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Abstract—We propose a randomized version of the non-local
means (NLM) algorithm for large-scale image filtering. The
new algorithm, called Monte Carlo non-local means (MCNLM),

speeds up the classical NLM by computing a small subset of

image patch distances, which are randomly selected accordi
to a designed sampling pattern. We make two contributions.
First, we analyze the performance of the MCNLM algorithm and
show that, for large images or large external image database
the random outcomes of MCNLM are tightly concentrated
around the deterministic full NLM result. In particular, ou r
error probability bounds show that, at any given sampling
ratio, the probability for MCNLM to have a large deviation
from the original NLM solution decays exponentially as the
size of the image or database grows. Second, we derive exjilic
formulas for optimal sampling patterns that minimize the error
probability bound by exploiting partial knowledge of the pairwise
similarity weights. Numerical experiments show that MCNLM is
competitive with other state-of-the-art fast NLM algorith ms for
single-image denoising. When applied to denoising imagesing
an external database containing ten billion patches, MCNLM
returns a randomized solution that is within 0.2 dB of the full
NLM solution while reducing the runtime by three orders of
magnitude.

Index Terms—Non-local means, Monte Carlo, patch-based
filtering, sampling, external denoising, large deviationsanalysis

. INTRODUCTION
A. Background and Motivation
In recent years, the image processing community has

nessed a wave of research aimed at developing new im
denoising algorithms that exploit similarities betweemno
local patches in natural images. Most of these can be trace
back to the non-local means (NLM) denoising algorithm ot
Buade<t al. [1], [2] proposed in 2005. To date, NLM remains
one of the most influential algorithms in the current demgjsi

literature.

age

The second set¥ = {zi,...,x,}, contains patches that
are obtained from some reference images. Conceptually, NLM
simply replaces eactth noisy pixel with a weighted average
of pixels in the reference set. Specifically, the filteredueaht

the ith pixel (for 1 < i < m) is given by
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where z; denotes the value of the center pixel of tln

reference patch:; € X, and the weightgw; ; } measure the

similarities between the patchgs andx;. A standard choice
for the weights is

z =

1)

wi ;= e IvimmilA/(2hD), @)
whereh,. is a scalar parameter determined by the noise level,
and ||-||a is the weighted/s-norm with a diagonal weight

. . def
matrix A, i.e. ly;, — ;]2 € (v, — ;)T Aly, — z;).

In most implementations of NLM (see.g, [3]-[9]), the
denoising process is based on a single image: the reference
patchest are the same as the noisy patclesWe refer to
this setting, whenX = ), asinternal denoising This is in
contrast to the setting in which the set of reference patches
X come from external image databases| [10]-[12], which we
refer to asexternal denoisingFor example,15,000 images

Wg?_orresponding to a reference setrots 10'° patches) were

used in [[11], [12]. One theoretical argument for using large
ale external denoising was provided in][11]: It is shown
that, in the limit of large reference setise(, whenn — o0),

xcalernal NLM converges to the minimum mean squared error
estimator of the underlying clean images.

Despite its strong performance, NLM has a limitation of
high computational complexity. It is easy to see that conmgut

~ Given a noisy image, the NLM algorithm uses two sets gfj| the weights{w; ;} requires®(mnd) arithmetic operations,
image patches for denoising. The first is a set of noisy patchghere m, n, d are, respectively, the number of pixels in the

Y ={yi,..-, Y}, Wherey, € R? is a d-dimensional i(e.,
d-pixel) patch centered at th&h pixel of the noisy image.
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noisy image, the number of reference patches used, and the
patch dimension. Additionally, abou?(mn) operations are
needed to carry out the summations and multiplicationglin (1
for all pixels in the image. In the case of internal denoising
these numbers are nontrivial since current digital phatplgs
can easily contain tens of millions of pixelss(, m = n ~ 107

or greater). For external denoising with large referends se
(e.g, n ~ 10'Y), the complexity is even more of an issue,
making it very challenging to fully utilize the vast numbdr o
images that are readily available online and potentialfuis
as external databases.
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The high complexity of NLM is a well-known challenge.
Previous methods to speed up NLM can be roughly classifie| o
in the following categories: |

1. Reducing the reference skt If searching through a large |
set X is computationally intensive, one natural solution is tof
pre-select a subset é&f and perform computation only on this
subset[[1B]+[15]. For example, for internal denoising, atisph Fig. 1: lllustration of the proposed MCNLM algorithm for

random samples
[e¢) {wi»jl JRI) wi7jk}

weightw; ; is often included so that internal denoising: We randomly select, according to armive
ey 2h3) 3) sampling pattern, a set iafweights{wiyjl, ..., Wi j, }, and use _

Wij =Wij =&~ these to compute an approximation of the full NLM result in

wi; (D). The output of MCNLM is random. However, as the size

A common choice of the spatial weight is of the problem i(e., n) gets larger, these random estimates

) ) ) become tightly concentrated around the true result.
w; ; = exp{—d; ;/(2h3)} - {d} ; < p}, (4)

whered; ; andd; ; are, respectively, the Euclidean distance

and the/., distance between the spatial locations of ttte external denoising. We call the methddonte Carlo Non-
and;jth pixels;[ is the indicator function; angd is the width of Local Means(MCNLM), and the basic idea is illustrated in
the spatial search window. By tunirig andp, one can adjust Figure[1, for the case of internal denoising. For each pixel
the size ofX’ according to the heuristic that nearby patcheg the noisy image, we randomly select a setkofeference

are more likely to be similar. pixels according to some sampling pattern and compute a

2. Reducing dimensiod. The patch dimension can be k-subset of the weight$w; ;}7_, to form an approximated
reduced by several methods. First, SVD projectian [8]] £16]solution to [1). The computational complexity of MCNLM is
[18] can be used to project thidimensional patches onto a0 (mkd), which can be significantly lower than the original
lower dimensional space spanned by the principal compeneg@mplexityO(mnd) when onlyk < n weights are computed.
computed fromX. Second, the integral image methad][19]Furthermore, since there is no need to re-organize the ttiata,
[21] can be used to further speed up the computatidhyof- memory requirement of MCNLM iO(m + n). Therefore,
x;||%. Third, by assuming a Gaussian model on the pat®hfCNLM is scalable to large reference patch sets like
data, a probabilistic early termination scheime [22] cansmlu those used for external denoising, as we will demonstrate in
to stop computing the squared patch difference before goifgction V.
through all the pixels in the patches. The two main contributions of this paper are as follows.

3. Optimizing data structuresThe third class of methods 1. Performance guarante®CNLM is a randomized algo-
embed the patches iti and) in some form of optimized data rithm. It would not be a useful one if its random outcomes
structures. Some examples include the fast bilateral @83 [ fluctuated widely in different executions on the same input
the fast Gaussian transform [24], the Gaussian KD lree [2%ata. In Sectiofi1ll, we address this concern by showing that
[26], the adaptive manifold method [27], and the edge patels the size of the reference sEtincreases, the randomized
dictionary [28]. The data structures used in these algmsth MCNLM solutions become tightly concentrated around the
can significantly reduce the computational complexity @& thoriginal NLM solution. In particular, we show in Theordm 1
NLM algorithm. However, building these data structureeoft (and Propositiofi]1) that, faany given sampling pattern, the
requires a lengthy pre-processing stage, or require a laggebability of having a large deviation from the original ML
amount of memory, thereby placing limits on one’s abilitgolution drops exponentially as the size Bfgrows.
to use large reference patch sets For example, building 2 Optimal sampling patterna\Ve derive optimal sampling
a Gaussian KD tree requires the storage(¥fnd) double patterns to minimize the approximation error probabiitie
precision numbers (see,g, [26], [29].) established in our performance analysis. We show thatsgeki

4. Exploiting low-rank structures.Several recent ap- the optimal sampling pattern is equivalent to solving aasri
proachese.g, [30], [31], explore low-rank structures of theof the classical water-filling problem, for which a closesih
weight matrix W = [w;;]. In [31], Talebi and Milanfar expression can be found (see Theofgém 2). We also present
apply the Nystrom approximation [32] to estimate all pas&v two practical sampling pattern designs that exploit phrtia
similarity weights {w; ;} from a subset of samples. Thisknowledge of the pairwise similarity weights.
approach requires storing and computing the SVD of a matriX1hea rest of the paper is organized as follows. We present
of size{n x £n, where¢ is the sampling ratio. In contrast, theghe MCNLM algorithm and discuss its basic properties in
algorithm presented here requires no additional storagertt  gection[]). The performance of the algorithm is analyzed in
the input image (and the database for the external case.) Section[Tll, and optimal sampling patterns are presented in

o Section[IV. We demonstrate in Sectiéd V the effectiveness
C. Contributions of the proposed algorithm by showing simulation results for

In this paper, we propose a randomized algorithm to redubeth internal and external denoising. Secfioh VI concluties

the computational complexity of NLM for both internal andoaper.
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1. MONTE CARLO NON-LOCAL MEANS AIgorithm 1 Monte Carlo Non-local Means (MCNLM)
1: For each noisy pixel = 1,...,m, do the followings.
2: Input: Noisy patchy, € Y, database¥ = {xi,...,x,}
and sampling patterm = [p1,...,p,]? such that0 <

Notation: Throughout the paper, we use to denote the
number of pixels in the noisy image, andhe number patches
in the reference sek’. We use upper-case letters, such as n
X,Y, Z, to represent random variables, and lower-case letters, pj < 1,.and Zi:l bj = ng'.
such ast, y, z, to represent deterministic variables. Vectors are> OUtPUt' A randomized estimaté(p).
represented by bold letters, anddenotes a constant vector 4 for j=1,...,n do . .
of which all entries are one. Finally, for notational sinajtly Generate a random variablg ~ _Bernoulh(pj).
in presenting our theoretical analysis, we assume thaixal p If I; = 1, then compute the weigh;.

intensity values have been normalized to the rajige]. Egi\f;))l:teA(p) Z g

: ComputeB(p) = 1 T w—?Ij.
A. The Sampling Process 10: OutputZ(p) = A( )/B( ).
As discussed in Sectiofl |, computing aII the weights

© o N o u

M, 17>

andn are Iarge To reduce the complexity, the basic idea atere the argument emphasizes the fact that the distributions
MCNLM is to randomly select a subset &f representatives of A and B are determined by the sampling pattgrn
of {w; ;} (referred to as samples) to approximate the sums injt is easy to compute the expected valuesi¢p) and B(p)
the numerator and denominator [d (1). The sampling procegs
in the proposed algorithm is applied to each of thepixels
in the noisy imagendependentlySince the sampling step and 1A “EfIE Z Tiwj, 9)
subsequent computations have the same form for each pixel,
we shall drop the pixel indexin {w; ;}, writing the weights
. . .. def
as{w;}, ., for notational simplicity. np=E[B ng (10)
The sampling process of MCNLM is determined by a
sequence oindependentandom variableg/;}7_, that take Thus, up to a common multlpllcatlve constahtn, the two
the value0 or 1 with the following probabilities random variablesd(p) and B(p) are unbiasedestimates of
Prll; = 1] = p; and  Pr[l;=0]=1-p;. (5 the true numerator and denominator, respectively.

The full NLM result z in (@) is then approximated by
The jth weightw; is sampled if and only if; = 1. In what

follows, we assume that < p; < 1, and refer to the vector Z(p) ™ Alp) _ 2j=1 ;;JIJ'. (11)
of all these probabilitiesp =[py,...,p,]" as thesampling Blp) X1l
pattern of the algorithm. Ap) E[A(p)]

The ratio between the number of samples taken and thegeneral.E[Z(p)] = E {Tz)} # EBG] = 2 and thus

number of reference patches dis a random variable Z(p) is a biasedestimate ofz. However, we will show in

n Section 1] that the probability of having a large deviation

_1 ij’ (6) |Z(p) — z| drops exponentially as — oo. Thus, for a large

n, the MCNLM solution [I1) can still form a very accurate
approximation of the original NLM solutiori}(1).
Algorithm[d] shows the pseudo-code of MCNLM for internal
- 1 — def denoising. We note that, except for the Bernoulli sampling
Z _Zpﬂ =& @ process, all other steps are identical to the original NLM.
=1 Therefore, MCNLM can be thought of as adding a comple-
We refer to S,, and  as theempirical sampling ratioand mentary sampling process on top of the original NLM. The
the average sampling ratiorespectively.{ is an important marginal cost of implementation is thus minimal.
parameter of the MCNLM algorithm. The original (or “full”)  Example 1:To empirically demonstrate the usefulness of
NLM corresponds to the setting when= 1: In this case, the simple sampling mechanism of MCNLM, we apply the
1% [1,...,1]T, so that all the samples are selected withlgorithm to a1072 x 712 image shown in Figurgl 2(a). Here,
probab|I|ty one. we useX =), with m = n ~ 7.6 x 10°. In this experiment,
we let the noise be i.i.d. Gaussian with zero mean and stdndar
. deviationo = 15/255. The patch size i$ x 5. In computing
B. The MCNLM Algorithm the similarity weights in[(3) and{4), we set the parameters
Given a set of random samples froth we approximate the as follows: h, = 15/255, h, = oo, p = oo (i.e, no spatial
numerator and denominator ifil (1) by two random variablesvindowing) andA = J-I. We choose a uniform sampling
n pattern,i.e., p = [¢,...,&]T, for some sampling rati® <
AP ELS T and BpEly Y @) <1, o o
ni= Pbi N Pi The results of this experiment are shown in Figure 2 and

of which the expected value is




noisy (24.60 dB) & =10.005 (27.58 dB) ¢ =0.1(28.90 dB)
Fig. 2: Denoising an image of siz#72 x 712 by MCNLM with uniform sampling. (a) The original image is copted with

i.i.d. Gaussian noise with = 15/255. (b) and (c) Denoised images with sampling ratie- 0.005 and¢ = 0.1, respectively.
Shown in parenthesis are the PSNR values (in dB) averagedl®@etrials.

Figure[3. The peak signal-to-noise ratio (PSNR) curve thetai
in Figurel3 shows that MCNLM converges to its limiting value 39 , , ,
rapidly as the sampling rati approaches 1. For example, a
¢ = 0.1 (i.e, a roughly ten-fold reduction in computationa
complexity), MCNLM achieves a PSNR that is only2dB
away from the full NLM result. More numerical experimentt
will be presented in SectidnlV.

I1l. PERFORMANCEANALYSIS

One fundamental question about MCNLM is whether it
random estimateZ(p) as defined in[{11) will be a good
approximation of the full NLM solutionz, especially when
the sampling rati& is small. In this section, we answer this

guestion by providing a rigorous analysis on the approxionat ‘ e— Monte Carlo NLM
error |Z(p) — z|. 'm1m Classical NLM
24 i i 1
- 10° 10° 10" 10’
A. Large Deviations Bounds ¢

The mathematical tool we use to analyze the proposgfy 3: PSNR as a function of the average sampling atithe
MCNLM algorithm comes from the probabilistiarge de- nhorizontal line indicates the full NLM result.¢., MCNLM at
viations theory [33]. This theory has been widely used: _ 1) and the “circled” line indicates the result of MCNLM.
to quantify the following phenomenon: Amoothfunction Ngte that ate = 0.1, MCNLM achieves a PSNR that is only
f(Xy,...,Xy) of a large number ofindependentrandom (9 4B pelow the full NLM result. Results shown are average
variablesX, ..., X,, tends to concentrate very tightly around,g,es over 100 independent trials.
its meanE[f(X1, ..., X,)]. Roughly speaking, this concen-
tration phenomenon happens because, while. .., X, are
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o Pr[Sy — E[Su] > €] X, = I; in our case. Thus)/ = 1 andE[S,] = £&. Moreover,
= True probabilities L if the sampling pattern is uniform,e, p = [¢,...,£]7, we
—a&— | aw of large numbers boungl havel Z’F Var[X;] = lzfl p;i(l—p;) =&(1—¢&). Sub-
iati n 7=1 J n =147 J .
10 —6— Large deviations bounds stituting these numbers intd {13) yields exponentialupper

bound on the error probability, which is plotted and compgare
in Figure[4 against the LLN bound il {12) and against the true
probabilities estimated by Monte Carlo simulations. Itlsac
that the exponential bound provided by Bernstein’s indgual

is much tighter than that provided by LLN.

B. General Error Probability Bound for MCNLM

We now derive a general bound for the error probabilities of
‘ ‘ ‘ ‘ ] MCNLM. Specifically, for anye > 0 and any sampling pattern
0 0.02 0.04 . 0.06 0.08 0.1 p satisfying the conditions th&t< p; <1 and% Z?:l pj =
&, we want to study

Fig. 4. Comparing the large deviations bound] (13), the LLN
bound [12), and the true error probabily[S,, — E[S,,] > €] Pr{iz(p) -zl >l (14)
as estimated by Monte Carlo simulations. Fiximg= 106, we wherez is the full NLM result defined in[{1) an& (p) is the
plot the bounds and probabilities for different values:of MCNLM estimate defined in(11).

Theorem 1:Assume thatw; > 0 for all j. Then for every
positivee,

Pr{|Z(p) — 2| > ] < exp {-nf}

individually random in nature, it is unlikely for many of time
to work collaboratively to significantly alter the overajistem.

Thus, for largen, the randomness of these variables tends to be —n(upe)?
“canceled out” and the functiofi( X3, ..., X,,) stays roughly + exp T 2/ 1-p,
constant. 2 (z 2j=19; (TJ) + (HBE)Ma/?’)
To gain insights from a concrete example, we first apply the )
large deviations theory to study the empirical samplingprat +exp —n(1Be) 7
S, as defined in[{6). Here, the independent random variables 2 (% Z};l [3? (%) + (MBE)M5/3)
are the Bernoulli random variabldd;}, ., introduced in ! (15)

(B), and the smooth functiofi(-) computes their average. _ o _ _
It is well known from the law of large numbers (LLN)Where s is the average similarity weights defined n(10),
that the empirical mea#f,, of a large number of independent®; = W (#; —z—¢), Bj =w; (z; —z+¢), and

random variables stays very close to the true mean, which is —p
equal to the average sampling ragiin our case. In particular, My = lgljagn <|Oéj| max {17 . }) 5
by the standard Chebyshev inequality![34], we know that T _'7p
Mg = max <|ﬂj|max{1, / }) .
Pr[S,—E[S,] > €] < Pr[|S,—E[S,]| > €] < Var[gn]7 (12) lsjsn Dy
ne Proof: See AppendikA. [ |

for every positives. Remark 1:In a preliminary version of our work [36], we

One drawback of the bound in{12) is that it is overly IOosepresented based on the idea of martingales [37], an error
providing only a linear rate of decay for the error probadiei probability, bound for the special case when the ,sampling
asn — oo. In contrast, the large deviations theory provide attern is uniform. The result of Theordrh 1 is more general
many powerful probability inequalities which often lead t nd applies to any sampling patterns. We also note that the
much tighter bounds with exponential decays. In this wor ound in [I5) quantifies the deviation of a ratit(p) —

we will use one partic_ular inequ_ality, due to S. Bernstei5]{3 A(p)/B(p), where the numerator and denominator are both
Lemma 1 (Bfernzteln Ir(;equalltyd[35])Let.)%l, e ’SX" be eighted sums of independent random variables. It is thezef

a sequencefo 'rlll epenh ent random varia es.L uppcise 8 e general than the typical concentration bounds sedrein t

|1XJ'|nS M for all j, where M is a constant. LetSn = jyaratyre (seee.g, [38], [39]), where only a single weighted

=5, X;. Then for every positive, . ; .

n Luj=1“%J sum of random variablesi.¢., either the numerator or the

Pr[S, — E[S,] > €] denominator) is cpnsidered.
Example 2: To illustrate the result of Theoreld 1, we con-
<expd — ne? (13) sider a one-dimensional signal as shown in Fiddre 5(a). The

9 (% Z;z:l Var[X;] + Ms/3) sigr_lgl {z;}0y _is a pi_ecewise Co_ntinuous function c_orru_pted
by i.i.d. Gaussian noise. The noise standard deviatian4s

To see how Bernstein’s inequality can give us a better probg/255 and the signal length is = 10*. We use MCNLM to

bility bound for the empirical sampling rati§,,, we note that denoise th&001-th pixel, and the sampling pattern is uniform



signal {z;}"_, sampling probability p; = 0.05

0.7 ‘ ‘ :
LI e —©— Large deviations bound$
1 Ik T % True probabilities
: o
1 2 " " '
-
TR
o o
0
| 1
) !
Y !
= 1
= '
b 1
0.5k 1 0 X% R ORCD.0a
- ! 0 0.002 0.004 0.006 0.008 0.01
1
O I I I I 0 : q
0 2000 4000 6000 8000 10000 0 0.05 0.1 0.15 0.2
J €
(@) Noisy signal{z;}"_, (b) ProbabilityPr[|Z(p) — z| > €]

Fig. 5: Example to illustrate Theorel 1. (a) A one-dimenalosignal with lengthn = 10%, corrupted by i.i.d. Gaussian
noise witho = 5/255. We use the MCNLM algorithm to denoise the signal. The patzh & d = 5 and the parameters
are h, = 15/255 and hs = oo, respectively. (b) The error probability as a functioneofin this plot, the “crosses” denote
the true probabilities as estimated b§° independent trials and the “circles” denote the analytiggler bound predicted by
Theorenf]L. For easy comparisons, we also provide a zoomeeksion of the plot in the insert.

with p; = € = 0.05 for all j. Fore = 0.01, we can compute Proof: See AppendixB. [ ]

that1 > a2 =1.194x1074 1" 32 =1.2 1074, , :
W 2j=1% 04107, 5 2 jm 58 10 We note that, for large:, the first term on the right-hand

= 0.282, M, = 0.951, and Mg = 0.932. It then foll . . <
ﬁgm (OE)Sthat 0-951, and M = 0.93 en ToToWS side of [16) is negligible. For example, when= 10* and
¢ = 0.01, we havee ™™ = 3.7 x 10~%4, Thus, the error
Pr[|Z(p) — z| > 0.01] < 8.856 x 107°. probability bound is dominated by the second term, whose

: . ti t is determined by four factors:
This bound shows that the random MCNLM estimatép), negative exponent Is defermined by Tour tactors

obtained by taking onlys% of the samples, stays within 1. The size of the reference s#&t If all other parameters
one percent of the true NLM result with overwhelming are kept fixed or strictly bounded below by some positive
probability. A complete range of results for different vedu constants, the error probability goes to zero as an expiahent
of ¢ are shown in Figur&l5(b), where we compare the trdanction of n. This shows that the random estimates obtained
error probability as estimated by Monte Carlo simulatiomhw by MCNLM can be very accurate, when the size of the
the analytical upper bound predicted by Theoftdm 1. We sieage (for internal denoising) or the size of the dictionary
from the “zoomed-in” portion of Figurel 5(b) that the anatgii (for external denoising) is large.

bound approaches the true probabilities for> 0.005 (i.e,

0.5% deviation.) 2. Sampling ratio¢. To reduce the sampling rati9 while

still keeping the error probability small, a larger inversely
) ) _ proportional to¢, is needed.
C. Special Case: Uniform Sampling Patterns o ] _ )

The error probability bound if{15) holds for all samplin% 3. Prec2|5|ons. Note that the f_unctlonf(s) in (18) 'S of

) ; . : rder O(e#) for small . Thus, with all other terms fixed, a
patternsp. In Section[1V, we will use this versatile bound o ) 5 . i
: . : . -fold reduction ine requires ak=-fold increase inn or &.

to design optimal nonuniform sampling patterns. In gemera]ﬁ
choosingp to be uniform leads to suboptimal performance. 4. Patch redundancy.z. Recall thatug = %Z?:le’
Nevertheless, it is still instructive to consider this casiece with the weights{w,} measuring the similarities between a
it provides a convenient and easily interpretable bounchen tnoisy patchy, and all patcheqx;}’_, in the reference set
error probabilities. X. Thus, ug serves as an indirect measure of the number

Proposition 1 (Uniform Sampling)Assume that the sam- of patches int that are similar toy,. If y, can find many
pling pattern is uniformj.e, p = £1. Then for everys > 0 similar (redundant) patches i#’, its corresponding:z will
and every0 < £ < 0.5, be large and so a relatively smallwill be sufficient to make

the probability small; and vice versa.
Pr[|Z(p) — 2| > €] < exp {—n&} P y

+ 2exp {—nupf(e)€/(1—£€)}, (16) Using the simplified expression if_(16), we derive in Ap-
’ ’ pendiXQ the following upper bound on the mean squared error

L2/ (2(1+)(1 + 4/3)). (MSE) of the MCNLM estimation:

where f(e) =
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Proposition 2 (MSE):Let the sampling pattern be uniform,In general(P,) does not have a closed-form solution. Because

with p = £1. Then for any0 < £ < 0.5, of this, and since < 1, we omit the terme M (p) in (20) and
ider a simpler problem:
o B 56 1— 6 consi p p
MSE2E |(Z(p) — 2)* né —=).
SEZE [(2(p) - 2)"] < e+ - () (5 )
(17) arg min > b (1;?1')
. P j=1 ’

Remark 2: The above result indicates that, with a fixed (P1) subiectto L n —¢and0<p; <1. (21)

average sampling rati¢ and if the patch redundanqyg is . n j:1p o P

bounded from below by a positive constant, then the MSE of
the MCNLM estimation converges to zero as the size of
the reference set, goes to infinity.

Before providing a justification for usind?;) instead
of (P), we first note that(P;) is a variation of the the
classical water-filling optimization probleni [40], for whi
IV. OPTIMAL SAMPLING PATTERNS simple closed-form solutions exist. In particular, we derin
Appendix(D the following solution td P, ).

Theorem 2 (Optimal Sampling Patternsfhe solution to
>le) is given by

While the uniform sampling schemeég, p = £1) allows
for easy analysis and provides useful insights, the perdioga
of the proposed MCNLM algorithm can be significantl
improved by using properly chosen nonuniform sampling pj = min {b;7,1}, for1<j<n, (22)

patterns. We present the design of such patterns in thi®sect _
where the parameter is chosen so thazj pj = né.

A. Design Formulation Remark 3:It is easy to verify that

The starting point of seeking an optimal sampling pattern .
is the general probability bound provided by Theorfem 1. A 9(x) = me {bjz, 1} —ng (23)
challenge in applying this probability bound in practicehat -
the right-hand side of{15) involves the complete set of Wisig is a piecewise linear and monotonically increasing fumctio
{w;} and the full NLM resultz. One can of course computeMoreover,g(0) = —n{ < 0 and g(+o0) = n(1 — &) > 0.
these values, but doing so will defeat the purpose of randdrhus, the parameter can be uniquely determined as the root
sampling, which is to speed up NLM hyot computing all of g(x).
the weights{w; }. To address this problem, we assume that Given the closed-form solution i (22), we are now ready
to quantify the difference between the original probléRy)

0 <wj <b<1, (18)  and the simplified versiofP, ).

where the upper bounds, } are either knowr priori or can ~ Proposition 3: Let p, and p, be the solution to(/%) and
be efficiently computed. We will provide concrete exampled™ ), respectively. Then
of such upper bounds in Sectign TV-B. For now, we assume
that the boundgb;} have already been obtained. e(po) < e(p1) = e(po) + O(); (24)

Using (I18) and noting thall < z;,z < 1, we can see that where ¢(p) = def 1te ZJ b2 (1*1{’1‘) + eM(p) is the cost
the parameter$a;, 3;} in (I8) are bounded by function in (). ba

laj| < bj(1+¢) and |B;] <b;(1+e), The above result, shown in Appendik E, justifies the use of
_ _ the simpler probleniP;) in place of(P). Indeed, for= <« 1,

respectively. Meanwhile) < pp < 1. It then follows from  the inequalities in[{24) guarantee that the performancéef t
(I5) that sampling patterrp, obtained by solving P;) will be similar

Pr[|Z(p) — 2| > €] < exp {—n€} to that obtained by solvingF).

—n(ppe)?/(1+¢)

, (19) B. Optimal Sampling Patterns

1

2 (1_26 Za 1b3( Jp]) +eM(p )) To construct the optimal sampling pattern prescribed by

def Theoreni®, we need to fingh,}, which are the upper bounds

where M (p) = X (b max{ = p]}) /3 on the true similarity wggégs{wj} At one extreme, the

Given a set of paramete€se and {b,}, we seek sampling tightest upper bounds afg = wj;, but this oracle scheme
patternsp to minimize the probability bound ifi_(19), so thats not realistic as it requires that we know all the weights
the random MCNLM estimateZ (p) will be tightly concen- {w;}. At the other extreme, we can use the trivial upper bound
trated around the full NLM result. Equivalently, we solve b; = 1. Itis easy to verify that, under this setting, the sampling

+ 2exp

the following optimization problem. pattern in [[2R) becomes the uniform pattere,, p; = £ for
all 5. In what follows, we present two choices for the upper
. 1+E 17;;].) M bounds that can be efficiently computed and that can utilize
arg;n o DL ( 5 ) TeMp) partial knowledge ofu;.
(Po) : (20)

. n - 1) Bounds from spatial informationThe first upper bound
subject t 1 ;=¢and0 < p; < 1. . . ; . : ) e
subjectto J;pj ¢ Py = is designed for internali.€., single image) denoising where



there is often a spatial term in the similarity weighé,.,

wj = w; wj. (25)

One example of the spatial weight can be foundn (4). Since
wj <1, we always havev; < w3. Thus, a possible choice is
to set

b = ws. (26)

The advantage of the above upper bound is i@ a function

of the spatial distancé;; between a pair of pixels, which
is independent of the image dafd and ). Therefore, it
can be pre-computed before running the MCNLM algorithn=
Moreover, sincg[b; } is spatially invariant they can be reused
at all pixel locations.

2) Bounds from intensity informationFor external image =
denoising, the patches iA' and) do not have any spatial
relationship, as they can come from different images. Ia th~
case, the similarity weigh; is only due to the difference in = S
pixel intensities ite., w; = w7), and thus we cannot use the (b) Oracle sampling pattern
spatial bounds given i (26). To derive a new bound for th’
case, we first recall the Cauchy-Schwartz inequality: For a
two vectorsu,v € R? and for any positive-definite weight -
matrix A € R¥*? it holds that

;;;;;

u” Av| < [lufa [|v]a.

Settingu = y — ;, we then have

250

w; = e~ Ilv=illa/2h]) < o~ (@i—w)"Av)* /(212 |0]I)

(d) Intensity (e) Spatial + Intensity

<e @™ —pr (@7
Fig. 6: lllustration of optimal sampling probability fordétcase
where s &' Av/ (V2h,||v|a). The vectorv can be h, = 15/255, h, = 50. (@) Cameraman image and the target
any nonzero vector. In practice, we choose= 1 with pixel. We overlay the spatial weight on top cdmeramarfor
A = diag{l/d,...,1/d} and we find this choice ef- visualization. (b) Optimal sampling pattern w.nt, (oracle
fective in our numerical experiments. In this ca$é, = scheme). (c) Spatial upper boubid (d) Intensity upper bound
exp {—(:anl —yT1)?/(2d*h2)}. b%. (e) Spatial and intensity upper boubfl- b’.

Remark 4:To obtain the upper bourid in (27), we need to
compute the termg’'s andchTs, which are the projections of
the vectorsy andx; onto the one-dimensional space spanned Figurel6(b)—(e) show the resulting sampling patterns. A&s ca
by s. These projections can be efficiently computed by cobe seen in the figures, various aspects of the oracle sampling
volving the noisy image and the images in the reference sEtttern are reflected in the approximated patterns. Fariost
with a spatially-limited kernel corresponding $o To further the spatial approximation has more emphasis at the certer th
reduce the computational complexity, we also adopt a twthe peripherals whereas the intensity approximation hag mo
stage importance sampling procedure in our implementati@mphasis on pixels that are similar to the target pixel.
which allows us to avoid the computation of the exact valuesTo compare these sampling patterns quantitatively, we plot
of {b;} at most pixels. Details of our implementation are giveim Figure[T the reconstruction MSE associated with differen
in a supplementary technical repdrt [41]. patterns as functions of the average sampling ratitiere,
Example 3:To demonstrate the performance of the variouse seth, = 15/255 and hy; = 50. For benchmark, we
sampling patterns presented above, we consider denoisig also show the performance of the uniform sampling pattern.
pixel of the Cameramarimage as shown in Figuig 6(a). Thelt is clear from the figure that all the optimal sampling
similarity weights are in the form of(25), consisting of bot patterns outperform the uniform pattern. In particulae th
a spatial and a radiance-related part. Applying the redult pattern obtained by incorporating both the spatial anchisitg
Theorem[2, we derive four optimal sampling patterns, eadatformation approaches the performance of the oracle sehem
associated with a different choice of the upper bound, ngmel
bj = wj,b; = bj,b; = b}, andb; = b3b}. Note that the first
choice corresponds to amacle setting, where we assume that
the weights{w;} are known. The latter three are practically In this section we present additional numerical experisent
achievable sampling patterns, whéreandd; are defined in to evaluate the performance of the MCNLM algorithm and
(29) and [(2F7), respectively. compare it with several other accelerated NLM algorithms.

V. EXPERIMENTAL RESULTS
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45%10 ‘ ‘ ‘ Table[]l and Tablg]l summarize the results of the experiment.
—e— Oracle Sampling Additional results, with visual comparison of denoised gas,
ar j:i::ﬁfgﬁg‘tAzpmrXiQE“%”n 1 can be found in the supplementary technical report [41]c&in
35l .Hx”spatia,f,m’;ﬁs?ty Af)p?oximaﬂon MCNLM is a randomized algorithm, we report the average
—%— Uniform Sampling PSNR values of MCNLM over 24 independent runs. The
— 3 1 results show that for the 10 images, even at a very low
Vo5l sampling ratio,e.g, £ = 0.1, the averaged performance of
Nl ) MCNLM (over 10 testing images) is only abo0t35 dB to
= 0.7 dB away (depending or) from the full NLM solution.

When the sampling ratio is further increasedSte- 0.2, the
PSNR values become very close (about.@ dB to 0.2 dB
drop depending ow) to those of the full solution.
In Table[Il we report the runtime of MCNLM, GKD and
Y AM. Since the three algorithms are implemented in different
0 02 04 06 08 1 environments, namely, MCNLM in MATLAB/C++ (.mex),
¢ GKD in C++ with optimized library and data-structures, and
Fig. 7: Denoising results of using different sampling sceemAM in MATLAB (.m), we caution that Tabl€Tll is only meant
shown in Figuré 6. Setting of experiment: noise= 15/255, to provide some rough references on computational times. Fo
hs =50, h, = 15/255, patch size5 x 5. MCNLM, its speed improvement over the full NLM can be
reliably estimated by the average sampling ratio

A. Internal Denoising B. External Dictionary-based Image Denoising

A benchmark of ten standard test images are used for thisTo test MCNLM for external dictionary-based image de-
experiment. For each image, we add zero-mean Gaussian no@eing, we consider the dataset of Levin and Nadler [11],
with standard deviations equal to= 4%, 20 20 40 50 which contains about 15,000 training images (aboet 10
to simulate noisy images at different PSNR levels. Two ob®icimage patches) from the LabelMe dataset [44]. For testirg, w
of the spatial search window size are us&dx 21 and35x 35, use a separate set of 2000 noisy patches, which are mutually
following the original configurations used inl[1]. exclusive from the training images. The results are shown in

The parameters of MCNLM are as follows: The patch sizeigure[8.
is5 x5 (i.e, d = 25) and A = I/d. For each choice of
the spatial search window sizeeg, p = 21 or p = 35), we
defineh, = (|p/2])/3 so that three standard deviations of th
spatial Gaussian will be inside the spatial search winddve T 325 1
intensity parameter is set fo. = 1.30/255. B R s sy |

In this experiment, we use the spatial information bour
(28) to compute the optimal sampling pattern [nl(22). Ir

33

corporating additional intensity information as [n127) wia @
further improve the performance, but we choose not to do &
because the PSNR gains are found to be moderate in thisc &

due to the relatively small size of the spatial search windo
Five average sampling ratiog, = 0.05,0.1,0.2,0.5,1, are
evaluated. We note that wheh= 1, MCNLM is identical

205F Lo s =—©— Optimal Sampling ||
to the full NLM. —=+— Uniform Sampling
For comparisons, we test the Gaussian KD tree (GKD) alg 28 1= = Full Solution

N 10 10° 107

Sampling Ratio

rithm [26] with a C++ implementation (ImageStack [42]) anc 10
the adaptive manifold (AM) algorithm [27] with a MATLAB
implementation provided by the authors. To create a medrg. 8: External denoising using MCNLM. The external
ingful common ground for comparison, we adapt MCNLM agataset contains = 10" patches. 2000 testing patches are
follows: First, since both GKD and AM use SVD projectiorised to compute the PSNR. The “dotted” line indicates the
[18] to reduce the dimensionality of patches, we also use fiall NLM result reported in[[11]. The “crossed” line indiczt
MCNLM the same SVD projection method by computing théhe MCNLM result using uniform sampling pattern, and the
10 leading singular values. The implementation of this SVIgircled” line indicates the MCNLM result using the intetysi
step is performed using an off-the-shelf MATLAB code[43]approximated sampling pattern.

We also tune the major parameters of GKD and AM for their

best performances.g, for GKD we seth, = 1.30/255 and Due to the massive size of the reference set, full evaluation
for AM we seth, = 20/255. Other parameters are kept abf (@) requires about one week on a 100-CPU cluster, as
their default values as reported [n_[26], [27]. reported in [[11]. To demonstrate how MCNLM can be used
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TABLE I: Single image denoising by MCNLM, using the optimah@sian sampling pattern. The case when1 is equivalent
to the standard NLML]2]. GKD refers td [26]. AM refers to [28hown in the table are PSNR values (in dB).

£ | 0.05 0.1 0.2 0.5 1 GKD AM|| 0.05 0.1 0.2 0.5 1 GKD AM
o Baboon512 x 512 Barbara 512 x 512

10| 30.74 31.14 3157 31.63 31.63 31.17 28/9B2.14 32.65 33.04 3320 33.20 32.72 30/48
20| 26.73 27.08 27.22 27.29 27.29 26.67 25)y&8.19 28.66 29.06 29.22 29.23 2840 26,88
30| 2443 24.77 2497 25.08 25.08 2458 242584 26.38 26.68 26.85 26.85 2591 24/92
40| 23.24 2356 23.8 23.92 2393 23.28 23(384.13 24.71 25.06 25.23 25.24 2429 23]75
50| 22.05 22.63 2299 23.12 23.12 2224 22)p@2.77 23.49 2391 24.07 24.07 23.08 22,95
o Boat 512 x 512 Bridge 512 x 512
10| 32.20 32.62 32.85 3293 3293 3254 30/929.52 29.27 29.05 29.08 29.08 29.64 28/49
20| 28,56 29.26 29.57 29.70 29.70 28.69 27)925.46 25.36 25.36 2541 2541 25.72 25/40
30| 26.38 27.15 27.49 27.67 27.66 26.47 26)123.64 23.74 23.86 23.92 2392 2385 23/74
40| 24.88 25.69 26.02 26.21 26.21 24.90 24/822.28 22.66 22.83 2292 2292 22.67 22)65
50| 23.46 24.33 2485 25.05 25.05 23.66 238@1.21 21.67 21.90 22.00 22.01 21.73 21,82
o Couple512 x 512 Hill 256 x 256
10| 31.98 3240 32.62 3272 32.72 3240 30/880.54 30.51 30.44 30.49 3049 30.89 30{12
20| 28.21 2855 28.78 28.88 28.88 28.19 27)p26.95 27.14 27.17 27.26 27.26 27.14 26/95
30| 25.80 26.42 26.69 26.81 26.81 2597 25)y&5.13 25.46 25.64 2575 25.75 25.28 25,34
40| 24.21 25.03 25.38 25.54 25.54 2452 24/5@3.76 24.38 24.66 24.81 24.82 2414 24/37
50| 23.14 23.93 24.42 2459 2459 23.39 23)y22.83 23.46 23.87 24.02 24.02 23.10 23/57
o House256 x 256 Lenab512 x 512
10 | 34.07 3476 35.36 3550 3550 34.51 33/0B4.69 3548 36.02 36.15 36.15 34.90 34,04
20| 30.52 3145 32.33 3253 3254 3041 29)6380.82 31.88 32.44 32.64 32.65 3091 3047
30| 27.89 29.06 29.81 30.04 30.04 2781 27,228.49 29.64 30.23 3050 30.50 28.52 28/44
40| 26.12 27.21 2792 28.20 28.20 26.04 25|]y®6.53 27.73 28.47 28.76 28.76 26.72 26/97
50| 24.70 25.86 26.66 26.98 26.99 24.76 24)y25.16 26.29 27.03 27.34 27.35 2529 25/81
o Man 512 x 512 Pepper512 x 512
10| 32.32 3258 3272 3279 3279 3256 31/482.78 33.49 33.85 3394 3395 33.35 31,63
20| 28,56 29.13 29.37 29.49 29.49 28.78 28;328.99 29.87 30.32 30.46 30.46 29.38 28/43
30| 26.68 27.26 27.69 27.85 27.85 26.74 26)626.48 27.33 27.82 27.98 27.98 26.81 25,88
40| 25.12 25,94 26.45 26.65 26.66 25.27 25/824.68 25.61 26.09 26.29 26.29 25.01 24)25
50| 23.91 2492 2548 25.71 2572 2413 2452324 2391 2441 2461 2461 23.49 23,00

TABLE II: Average PSNR over 10 testing images. Bold values tie minimum PSNRs that surpass GKD and AM.

o | 0.05 0.1 0.2 0.5 1 GKD AM

10 | 32.10 32.49 3275 3284 3284 3247 310
20 | 28.30 28.84 29.16 29.29 29.29 28.43 27.7
30 | 26.08 26.72 27.09 27.25 27.24 26.19 25.8
40 | 2450 25.25 25.67 2585 2586 24.68 245
50 | 23.25 24.05 2455 2475 2475 2349 23.6

~N © b OO

TABLE IlI: Runtime (in seconds) of MCNLM, GKD and AM. Implenméations: MCNLM: MATLAB/C++ (.mex) on Windows
7, GKD: C++ on Windows 7, AM: MATLAB on Windows 7.

Image Size| Search Window / Patch Size / PCA dimensipn0.05 0.1 0.2 0.5 1 GKD AM

512 x 512 21 x21/5x5/10 0.495 0.731 1547 3505 7.234 3.627 0.543
(Man) 35x35/9x9/10 1.003 1917 3.844 9.471 19.904 4.948 0.546

256 x 256 21 x21/5x5/10 0.121 0.182 0.381 0.857 1.795 0.903 0.242
(Housg 35x35/9x9/10 0.248 0.475 0.954 2362 4.851 1.447 0.244

to speed up the computation, we repeat the same experiniadependent trials are performed and their average is dedor

on a 12-CPU cluster. The testing conditions of the experimddere, we show the results of the uniform sampling pattern and
are identical to those iri_ [11]. Each of the 2000 test patch#se optimal sampling pattern obtained using the upper bound
is corrupted by i.i.d. Gaussian noise of standard deviatiam(24). The results in Figuid 8 indicate that MCNLM achieves
o = 18/255. Patch size is fixed ab x 5. The weight a PSNR within0.2dB of the full computation at a sampling
matrix is A = I. We consider a range of sampling ratiostatio of 10~3, a speed-up of aboui00-fold.

from ¢ = 1075 to ¢ = 1072. For each sampling ratio, 12
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VI. CONCLUSION We note thatz: = ua/up, whereu, and up are defined in

We proposed Monte Carlo non-local means (MCNLM), &) and [ID), respectively. It is easy to verify that
randomized algorithm for large-scale patch-based imatge-fil M. "
ing. MCNLM randomly chooses a fraction of the similarity Pr[A—zB >eB]=Pr 1 Zyj > I Zo‘j
weights to generate an approximated result. At any fixed N3 Lt
sampling ratio, the probability of having large approximoat

errors decays exponentially with the problem size, immyin B 1 - _

that the approximated solution of MCNLM is tightly con- =br n Z;YJ ZEpB | (30)
centrated around its limiting value. Additionally, our &ysas =

allows deriving optimized sampling patterns that explaittjal The random variable¥); are of zero-mean, with variance
knowledge of weights of the types that are readily available

in both internal and external denoising applications. Eixpe Var [Y;] = —2 Var[l;] = o2 _Pi

mentally, MCNLM is competitive with other state-of-thetar pj 7 pj

accelerated NLM algorithms for single-image denoising igsing Bernstein’s inequality in Lemnia 1, we can then bound
standard tests. When denoising with a large external dséabg,e probability in [3D) as

of images, MCNLM returns an approximation close to the
full solution with speed-up of three orders of magnitude, Pr[4 —zB > eB]
suggesting its utility for large-scale image processing.

<exp —nlppe)” , (31)
ACKNOWLEDGEMENT = 9 (% S a2 (1;@') 4 Ma(ﬂBE)/3)
The authors thank Anat Levin for sharing the experimental ’ )
settings and datasets reported/in/ [11]. where the constant/, can be determined as follows:
1-p; i _
APPENDIX vl = {|Oéj| (p—]p) ;B =1
Jl .
A. Proof of Theorern]1 |, if I, =0.
For notation simplicity, we shall drop the argumemtin < Ja;|max {1 — Py
A(p), B(p) and Z(p), since the sampling patteg remains - " pj '
fixed in our proof. We also defind/B = 1 for the case when .
B = 0. We observe that Thus, M, = jhax (|0<j| max {1, p?] })
<j<n J
Pr(|Z —z| >¢| =Pr[|A/B — z| > €] The other tail probabilityi.e,, Pr[A — 2B < —eB], can be

— Pr[|[A4/B—p|>en B=0] bounded similarly. In this case, we let

that
Pr[A—zB < —¢B]

+Pr[lA/B—p > 1 B> 0) 8 Euylay —x4e) and 7, %op (Do)
<Pr[B=0) P
Y Pr|[A—puB|>eB N B> (] Then, following the same derivations as above, we can show
]

<Pr[B=0]+Pr[|A—uB|>eB]. (28)

By assumptiong; > 0 for all j. It then follows from the
definition in (8) thatB = 0 if and only if I, = 0 for all j. —n(pupe)?

Ths, =P 2 (A 22 (52 + Matene)/3)

Pr(B =0] = [J(1 - p;) = exp {Zk’g(l _Pa')} where Mg = max (|Bj| max{l, 1;?” }) Substituting [(29),
j=1

=1 n ’

, (32

(31) and [(3R) _if71to[(28), we are done.
(b1) "
< exp{—zpj} D exp{-ne}.  (29)

j=1

Here, (b1) holds becausig(l —p) < —pfor 0 < p < 1; and B. Proof of Propositiori 1
(b2) is due to the definition thag = + >-"_, p;. _ o o

Next, we provide an upper bound fo [|[A — zB| > cB] The goal of the proof is to simplify(15) by utilizing the
in (@8 by considering the two tail probabiliiesfact thatd0 <u; <1,0<z<1,0<w; <1landp=¢1. To
Pr[A— 2B >¢eB] and Pr[A—:B < —cB] separately. this end, we first observe the following:
Our goal here is to rewrite the two inequalities so that

A 9 . . laj| = wjlz; — 2 —e] S w;(1+e).
Bernstein’s inequality in Lemmgl 1 can be applied. To this ' '

end, we define Consequently, fob < ¢ < 1/2, M,, is bounded as
def def I; 1-&\ @ 1-¢
o Swilz;—z—¢) and Y; = q; <p—;—1). Mazlr%aé(n (|aj|max{1,T}) < (1+¢) )
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where in (a) we used the fact thaw; < 1 and¢{ < 1/2. The Lagrangian of the above problem is
Similarly,

n b2 n n
— 2 (s — L
B < wi(1+e) and Ms<(1+e) (%) . £, A v) Z;pj +Z;A-7(pﬂ D+ (Z}pﬂ ”5) )
Jj= Jj= Jj=
Therefore, the two negative exponents [n1(15) are lower (33)
bounded by the following common quantity: where p = [p1,...,p,]7 are the primal variablesh =
n(upe)? [A1,..., )T are the Lagrange multipliers associated with the

) 1t 1t constraintg; < 1, andv is the Lagrange multiplier associated
2 (— Yo wi(l+e)? (T) +upe(l+e) (T) /3) with the constraind~""_; p; = né.

(Q n(pupe)? ¢ The first order optlmallty cond|t|0ns imply the following:
_2(%2?1%(1—#5) +MB€(1+€)/3) ( 5) e Stationarity V,, £ = 0. That is, — 2+)\ +v=0.
e Primal feasibility. Z _1pj=né andpj <1.
= n(ppe)” § ) o Dual feasibility. A; 2 0, andv > 0.
2(np(1+ 5) +ppe(l+)/3) \1-¢ e Complementary slacknessj (p; —1)=0.
> njipe’ ( ) The last condition, complementary slackness, implies foat
T 2(1+e)(1+4¢/3) - eachj, one of the following cases always holds; = 0 or

Defining f(e) ££2/(2(1 4 €)(1 + 4¢/3)) yields the desired Pj = 1.

result. Case 1:)\; = 0. Substituting this into the stationarity
condition yieldsp; = b;/+/v. Sincep; < 1, we must have
o b; < v
C. Proof of Propositiof.)2 Case 2:p; = 1. In this case, the stationarity implies that
The MSE can be computed as b? = \; +v = 0. Since); > 0, we must have); > \/v.
o1 (@) [ ) Combining these two cases, we obtain
B[z -2 @ [ Pr[(zp) -2 > <] § |
O1 {ﬁ, if bj < \/;,
pj = .
® / Pr[(2(p) — 2)* > €| de. 1, NG
0

_ . _ Thus, it remains to determine This can be done by using the
where(a) is due to the “layer representation” of the expectapnma| feasibility condition that— Z " p; = & In particular,
tions (Seeg.g, [45, Chapter 5.6]), an®) is due to the fact ., qjger the function (=) defined in [2B), where: — 1/y/7.
that|Z(p) — z| < 1. Then, by [(I5), we have that The desired value of can thus be obtained by finding the

1 ) root of the equatiory(x). Sinceg(x) is a monotonically in-
/0 Pr [(Z(p) —2) > 5} de creasing piecewise-linear function, the parametisruniquely
1 ¢ determined, so ip.
e "t 4 2/ exp {—nuBf(\/E) <ﬁ) } de
o o _ E. Proof of Propositoii]3
By the definition off(c), it is easy to verifyf(v/2) = 32/28. | follows from the definition ofp, that c(p,) < c(p,). So
Thus, we just need to establish the second inequality[id (24). We
! note that, sincep, is the optimal solution td P ), it holds
/ Pr {(Z(p) —2)? > 5} de that ! !
0
_ 1 3¢ /98 13 J c(py) —eM(p,) < c(py) —eM(py),
T / eXp{_WB( ¢/ )<1—€)} c and thus
e 156\ (1-¢
<e +- 3\ ) c(p1) < c(po) +eM(py) —eM(py) < c(po) +eM(py),

where the second inequality is due to the fact thi(ip,) > 0.
D. Proof of Theoren]2 Next, we provide an upper bound for
Removing constant terms in the objective [n](21) that are

_ 1 —p,
independent op, we can simplify(P;) as Mpy) = 12550 (bj e {1’ Dj }> /% (39
" . wherep; = min(b;7,1) as given in[(2R). For each if b7 >
1 )
minimize Z 2 st = ij =¢ and p; <1 1/2, thenp; > 1/2 and
..... Pn n
" b;max{1,1/p; — 1} =b; < 1. (35)

Here, we have ignored the constraints that> 0 for all j,
but we will verify that these positivity constraints are éwdl
satisfied by the solution we get. bjmax{1,1/p; —1} =1/7 —b; < 1/7. (36)

For the other case, whesy = b;7 < 1/2, we have
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Substituting [(3b) and (36) intd_(B4), we get [19]
eM(p,) < emax{l,1/7} /3. (37) 0]

20

Finally, to obtain an estimate df/7, we note thatr is the
unique root of the functiog(z) defined in[(ZB). It is easy to

21
verify that (2]

[22]

n& n
< bj —nE=0= .
(55 ) = 25 Zn - re=0=0t)
[23

Since g(x) is a monotonically increasing function, we must
haver > n¢/ Zj b; > &/pup. Combining this bound with
(37), we get (2]

eM(p,) < max (1,up/€)e/3 = Ofe). [25]
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Abstract

This supplementary document provides the following addal information of the main article.

Implementation of Theorem 2 (General Sampling Case)

Implementation of Uniform Sampling Patterns

Implementation of Spatially Approximated Sampling Patse(for Internal Denoising)
Implementation of Intensity Approximated Sampling Patte(for External Denoising)
Additional Experimental Results

I. IMPLEMENTATION OF THEOREM 2 (GENERAL SAMPLING CASE)
The optimal sampling pattern presented in Theorem 2 of thie \andicle is

pj = min{b;7,1}, for1l <j <n, (1)

where the parameter is the root of the function

g(T) = Zmin{bﬂ', 1} —né. (2)
j=1
Sinceg(-) is piecewise linear and monotonically increasing, wjth) = —n¢ < 0 and g(+o0) = n(1 — &) > 0,
the parameter can be uniquely determined. In this section, we discuss fiziesft way to determine-.

A. The Bisection Method

In determiningr, we choose the bisection method because of its efficiencyr@ngstnessGradient-based and
Newton type of algorithms are not recommended as theseitdlgr require a region of convergence. Identifying
such region could be challenging for the functigfn) defined in [(2).

The bisection method is an iterative procedure that chdwuksigns of the two points,, 7, and their midpoint
7. = (1 +7p) /2. If 7. has the same sign ag, thent, replacesr,. Otherwise. replaces,. The iteration continues
until the residudr, — 7| is less than a tolerance level, or whefr.) is sufficiently close to 0.

Pseudo-code of the bisection method is shown in AlgorithrRat.a small¢, we find that by setting, = 0 and
7, = 10, the bisection method converges in 10 iterations with aigi@t |g(7.) — 0| < 10~!, which is sufficient
for our problem.

arXiv:1312.7366v1 [cs.CV] 27 Dec 2013

B. Cost Reduction by Quantization

The cost of evaluating the functiog(7) for a fixed 7 is O(n), because of the multiplication @f; - = and the
minimum operator in[(2). To reduce the cost, we quantize thgisb; by constructing the histogram of.
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Algorithm 1 The Bisection Method
Input: 7, .
Output: 7.
Initialize: F, = g(7a), Fy, = g(m), Fe = 0.

while |7, — 75| > tol and|F.—0| >tol do
Definer. = (1, + 7)/2, and evaluatd, = g(7.).
if I, <0 andF_. > 0 then
Setr, = 1., and Fp, = F.,.
else
Setr, = 1., andF, = F,.
end if
end while

Let ¢ be the number of bins of the histogram, we define two sequengé$ , and{i;}{_, such thai; < b; < u,
for somet, and for1 < j < n. These two sequences denote the upper and lower bounds edlties in thet-th
bin, respectively. Also, we let the center of each bin be

b — Ut + lt’
2
and we let the number of elements in thth bin be
nt:‘{bﬂltgwjgut, fijZI,...,’I’L}.

Then, the valugy(7) can be approximated by

q

9(1) =~ Z nymin {1, b7} — né. (3)
t=1

The advantage of usingl(3) instead lof (2) is that the cost afuating [3) isO(q), which is smaller thar©O(n) as
in ().

[l. IMPLEMENTATION OF UNIFORM SAMPLING PATTERNS

Uniform sampling is the fundamental building block of MCNIdMoptimal sampling patterns. In this section,
we discuss the implementation of uniform sampling for MCNLWMhe techniques presented here will be used in
other sections of this report.

For clarity we present the pseudo-codes using MATLAB lamgualthough in practice the codes are implemented
in C++.

A. Naive Implementation

To begin with, we consider the following naive implemerdgatiof uniform sampling:
if (rand(1)<xi)

L(j) =1
el se
1(j) = 0;
end

wherer and( 1) is the MATLAB command for generating a random number fromfahm[0, 1]. The output of
the above procedure is a sequence of i.i.d. Bernoulli ramzlamriznbIes{lj};?:1 with probability €.

The problem of this naive implementation is that the randaminerr and( 1) has to be generated on-the-fly
for n times. These random numbers have to be compared againsbe goacision humbeg for n times, and to
be multiplied by the number of pixels of the image. Thus, therall cost is not trivial.

RemarkIn practice, the liné (j ) =1 can be replaced by the actual denoising stegsA = A + W(j ) *x(])/xi
andB = B + w(j)/xi, to improve efficiency.



B. Fast Implementation

Our proposed implementation is to replace the on-the-flynBelli sampling by a pre-defined (fixed) sequence

of sampling indices. To this end, we define

k = round(xi *n);

idx = randi(n,k,1);
The command = round(xi *n) returns the average number of samples to be picked, and themaondi dx
= randi (n, k, 1) returns a list oft random indices drawn uniformly frofil, ..., n}. Different from the naive
implementation, the indicesdx arereusedfor denoising allm pixels. Therefore, the overall cost of the algorithm
is O(k) (for generating the random indices), as compared ithm) operations in the naive implementation.
The pseudo-code of the alternative implementation is shawkigorithm [2.

Algorithm 2 Uniform Sampling
Input: xi , n.
Determinek = round(xi *n).
Constructi dx = randi (n, k, 1) .
for i =1: mdo
for t =1: k do
Setj = idx(t).
Computew( j ) and perform other steps of NLM.
end for
end for

We emphasize that the alternative implementation is onlggroximationof the method described in the main
article, because the same sampling pattern is used faon gixels and hence introduces correlation. However, in
practice, we find that the impact of the correlation is smalthie denoising quality. One way to minimize the
correlation is to define multiple sampling patterns and ufferdnt patterns within certain spatial neighborhood.

I1l. | MPLEMENTATION OF SPATIALLY APPROXIMATED SAMPLING PATTERNS (FOR INTERNAL DENOISING)

In this section we discuss the implementation of the spatgdproximated sampling patterns presented in Section
IV.B.1 of the main article. To begin with, we recall that theasially approximated sampling pattern is derived

from the spatial weight
bs = e~ 44/ (2h7) (4)

whered, ; is the Euclidean distance between the spatial locationd@f-th and j-th pixels. Sinced, ; is the
distance, without loss of generality we can set 0.

Sinceb? ~ 0 whend; ; > 3hs, we set a cutoffp = 3k, so that any pixelj located at a position farther than
p from thei-th pixel will be discarded. (See Section 1.B.1 for the ddiom of p.) We let the number of nonzero
elements of{b;} be ns.

A. Pre-Defined Sampling Indices

The goal of the fast implementation is to generate a sequeinsampling indices, ..., ji by exploiting{bj}.
To this end, we first compute the parametenising the bisection method:

tau = bisection_nethod(bs, xi, n_s);
where the limitn, is the number of non—zer@bj}. The computed parameter determines the sampling pattern

{p;}:
Py = {b‘;—T, b; > 1/,
1, b; <1/t
The sampling pattern thus returns a sequence of indicesefoising:

for j=1:n_s



if (rand(1)<p(j))
(i) =1
end
end

Similar to the uniform sampling case, the random indicesegaied by the above procedure are reused.

B. Comparisons

The performance of the spatially approximated samplingepais useful for smalk,. In Figure[1 and Figurgl 2,
we show two denoising examples of using the oracle samplatteqm, the uniform sampling pattern, and the
spatially approximated sampling pattern. The algorithnmriplemented on MATLAB/C++ (nex), and supports
multi-core processing. The run time shown in the figures aoended based on a 4-CPU 3.5GHz PC.

(a) Oracle sampling (b) Uniform sampling (c) Spatially apprsampling
1.07 sec, 31.78 dB 0.37 sec, 28.58 dB 0.40 sec, 31.47 dB

Fig. 1: House(256 x 256). Noise level isc = 20/255. Search radius= 21 x 21. Parameters arg, = 20/255,
hs =10/3, p = 10. Patch size= 5 x 5. Sampling Ratict = 0.1.

(a) Oracle sampling (b) Uniform sampling (c) Spatially apprsampling
3.58 sec, 29.14 dB 2.02 sec, 27.68 dB 2.53 sec, 29.10 dB

Fig. 2: Man (512 x 512). Noise level isc = 20/255. Search radius= 21 x 21. Parameters aré, = 20/255,
hs =10/3, p = 10. Patch size= 5 x 5. Sampling Ratict = 0.1.

V. IMPLEMENTATION OF INTENSITY APPROXIMATED SAMPLING PATTERNS (FOR EXTERNAL DENOISING)

The problem of the spatially approximated sampling patisrthat it is not applicable to external denoising,
because patches in external databases do not necessatflyshatial correlations. In this case, the intensity



approximated sampling pattern described in Section V&2 be used.
The idea of intensity approximated sampling is to realiz# th

(T e a T o\2
wj < e~ @7 s7Y"e) =0,

wheres = A1/(v/2h,|[1]|s). (See Section IV.B.2 for details.) The quantitie$s and y”'s can be effectively
computed by projecting:; (andy) onto the one-dimensional space spannedsbif {x;} are patches collected
from an image, them:fs can be computed through convolution [1].

An implementation concern about the projection is that eitiee number ofw; (i.e., n) is large for external
denoising, it will be inefficient to compute projectiomgs andy”s forall j = 1,...,n. In this section, we present
a fast method that implements the intensity approximateapting pattern without computing all projections.

A. Overview

The overall idea of the method is to use a two-stage impoetagamnpling procedure [[2]. The motivation is
that if sampling a probability distributiop; (which is b7 in our problem) is difficult, we can first sample an
easy-to-compute distributior; such that

pj <1y, %)

and re-sample the already picked samples according to tteabpility 2. It can be justified by seeing that for a
Bernoulli random variabld;, the probability of getting/; =1 is ’

D
pi=Ti (6)

Clearly, the critical point is that; must be an upper bound pf for all j. Therefore, in the following we discuss
a procedure to find a valid and efficient upper bound

B. Quantization of{z;}
For notational simplicity we define
T = a:]Ts, and y=vy"s

as the projected signals. Then, we quantize the seql{@ﬁs?:l into ag-bin histogram with bind3i, ..., B,. Each
bin B, (t =1,...,q) contains a lower boundary and an upper boundargnd«,, respectively. In other words,

BE{j |l <T; < w}, @)

fort =1,...,q. Toillustrate this idea pictorially, in Figufé 3 we show atsd sequencéz;}. The dotted horizontal
lines are the bin boundaries. In this plot, there @re 16 bins.

Note that the quantization is independent of the denoisioggss. Therefore, it can be executed off-line when
preparing the dataset.

C. Quantization of{v}
Our next step is to determine an upper boun@f p; using{5,;}7_,. First, We determine the bif;, that covers
the pointy:
ltg é y S Uty
by sweeping throughy = 1,...,q. The motivation is that we war;, to contain indices that are potentially the

closest toy.
Then, for allj € {1,...,n}, we define the upper bound

6_@_“f)27 t e {1, oo, to — 1}, andj € By,
ri =41, J € By, (8)
e~ @=1)* te{to+1,...,q}, andj € B;.

It follows that
b <7y, 9)



Fig. 3: lllustration of the quantization process. The detasused in this example contains= 1.26 x 10¢ samples.
The blue line is the sequende;}7_, (sorted). The black dotted lines are the quantization barties. The red
solid line is7.

as illustrated in Figurgl4.
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Fig. 4: lllustration of the quantization df;. The blue solid line is{b’}7_,. The red solid line is the upper bound
r; defined by [(8).

D. Drawing Samples

Oncer; is defined, the two-stage sampling procedure can be dedathfollows. We compute for the sequence
{r;} to determine a probability distribution
T =T1;T. (20)

Becauser; is piecewise constant,; is also piecewise constant. Therefore, drawing samplesrdiog to7; is
equivalent to drawinguniformly random samples at a probability. Thus, the fast implementation presented in
Section 11.B above can be used.

Since7; is an upper bound of’;, the number of samples collected at the Stage-1 samplingasagteed to be
more thann&. However, an excessively large number of samples is uraldsias it requires more computation for
Stage-2. In order to control the number of samples, we cansghan appropriate number of quantization levels
In our experiment, we find that = 8 to ¢ = 64 is sufficient for most cases.



In the Stage-2 sampling, we compute the weight
by = e mTI", (11)
for all j's that are picked in Stage-1. Then we define the probability
pj = biT’, (12)
by computing an appropriate. Finally, we pick the weights at a probability

vt

- j
p;/T; = —1—.
7=

V. ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional numerical results $&ction V of the main article. The 10 testing images
are shown in Figurgl5.

Fig. 5: Ten “standard” testing images for experiments.

Tabled1 and]l are the extended version of the table in theradicle. Tabléll shows the results when the window
size is21 x 21 and the patch size 5 x 5, whereag ]l shows the results when the window siz&bis 35 and the
patch size i9 x 9. In the extended tables, we show the PSNR values of usingthethiniform sampling pattern and
the spatially approximated sampling pattern. It is evidbat the spatially approximated sampling pattern produces
significantly higher PSNR than the uniform sampling patterg, 32.14dB (approx.) versus 30.47dB (uniform) for
Barbaraat ¢ = 0.05 (Table[]). It is also indicative to see that when the spat&drsh window increasege., hs
increases, the spatially approximated sampling pattesnahamall advantage over the uniform sampling pattern.
For example, the gain ddarbaraat ¢ = 0.05 for the case oB5 x 35 search window is 0.36dB, whereas the gain
is 1.67dB for the case dfl x 21 search window.

In Figurel6, we show a visual comparison between MCNLM, NLY (8KD [4] and AM [5]. In this experiment,
we considered the imagdan (512 x 512) corrupted with noise of standard deviatien= 30/255. To denoise the
image, we set search window size Hsx 21, and patch size as x 5. The sampling pattern used is the spatially
approximated sampling pattern.
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TABLE I: Single image denoising by MCNLM, using the spatadipproximated sampling pattern. The case when
¢ = 1 is equivalent to the standard NLMI[3]. GKD refers to [4]. AMfees to [5]. The figures are PSNR values

(dB). Window size is21 x 21. Patch size i$ x 5.

13 0.05 0.1 0.2 0.5 1 GKD AM|| 0.05 0.1 0.2 0.5 1 GKD AM

o | Sampling Baboon512 x 512 Barbara512 x 512

10 | approx. | 30.74 31.14 3157 31.63 31.63 31.17 28/9132.14 32.65 33.04 33.20 33.20 32.72 3048
uniform | 29.51 29.95 3045 31.12 30.47 31.26 3210 32.87

20 | approx. | 26.73 27.08 27.22 27.29 27.29 26.67 25[{&8.19 28.66 29.06 29.22 29.23 2840 26,88
uniform | 25.03 26.27 26.95 27.29 26.01 27.27 2832 29.11

30 | approx. | 24.43 24.77 2497 25.08 25.08 2458 242725.84 26.38 26.68 26.85 26.85 2591 24092
uniform | 22.40 23.85 24.89 25.08 23.06 24.95 2598 26.70

40 | approx. | 23.24 2356 23.80 23.92 2393 2328 23384.13 24.71 25.06 2523 2524 2429 23[/5
uniform | 21.09 22.61 23.44 23.92 21.94 23.24 2445 2511

50 | approx. | 22.05 22.63 2299 23.12 23.12 2224 22/6&22.77 23.49 2391 2407 24.07 23.08 220995
uniform | 19.42 2143 2244 22091 20.38 22.06 23.18 23.88

o | Sampling Boat512 x 512 Bridge 512 x 512

10 | approx. | 32.20 32.62 32.85 3293 3293 3254 30/929.52 29.27 29.05 29.08 29.08 29.64 28(49
uniform | 30.47 31.42 3224 32.70 II 29.05 29.29 29.63 29.51

20 | approx. | 28,56 29.26 29.57 29.70 29.70 28.69 27/9®5.46 2536 2536 2541 2541 25.72 2540
uniform | 26.16 27.67 28.74 29.40 2459 2533 25.73 25.65

30 | approx. | 26.38 27.15 27.49 27.67 27.66 26.47 26[1123.64 23.74 23.86 2392 2392 23.85 2374
uniform | 23.66 25.53 26.60 27.38 22.13 23.41 2393 23.95

40 | approx. | 24.88 25.69 26.02 26.21 26.21 2490 2483228 22.66 22.83 2292 2292 2267 22[65
uniform | 21.84 23.73 25.03 25.97 E 20.78 21.88 22.62 22.93

50 | approx. | 23.46 24.33 24.85 2505 25.05 23.66 23/8621.21 21.67 21.90 22.00 22.01 21.73 2182
uniform | 20.28 2250 23.76 24.74 19.57 20.75 21.70 21.94

o | Sampling Couple512 x 512 Hill 256 x 256

10 | approx. | 31.98 324 32.62 32.72 32.72 3240 30.8430.54 30.51 30.44 30.49 30.49 30.89 30{12
uniform | 30.32 31.35 31.93 3243 29.82 30.40 30.73 30.75

20 | approx. | 28.21 2855 28.78 28.88 28.88 28.19 27/%726.95 27.14 27.17 27.26 27.26 27.14 26[95
uniform | 26.31 27.35 28.41 28.83 25.68 26.59 27.18 27.36

30 | approx. | 25.80 26.42 26.69 26.81 26.81 25.97 25[/&5.13 2546 25.64 2575 2575 2528 2534
uniform | 23.61 25.00 26.14 26.69 23.28 2459 2539 2577

40 | approx. | 24.21 25.03 25.38 2554 2554 2452 24[5623.76 24.38 24.66 24.81 2482 24.14 24337
uniform | 21.58 23.54 24.62 25.35 21.85 23.15 24.10 24.57

50 | approx. | 23.14 23.93 24.42 2459 2459 2339 23[[22.83 23.46 2387 24.02 24.02 2310 2357
uniform | 20.37 22.12 23.47 24.33 20.41 21.97 23.11 23.75

o | Sampling House256 x 256 Lena512 x 512

10 | approx. | 34.07 34.76 3536 3550 3550 34.51 33/0734.69 3548 36.02 36.15 36.15 34.90 3404
uniform | 31.65 32.89 33.90 34.95 32.07 33.21 34.71 35.72

20 | approx. | 30.52 3145 32.33 3253 3254 3041 29/6230.82 31.88 3244 32.64 32.65 30.91 3047
uniform | 26.98 28.67 30.42 31.87 27.70 29.44 30.97 32.20

30 | approx. | 27.89 29.06 29.81 30.04 30.04 27.81 27[2728.49 29.64 30.23 30.50 3050 28.52 2844
uniform | 23.91 25.82 27.96 29.51 24.63 26.96 28.71 29.96

40 | approx. | 26.12 27.21 27.92 2820 28.20 26.04 25[/®6.53 27.73 28.47 28.76 28.76 26.72 26[97
uniform | 21.57 24.20 26.23 27.67 22.80 24.89 26.78 28.19

50 | approx. | 24.70 25.86 26.66 26.98 26.99 24.76 24[[®5.16 26.29 27.03 27.34 27.35 2529 2581
uniform | 20.87 22.89 2492 26.37 21.29 23.39 25.33 26.75

o | Sampling Man 512 x 512 Pepper512 x 512

10 | approx. | 32.32 3258 32.72 3279 3279 3256 31490B2.78 3349 3385 3394 3395 3335 3163
uniform | 30.85 31.57 32.39 32.71 30.76 31.73 3252 33.53

20 | approx. | 28,56 29.13 29.37 29.49 29.49 28.78 28/8728.99 29.87 30.32 30.46 30.46 29.38 2843
uniform | 26.60 27.61 28.74 29.37 25.75 27.55 28.72 30.11

30 | approx. | 26.68 27.26 27.69 27.85 27.85 26.74 26/626.48 27.33 27.82 2798 2798 26.81 2588
uniform | 23.89 2558 26.95 27.67 23.32 25.18 26.76 27.68

40 | approx. | 25.12 25.94 26.45 26.65 26.66 25.27 25324.68 25.61 26.09 26.29 26.29 25.01 2425
uniform | 21.87 23.89 25.38 26.37 21.58 23.56 2494 25.95

50 | approx. | 23.91 24.92 2548 2571 25.72 24.13 24[%523.24 2391 2441 2461 2461 23.49 2300
uniform | 20.75 22.66 24.24 25.36 19.99 22.04 23.42 24.29




TABLE II: Single image denoising by MCNLM, using the spalyahpproximated sampling pattern. The case when
¢ = 1 is equivalent to the standard NLMI[3]. GKD refers to [4]. AMfees to [5]. The figures are PSNR values

(dB). Window size is35 x 35. Patch size i9 x 9.

13 0.05 0.1 0.2 0.5 1 GKD AM|| 0.05 0.1 0.2 0.5 1 GKD AM

o | Sampling Baboon512 x 512 Barbara512 x 512

10 | approx. | 30.02 30.45 30.90 30.91 30.91 30.79 27,8630.38 30.32 30.30 30.34 30.35 32.67 2941
uniform | 29.11 29.55 29.93 30.44 30.02 30.30 30.45 30.49

20 | approx. | 26.51 26.8 27.01 27.03 27.03 26.23 24.9127.01 27.23 27.29 27.33 27.33 28.06 26,04
uniform | 24.72 25.72 26.43 26.75 26.01 26.55 27.15 27.26

30 | approx. | 2452 24.68 2468 2473 24.73 2390 2342555 2586 2594 2599 2599 2560 2413
uniform | 22.88 24.04 24.64 24.79 2413 25.02 25.59 25.94

40 | approx. | 23.40 23.41 23.46 2351 2352 2257 22662453 24.75 2494 2499 2500 24.02 23/03
uniform | 22.07 23.02 23.47 23.47 2294 24.01 2464 24.89

50 | approx. | 22.39 22.66 22.69 2274 2274 21.71 22{14355 23.85 24.01 2408 24.08 2286 2228
uniform | 21.33 22.30 22.63 22.69 22.01 23.09 23.65 24.00

o | Sampling Boat512 x 512 Bridge 512 x 512

10 | approx. | 31.69 3214 3241 3243 3243 3216 29/5129.16 29.11 28.98 28.98 28.98 29.44 2738
uniform | 30.37 31.08 31.42 32.00 28.69 29.01 29.10 29.21

20 | approx. | 28,57 29.16 29.47 29.52 29.52 28.21 26/885.30 25.23 25.27 2529 2529 2513 2443
uniform | 26.38 27.64 28.43 29.17 24.16 24.84 25.14 25.30

30 | approx. | 26.89 27.30 27.54 2759 2759 25.83 25/0%23.64 23.71 23.75 23.77 23.77 23.26 2269
uniform | 24.70 25.82 26.84 27.34 22.44 2324 23.64 23.73

40 | approx. | 25,55 25.98 26.13 26.21 26.21 24.26 239®@2.45 2258 22.64 2267 22.68 2197 21/65
uniform | 23.30 24.77 25.46 26.12 21.48 22.17 2250 22.69

50 | approx. | 24.32 24.75 2492 2501 25.01 2311 23/081.68 21.77 2186 2190 2190 21.16 2097
uniform | 22.16 23.64 24.54 2493 20.64 21.39 21.79 21.82

o | Sampling Couple512 x 512 Hill 256 x 256

10 | approx. | 31.72 3222 3251 3254 3254 3217 294530.08 30.15 30.08 30.10 30.10 30.59 2907
uniform | 30.30 30.90 31.57 32.19 29.41 2991 30.16 30.26

20 | approx. | 28.41 28.80 29.08 29.12 29.12 27.70 264426.88 27.06 27.03 27.05 27.05 26.51 2590
uniform | 26.20 27.30 28.19 28.90 25.26 26.14 26.79 27.12

30 | approx. | 26.39 26.69 26.87 26.92 26.92 25.34 24[[2534 2550 2559 25.62 25.62 24.72 2445
uniform | 24.26 25.38 26.36 26.90 23.79 2482 25.33 25.66

40 | approx. | 24.95 25.31 2545 2551 2551 23.88 236%4.26 2444 2458 2462 24.62 2348 2352
uniform | 23.31 24.40 25.08 25.44 H 22.74 23.68 24.26 24.55

50 | approx. | 23.82 24.17 2434 2441 2441 2288 22/983.20 2351 23.62 23.68 23.68 2258 2288
uniform | 22.20 23.32 24.03 24.37 21.81 22.85 2335 23.67

o | Sampling House256 x 256 Lena512 x 512

10 | approx. | 33.57 34.30 34.69 34.75 3475 34.27 31453470 3554 3592 3597 3597 3457 3286
uniform | 32.07 32.79 3351 34.22 32.48 33.37 34.34 35.32

20 | approx. | 30.66 31.80 32.59 32.69 32.69 30.10 28[198B1.73 3241 3285 3294 3294 30.46 2940
uniform | 27.90 29.16 30.28 31.87 28.81 30.19 31.52 3255

30 | approx. | 28.88 30.04 30.66 30.79 30.79 27.32 26/0129.65 30.22 30.59 30.70 30.70 28.07 2743
uniform | 25.26 27.26 28.75 30.11 26.71 28.53 29.62 30.42

40 | approx. | 27.28 28.19 28.63 28.74 28.74 2549 24%27.70 2834 28.70 2881 2882 26.41 26(13
uniform | 23.92 25.80 27.30 28.41 25.16 26.84 27.90 28.58

50 | approx. | 26.08 26.80 27.16 27.32 27.33 24.22 23[{26.31 26.89 27.21 27.34 27.34 2517 2525
uniform | 23.06 25.03 26.14 27.05 23.84 25.43 26.49 27.08

o | Sampling Man 512 x 512 Pepper512 x 512

10 | approx. | 31.73 32.04 3232 32.34 3234 3214 302532.11 32.80 33.28 33.30 33.30 3299 29/66
uniform | 30.30 30.92 31.42 32.08 30.27 30.69 3159 32.60

20 | approx. | 28,50 28.89 29.17 29.21 29.21 28.16 27[238.78 29.64 30.16 30.21 30.21 28.70 26(79
uniform | 26.63 27.67 28.38 29.04 25.84 27.03 28.12 29.44

30 | approx. | 26.85 27.36 27.51 2756 27.56 26.06 25%26.84 2752 27.88 27.94 2794 2599 2429
uniform | 24.71 26.09 26.89 27.45 23.80 25.21 26.51 27.52

40 | approx. | 25.81 26.07 26.30 26.37 26.37 2466 2443526 2581 26.15 26.21 26.21 2435 2274
uniform | 23.67 24.97 25.78 26.26 2256 23.95 25.18 25.95

50 | approx. | 24.74 25.12 2537 2545 25.45 2359 23[{R3.97 24.43 2459 2465 24.66 2293 2156
uniform | 22.69 23.98 24.89 25.27 21.36 23.03 23.85 24.50
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(a) noisy, 18.75dB (b) £ = 0.05, 26.68dB (c) £ =0.1, 27.69dB

(d) € =1, NLM [B], 27.85dB (e) GKD [4], 26.74dB (f) AM [5], 26.62dB

Fig. 6: MCNLM on Man (512 x 512). Noise level isoc = 30/255. The search window has a finite size21f x 21.
Patch size i$ x 5. Sampling pattern: spatially approximated sampling paite
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