based on simulating from the posterior distribution of the
disturbances of the model, tjt, which then allow us, as required, to form the simulation
from the states ct,. Simulation smoothing is the analogue of the recent analytic disturbance
smoothers, introduced partially by de Jong (1988) and elaborated by Koopman (1993).
In fact, putting vt = 0 for all t gives the Koopman algorithm to compute E(r\t\y, co) and

Likewise, it is easy to draw from p(co\y, a) using uniform random numbers. This means
it is possible to use a multi-state sampler on this model. Figures 3 and 4 repeat the
experiments of Figs 1 and 2, but now using the multi-state sampler.

It is possible to argue that, although there are substantial differences between Figs 1
and 3, and particularly Figs 2 and 4, it is not worth the trouble of blocking and using the
multi-state sampler. This is a dangerous view. The inclusion of any really slowly moving
component will retard the single-state sampler unacceptably.

3. THE SIMULATION SMOOTHER

We shall use lower case letters to denote column vectors, and upper case letters for
matrices. Dimensions may vary with time. If A and B have the same number of columns,
then (A; B) = (A1, B')' denotes the matrix formed by placing A above B.

We work with the following general model. Conditional on co = (co0; co^,...; ton), it is
supposed that y, is generated by the state space model (de Jong, 1991):

y, = X,p + Zfa, + Gtu, (t = 1, 2 , . . . , n),

where OLQ = 0. The coefficients matrices may depend, implicitly, on cot. The u, are indepen-
dent iV(0, a2!) variables.

Initially we suppose /? is known: the case of unknown j? is discussed in § 5. Our simulation
smoother draws r] ~ p{rj\y, co), where r\ = (rj0; ^ t ; . . .;r\n) with r\t = Ftu, and the F, are arbi-
trary matrices whose choice is discussed below. Initially we run, for t=l,2,... ,n, the
Kalman filter

et = yt-Xtp-Z,at, Dt = ZtP,Z', + GtG't, Kt = {TtPtZ[ +HtG[)Dr\

HJ'

where ai = Wop, P1 = HOH'O, Lt = Tt-K,Zt and Jt = Ht-K,Gt. On this Kalman filter
pass, the quantities et, Dt and K, are stored. Then setting rn = 0 and Un = 0, we run, for

, = Ft(I -G[D;lGt- J'tUtJt)F't, e,~iV(0VCf), Vt = F^D^Z. + J'.U.L,),

rt^ = Z'tDret + ̂ t-V'tC7\, U,., = Z'tDt~
1Zt + L'tUtL, + VtCTxVu
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and store r\t = Ft(G'tD^1et + J[rt) + e,, where we take Go — 0. The vector t] = (rj0; r/x ; . . . ; rjn)
is a draw from p{rj\y, co). The proof is given in the Appendix.

If Ft — I then r\t is drawn from p(ut\y, co). This choice is typically not optimal since, as
shown in the next section, it implies that C, is singular for some t.

If F, = G, or Ft — H, then the sampled r\t correspond to the measurement noise Gtu, or
state noise Htu, respectively. The filters (2) and (3) are conceptually easier in this case
provided measurement and state noise are uncorrelated, GtH't = 0. For example if Ft = Ht,
a sensible choice for most models, then, putting ft, = HtH't, (3) reduces to

C , = 0 , - 0 , I / A , « , ~ J V ( 0 , ( x 2 C , ) , ^ = , t , ,
( 4 )

rt_1 = Z'tDr1et + L,rt-V'tCr\, Ut^ = Z'tD;lZt + L',UtL,+V',^1^,

and tj, = ft,r, + e, is a draw from p(Htu,\y, co). Similarly if Ft = G, then, putting F, = GtG't,
n, = D^et - K'trt and Nt = Df1 + K[UtKt, (3) becomes

vt = rt(Ntzt-K'tu,Tt),
L,r,- V\C;X^ Ut.x = Z'^'Z, + mJL + V\C^V

and r\t = F,n, + e, is a draw from p(G,u,\y, co), or, equivalently, y, — r\t is a draw from the
conditional 'signal' distribution, p(Xtf} + Ztat\y,co).

The recursion (3) generalises analytic smoothing in the sense that, if Vt and e, are set
to zero for each t, then (3) reduces to the smoothing recursions given by de Jong (1988,
1989), Kohn & Ansley (1989) and Koopman (1993), and the computed r\t equal
E(F,ut\y, co) while c^C, = cov {F^y, co). More particularly if Vt and e, are set to zero in (4)
or (5) then we obtain the analytic smoothed disturbances of Koopman (1993) and de Jong
(1988); that is r\t equals E(fJ,u,|.y, co) or £(G,u, |y, co), with associated mean squared error
matrix c^C,.

The stored Kalman filter quantities et, Dt and K, are, respectively, the innovation vector,
scaled innovation covanance matrix and Kalman gain matrix. On the simulation smooth-
ing pass (3), t]t is a draw from p(F,u,\y, r\t + l,..., t]n, co) since Ft(G'tDi'1et + J'trt) and o2Ct

are the conditional mean and covariance matrix of this Gaussian density. Thus the r\ draw
is built up using the decomposition (1), written in terms of r\ rather than a.

The advantages of the simulation smoother over the state sampler are as follows. First,
the storage requirements are typically much less than that required for the state sampler,
which stores the one-step-ahead state vector estimates a, and associated scaled covariance
matrices Pt. Secondly, the recursion operates in minimal dimension and does not require
inversion of the matrix Pt, which is typically of large dimension and/or singular. Thirdly,
the recursion can be operated in square root form, enhancing numerical stability. Fourthly,
provided the Ft are of full row rank, there are no automatic degeneracies in p{r\\co). In
turn, degeneracies in p{r\\y, co) can always be avoided through a transparent choice of the
Ft, as discussed in §4. Finally, it is often easier to draw from p(co\y, rj) as opposed to
p{co\y,a).

4. EXAMPLES

Example 41 : MA (q) model. This model can be written in state space form with G, = 1
and Ht = (hu..., hq)', where (hu ..., hq) is the vector of moving average coefficients with
hq =(= 0. If Ft = I = 1 then the e, and C, are scalar. However the only nonzero C, are Cn,
Cn-U ..., CB_,+ 1 since, given y and un, « „ _ ! , . . . , un_€+1 , the remaining ut are determined
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recursively from

Hence a draw from p(u\y) amounts to drawing q random variables un, un-u..., "B_
which go on to determine the remaining disturbances.

Example 4-2: Stochastic volatility model. Consider the stochastic volatility model trans-
formed into the partial Gaussian state space form discussed in § 2, written as

where g{cot) = o-(co,)Ja and the u, = (uu; u^) are independent N(0, o-2/) vectors. Thus
log (yj+1) — log (yf) is, apart from the mean,

O» + l - Of + S ^ r + l K . r + 1 -g(C0,)uu = "2, + g{(Ot + l)uu + l - g{<Ot)uu.

Hence, for t = n — 1, . . . , 1, g(a>t)ult is determined from subsequent u, and data y. Hence
if -Ft = (GfO ĵ). 0); (0,1)), then Cn is nonsingular but C n _j , . . . , Cx are of rank 1. Further
Co = 0 since

#o"o = <*i = log (yf) - /*(a>i) - gCcoJun.

Thus drawing from the 2n + 1 dimensional density p(t] | _y, co) amounts to drawing n + 1
Gaussian random variables.

An issue that arises in running (3) is the occurrence of singularities in one or more of
the Ct. These singularities will always occur if, for each t, the rows of F, span the row
space of (Gr; Ht). For then, without loss of generality we may assume that (Gr; Ht) is of
full column rank, which implies u, can be determined from F,i^, and hence we may assume
Ft = I implying TJ = u = (no;ul;.. .,un). The vector u satisfies y = Xfi + Gu for some
matrices X and G. Thus Gu = y — Xfl and hence p(u\y, co) is degenerate. Thus the sampled
vector t\ in (3) is subject to linear constraints. These constraints reflect themselves in the
Ct, since

p{*i\y, <») = p(Vn\y, a>)p(in-i\y, *!„, 0 3 ) . . . p(r]0\y, m , - - - , fin,«)»

and o^C, is the covariance matrix associated with the conditional density on the right
corresponding to rjt. Thus, if for each t, the rows of Ft span the row space of (G,; if,) then
C, will be singular for at least some t.

It is possible to deal with singular C, in (3) via generalised inversion. However it is
more sensible to choose Ft to have rows making up a basis for the row space of Ht, as
this often avoids singularities in the Ct. The next two examples provide illustrations.

Example 4-2: Stochastic volatility model (cont.). For this model put Ft = Ht = (0,1). Then
G, = (g((ot)j 0) is not in the row space of Ft. In this case all the C, in (2) are scalar of
rank 1. Drawing from p{r}\y,co) reduces to drawing n + l Gaussian random variables.
Now C, is scalar and nonzero for all t. The sampler given in § 2 for the stochastic volatility
model is (2) and (3) specialised to this case.

Example 4-3: Seasonal model. Consider the stochastic volatility model given above with
the addition of a seasonal term
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In this case G, = (g(cot), 0, 0), while Ht is (p + 1) x 3 with p the number of seasons. The
first two rows of if, are (0,1, 0) and (0,0, h) while the rest are zero, reflecting the identities
amongst state elements. Form F, from the first two rows of H. All the C, are nonsingular,
and the drawn e, in (2) are nondegenerate random vectors of length 2. The state vector
for this model is of length p + 1, and state sampling, if p is say 12, is highly inefficient
compared to disturbance sampling.

In general if, for each t, the rows of F, form a basis for the row space of Ht then HtUf
can be determined from r\t. In turn the a, and Gtu, can be determined from the Htut via
the equations

which can be conveniently computed alongside the next Kalman filter pass. The advantage
of this choice for Ft is that if there is measurement noise, that is if for each t the rows of
G, are not in the row space of Ht, then C, will be nonsingular.

Example 4-4: Multiplicative model. Consider the model

y, = co,at + guu, a t+1 = <xt + hM2t, cot+1 = pcot + vt,

where vt is Gaussian noise with variance a2, uncorrelated with the u,. Conditional on co
this is a Gaussian state space model and hence the scalar r\t = hu^ can be drawn as
described above. In turn the simulated a, can be built up in a forward pass from the
equation <x,+1 = <x, + r\t. Conditional on r\ and hence the a, the first and third equation
define a Gaussian state space model and the above shows how to draw vt, which in turn
can be used to build up the draw of cot conditional on y and a.

5. REGRESSION EFFECTS

Situations with unknown regression vector ft can be handled by supposing p{fl\co) is
Gaussian with E(p\co) = b and cov (/?|co) = (T2BB/, which may be singular. In this case the
draw t] ~ p{r\ \ y, co) is built up using the decomposition

p(p, r\ |y , co) = p(p|y, co)p{rj | p , y , co).

Drawing from p(t]\fl, y, co) was, in effect, considered in §§ 2 and 3. Drawing from p(P\y, co)
is achieved by replacing the equations for et and a,+1 in (2) by

Et = (0, yt) - Xt(B, b) - ZtAt, At+1 = Wt(B, b) + TtAt + KtEt

and adding the recursion Qt+1 = Q, + E[D;YEt, where Ax = W0(B, b) and & = 0. Thus the
Kalman filter (2) is modified in two of its equations, yielding the so-called diffuse Kalman
filter. It is shown by de Jong (1991) that p{fi\y, co) is Gaussian with mean and co variance
matrix given by

E(p\y, co) = b + B(S + I)~ls, cov {p\y, co) = cr'BiS + iylB',

where S and s are defined such that the matrix (S, — s) equals the matrix formed from the
k top rows of the k + 1 order matrix Qn+1.

Thus a draw from p(fi, r\\y, co) is made as follows. First the Kalman filter (4) is run,
modified as described above. This is followed by the draw

Given 8, a draw r\ is made with the simulation smoothing pass (3), where et = Et(5; 1).



348 PIET DE JONG AND NEIL SHEPHARD

The above steps assume p(B\co) is a proper prior for /?. In some cases it is reasonable
to suppose a vague or improper prior for B: a Gaussian density with cov (B\a>) = O^KBB',
where K-> CO. In this case, 5 is drawn from N{S~1s, o^S'1) and the draw from p{ti\f}, y, a)
proceeds as above. A similar treatment can be given for the case where at has a vague prior.

Example 51: Stochastic volatility model. We continue with the stochastic volatility model
transformed into the partial Gaussian state space form discussed in §§ 2 and 4. Suppose
H{o3t) as specified in § 2-2 is of the form x'(co,)/?, where B is unknown and x(cot) a vector
of zeros except in one position where it contains a one, indicating the state of cot. If B is
completely unknown we put b = 0 and B = I and, at the completion of the modified
Kalman filter pass (2), draw /? from the Gaussian density N(S~1s, o^S"1). The simulation
smoother (3) is then applied with e, = E,(B; 1). The resulting vector (/?; rj) is a draw from
p(fi, t]\y, co) and a sequence of such draws, cycling over draws from p{B,r\\y, co) and
p(co\y, ft, y]), behaves like draws from the posterior p(B, t]\y).
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APPENDIX

Proof of correctness

Conditioning on co will be implicit. Put

T1, = F,u, ( t = 0 , 1, . . . , n ) , en = t]m-

Then, since a2Dn = cov {en) and cov (uB, en) = a^G',,,

cov fojJO = cov (ej = cov (!,„, nn - FHG'HD;leH) = t?Fn(I - G'nD~lGm)Fn =

and hence the assertions of § 3 hold for t = n. For t < n put £, = ?/, — E(rj,\y, i\t+i,...,t\n) and suppose
the assertions hold for s > t. Then

t\y> f i + i . • • • » ' ? . ) = E(ri,\e,, et + l , . . . , eH, r]t + u . . . , t]n)

= £(ij,k)+ £ {£(7, k )
i = r + l

= Ft\G',D,-ie, + <T-2 £ {OTvfa,ef)Df1eI + cov(!jf,eI)C,-1e.} .
L i=t+i J

The first equah'ty follows on orthogonalising y, since t], = F,i^ is uncorrelated with ely e2, • • •, et-\-
The second follows from orthogonalising e,,et+l,... ,em, r}t+l,...,r]n. It is shown below that,
for s > t,

L J _ 1 . . . U+JJ,, (Al)

cov(e J ,u , )=-<r 2 K J (L,_ 1 . . .L ( + 1 y < . (A2)
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Substituting into the above expression yields E{r\t\y, n,+i,..., t\H) as given in § 3. Next note that

{t]t\y, t ] t + u . . . , f / J = c o v (£ , ) = c o v {tj,, r\t - E{t],\y, tjt + 1,..., t]n)}

= o^F, {I - cov (u,, G'tD;le, + J',rt)}F't

= (fF.y- cov (u,, et)D;lGt - cov («,, r,)J,}F't,

which expands to o^C,.
It remains to prove the relations in (Al) and (A2). For s > t,

e, = Z,(«, - a,) + G.u. = Z,{Lf _!(«,_! - a^J + / 3 - i" , - i} + G.u,

= Z^L. - i . . . L,+i){(a, -a,) + J,u,} + (terms Unear in u,+ 1 , . . . , u,).

Thus

cov (c,, u,) = Z,(L,-y... L,+1) cov (Jtu,, u,) = (?Z,{L,-i... L,+1)Jt,

which establishes (Al). Next note that

which proves (A2) for s = n. For t<s<n, using the inductive hypothesis,

cov (e,, ut) = cov (u, - G',D;le, - J'.r,, u,)

= -G',D~x cov (e,, u,) - J', cov (r,,u,)

x {Z'jDJ1 cov (ep u,) - V'JCJ1 cov (ep u,)}.

Assuming the truth of the expression for cov (e,, u,) for j > s yields

which completes the proof.
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