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Abstract

Non-parametric approaches for analyzing network data based on exchangeable
graph models (ExGM) have recently gained interest. The key object that defines
an ExGM is often referred to as agraphon. This non-parametric perspective on
network modeling poses challenging questions on how to makeinference on the
graphon underlying observed network data. In this paper, wepropose a computa-
tionally efficient procedure to estimate a graphon from a setof observed networks
generated from it. This procedure is based on a stochastic blockmodel approxi-
mation (SBA) of the graphon. We show that, by approximating the graphon with
a stochastic block model, the graphon can be consistently estimated, that is, the
estimation error vanishes as the size of the graph approaches infinity.

1 Introduction

Revealing hidden structures of a graph is the heart of many data analysis problems. From the well-
known small-world network to the recent large-scale data collected from online service providers
such as Wikipedia, Twitter and Facebook, there is always a momentum in seeking better and
more informative representations of the graphs (Fienberg et al. 1985; Nowicki and Snijders 2001a;
Hoff et al. 2002; Handcock et al. 2007; Airoldi et al. 2008; Xuet al. 2012; Azari and Airoldi 2012;
Tang et al. 2013; Goldenberg et al. 2009; Kolaczyk 2009). In this paper, we develop a new com-
putational tool to study one type of non-parametric representations which recently draws signifi-
cant attentions from the community (Bickel and Chen 2009; Lloyd et al. 2012; Bickel et al. 2011;
Zhao et al. 2011; Orbanz and Roy 2013).

The root of the non-parametric model discussed in this paperis in the theory of exchange-
able random arrays (Aldous 1981; Hoover 1979; Kallenberg 1989), and it is presented in
(Diaconis and Janson 2008) as a link connecting de Finetti’swork on partial exchangeability and
graph limits (Lovász and Szegedy 2006; Borgs et al. 2006). In a nutshell, the theory predicts that
every convergent sequence of graphs(Gn) has a limit object that preserves many local and global
properties of the graphs in the sequence. This limit object,which is called agraphon, can be rep-
resented by measurable functionsw : [0, 1]2 → [0, 1], in a way that anyw′ obtained from measure
preserving transformations ofw describes the same graphon.

Graphons are usually seen as kernel functions for random network models (Lawrence 2005). To
construct ann-vertex random graphG(n,w) for a givenw, we first assign a random labelui ∼
Uniform[0, 1] to each vertexi ∈ {1, . . . , n}, and connect any two verticesi andj with probability
w(ui, uj), i.e.,

Pr (G[i, j] = 1 | ui, uj) = w(ui, uj), i, j = 1, . . . , n, (1)
whereG[i, j] denotes the(i, j)th entry of the adjacency matrix representing a particular realization
of G(n,w) (See Figure 1). As an example, we note that the stochastic block-model is the case where
w(x, y) is a piecewise constant function.

∗This paper appears in the proceedings of NIPS 2013. In this version we include an appendix with proofs.
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Figure 1: [Left] Given a graphonw : [0, 1]2 → [0, 1], we draw i.i.d. samplesui, uj from
Uniform[0,1] and assignGt[i, j] = 1 with probabilityw(ui, uj), for t = 1, . . . , 2T . [Middle]
Heat map of a graphonw. [Right] A random graph generated by the graphon shown in themiddle.
Rows and columns of the graph are ordered by increasingui, instead ofi for better visualization.

The problem of interest is defined as follows: Given a sequence of 2T observeddirectedgraphs
G1, . . . , G2T , can we make an estimatêw of w, such that̂w → w with high probability asn goes to
infinity? This question has been loosely attempted in the literature, but none of which has a complete
solution. For example, Lloyd et al. (Lloyd et al. 2012) proposed a Bayesian estimator without a
consistency proof; Choi and Wolfe (Choi and Wolfe) studied the consistency properties, but did not
provide algorithms to estimate the graphon. To the best of our knowledge, the only method that
estimates graphons consistently, besides ours, is USVT (Chatterjee). However, our algorithm has
better complexity and outperforms USVT in our simulations.More recently, other groups have
begun exploring approaches related to ours (Wolfe and Olhede 2013; P.Latouche and Robin 2013).

The proposed approximation procedure requiresw to be piecewise Lipschitz. The basic idea is to
approximatew by a two-dimensional step function̂w with diminishing intervals asn increases.The
proposed method is called the Stochastic blockmodel approximation (SBA) algorithm, as the idea
of using a two-dimensional step function for approximationis equivalent to using the stochastic
block models (Choi et al. 2012; Nowicki and Snijders 2001b; Hoff 2008; Channarond et al. 2012;
Rohe et al. 2011). The SBA algorithm is defined up to permutations of the nodes, so the estimated
graphon isnot canonical. However, this does not affect the consistency properties of the SBA
algorithm, as the consistency is measured w.r.t. the graphon that generates the graphs.

2 Stochastic blockmodel approximation: Procedure

In this section we present the proposed SBA algorithm and discuss its basic properties.

2.1 Assumptions on graphons

We assume thatw is piecewise Lipschitz, i.e., there exists a sequence of non-overlaping intervals
Ik = [αk−1, αk] defined by0 = α0 < . . . < αK = 1, and a constantL > 0 such that, for any
(x1, y1) and(x2, y2) ∈ Iij = Ii × Ij ,

|w(x1, y1)− w(x2, y2)| ≤ L (|x1 − x2|+ |y1 − y2|) .
For generality we assumew to be asymmetrici.e., w(u, v) 6= w(v, u), so that symmetric graphons
can be considered as a special case. Consequently, a random graphG(n,w) generated byw is
directed,i.e., G[i, j] 6= G[j, i].

2.2 Similarity of graphon slices

The intuition of the proposed SBA algorithm is that if the graphon is smooth, neighboring cross-
sections of the graphon should be similar. In other words, iftwo labelsui anduj are closei.e.,

2



|ui− uj| ≈ 0, then the difference between the row slices|w(ui, ·)−w(uj , ·)| and the column slices
|w(·, ui) − w(·, uj)| should also be small. To measure the similarity between two labels using the
graphon slices, we define the following distance

dij =
1

2

(∫ 1

0

[w(x, ui)− w(x, uj)]
2
dx+

∫ 1

0

[w(ui, y)− w(uj , y)]
2
dy

)
. (2)

Thus,dij is small only if both row and column slices of the graphon are similar.

The usage ofdij for graphon estimation will be discussed in the next subsection. But before
we proceed, it should be noted that in practicedij has to be estimated from the observed graphs
G1, . . . , G2T . To derive an estimator̂dij of dij , it is helpful to expressdij in a way that the estima-
tors can be easily obtained. To this end, we let

cij =

∫ 1

0

w(x, ui)w(x, uj)dx and rij =

∫ 1

0

w(ui, y)w(uj , y)dy,

and expressdij asdij = 1
2

[
(cii−cij−cji+cjj)+(rii−rij−rji+rjj)

]
. Inspecting this expression,

we consider the following estimators forcij andrij :

ĉkij =
1

T 2




∑

1≤t1≤T

Gt1 [k, i]







∑

T<t2≤2T

Gt2 [k, j]


 , (3)

r̂kij =
1

T 2




∑

1≤t1≤T

Gt1 [i, k]







∑

T<t2≤2T

Gt2 [j, k]


 . (4)

Here, the superscriptk can be interpreted as the dummy variablesx andy in definingcij andrij ,
respectively. Summing all possiblek’s yields an estimator̂dij that looks similar todij :

d̂ij =
1

2

[
1

S

∑

k∈S

{(
r̂kii − r̂kij − r̂kji + r̂kjj

)
+
(
ĉkii − ĉkij − ĉkji + ĉkjj

)}
]
, (5)

whereS = {1, . . . , n}\{i, j} is the set of summation indices.

The motivation of defining the estimators in (3) and (4) is that a row of the adjacency matrixG[i, ·]
is fully characterized by the corresponding row of the graphonw(ui, ·). Thus the expected value of
1
T

(∑
1≤t1≤T Gt1 [i, ·]

)
is w(ui, ·), and hence1S

∑
k∈S r̂kij is an estimator forrij . To theoretically

justify this intuition, we will show in Section 3 that̂dij is indeed a good estimator: it is not only
unbiased, but is also concentrated rounddij for largen. Furthermore, we will show that it is possible
to use a random subset ofS instead of{1, . . . , n}\{i, j} to achieve the same asymptotic behavior.
As a result, the estimation ofdij can be performed locally in a neighborhood ofi andj, instead of
all n vertices.

2.3 Blocking the vertices

The similarity metricd̂ij discussed above suggests one simple method to approximatew by a piece-
wise constant function̂w (i.e., a stochastic block-model). GivenG1, . . . , G2T , we can cluster the
(unknown) labels{u1, . . . , un} intoK blocksB̂1, . . . , B̂K using a procedure described below. Once
the blocksB̂1, . . . , B̂K are defined, we can then determineŵ(ui, uj) by computing the empirical
frequency of edges that are present across blocksB̂i andB̂j :

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) , (6)

whereB̂i is the block containingui so that summingGt[x, y] overx ∈ B̂i andy ∈ B̂j yields an
estimate of the expected number of edges linking blockB̂i andB̂j.
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To cluster the unknown labels{u1, . . . , un} we propose a greedy approach as shown in Algorithm
1. Starting withΩ = {u1, . . . , un}, we randomly pick a nodeip and call it thepivot. Then for all
other verticesiv ∈ Ω\{ip}, we compute the distancêdip,iv and check whether̂dip,iv < ∆2 for some

precision parameter∆ > 0. If d̂ip,iv < ∆2, then we assigniv to the same block asip. Therefore,

after scanning throughΩ once, a blockB̂1 = {ip, iv1 , iv2 , . . .} will be defined. By updatingΩ as
Ω← Ω\B̂1, the process repeats untilΩ = ∅.
The proposed greedy algorithm is only a local solution in a sense that it does not return the globally
optimal clusters. However, as will be shown in Section 3, although the clustering algorithm is not
globally optimal, the estimated graphon̂w is still guaranteed to be a consistent estimate of the true
graphonw asn → ∞. Since the greedy algorithm is numerically efficient, it serves as a practical
computational tool to estimatew.

2.4 Main algorithm

Algorithm 1 Stochastic blockmodel approximation

Input: A set of observed graphsG1, . . . , G2T and the precision parameter∆.
Output: Estimated stochastic blockŝB1, . . . , B̂K .
Initialize: Ω = {1, . . . , n}, andk = 1.
while Ω 6= ∅ do

Randomly choose a vertexip fromΩ and assign it as the pivot for̂Bk: B̂k ← ip.
for Every other verticesiv ∈ Ω\{ip} do

Compute the distance estimated̂ip,iv .

If d̂ip,iv ≤ ∆2, then assigniv as a member of̂Bk: B̂k ← iv.
end for
UpdateΩ: Ω← Ω\B̂k.
Update counter:k ← k + 1.

end while

Algorithm 1 illustrates the pseudo-code for the proposed stochastic block-model approximation.
The complexity of this algorithm isO(TSKn), whereT is half the number of observations,S is
the size of the neighborhood,K is the number of blocks andn is number of vertices of the graph.

3 Stochastic blockmodel approximation: Theory of estimation

In this section we present the theoretical aspects of the proposed SBA algorithm. We will first
discuss the properties of the estimatord̂ij , and then show the consistency of the estimated graphon
ŵ. Details of the proofs can be found in the supplementary material.

3.1 Concentration analysis ofd̂ij

Our first theorem below shows that the proposed estimatord̂ij is both unbiased, and is concentrated
around its expected valuedij .

Theorem 1. The estimator̂dij for dij is unbiased, i.e.,E[d̂ij ] = dij . Further, for anyǫ > 0,

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e−

Sǫ2

32/T+8ǫ/3 , (7)

whereS is the size of the neighborhoodS, and2T is the number of observations.

Proof. Here we only highlight the important steps to present the intuition. The basic idea of the
proof is to zoom-in a microscopic term ofr̂kij and show that it is unbiased. To this end, we use the
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fact thatGt1 [i, k] andGt2 [j, k] are conditionally independent onuk to show

E[Gt1 [i, k]Gt2 [j, k] | uk] = Pr[Gt1 [i, k] = 1, Gt2 [j, k] = 1 | uk]

(a)
= Pr[Gt1 [i, k] = 1 | uk] Pr[Gt2 [j, k] = 1 | uk]

= w(ui, uk)w(uj , uk),

which then impliesE[r̂kij | uk] = w(ui, uk)w(uj , uk), and by iterated expectation we haveE[r̂kij ] =

E[E[r̂kij | uk]] = rij . The concentration inequality follows from a similar idea to bound the variance
of r̂kij and apply Bernstein’s inequality.

ThatGt1 [i, k] andGt2 [j, k] are conditionally independent onuk is a critical fact for the success of
the proposed algorithm. It also explains why at least 2 independently observed graphs are necessary,
for otherwise we cannot separate the probability in the second equality above marked with(a).

3.2 Choosing the number of blocks

The performance of the Algorithm 1 is sensitive to the numberof blocks it defines. On the one hand,
it is desirable to have more blocks so that the graphon can be finely approximated. But on the other
hand, if the number of blocks is too large then each block willcontain only few vertices. This is bad
because in order to estimate the value on each block, a sufficient number of vertices in each block is
required. The trade-off between these two cases is controlled by the precision parameter∆: a large
∆ generates few large clusters, while small∆ generates many small clusters. A precise relationship
between the∆ andK, the number of blocks generated the algorithm, is given in Theorem 5.

Theorem 2. Let∆ be the accuracy parameter andK be the number of blocks estimated by Algo-
rithm 1, then

Pr

[
K >

QL
√
2

∆

]
≤ 8n2e

− S∆4

128/T+16∆2/3 , (8)

whereL is the Lipschitz constant andQ is the number of Lipschitz blocks inw.

In practice, we estimate∆ using a cross-validation scheme to find the optimal 2D histogram bin
width (Wasserman 2005). The idea is to test a sequence of potential values of∆ and seek the one
that minimizes the cross validation risk, defined as

Ĵ(∆) =
2

h(n− 1)
− n+ 1

h(n− 1)

K∑

j=1

p̂2j , (9)

wherep̂j = |B̂j |/n andh = 1/K. Algorithm 2 details the proposed cross-validation scheme.

Algorithm 2 Cross Validation

Input: GraphsG1, . . . , G2T .
Output: BlocksB̂1, . . . , B̂K , and optimal∆.
for a sequence of∆’s do

Estimate blockŝB1, . . . , B̂K fromG1, . . . , G2T . [Algorithm 1]
Computêpj = |B̂j |/n, for j = 1, . . . ,K.
ComputeĴ(∆) = 2

h(n−1) − n+1
h(n−1)

∑K
j=1 p̂

2
j , with h = 1/K.

end for
Pick the∆ with minimumĴ(∆), and the correspondinĝB1, . . . , B̂K .

3.3 Consistency of̂w

The goal of our next theorem is to show thatŵ is a consistent estimate ofw, i.e., ŵ → w asn→∞.
To begin with, let us first recall two commonly used metric:

5



Definition 1. The mean squared error (MSE) and mean absolute error (MAE) are defined as

MSE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

(w(uiv , ujv )− ŵ(uiv , ujv ))
2

MAE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

|w(uiv , ujv)− ŵ(uiv , ujv )| .

Theorem 3. If S ∈ Θ(n) and∆ ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1), then

lim
n→∞

E[MAE(ŵ)] = 0 and lim
n→∞

E[MSE(ŵ)] = 0.

Proof. The details of the proof can be found in the supplementary material . Here we only outline
the key steps to present the intuition of the theorem. The goal of Theorem 6 is to show convergence
of |ŵ(ui, uj)− w(ui, uj)|. The idea is to consider the following two quantities:

w(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx),

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) ,

so that if we can bound|w(ui, uj) − w(ui, uj)| and |w(ui, uj) − ŵ(ui, uj)|, then consequently
|ŵ(ui, uj)− w(ui, uj)| can also be bounded.

The bound for the first term|w(ui, uj) − w(ui, uj)| is shown in Lemma 3: By Algorithm 1, any
vertexiv ∈ B̂i is guaranteed to be within a distance∆ from the pivot ofB̂i. Sincew(ui, uj) is an
average over̂Bi andB̂j , by Theorem 1 a probability bound involving∆ can be obtained.

The bound for the second term|w(ui, uj)−ŵ(ui, uj)| is shown in Lemma 4. Different from Lemma
3, here we need to consider two possible situations: either the intermediate estimatew(ui, uj) is
close to the ground truthw(ui, uj), or w(ui, uj) is far from the ground truthw(ui, uj). This ac-
counts for the sum in Lemma 4. Individual bounds are derived based on Lemma 3 and Theorem 1.

Combining Lemma 3 and Lemma 4, we can then bound the error and show convergence.

Lemma 1. For anyiv ∈ B̂i andjv ∈ B̂j ,

Pr
[
|w(ui, uj)− w(uiv , ujv )| > 8∆1/2L1/4

]
≤ 32|B̂i| |B̂j|e−

S∆4

32/T+8∆2/3 . (10)

Lemma 2. For anyiv ∈ B̂i andjv ∈ B̂j ,

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i| |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3) . (11)

The conditionS ∈ Θ(n) is necessary to make Theorem 6 valid, because ifS is independent ofn, it
is not possible to drive (10) and (11) to0 even ifn→∞. The other condition on∆ is also important
as it forces the numerators and denominators in the exponentials of (10) and (11) to be well behaved.

4 Experiments

In this section we evaluate the proposed SBA algorithm by showing some empirical results. For
the purpose of comparison, we consider (i) the universal singular value thresholding (USVT)
(Chatterjee); (ii) the largest-gap algorithm (LG) (Channarond et al. 2012); (iii) matrix completion
from few entries (OptSpace) (Keshavan et al. 2010).
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4.1 Estimating stochastic blockmodels

Accuracy as a function of growing graph size. Our first experiment is to evaluate the proposed
SBA algorithm for estimating stochastic blockmodels. For this purpose, we generate (arbitrarily) a
graphon

w =



0.8 0.9 0.4 0.5
0.1 0.6 0.3 0.2
0.3 0.2 0.8 0.3
0.4 0.1 0.2 0.9


 , (12)

which represents a piecewise constant function with4× 4 equi-space blocks.
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(a) Growing graph size,n (b) Growing no. observations,2T

Figure 2: (a) MAE reduces as graph size grows. For the fairness of the amount of data that can be
used, we usen2 × n

2 × 2 observations for SBA, andn × n × 1 observation for USVT (Chatterjee)
and LG (Channarond et al. 2012). (b) MAE of the proposed SBA algorithm reduces when more
observationsT is available. Both plots are averaged over 100 independent trials.

Since USVT and LG use only one observed graph whereas the proposed SBA require at least2
observations, in order to make the comparison fair, we use half of the nodes for SBA by generating
two independentn2 × n

2 observed graphs. For USVT and LG, we use onen× n observed graph.

Figure 2(a) shows the asymptotic behavior of the algorithmswhenn grows. Figure 2(b) shows the
estimation error of SBA algorithm asT grows for graphs of size 200 vertices.

Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms asK, the number of blocks, increases. To this end, we consider a
sequence ofK, and for eachK we generate a graphonw of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 andT = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
asK grows, the proposed SBA algorithm still attains the lowest MAE for all K.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges,we construct ann× n binary matrix
M with probabilityPr[M [i, j] = 0] = ξ, where0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Givenξ, 2T matrices are generated with missing edges, and the observedgraphs are defined
asM1 ⊙ G1, . . . ,M2T ⊙ G2T , where⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphonŵ in the presence of missing links.

The modification of the proposed SBA algorithm for the case missing links is minimal: when com-
puting (6), instead of averaging over allix ∈ B̂i andjy ∈ B̂j , we only averageix ∈ B̂i andjy ∈ B̂j

that are not masked out by allM ′s. Figure 3(b) shows the result of average over 100 independent
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(a) Growing no. blocks,K (b) Missing links

Figure 3: (a) AsK increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we usen2× n

2×2 observations for SBA, andn×n×1 observation for USVT (Chatterjee)
and LG (Channarond et al. 2012). (b) Estimation of graphon inthe presence of missing links: As
the amount of missing links increases, estimation error also increases.

trials. Here, we consider the graphon given in (12), withn = 200 andT = 1. It is evident that SBA
outperforms its counterparts at a lower rate of missing links.

4.3 Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm in estimating continuous graphons.
Here, we consider two of the graphons reported in (Chatterjee):

w1(u, v) =
1

1 + exp{−50(u2 + v2)} , and w2(u, v) = uv,

whereu, v ∈ [0, 1]. Here,w2 can be considered as a special case of the Eigenmodel (Hoff 2008) or
latent feature relational model (Miller et al. 2009).

The results in Figure 4 shows that while both algorithms haveimproved estimates whenn grows, the
performance depends on which ofw1 andw2 that we are studying. This suggests that in practice the
choice of the algorithm should depend on the expected structure of the graphon to be estimated: If the
graph generated by the graphon demonstrates some low-rank properties, then USVT is likely to be
a better option. For more structured or complex graphons theproposed procedure is recommended.
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(a) graphonw1 (b) graphonw2

Figure 4: Comparison between SBA and USVT in estimating two continuous graphonsw1 andw2.
Evidently, SBA performs better forw1 (high-rank) and worse forw2 (low-rank).
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5 Concluding remarks

We presented a new computational tool for estimating graphons. The proposed algorithm approx-
imates the continuous graphon by a stochastic block-model,in which the first step is to cluster
the unknown vertex labels into blocks by using an empirical estimate of the distance between two
graphon slices, and the second step is to build an empirical histogram to estimate the graphon. Com-
plete consistency analysis of the algorithm is derived. Thealgorithm was evaluated experimentally,
and we found that the algorithm is effective in estimating block structured graphons.
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A Proofs for Section 3.1

Theorem 4. The estimator̂dij for dij is unbiased. Further, for anyǫ > 0, if the graph is directed, then

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e

− Sǫ2

32/T+8ǫ/3 , (13)

and if the graph is un-directed, then

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e

− Sǫ2

64/T+8ǫ/3 , (14)

whereS is the size of the sampling neighborhoodS , and2T is the number of observations.

Proof. First, for givenui anduj , let us define the following two quantities

cij
def
=

∫ 1

0

w(x, ui)w(x, uj)dx,

rij
def
=

∫ 1

0

w(ui, y)w(uj , y)dy.

Consequently, we expressdij as

dij
def
=

1

2

(∫ 1

0

(w(ui, y)− w(uj , y))
2dy +

∫ 1

0

(w(x, ui)− w(x, uj))
2dx

)

=
1

2
[(rii − rij − rji + rjj) + (cii − cij − cji + cjj)] .

In order to studŷdij (the estimator ofdij ), it is desired to expresŝdij in the same form ofdij :

d̂ij =
1

S

∑

k∈S

{
1

2

[(
r̂kii − r̂kij − r̂kji + r̂kjj

)
+
(
ĉkii − ĉkij − ĉkji + ĉkjj

)]}
, (15)
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whereS = {1, . . . , n}\{i, j} is the sampling neighborhood, andS = |S|. In (15), individual components are
defined as

ĉkij =
1

T 2




∑

1≤t1≤T

Gt1 [k, i]








∑

T<t2≤2T

Gt2 [k, j]



 ,

r̂kij =
1

T 2




∑

1≤t1≤T

Gt1 [i, k]








∑

T<t2≤2T

Gt2 [j, k]



 .

Thus, if we can show that̂rkij andĉkij are unbiased estimators ofrij andcij , i.e.,E[r̂kij ] = rij andE[ĉkij ] = cij ,

then by linearity of expectation,̂dij will be an unbiased estimator ofdij .

To this end, we consider the conditional expectation ofGt1 [i, k]Gt2 [j, k] givenuk:

E[Gt1 [i, k]Gt2 [j, k] | uk] = 1 · Pr
[
Gt1 [i, k]Gt2 [j, k] = 1

∣∣∣ uk

]
+ 0 · Pr

[
Gt1 [i, k]Gt2 [j, k] = 1

∣∣∣ uk

]

= Pr
[
Gt1 [i, k] = 1 and Gt2 [j, k] = 1

∣∣∣ uk

]

= Pr[Gt1 [i, k] = 1 | uk] · Pr[Gt2 [j, k] = 1 | uk], because Gt1 [i, k] ⊥ Gt2 [j, k]

= w(ui, uk)w(uj , uk). (16)

Therefore,

E

[
r̂kij | uk

]
=

1

T 2

(
2T∑

t2=T+1

T∑

t1=1

E

[
Gt1 [i, k]Gt2 [j, k] | uk

])

=
1

T 2

(
2T∑

t2=T+1

T∑

t1=1

w(ui, uk)w(uj , uk)

)

, by substituting (16)

= w(ui, uk)w(uj , uk). (17)

Then, by the law of iterated expectations, we have

E

[
r̂kij

]
= E

[
E

[
r̂kij | uk

]]

= E

[
w(ui, uk)w(uj , uk)

]
, by substituting (17)

=

∫ 1

0

w(ui, v)w(uj , v)dv, because uk ∼ Uniform(0, 1)

= rij . (18)

Therefore,̂rkij is an unbiased estimator ofrij . The proof ofĉij can be similarly proved by switching roles of

Gt[i, k] toGt[k, i]. Sincer̂kij andĉkij are both unbiased,̂dij must be unbiased.

Now we proceed to prove the second part of the theorem. We firstclaim that

Var
[
r̂kij

]
≤ 2/T and Var

[
ĉkij

]
≤ 2/T. (19)

To prove this, we note that

Var
[
r̂kij

]
= Var

[
2T∑

t2=T+1

T∑

t1=1

Gt1 [ik]Gt2 [jk]

]

=

2T∑

t2=T+1

T∑

t1=1

Var
[
Gt1 [ik]Gt2 [jk]

]

+
2T∑

τ2=T+1
τ2 6=t2

2T∑

t2=T+1

T∑

τ1=1
τ1 6=t1

T∑

t1=1

Cov
[
Gt1 [ik]Gt2 [jk], Gτ1 [ik]Gτ2 [jk]

]

11



We consider three cases:

Case 1. First assumeτ1 6= t1 andτ2 6= t2. (Occurs(T − 1)2T 2 times.)

Cov
[
Gt1 [ik]Gt2 [jk], Gτ1 [ik]Gτ2 [jk]

]

= E

[
(Gt1 [ik]Gt2 [jk] − E[Gt1 [ik]Gt2 [jk]]) (Gτ1 [ik]Gτ2 [jk] − E[Gτ1 [ik]Gτ2 [jk]])

]

= E

[
(Gt1 [ik]Gt2 [jk] − wikwjk) (Gτ1 [ik]Gτ2 [jk] − wikwjk)

]

= E

[
Gt1 [ik]Gt2 [jk]Gτ1 [ik]Gτ2 [jk]

]
− E

[
Gτ1 [ik]Gτ2 [jk]

]
wikwjk − E

[
Gt1 [ik]Gt2 [jk]

]
wikwjk + w2

ikw
2
jk

= E

[
Gt1 [ik]Gt2 [jk]Gτ1 [ik]Gτ2 [jk]

]
− w2

ikw
2
jk (20)

The first term in (20) isE
[
Gt1 [ik]Gt2 [jk]Gτ1 [ik]Gτ2 [jk]

]
= w2

ikw
2
jk becauseGt1 [ik], Gt2 [jk], Gτ1 [ik] and

Gτ2 [jk] are all independent. Therefore, the overall sum in (20) is 0.

Case 2. Next assume thatτ1 6= t1 but τ2 = t2. (Occurs(T − 1)T 2 times.) In this case,

E

[
Gt1 [ik]Gt2 [jk]Gτ1 [ik]Gτ2 [jk]

]
= E

[
Gt1 [ik]

]
E

[
Gτ1 [ik]

]
E

[
Gt2 [jk]Gτ2 [jk]

]

= wikwikE

[
Gt2 [jk]

2
]

= w2
ikwjk.

Substituting this result into (20) yields the covariance

Cov
[
Gt1 [ik]Gt2 [jk], Gτ1 [ik]Gτ2 [jk]

]
= w2

ikwjk − w2
ikw

2
jk = w2

ikwjk(1−wjk) ≤ 1.

Case 3. Assumeτ1 = t1 butτ2 6= t2. (Occurs(T − 1)T 2 times.) In this case,

E

[
Gt1 [ik]Gt2 [jk]Gτ1 [ik]Gτ2 [jk]

]
= wikw

2
jk,

and so the covariance becomes

Cov
[
Gt1 [ik]Gt2 [jk], Gτ1 [ik]Gτ2 [jk]

]
= wikw

2
jk(1−wik) ≤ 1.

Combining all 3 cases, we have the following bound:

Var[r̂kij ] =
1

T 4
Var

[
∑

t1

∑

t2

Gt1 [ik]Gt2 [jk]

]

=
1

T 4

[
∑

t1

∑

t2

Var
[
Gt1 [ik]Gt2 [jk]

]
+ (T − 1)T 2w2

ikwjk(1− wjk) + (T − 1)T 2wikw
2
jk(1− wik)

]

=
1

T 4

[
T 2wikwjk(1− wikwjk) + (T − 1)T 2w2

ikwjk(1− wjk) + (T − 1)T 2wikw
2
jk(1− wik)

]

≤ 1

T 4

[
T 2 + 2(T − 1)T 2]

=
2T − 1

T 2
≤ 2

T
.

The bound forVar
[
ĉkij
]

can be proved similarly.

Next, we observe thatGt (for any t) is a directed graph. So the random variablesGt1 [i, k] andGt1 [k, i]
are independent. Similarly,Gt2 [j, k] and Gt2 [k, j] are independent. Therefore, the product variables
Gt1 [i, k]Gt2 [j, k] andGt1 [k, i]Gt2 [k, j] must be independent for any fixedui, uj anduk, wherei 6= j and
k = {1, . . . , n}\{i, j}. Consequently,̂rkij andĉkij are independent, and hence

E[r̂kij ĉ
k
ij ] = E

[
r̂kij

]
· E
[
ĉkij

]

= rijcij ,

which implies that̂rkij andĉkij are uncorrelated:E
[
(r̂kij − rij)(ĉ

k
ij − cij)

]
= 0. Consequently,

Var

[
1

2

(
r̂kij + ĉkij

)]
=

1

4

(
Var

[
r̂kij

]
+Var

[
ĉkij

])
≤ 1

T
.
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Sincer̂ij = 1
S

∑
k∈S

r̂kij andĉij = 1
S

∑
k∈S

ĉkij , by Bernstein’s inequality we have

Pr

[∣∣∣∣
1

2
(r̂ij + ĉij)− 1

2
(rij + cij)

∣∣∣∣ > ǫ

]
= Pr

[∣∣∣∣∣
1

S

∑

k∈S

1

2

(
r̂kij + ĉkij

)
− 1

2
(rij + cij)

∣∣∣∣∣ > ǫ

]

≤ 2e
− Sǫ2

2(Var[ 12 (r̂kij+ĉk
ij)]+ǫ/3) ≤ 2e

− Sǫ2

2(1/T+ǫ/3) .

Finally, we note that

|d̂ij − dij | ≤ 1

2
|r̂ii + ĉii − rii − cii|+ 1

2
|r̂ij + ĉij − rij − cij |+

1

2
|r̂ji + ĉji − rji − cji|+ 1

2
|r̂jj + ĉjj − rjj − cjj | .

Therefore by union bound we have

Pr[|d̂ij − dij | > ǫ]

≤ Pr
[1
2
|r̂ii + ĉii − rii − cii|+ 1

2
|r̂ij + ĉij − rij − cij |+

+
1

2
|r̂ji + ĉji − rji − cji|+ 1

2
|r̂jj + ĉjj − rjj − cjj | > ǫ

]

≤ Pr
[ ∣∣∣∣

1

2
(r̂ii + ĉii)− 1

2
(rii + cii)

∣∣∣∣ > ǫ/4
]
+ Pr

[ ∣∣∣∣
1

2
(r̂ij + ĉij)− 1

2
(rij + cij)

∣∣∣∣ > ǫ/4
]
+

+ Pr
[ ∣∣∣∣

1

2
(r̂ji + ĉji)− 1

2
(rji + cji)

∣∣∣∣ > ǫ/4
]
+ Pr

[ ∣∣∣∣
1

2
(r̂jj + ĉjj)− 1

2
(rjj + cjj)

∣∣∣∣ > ǫ/4
]

≤ 8e
− Sǫ2/16

2(1/T+ǫ/12) = 8e
− Sǫ2

32/T+8ǫ/3 .

If the graph is un-directed, thenckij = rkij and we can only haveVar
[
1
2

(
rkij + ckij

)]
≤ 2

T
instead of

Var
[
1
2

(
rkij + ckij

)]
≤ 1

T
. In this case,

Pr[|d̂ij − dij | > ǫ] ≤ 8e
− Sǫ2

64/T+8ǫ/3 .

B Proofs for Section 3.2

Theorem 5. Let∆ be the accuracy parameter andK be the number of blocks estimated by Algorithm 1, then

Pr

[
K >

QL
√
2

∆

]
≤ 8n2e

− S∆4

128/T+16∆2/3 , (21)

whereL is the Lipschitz constant andQ is the number of Lipschitz blocks in the ground truthw.

Proof. Recall that in defining the Lipschitz condition ofw (Section 2.1), we defined a sequence of non-
overlapping intervalsIk = [αk, αk+1], where0 = α0 < . . . < αQ = 1, andQ is the number of Lipschitz

blocks ofw. For each of the intervalIk, we divide it intoR
def
= L

√
2

∆
subintervals of equal size1/R. Thus,

the distance between any two elements in the same subinterval is at most1/R. Also, the total number of
subintervals over[0, 1] is QR.

Now, suppose that there areK > QR = QL
√

2
∆

blocks defined by the algorithm, and denote theK pivots be
p1, . . . , pK . By the pigeonhole principle, there must be at least two pivots pi andpj in the same sub-interval.
In this case, the distancedpi,pj must satisfy the following condition:

dpi,pj =
1

2

(∫ 1

0

(w(x, upi)− w(x, upj ))
2dx+

∫ 1

0

(w(upi , y)−w(upj , y))
2dy

)

≤ L2(upi − upj )
2

≤ L2 1

R2
=

∆2

2
.

However, from the algorithm it holds that̂dpi,pj ≥ ∆2. So, ifK > QR, thend̂pi,pj − dpi,pj > ∆2

2
.
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Let E be the following event:

E =

{
d̂pi,pj − dpi,pj >

∆2

2
for at least one pair ofpi, pj

}
.

Then, since the eventE is a consequence of the event{K > QR}, we have

Pr

[
K >

QL
√
2

∆

]
= Pr[K > QR] ≤ Pr[ E ].

To boundPr[E ], we observe that

Pr

[
d̂pi,pj − dpi,pj >

∆2

2

∣∣∣ pi, pj
]
≤ 8e

− S(∆2/2)2

32/T+8(∆2/2)/3 = 8e
− S∆4

128/T+16∆2/3 .

Therefore, by union bound,

Pr
[
E
∣∣∣ p1, . . . , pK

]
≤
∑

pi,pj

Pr

[
d̂pi,pj − dpi,pj >

∆2

2

∣∣∣ pi, pj
]

≤ 8n2e
− S∆4

128/T+16∆2/3 ,

and hence,

Pr [ E ] =
∑

p1,...,pK

Pr [E | p1, . . . , pK ] Pr [p1, . . . , pK ]

≤
(
8n2e

− S∆4

128/T+16∆2/3

)
·
∑

p1,...,pK

Pr [p1, . . . , pK ]

= 8n2e
− S∆4

128/T+16∆2/3 .

This completes the proof.

C Proofs for Section 3.3

Lemma 3. Let B̂i = {i1, i2, . . . , i|B̂i|} and B̂j = {j1, j2, . . . , j|B̂j |} be two clusters returned by the Al-

gorithm. Suppose that{ui1 , ui2 , . . . , ui
|B̂i|

} and {uj1 , uj2 , . . . , uj
|B̂j |

} are the ground truth labels of the

vertices inB̂i andB̂j , respectively. Let

wij =
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx ). (22)

Assume that the precision parameter satisfies∆2 < δ2L
4

, whereL is the Lipschitz constant andδ is the size of

the smallest Lipschitz interval. Then, for anyiv ∈ B̂i andjv ∈ B̂j ,

Pr
[
|wij −w(uiv ,jv )| > 8∆1/2L1/4

]
≤ 32|B̂i||B̂j |e−

S∆4

32/T+8∆2/3 . (23)

Proof. Let ip ∈ B̂i andjp ∈ B̂j be pivots of the clusterŝBi andB̂j , respectively. By definition of pivots, it
holds that|d̂ip,iv | ≤ ∆2 and|d̂jp,jv | ≤ ∆2 for any verticesiv ∈ B̂i andjv ∈ B̂j . Therefore,

0 ≤ −|d̂ip,iv |+∆2 ≤ −d̂ip,iv +∆2

⇒ dip,iv ≤ dip,iv − d̂ip,iv +∆2 ≤ |dip,iv − d̂ip,iv |+∆2,

which implies that

Pr
[
dip,iv > 2∆2] ≤ Pr

[
|dip,iv − d̂ip,iv |+∆2 > 2∆2

]

= Pr
[
|dip,iv − d̂ip,iv | > ∆2

]

≤ 8e
− S∆4

32/T+8∆2/3 .
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Similarly, we havePr
[
djp,jv > 2∆2

]
≤ 8e

− S∆4

32/T+8∆2/3 . Thus,

Pr
[
dip,iv > 2∆2 ∪ djp,jv > 2∆2

]
≤ Pr

[
dip,iv > 2∆2

]
+ Pr

[
djp,jv > 2∆2

]

≤ 16e
− S∆4

32/T+8∆2/3 .

Let dcij =
∫ 1

0
(w(x, ui) − w(x, uj))

2dx anddrij =
∫ 1

0
(w(ui, y) − w(uj , y))

2dy. By Lemma 7, it holds that

for any0 < (ǫ/2)2 < 2δL, if dci,j ≤ (ǫ/2)4

8L
= ǫ4

128L
anddri,j ≤ ǫ4

128L
, then

sup
x∈[0,1]

|w(x, ui)− w(x, uj)| ≤ ǫ

2
,

sup
y∈[0,1]

|w(ui, y)− w(uj , y)| ≤ ǫ

2
.

Therefore, ifdcip,iv ≤ ǫ4

128L
, drip,iv ≤ ǫ4

128L
, dcjp,jv ≤ ǫ4

128L
anddrjp,jv ≤ ǫ4

128L
, then for pivotsip ∈ B̂i,

jp ∈ B̂j , and vertexiv ∈ B̂i, jv ∈ B̂j :

|w(uiv , ujv )− w(uip , ujp )| ≤ |w(uiv , ujv )− w(uiv , ujp )|+ |w(uiv , ujp )− w(uip , ujp )|
≤ sup

x∈[0,1]

|w(x, ujv )− w(x, ujp)|+ sup
y∈[0,1]

|w(uiv , y)− w(ujp , y)|

=
ǫ

2
+

ǫ

2
= ǫ. (24)

Also, if dcip,ix ≤ ǫ4

128L
, drip,ix ≤ ǫ4

128L
, dcjp,jx ≤ ǫ4

128L
anddrjp,jx ≤ ǫ4

128L
for vertex everyix ∈ B̂i, jx ∈ B̂j

∣∣∣∣∣∣
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx )− w(uip , ujp )

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx )−
1

|B̂i|
∑

ix∈B̂i

w(uix , ujp)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

|B̂i|
∑

ix∈B̂i

w(uix , ujp)− w(uip , ujp)

∣∣∣∣∣∣

≤ 1

|B̂i|
1

|B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

∣∣w(uix , ujx)− w(uix , ujp)
∣∣+ 1

|B̂i|
∑

ix∈B̂i

∣∣w(uix , ujp)− w(uip , ujp)
∣∣

≤ 1

|B̂i|
1

|B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

ǫ

2
+

1

|B̂i|
∑

ix∈B̂i

ǫ

2
= ǫ. (25)

Combining (24) and (25) with triangle inequality yields
∣∣∣∣∣∣

1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx )− w(uiv , ujv )

∣∣∣∣∣∣
≤ 2ǫ.

Consequently, by contrapositive this implies that

|wij − w(uiv , ujv )| > 2ǫ

⇒
⋃

ix∈B̂i,jx∈B̂j

(
dcip,ix >

ǫ4

128L
∪ drip,ix >

ǫ4

128L
∪ dcjp,jx >

ǫ4

128L
∪ drjp,jx >

ǫ4

128L

)

⇒
⋃

ix∈B̂i,jx∈B̂j

(
dip,ix >

ǫ4

128L
∪ djp,jx >

ǫ4

128L

)
.

Therefore,

Pr [|wij − w(uiv , ujv )| > 2ǫ] ≤ Pr




⋃

ix∈B̂i,jx∈B̂j

(
dip,ix >

ǫ4

128L
∪ djp,jx >

ǫ4

128L

)



≤
∑

ix∈B̂i,jx∈B̂j

(
Pr

[
dip,ix >

ǫ4

128L

]
+ Pr

[
djp,jx >

ǫ4

128L

])
.
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Assuming∆ < δ
√
L/2 and settingǫ = 4∆1/2L1/4, we have0 < (ǫ/2)2 < 2δL and thus

Pr
[
|wij −w(uiv , ujv )| > 8∆1/2L1/4

]
≤

∑

ix∈B̂i,jx∈B̂j

(
Pr
[
dip,ix > 2∆2]+Pr

[
djp,jx > 2∆2])

≤ 32|B̂i||B̂j |e−
S∆4

32/T+8∆2/3 .

Lemma 4. Let B̂i = {i1, i2, . . . , i|B̂i|} and B̂j = {j1, j2, . . . , j|B̂j |} be two clusters returned by the Al-

gorithm. Suppose that{ui1 , ui2 , . . . , ui
|B̂i|

} and {uj1 , uj2 , . . . , uj
|B̂j |

} are the ground truth labels of the

vertices inB̂i andB̂j , respectively. Let

ŵij =
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

(
G1[ix, jx] + . . .+G2T [ix, jx]

2T

)
,

wij =
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx ).

Then,

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i | |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3 .

Proof. There are two possible situations that we need to consider.

Case 1: For any vertexiv ∈ B̂i andjv ∈ B̂j , the estimate of the previous lemmawij (independent of(iv , jv))

is close to the ground truthwij
def
=w(uiv , ujv ). In other words, we wantw(uiv , ujv ) to stay close for all

iv ∈ B̂i andjv ∈ B̂j , so that the difference|wij − wij | remains small for alliv ∈ B̂i andjv ∈ B̂j .

Case 2: Complement of case 1.

To encapsulate these two cases, we first define the event

E =
{
|wij − wij | ≤ 8∆1/2L1/4,∀iv ∈ B̂i, jv ∈ B̂j

}

and defineE be the complement ofE . Then,

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
= Pr

[
|ŵij − wij | > 8∆1/2L1/4

∣∣∣ E
]
Pr [E ]

+ Pr
[
|ŵij − wij | > 8∆1/2L1/4

∣∣∣ E
]
Pr
[
E
]

≤ Pr
[
|ŵij − wij | > 8∆1/2L1/4

∣∣∣ E
]
+ Pr

[
E
]
.

So it remains to bound the two probabilities.

Conditioning onE , it holds that
wij − ǫ ≤ wij ≤ w + ǫ.

Fix a vertex pair(iv , jv), we note thatG1[iv, jv], . . . , G2T [iv , jv] are independent Bernoulli random variable
with common meanw(uiv , ujv ). Denote

ŵij =
1

2T |B̂i||B̂j |

2T∑

t=1

∑

ix∈B̂i

∑

jx∈B̂j

Gt[ix, jx],

then by Hoeffding inequality we have

Pr
[
ŵij −wij > 2ǫ

∣∣∣ E
]
= Pr

[
ŵij > wij + 2ǫ

∣∣∣ E
]

≤ Pr
[
ŵij > wij + ǫ

∣∣∣ E
]

≤ e−2(2T |B̂i ||B̂j |ǫ2),

and similarlyPr
[
ŵij − wij < −2ǫ

∣∣∣ E
]
≤ e−2(2T |B̂i | |B̂j |ǫ2). Therefore,

Pr
[
|ŵij − wij | > 2ǫ

∣∣∣ E
]
≤ 2e−2(2T |B̂i | |B̂j |ǫ2).
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Substitutingǫ = 4∆1/2L1/4, we have

Pr
[
|ŵij − wij | > 8∆1/2L1/4

∣∣∣ E
]
≤ 2e−128(|B̂i | |B̂j |(2T )

√
L∆).

The second probability is bounded as follows. SinceE is the complement ofE , it is bounded by the probability
where at least one(iv, jv) violates the condition. Therefore,

Pr
[
E
]
= Pr

[
at least oneiv, jv s.t. |w(uiv , ujv )− wij | > 8∆1/2L1/4

]

≤
∑

iv∈B̂i

∑

jv∈B̂j

Pr
[
|w(uiv , ujv )− wij | > 8∆1/2L1/4

]

≤ 32|B̂i|2|B̂j |2e−
S∆4

32/T+8∆2/3 .

Finally, by combining the above results we have

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i | |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3 .

Lemma 5. Let B̂i = {i1, i2, . . . , i|B̂i|} and B̂j = {j1, j2, . . . , j|B̂j |} be two clusters returned by the Al-

gorithm. Suppose that{ui1 , ui2 , . . . , ui
|B̂i|

} and {uj1 , uj2 , . . . , uj
|B̂j |

} are the ground truth labels of the

vertices inB̂i andB̂j , respectively. Let

ŵij =
1

|B̂i||B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

(
G1[ix, jx] + . . .+G2T [ix, jx]

2T

)
.

Then,

Pr
[
|ŵij −wij | > 16∆1/2L1/4

]
≤ 2e−256(T |B̂i | |B̂j |

√
L∆) + 64n4e

− S∆4

32/T+8∆2/3 .

Proof. By Lemma 3 and Lemma 4, we have

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i | |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3

Pr
[
wij − wij > 8∆1/2L1/4

]
≤ 32|B̂i||B̂j |e−

S∆4

32/T+8∆2/3 .

Therefore, it follows that

Pr
[
|ŵij −wij | > 16∆1/2L1/4

]
≤ Pr

[
|ŵij − wij | > 8∆1/2L1/4

]
+ Pr

[
wij −wij > 8∆1/2L1/4

]

≤ 2e−256(T |B̂i | |B̂j |
√

L∆) + 32|B̂i|2|B̂j |2e−
S∆4

32/T+8∆2/3 + 32|B̂i||B̂j |e−
S∆4

32/T+8∆2/3

≤ 2e−256(T |B̂i | |B̂j |
√

L∆) + 64n4e
− S∆4

32/T+8∆2/3 .

Lemma 6. LetE be a subset of the edge setE0 = {(i, j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , n}}. Then under the
above setup, there exists constantsc0 andc1 such that

Pr

[
1

|E|
∑

iv ,jv∈E

|w(uiv , ujv )− ŵij | > c0
√
∆

]

≤
∑

iv ,jv∈E

2e−c1(T |B̂i| |B̂j |∆) + 64|E|n4e
− S∆4

32/T+8∆2/3 .

(26)

Proof. From Lemma 5, average over all pairs(iv, jv) ∈ E,

Pr

[
1

|E|
∑

iv ,jv∈E

|w(uiv , ujv )− ŵij | > 16∆1/2L1/4

]

≤ 1

|E|
∑

iv ,jv∈E

Pr
[
|w(uiv , ujv )− ŵij > 16∆1/2L1/4|

]

≤
∑

iv ,jv∈E

2e−256(T |B̂i | |B̂j |
√

L∆) + 64|E|n4e
− S∆4

32/T+8∆2/3 .

Choosingc0 = 16L1/4 andc1 = 256
√
L yields the desired result.
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Lemma 7. Let Ik = [αk−1, αk] for k = 1, . . . ,K be a sequence of intervals such thatIi ∩ Ij = ∅ and
∪Ii = [0, 1]. Suppose thatw is piecewise Lipschitz continuous and differentiable inIk. For anyui, uj ∈ [0, 1],
define

fij(x) = (w(x, ui)−w(x, uj))
2

gij(y) = (w(ui, y)−w(uj , y))
2 ,

and

hij(x, y) =
1

2
[fij(x) + gij(y)] .

Letδ = min
k=1,...,K

|αk − αk−1|. If

dcij =

∫ 1

0

fij(x)dx ≤ ǫ2

8L
, and drij =

∫ 1

0

gij(y)dy ≤ ǫ2

8L
,

for some constant0 < ǫ < 2δL, then

sup
x∈[0,1]

fij(x) ≤ ǫ, and sup
y∈[0,1]

gij(y) ≤ ǫ.

Hence, sup
(x,y)∈[0,1]2

hij(x, y) ≤ ǫ.

Proof. Sincehij(x, y) is separable, it is sufficient to prove forfij(x).

Fix i andj, and letfsup
ij = sup

x∈[0,1]

fij(x). Let Ik = [αk−1, αk] be the interval such thatfsup
ij is attained, and

let δk = |αk − αk−1| be the width of the interval. Consider a neighborhood surrounding the center ofIk with
radiusδk/2− θ, where0 < θ < δk/2. Then define

fsup
ij (θ) = sup

x∈[αk−1+θ,αk−θ]

fij(x).

It is clear thatfsup
ij = lim

θ→0
fsup
ij (θ).

The set[αk−1 + θ, αk − θ] is compact, so there existsxmax
ij (θ) ∈ [αk−1 + θ, αk − θ] such thatfsup

ij =

fij(x
max
ij ). Assume, without lost of generality, thatxmax

ij (θ) + δk/2− θ (i.e., xmax
ij is in the lower half of the

interval). For any0 < ǫ0 < ǫ
4L

− θ ≤ δ
2
− θ ≤ δk

2
− θ,

hij(x
max
ij (θ))− hij(x

max
ij (θ) + ǫ0)

ǫ0
=

(w(i, xmax
ij )− w(j, xmax

ij ))2 − (w(i, xmax
ij (θ) + ǫ0)− w(j, xmax

ij (θ) + ǫ0))
2

ǫ0
≤

(w(i, xmax
ij )−w(j, xmax

ij ))2 − (w(i, xmax
ij ) + Lǫ0 − w(j, xmax

ij ) + Lǫ0)
2

ǫ0
≤

4L(w(j, xmax
ij )− w(i, xmax

ij )) ≤ 4L ⇒

fij(x
max
ij (θ))− fij(x

max
ij (θ) + ǫ0)

ǫ0
≤ 4L,

which implies that

fij(x
max
ij (θ))− 4Lǫ0 ≤ fij(x

max
ij (θ) + ǫ0).

Integrating both sides with respect toǫ0 with limits 0 and ǫ
4L

− θ yields

fij(x
max
ij (θ))

( ǫ

4L
− θ
)
− 4L

2

( ǫ

4L
− θ
)2

≤
∫ ǫ

4L
−θ

0

fij(x
max
ij (θ) + ǫ0)dǫ0

≤
∫ 1

0

fij(x)dx = dcij .

Therefore,

fij(x
max
ij (θ)) ≤ dcij

ǫ
4L

− θ
+ 2L

( ǫ

4L
− θ
)
,

and hence

fsup
ij = lim

θ→0
fsup
ij (θ) = lim

θ→0
fij(x

max
ij (θ)) ≤ 4Ldcij

ǫ
+

ǫ

2
.

It then follows that ifdcij ≤ ǫ2

8L
, thenfsup

ij ≤ ǫ.
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Definition 2. The mean squared error (MSE) and mean absolute error (MAE) are defined as

MSE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

(w(uiv , ujv )− ŵiv ,jv )
2 (27)

MAE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

|w(uiv , ujv )− ŵiv ,jv | . (28)

Theorem 6. If S ∈ Θ(n) and∆n ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1), then

lim
n→∞

E[MAE(ŵ)] = 0 and lim
n→∞

E[MSE(ŵ)] = 0. (29)

Proof. Suppose that the algorithm is executed for a set of observed graphs withn vertices using parameters∆n

andS. LetK′
n be the number of blocks generated. Assume that, asn → ∞, the parameters satisfyS ∈ Θ(n)

and∆n ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1).

The proof is based on (6). The intuition is to that that the twoterms
∑

iv ,jv∈E 2e−c1(T |B̂i| |B̂j |∆) and

32|E|n4e
− S∆4

16/T+8∆2/3 vanish asn → ∞. The latter is clear ifS ∈ Θ(n) and∆n ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1).

For the first term, it is necessary to consider the size|E|, which is the size of the cluster generated. We show
that the number of small clusters is asymptotically irrelevant. Most of the error come from vertices whose

cluster is large enough to makee
− S∆4

32/T+8∆2/3 vanish.

From Theorem 5, we have

Pr

[
K′ >

QL
√
2

∆n

]
≤ 8n2e

− S∆4
n

128/T+16∆2
n/3 .

Let En be the event thatK′
n ≤ QL

√
2/∆n. Thenlimn→∞ Pr[En] = 1.

SupposeEn happens and definern as the number of blocks with less thann∆2
n

QL
√

2
elements. LetVn be the union

of these blocks, and defineV n be the complement ofVn. Then,

|Vn| ≤ rn
n∆2

n

QL
√
2
≤ K′

n
n∆2

n

QL
√
2
≤ n∆n.

So,|Vn|/n ≤ ∆n.

Now, let’s consider MAE.

MAE =
1

n2

∑

iv∈V

∑

jv∈V

|w(uiv , ujv )− ŵiv ,jv |

=
1

n2

∑

iv∈Vn

∑

jv∈Vn

|w(uiv , ujv )− ŵiv ,jv |+
1

n2

∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |+

+
1

n2

∑

iv∈V n

∑

jv∈Vn

|w(uiv , ujv )− ŵiv ,jv |+
1

n2

∑

iv∈Vn

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |

≤ |Vn|2
n2

+
|Vn|
n

|V n|
n

+
|V n|
n

|Vn|
n

+
1

n2

∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |

≤ 1

n2

∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |+∆2
n + 2∆n

≤ 1

n2

∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |+ 3∆n.

Similar result holds for MSE:

MSE =
1

n2

∑

iv∈V

∑

jv∈V

(w(uiv , ujv )− ŵiv ,jv )
2 ≤ 1

n2

∑

iv∈V n

∑

jv∈V n

(w(uiv , ujv )− ŵiv ,jv )
2 + 3∆n.
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Therefore, using Lemma 6 withE = V n:

Pr
[
MAE(ŵ) > c0

√
∆n + 3∆n

∣∣∣ E
]
≤ Pr



 1

n2

∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv |+ 3∆n > c0
√
∆n + 3∆n

∣∣∣ E





≤ 1

Pr[E ] Pr



 1

|V n|2
∑

iv∈V n

∑

jv∈V n

|w(uiv , ujv )− ŵiv ,jv | > c0
√
∆n

∣∣∣ E





≤ 1

Pr[E ]




∑

iv∈V n

∑

jv∈V n

2e−256(T |B̂i | |B̂j |
√

L∆) + 64|V n|n4e
− S∆4

32/T+8∆2/3



 .

and

Pr
[
MSE(ŵ) > c0

√
∆n + 3∆n

∣∣∣ E
]
≤ 1

Pr[E ]




∑

iv∈V n

∑

jv∈V n

2e−256(T |B̂i | |B̂j |
√

L∆) + 64|V n|n4e
− S∆2

32/T+8∆/3



 .

So,

lim
n→∞

Pr
[
MAE(ŵ) > c0

√
∆n + 3∆n

∣∣∣ E
]
Pr [E ] = 0.

Sincelimn→∞ ∆n = 0 andlimn→∞ Pr[En] = 1, it holds that for anyǫ > 0,

lim
n→∞

Pr[MAE(ŵ) > ǫ] = 0.

Finally, sinceŵ is bounded in[0, 1],

E[MAE(ŵ)] ≤ ǫPr[MAE(ŵ) ≤ ǫ] + Pr[MAE(ŵ) > ǫ].

Sendingǫ → ∞,

lim
n→∞

E[MAE(ŵ)] ≤ lim
n→∞

Pr[MAE(ŵ) > ǫ] = 0.

Same arguments hold forMSE.
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