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Abstract

When conducting estimation based on agent optimization, we show that one can improve

the performance of the estimator when information such as the second order condition is

appropriately incorporated as moment inequality restrictions, especially when there are

weak instruments. We run a simulation study to demonstrate the effectiveness of this

approach in both continuous and discrete choice problems, and illustrate to empirical

researchers how to include the additional moment inequalities in practice.
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1 Introduction

We study the estimation of an optimal choice problem inspired by the empirical example in Pakes,

Porter, Ho, and Ishii (2015), where agents make investment decisions based on their private information

on productivity. In such settings, we worry that some of the instruments used might be weak, which

motivates the analysis here.

We first conduct estimation for a continuous choice problem with varying instrument strengths, where

we show the effects of explicitly including the second order condition. Then, we analyze the corre-

sponding discrete choice problem using a revealed preference set-up, as in Ciliberto and Tamer (2009),

and show how the second order condition can be incorporated there.

Given the inequality nature of both the second order condition and the revealed preferences, we follow

Chernozhukov, Hong, and Tamer (2007) for estimation. Meanwhile, although the literature on the

inference for partial identification proposes various approaches such as Imbens and Manski (2004) and

Andrews and Guggenberger (2009), we do not address the inference problem here, because we think

that the Monte-Carlo simulation results are effective in conveying our main point. Furthermore, even

though we will be working with a specific model in this paper, the key issues raised here can be relevant

in a wide variety of settings as long as the estimation relies on optimality conditions combined with

instruments, such as Berry, Levinsohn, and Pakes (1995).

2 The Model

Consider the optimal investment choice of a firm di given the investments d−i already made by its

competitors in the same market, analogous to the set-up in Pakes, Porter, Ho, and Ishii (2015).

1Department of Economics, Harvard University, USA. I greatly appreciate the thoughtful comments from Isaiah
Andrews, Ariel Pakes, Daniel Pollmann and Jim Stock.
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Suppose the revenue of the firm is as follows:

r(di, d−i) = A× di
di + d−i

(1)

where the constant A is known.

The cost of installing di units of the investments is quadratic:

ci(di) = (β1 + νi)di + β2d
2
i (2)

E[νi] = 0 (3)

where νi represents the firm’s independent draw of its idiosyncratic productivity shock that is known

to the firm but unobservable to the econometrician. Thus, the firm makes its investment decision

based on νi and d−i to maximize its profit Πi(di, d−i) = r(di, d−i)− ci(di).

Lastly, we assume that d−i is drawn from a Poisson distribution whose mean negatively depends

on νi + ui, where ui represents an additional independent cost shock that is only relevant for the

competitors.

2.1 The Continuous Optimal Choice Problem

Suppose the firm’s optimal choice is continuous, that is di ∈ R, we want to obtain an estimate of β1

and β2 based on the relevant moment conditions.

2.1.1 Moment Conditions Based on First Order Conditions (FOC)

For ease of notation, denote c(di) = β1di + β2d
2
i and Π(di, d−i) = r(di, d−i) − c(di). We form the

following moment conditions based on the first order condition of each optimizing firm:

E
[
Π′(di, d−i)zi

]
= E

[(
A

d−i
(di + d−i)2

− (β1 + 2β2di)

)
zi

]
= E [νizi] = 0 (4)

where zi is any positive instrument that satisfies E[νizi] = 0. We have two valid instruments:

(1) z1i = 1

(2) z2i = ui

Note that di and d−i are both endogenous. Here, ui is a valid instrument for di because ui affects di

through the number of competitors in the market d−i, but is independent from νi. This problem is

just identified and we can use the standard IV estimator.

However, in practical settings, one may not observe the cost shock ui precisely and could suffer weak

instrument problems. We model this through scaling ui by π > 0 and adding a positive random noise,
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following Staiger and Stock (1997):

z2i = πui + εi

εi ∼ Uniform[0, 1)

2.1.2 Moment Conditions Based on Second Order Conditions (SOC)

Given that the firm profit is maximized, we also know that Π′′i ≤ 0. Since the instruments are positive,

we can form the following inequality moments based on this second order condition:2

E
[
Π′′(di, d−i)zi

]
= E

[(
−A 2d−i

(di + d−i)3
− 2β2

)
zi

]
≤ 0 (5)

Combining with Eq (4), we obtain a lower bound βj
2

and an upper bound β̄j1 from each instrument:

β2 ≥ βj2 :=

E
[(
−A d−i

(di+d−i)3

)
zji

]
E
[
zji

]

β1 ≤ β̄j1 :=

E
[(
A d−i

(di+d−i)2
− 2β

2
di

)
zji

]
E
[
zji

]
Geometrically, Figure 1 shows that each moment equality condition generated by the FOC identifies a

line in the space of (β1, β2), where their intersection produces the IV estimator. However, the moment

inequality condition generated by the SOC further restricts each line to a ray starting at (β̄j1, β
j
2
). If

an instrument becomes weak, producing an intersection that is not on the ray, the SOC restriction

will become binding.

2.1.3 Simulation Results

We run simulations to illustrate the properties of the estimators.

First, Figure 2 shows that as the instrument weakens, the IV estimator becomes increasingly noisy

and biased, exhibiting the classical weak instrument problem.

Next, we add the inequality moments generated by the SOC to the equality moments generated by

the FOC, where the estimation is conducted following Chernozhukov, Hong, and Tamer (2007) using

an identity weighting matrix. Figure 3 shows that this noticeably “tucks in” one of the tails.

Therefore, even when a problem has enough equality restrictions for identification, incorporating the

2Although in this example the inequality can be applied at the observation level, practically, any measurement error
in Π′′i would require the expectation operator.
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Figure 1: Each FOC produces a line and the intersection produces the IV point estimate, while the dashed
part shows the portion ruled out by the SOC. The true parameter value β1 = 3 and β2 = 0.25.

Figure 2: The effects of the instrument strengths. π = 0.02, 0.1, 0.5 are used for the weak, moderate and
strong label respectively.

second order condition could still improve the efficiency of the estimator, especially when some of the

instruments are weak.
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Figure 3: The instrument is weak. Comparing to only using the FOC restrictions, including moments from
the second order condition “tucks in” one of the tails.

2.2 The Discrete Optimal Choice Problem

In this section, we study the corresponding discrete choice problem, which is analogous to the previous

section except that the firm can no longer choose any investment di ∈ R, but only discrete units with

a discretization step of S. Specifically, S = 1 implies that di ∈ Z. The revenue function, the cost

function and the agent’s information set remain the same.

2.2.1 Inequality Moment Conditions Based on Optimality

Based on revealed preferences, namely Πi(di, d−i) ≥ Πi(di − S, d−i) and Πi(di, d−i) ≥ Πi(di + S, d−i),

we can construct the following moment inequality restrictions for the same positive instruments:

E

[(
Π(di, d−i)−Π(di − S, d−i)

S

)
zi

]
≥ E [νizi] = 0 (6)

E

[(
Π(di, d−i)−Π(di + S, d−i)

S

)
zi

]
≥ E [−νizi] = 0 (7)

The estimator will find the bounds of the identified set if feasible, and minimizes the deviations

otherwise. Meanwhile, combining (6) and (7), we obtain

E

[(
Π(di + S, d−i)−Π(di, d−i)

S
− Π(di, d−i)−Π(di − S, d−i)

S

)
zi

]
≤ 0 (8)

which resembles SOC because it computes the difference of the first derivative Π′(di, d−i) estimated
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above and below di.

2.2.2 Simulation Results

We run simulations using the two inequality moment conditions constructed in (6) and (7).

To build intuition, we show in Figure 4 the identified set using the constant only. The intersection of

the two inequalities forms a “wedge”, which contains the ray constructed by the FOC and SOC of the

corresponding continuous problem up to an approximation term.3

Figure 4: Identification using the constant. The thick blue ray shows the FOC and SOC restrictions of the
continuous problem, where the start of the ray is emphasized by the red-dashed lines. The pair of green lines
shows the “wedge” identified by the moment inequalities, which becomes “thinner” as S decreases.

Then, we show in Figure 5 the effects of the instrument strengths. With S = 1 fixed, the bounds of the

identified set is much less sensitive to the weakening of the instrument, compared to the IV estimator

of the corresponding continuous problem. This nice behavior is due to the implicit incorporation of

the SOC as shown in Eq (8).

Next, Figure 6 shows as the discretization step size decreases, the bounds estimated from the discrete

problem starts to resemble the IV estimator of the continuous problem, increasingly breaching the

second order condition. To understand this, take the limit of Eq (6) and (7) with S → 0:

E
[
Π′−(di, d−i)zi

]
≥ 0

E
[
Π′+(di, d−i)zi

]
≤ 0

3Note that E
[(

Π(di+S;β̂)
S

− Π(di;β̂)
S

)
zi

]
= E

[(
Π′(di; β̂)

)
zi

]
+ 1

2
E
[(

Π′′(di; β̂)
)
zi

]
S + O(S2) ≤ 0, provided

E
[(

Π′(di; β̂)
)
zi

]
= 0 and E

[(
Π′′(di; β̂)

)
zi

]
≤ 0 and the third term is not too large.
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Figure 5: The upperbound of the identified set of the discrete problem (the dotted lines) is much less sensitive
to the weak instrument than the corresponding parameter estimates obtained from the FOCs of the continuous
problem (the solid lines).

Figure 6: With large S, the upperbound of the identified set is further from the true value, but the distribution
of the bound itself is narrow. As S decreases, the distribution starts to resemble the IV estimator of the
continuous problem.

Since Π is differentiable, we recover the first order condition:

E
[
Π′(di, d−i)zi

]
= 0 (9)
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Figure 7: With additional moment inequalities specified by (8) scaled by 1/S, as S decreases, the distribution
of the upperbounds starts to resemble the FOC + SOC estimator of the continuous problem.

However, we can rewrite Eq (8) as

E
[(

Π′′(di, d−i)S +O(S2)
)
zi

]
≤ 0 (10)

Notice that the strength of the second order condition is scaled by S. As S → 0, the revealed preference

set-up converges to that of the FOC only and the SOC loses its effect.

To address this perverse behavior, we suggest explicitly constructing the additional moment for the

SOC as in Eq (8) but scaled by 1/S. In the limit when S → 0, this becomes the explicit addition of

the SOC moments to the continuous problem, shown in Figure 7.

Relatedly, by adding moment conditions that look beyond the “immediate neighbor” for N × S steps

away, one also improves the relevance of the SOC by a factor of N . However, one needs to trade off

these additional moments with potentially larger confidence sets. Indeed, Pakes, Porter, Ho, and Ishii

(2015) included larger steps (d = ±2) and found the estimate of the identified set unchanged.

3 Conclusion

Using a simple optimal choice setting, we showed why it can be useful to include additional moment

conditions for both the continuous and the discrete choice problem. Therefore, regardless whether

there are already enough moments for identification, we suggest empirical researchers to consider

explicitly incorporating moments based on the second order condition, which may be particularly

useful when there are weak instruments.
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Appendix: Simulation Details

β1 = 3, β2 = 0.25, A = 500. νi and ui are drawn independently from Uniform[−2.5, 2.5). d−i is drawn

from a Poisson distribution with λ = 50 + 50 × (1 − 0.2(νi + ui)). The number of simulation draws

ns = 500. The sample size for each draw N = 500.
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