
ar
X

iv
:1

31
2.

73
66

v1
 [

cs
.C

V
]

27
 D

ec
 2

01
3

1

Monte Carlo Non-Local Means: Random
Sampling for Large-Scale Image Filtering

Stanley H. Chan,Member, IEEE,Todd Zickler,Member, IEEE,
and Yue M. Lu,Senior Member, IEEE

Abstract—We propose a randomized version of the non-local
means (NLM) algorithm for large-scale image filtering. The
new algorithm, called Monte Carlo non-local means (MCNLM),
speeds up the classical NLM by computing a small subset of
image patch distances, which are randomly selected according
to a designed sampling pattern. We make two contributions.
First, we analyze the performance of the MCNLM algorithm and
show that, for large images or large external image databases,
the random outcomes of MCNLM are tightly concentrated
around the deterministic full NLM result. In particular, ou r
error probability bounds show that, at any given sampling
ratio, the probability for MCNLM to have a large deviation
from the original NLM solution decays exponentially as the
size of the image or database grows. Second, we derive explicit
formulas for optimal sampling patterns that minimize the error
probability bound by exploiting partial knowledge of the pairwise
similarity weights. Numerical experiments show that MCNLM is
competitive with other state-of-the-art fast NLM algorith ms for
single-image denoising. When applied to denoising images using
an external database containing ten billion patches, MCNLM
returns a randomized solution that is within 0.2 dB of the full
NLM solution while reducing the runtime by three orders of
magnitude.

Index Terms—Non-local means, Monte Carlo, patch-based
filtering, sampling, external denoising, large deviationsanalysis

I. I NTRODUCTION

A. Background and Motivation

In recent years, the image processing community has wit-
nessed a wave of research aimed at developing new image
denoising algorithms that exploit similarities between non-
local patches in natural images. Most of these can be traced
back to the non-local means (NLM) denoising algorithm of
Buadeset al. [1], [2] proposed in 2005. To date, NLM remains
one of the most influential algorithms in the current denoising
literature.

Given a noisy image, the NLM algorithm uses two sets of
image patches for denoising. The first is a set of noisy patches
Y = {y1, . . . ,ym}, whereyi ∈ R

d is a d-dimensional (i.e.,
d-pixel) patch centered at theith pixel of the noisy image.

The authors are with the School of Engineering and Applied Sci-
ences, Harvard University, Cambridge, MA 02138, USA. E-mails:
{schan,zickler,yuelu}@seas.harvard.edu.

This work was supported in part by the Croucher Foundation Post-doctoral
Research Fellowship (2012-2013), and in part by the U.S. National Science
Foundation under Grant CCF-1319140. Preliminary materialin this paper was
presented at the 38th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Vancouver, May 2013.

This paper follows the concept of reproducible research. All the results and
examples presented in the paper are reproducible using the code and images
available online at http://scholar.harvard.edu/stanleychan.

The second set,X = {x1, . . . ,xn}, contains patches that
are obtained from some reference images. Conceptually, NLM
simply replaces eachith noisy pixel with a weighted average
of pixels in the reference set. Specifically, the filtered value at
the ith pixel (for 1 ≤ i ≤ m) is given by

z =

∑n
j=1 wi,jxj∑n
j=1 wi,j

, (1)

where xj denotes the value of the center pixel of thejth
reference patchxj ∈ X , and the weights{wi,j} measure the
similarities between the patchesyi andxj . A standard choice
for the weights is

wi,j = e−‖yi−xj‖2

Λ
/(2h2

r), (2)

wherehr is a scalar parameter determined by the noise level,
and ‖·‖Λ is the weightedℓ2-norm with a diagonal weight

matrix Λ, i.e., ‖yi − xj‖2Λ
def
= (yi − xj)

T
Λ(yi − xj).

In most implementations of NLM (see,e.g., [3]–[9]), the
denoising process is based on a single image: the reference
patchesX are the same as the noisy patchesY. We refer to
this setting, whenX = Y, as internal denoising. This is in
contrast to the setting in which the set of reference patches
X come from external image databases [10]–[12], which we
refer to asexternal denoising. For example,15, 000 images
(corresponding to a reference set ofn ≈ 1010 patches) were
used in [11], [12]. One theoretical argument for using large-
scale external denoising was provided in [11]: It is shown
that, in the limit of large reference sets (i.e., whenn → ∞),
external NLM converges to the minimum mean squared error
estimator of the underlying clean images.

Despite its strong performance, NLM has a limitation of
high computational complexity. It is easy to see that computing
all the weights{wi,j} requiresO(mnd) arithmetic operations,
wherem,n, d are, respectively, the number of pixels in the
noisy image, the number of reference patches used, and the
patch dimension. Additionally, aboutO(mn) operations are
needed to carry out the summations and multiplications in (1)
for all pixels in the image. In the case of internal denoising,
these numbers are nontrivial since current digital photographs
can easily contain tens of millions of pixels (i.e., m = n ∼ 107

or greater). For external denoising with large reference sets
(e.g., n ∼ 1010), the complexity is even more of an issue,
making it very challenging to fully utilize the vast number of
images that are readily available online and potentially useful
as external databases.

http://arxiv.org/abs/1312.7366v1
http://scholar.harvard.edu/stanleychan

2

B. Related Work

The high complexity of NLM is a well-known challenge.
Previous methods to speed up NLM can be roughly classified
in the following categories:

1. Reducing the reference setX . If searching through a large
setX is computationally intensive, one natural solution is to
pre-select a subset ofX and perform computation only on this
subset [13]–[15]. For example, for internal denoising, a spatial
weightws

i,j is often included so that

wi,j = ws
i,j · e−‖yi−xj‖2

Λ
/(2h2

r)︸ ︷︷ ︸
wr

i,j

. (3)

A common choice of the spatial weight is

ws
i,j = exp{−d2i,j/(2h

2
s)} · I{d′i,j ≤ ρ}, (4)

wheredi,j and d′i,j are, respectively, the Euclidean distance
and theℓ∞ distance between the spatial locations of theith
andjth pixels;I is the indicator function; andρ is the width of
the spatial search window. By tuninghs andρ, one can adjust
the size ofX according to the heuristic that nearby patches
are more likely to be similar.

2. Reducing dimensiond. The patch dimensiond can be
reduced by several methods. First, SVD projection [8], [16]–
[18] can be used to project thed-dimensional patches onto a
lower dimensional space spanned by the principal components
computed fromX . Second, the integral image method [19]–
[21] can be used to further speed up the computation of‖yi−
xj‖2Λ. Third, by assuming a Gaussian model on the patch
data, a probabilistic early termination scheme [22] can be used
to stop computing the squared patch difference before going
through all the pixels in the patches.

3. Optimizing data structures.The third class of methods
embed the patches inX andY in some form of optimized data
structures. Some examples include the fast bilateral grid [23],
the fast Gaussian transform [24], the Gaussian KD tree [25],
[26], the adaptive manifold method [27], and the edge patch
dictionary [28]. The data structures used in these algorithms
can significantly reduce the computational complexity of the
NLM algorithm. However, building these data structures often
requires a lengthy pre-processing stage, or require a large
amount of memory, thereby placing limits on one’s ability
to use large reference patch setsX . For example, building
a Gaussian KD tree requires the storage ofO(nd) double
precision numbers (see,e.g., [26], [29].)

4. Exploiting low-rank structures.Several recent ap-
proaches,e.g., [30], [31], explore low-rank structures of the
weight matrix W = [wi,j]. In [31], Talebi and Milanfar
apply the Nyström approximation [32] to estimate all pairwise
similarity weights {wi,j} from a subset of samples. This
approach requires storing and computing the SVD of a matrix
of sizeξn× ξn, whereξ is the sampling ratio. In contrast, the
algorithm presented here requires no additional storage beyond
the input image (and the database for the external case.)

C. Contributions

In this paper, we propose a randomized algorithm to reduce
the computational complexity of NLM for both internal and

bc

bc
bc

bc

bcbc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc bc

bcbc

bc

bcbc bc

bc

bc

bc

bc
bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bcbc

bc

bc bc

bc
bc

bc

bc

bc

bc

bc bc

bc

bc

bc bc

bc
bc

bc
bc bc

bc

bc

bc
bc

bc

bc

bc
bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc
bc

bcbc bc

bc
bc
bcbcbc

bcbc
bc

bc

bc

bc
bc bc

bc

bc bc
bc

bc bc
bc bc

bc bcbc bc

bc
bc bc

bc
bc

bc
bcbc bc bc

bc bcbc

bc b

random samples
{wi,j1 , . . . , wi,jk}

Fig. 1: Illustration of the proposed MCNLM algorithm for
internal denoising: We randomly select, according to a given
sampling pattern, a set ofk weights{wi,j1 , . . . , wi,jk}, and use
these to compute an approximation of the full NLM result in
(1). The output of MCNLM is random. However, as the size
of the problem (i.e., n) gets larger, these random estimates
become tightly concentrated around the true result.

external denoising. We call the methodMonte Carlo Non-
Local Means(MCNLM), and the basic idea is illustrated in
Figure 1, for the case of internal denoising. For each pixeli
in the noisy image, we randomly select a set ofk reference
pixels according to some sampling pattern and compute a
k-subset of the weights{wi,j}nj=1 to form an approximated
solution to (1). The computational complexity of MCNLM is
O(mkd), which can be significantly lower than the original
complexityO(mnd) when onlyk ≪ n weights are computed.
Furthermore, since there is no need to re-organize the data,the
memory requirement of MCNLM isO(m + n). Therefore,
MCNLM is scalable to large reference patch setsX like
those used for external denoising, as we will demonstrate in
Section V.

The two main contributions of this paper are as follows.
1. Performance guarantee. MCNLM is a randomized algo-

rithm. It would not be a useful one if its random outcomes
fluctuated widely in different executions on the same input
data. In Section III, we address this concern by showing that,
as the size of the reference setX increases, the randomized
MCNLM solutions become tightly concentrated around the
original NLM solution. In particular, we show in Theorem 1
(and Proposition 1) that, forany given sampling pattern, the
probability of having a large deviation from the original NLM
solution drops exponentially as the size ofX grows.

2. Optimal sampling patterns. We derive optimal sampling
patterns to minimize the approximation error probabilities
established in our performance analysis. We show that seeking
the optimal sampling pattern is equivalent to solving a variant
of the classical water-filling problem, for which a closed-form
expression can be found (see Theorem 2). We also present
two practical sampling pattern designs that exploit partial
knowledge of the pairwise similarity weights.

The rest of the paper is organized as follows. We present
the MCNLM algorithm and discuss its basic properties in
Section II. The performance of the algorithm is analyzed in
Section III, and optimal sampling patterns are presented in
Section IV. We demonstrate in Section V the effectiveness
of the proposed algorithm by showing simulation results for
both internal and external denoising. Section VI concludesthe
paper.

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 3

II. M ONTE CARLO NON-LOCAL MEANS

Notation: Throughout the paper, we usem to denote the
number of pixels in the noisy image, andn the number patches
in the reference setX . We use upper-case letters, such as
X,Y, Z, to represent random variables, and lower-case letters,
such asx, y, z, to represent deterministic variables. Vectors are
represented by bold letters, and1 denotes a constant vector
of which all entries are one. Finally, for notational simplicity
in presenting our theoretical analysis, we assume that all pixel
intensity values have been normalized to the range[0, 1].

A. The Sampling Process

As discussed in Section I, computing all the weights
{wi,j}1≤i≤m,1≤j≤n is computationally prohibitive whenm
andn are large. To reduce the complexity, the basic idea of
MCNLM is to randomly select a subset ofk representatives
of {wi,j} (referred to as samples) to approximate the sums in
the numerator and denominator in (1). The sampling process
in the proposed algorithm is applied to each of them pixels
in the noisy imageindependently. Since the sampling step and
subsequent computations have the same form for each pixel,
we shall drop the pixel indexi in {wi,j}, writing the weights
as{wj}1≤j≤n for notational simplicity.

The sampling process of MCNLM is determined by a
sequence ofindependentrandom variables{Ij}nj=1 that take
the value0 or 1 with the following probabilities

Pr[Ij = 1] = pj and Pr[Ij = 0] = 1− pj . (5)

The jth weightwj is sampled if and only ifIj = 1. In what
follows, we assume that0 < pj ≤ 1, and refer to the vector
of all these probabilitiesp

def
=[p1, . . . , pn]

T as thesampling
patternof the algorithm.

The ratio between the number of samples taken and the
number of reference patches inX is a random variable

Sn =
1

n

n∑

j=1

Ij , (6)

of which the expected value is

E[Sn] =
1

n

n∑

j=1

E[Ij] =
1

n

n∑

j=1

pj
def
= ξ. (7)

We refer toSn and ξ as theempirical sampling ratioand
the average sampling ratio, respectively.ξ is an important
parameter of the MCNLM algorithm. The original (or “full”)
NLM corresponds to the setting whenξ = 1: In this case,
p = 1

def
= [1, . . . , 1]T , so that all the samples are selected with

probability one.

B. The MCNLM Algorithm

Given a set of random samples fromX , we approximate the
numerator and denominator in (1) by two random variables

A(p)
def
=

1

n

n∑

j=1

xjwj

pj
Ij and B(p)

def
=

1

n

n∑

j=1

wj

pj
Ij , (8)

Algorithm 1 Monte Carlo Non-local Means (MCNLM)

1: For each noisy pixeli = 1, . . . ,m, do the followings.
2: Input: Noisy patchyi ∈ Y, databaseX = {x1, . . . ,xn}

and sampling patternp = [p1, . . . , pn]
T such that0 <

pj ≤ 1, and
∑n

j=1 pj = nξ.
3: Output: A randomized estimateZ(p).
4: for j = 1, . . . , n do
5: Generate a random variableIj ∼ Bernoulli(pj).
6: If Ij = 1, then compute the weightwj .
7: end for
8: ComputeA(p) = 1

n

∑n
j=1

wjxj

pj
Ij .

9: ComputeB(p) = 1
n

∑n
j=1

wj

pj
Ij .

10: OutputZ(p) = A(p)/B(p).

where the argumentp emphasizes the fact that the distributions
of A andB are determined by the sampling patternp.

It is easy to compute the expected values ofA(p) andB(p)
as

µA
def
=E[A(p)] =

1

n

n∑

j=1

xjwj , (9)

µB
def
=E[B(p)] =

1

n

n∑

j=1

wj . (10)

Thus, up to a common multiplicative constant1/n, the two
random variablesA(p) andB(p) are unbiasedestimates of
the true numerator and denominator, respectively.

The full NLM result z in (1) is then approximated by

Z(p)
def
=

A(p)

B(p)
=

∑n
j=1

xjwj

pj
Ij

∑n
j=1

wj

pj
Ij

. (11)

In general,E[Z(p)] = E

[
A(p)
B(p)

]
6= E[A(p)]

E[B(p)] = z, and thus

Z(p) is a biased estimate ofz. However, we will show in
Section III that the probability of having a large deviationin
|Z(p) − z| drops exponentially asn → ∞. Thus, for a large
n, the MCNLM solution (11) can still form a very accurate
approximation of the original NLM solution (1).

Algorithm 1 shows the pseudo-code of MCNLM for internal
denoising. We note that, except for the Bernoulli sampling
process, all other steps are identical to the original NLM.
Therefore, MCNLM can be thought of as adding a comple-
mentary sampling process on top of the original NLM. The
marginal cost of implementation is thus minimal.

Example 1:To empirically demonstrate the usefulness of
the simple sampling mechanism of MCNLM, we apply the
algorithm to a1072× 712 image shown in Figure 2(a). Here,
we useX = Y, with m = n ≈ 7.6× 105. In this experiment,
we let the noise be i.i.d. Gaussian with zero mean and standard
deviationσ = 15/255. The patch size is5× 5. In computing
the similarity weights in (3) and (4), we set the parameters
as follows:hr = 15/255, hs = ∞, ρ = ∞ (i.e., no spatial
windowing) andΛ = 1

25I. We choose a uniform sampling
pattern, i.e., p = [ξ, . . . , ξ]T , for some sampling ratio0 <
ξ < 1.

The results of this experiment are shown in Figure 2 and

4

noisy (24.60 dB) ξ = 0.005 (27.58 dB) ξ = 0.1 (28.90 dB)

Fig. 2: Denoising an image of size1072× 712 by MCNLM with uniform sampling. (a) The original image is corrupted with
i.i.d. Gaussian noise withσ = 15/255. (b) and (c) Denoised images with sampling ratioξ = 0.005 andξ = 0.1, respectively.
Shown in parenthesis are the PSNR values (in dB) averaged over 100 trials.

Figure 3. The peak signal-to-noise ratio (PSNR) curve detailed
in Figure 3 shows that MCNLM converges to its limiting value
rapidly as the sampling ratioξ approaches 1. For example, at
ξ = 0.1 (i.e., a roughly ten-fold reduction in computational
complexity), MCNLM achieves a PSNR that is only0.2dB
away from the full NLM result. More numerical experiments
will be presented in Section V.

III. PERFORMANCEANALYSIS

One fundamental question about MCNLM is whether its
random estimateZ(p) as defined in (11) will be a good
approximation of the full NLM solutionz, especially when
the sampling ratioξ is small. In this section, we answer this
question by providing a rigorous analysis on the approximation
error |Z(p)− z|.

A. Large Deviations Bounds

The mathematical tool we use to analyze the proposed
MCNLM algorithm comes from the probabilisticlarge de-
viations theory [33]. This theory has been widely used
to quantify the following phenomenon: Asmooth function
f(X1, . . . , Xn) of a large number ofindependentrandom
variablesX1, . . . , Xn tends to concentrate very tightly around
its meanE[f(X1, . . . , Xn)]. Roughly speaking, this concen-
tration phenomenon happens because, whileX1, . . . , Xn are

10
−3

10
−2

10
−1

10
0

24

25

26

27

28

29

30

ξ

P
S
N

R
(d

B
)

Monte Carlo NLM
Classical NLM

Fig. 3: PSNR as a function of the average sampling ratioξ. The
horizontal line indicates the full NLM result (i.e., MCNLM at
ξ = 1), and the “circled” line indicates the result of MCNLM.
Note that atξ = 0.1, MCNLM achieves a PSNR that is only
0.2 dB below the full NLM result. Results shown are average
values over 100 independent trials.

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 5

0 0.02 0.04 0.06 0.08 0.1
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

ε

Pr[Sn − E[Sn] > ε]

True probabilities
Law of large numbers bounds
Large deviations bounds

Fig. 4: Comparing the large deviations bound (13), the LLN
bound (12), and the true error probabilityPr[Sn−E[Sn] > ε]
as estimated by Monte Carlo simulations. Fixingn = 106, we
plot the bounds and probabilities for different values ofε.

individually random in nature, it is unlikely for many of them
to work collaboratively to significantly alter the overall system.
Thus, for largen, the randomness of these variables tends to be
“canceled out” and the functionf(X1, . . . , Xn) stays roughly
constant.

To gain insights from a concrete example, we first apply the
large deviations theory to study the empirical sampling ratio
Sn as defined in (6). Here, the independent random variables
are the Bernoulli random variables{Ij}1≤j≤n introduced in
(5), and the smooth functionf(·) computes their average.

It is well known from the law of large numbers (LLN)
that the empirical meanSn of a large number of independent
random variables stays very close to the true mean, which is
equal to the average sampling ratioξ in our case. In particular,
by the standard Chebyshev inequality [34], we know that

Pr[Sn−E[Sn] > ε] ≤ Pr[|Sn−E[Sn]| > ε] <
Var[In]

nε2
, (12)

for every positiveε.
One drawback of the bound in (12) is that it is overly loose,

providing only a linear rate of decay for the error probabilities
as n → ∞. In contrast, the large deviations theory provides
many powerful probability inequalities which often lead to
much tighter bounds with exponential decays. In this work,
we will use one particular inequality, due to S. Bernstein [35]:

Lemma 1 (Bernstein Inequality [35]):Let X1, . . . , Xn be
a sequence of independent random variables. Suppose that
|Xj | ≤ M for all j, where M is a constant. LetSn =
1
n

∑n
j=1 Xj . Then for every positiveε,

Pr [Sn − E[Sn] > ε]

≤ exp




− nε2

2
(

1
n

∑n
j=1 Var[Xj] +Mε/3

)




. (13)

To see how Bernstein’s inequality can give us a better proba-
bility bound for the empirical sampling ratioSn, we note that

Xj = Ij in our case. Thus,M = 1 andE[Sn] = ξ. Moreover,
if the sampling pattern is uniform,i.e., p = [ξ, . . . , ξ]T , we
have 1

n

∑n
j=1 Var[Xj] =

1
n

∑n
j=1 pj(1−pj) = ξ(1− ξ). Sub-

stituting these numbers into (13) yields anexponentialupper
bound on the error probability, which is plotted and compared
in Figure 4 against the LLN bound in (12) and against the true
probabilities estimated by Monte Carlo simulations. It is clear
that the exponential bound provided by Bernstein’s inequality
is much tighter than that provided by LLN.

B. General Error Probability Bound for MCNLM

We now derive a general bound for the error probabilities of
MCNLM. Specifically, for anyε > 0 and any sampling pattern
p satisfying the conditions that0 < pj ≤ 1 and 1

n

∑n
j=1 pj =

ξ, we want to study

Pr [|Z(p)− z| > ε] , (14)

wherez is the full NLM result defined in (1) andZ(p) is the
MCNLM estimate defined in (11).

Theorem 1:Assume thatwj > 0 for all j. Then for every
positiveε,

Pr [|Z(p)− z| > ε] ≤ exp {−nξ}

+ exp





−n(µBε)

2

2
(

1
n

∑n
j=1 α

2
j

(
1−pj

pj

)
+ (µBε)Mα/3

)






+ exp





−n(µBε)
2

2
(

1
n

∑n
j=1 β

2
j

(
1−pj

pj

)
+ (µBε)Mβ/3

)



 ,

(15)

whereµB is the average similarity weights defined in (10),
αj = wj (xj − z − ε), βj = wj (xj − z + ε), and

Mα = max
1≤j≤n

(
|αj |max

{
1,

1− pj
pj

})
,

Mβ = max
1≤j≤n

(
|βj |max

{
1,

1− pj
pj

})
.

Proof: See Appendix A.
Remark 1: In a preliminary version of our work [36], we

presented, based on the idea of martingales [37], an error
probability bound for the special case when the sampling
pattern is uniform. The result of Theorem 1 is more general
and applies to any sampling patterns. We also note that the
bound in (15) quantifies the deviation of a ratioZ(p) =
A(p)/B(p), where the numerator and denominator are both
weighted sums of independent random variables. It is therefore
more general than the typical concentration bounds seen in the
literature (see,e.g., [38], [39]), where only a single weighted
sum of random variables (i.e., either the numerator or the
denominator) is considered.

Example 2:To illustrate the result of Theorem 1, we con-
sider a one-dimensional signal as shown in Figure 5(a). The
signal {xj}nj=1 is a piecewise continuous function corrupted
by i.i.d. Gaussian noise. The noise standard deviation isσ =
5/255 and the signal length isn = 104. We use MCNLM to
denoise the5001-th pixel, and the sampling pattern is uniform

6

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

j

x
j

signal {xj}
n
j=1

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

ε

P
r
[|
Z

(p
)
−

z
|
>

ε]

sampling probability pj = 0.05

Large deviations bounds
True probabilities

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

Zoom−in view

(a) Noisy signal{xj}nj=1 (b) ProbabilityPr[|Z(p)− z| > ε]

Fig. 5: Example to illustrate Theorem 1. (a) A one-dimensional signal with lengthn = 104, corrupted by i.i.d. Gaussian
noise withσ = 5/255. We use the MCNLM algorithm to denoise the signal. The patch size is d = 5 and the parameters
are hr = 15/255 andhs = ∞, respectively. (b) The error probability as a function ofε. In this plot, the “crosses” denote
the true probabilities as estimated by105 independent trials and the “circles” denote the analyticalupper bound predicted by
Theorem 1. For easy comparisons, we also provide a zoomed-inversion of the plot in the insert.

with pj = ξ = 0.05 for all j. For ε = 0.01, we can compute
that 1

n

∑n
j=1 α

2
j = 1.194×10−4, 1

n

∑n
j=1 β

2
j = 1.258×10−4,

µB = 0.282, Mα = 0.951, andMβ = 0.932. It then follows
from (15) that

Pr[|Z(p)− z| > 0.01] ≤ 8.856× 10−6.

This bound shows that the random MCNLM estimateZ(p),
obtained by taking only5% of the samples, stays within
one percent of the true NLM resultz with overwhelming
probability. A complete range of results for different values
of ε are shown in Figure 5(b), where we compare the true
error probability as estimated by Monte Carlo simulations with
the analytical upper bound predicted by Theorem 1. We see
from the “zoomed-in” portion of Figure 5(b) that the analytical
bound approaches the true probabilities forε ≥ 0.005 (i.e.,
0.5% deviation.)

C. Special Case: Uniform Sampling Patterns

The error probability bound in (15) holds for all sampling
patternsp. In Section IV, we will use this versatile bound
to design optimal nonuniform sampling patterns. In general,
choosingp to be uniform leads to suboptimal performance.
Nevertheless, it is still instructive to consider this case, since
it provides a convenient and easily interpretable bound on the
error probabilities.

Proposition 1 (Uniform Sampling):Assume that the sam-
pling pattern is uniform,i.e., p = ξ1. Then for everyε > 0
and every0 < ξ ≤ 0.5,

Pr [|Z(p)− z| > ε] ≤ exp {−nξ}
+ 2 exp {−nµBf(ε)ξ/(1− ξ)} , (16)

wheref(ε)
def
= ε2/

(
2(1 + ε)(1 + 4ε/3)

)
.

Proof: See Appendix B.

We note that, for largen, the first term on the right-hand
side of (16) is negligible. For example, whenn = 104 and
ξ = 0.01, we havee−nξ = 3.7 × 10−44. Thus, the error
probability bound is dominated by the second term, whose
negative exponent is determined by four factors:

1. The size of the reference setX . If all other parameters
are kept fixed or strictly bounded below by some positive
constants, the error probability goes to zero as an exponential
function ofn. This shows that the random estimates obtained
by MCNLM can be very accurate, when the size of the
image (for internal denoising) or the size of the dictionary
(for external denoising) is large.

2. Sampling ratioξ. To reduce the sampling ratioξ while
still keeping the error probability small, a largern, inversely
proportional toξ, is needed.

3. Precisionε. Note that the functionf(ε) in (16) is of
orderO(ε2) for small ε. Thus, with all other terms fixed, a
k-fold reduction inε requires ak2-fold increase inn or ξ.

4. Patch redundancyµB . Recall thatµB = 1
n

∑n
j=1 wj ,

with the weights{wj} measuring the similarities between a
noisy patchyi and all patches{xj}nj=1 in the reference set
X . Thus, µB serves as an indirect measure of the number
of patches inX that are similar toyi. If yi can find many
similar (redundant) patches inX , its correspondingµB will
be large and so a relatively smalln will be sufficient to make
the probability small; and vice versa.

Using the simplified expression in (16), we derive in Ap-
pendix C the following upper bound on the mean squared error
(MSE) of the MCNLM estimation:

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 7

Proposition 2 (MSE):Let the sampling pattern be uniform,
with p = ξ1. Then for any0 < ξ ≤ 0.5,

MSE
def
=E

[
(Z(p)− z)2

]
≤ e−nξ +

1

n

(
56

3µB

)(
1− ξ

ξ

)
.

(17)

Remark 2:The above result indicates that, with a fixed
average sampling ratioξ and if the patch redundancyµB is
bounded from below by a positive constant, then the MSE of
the MCNLM estimation converges to zero asn, the size of
the reference set, goes to infinity.

IV. OPTIMAL SAMPLING PATTERNS

While the uniform sampling scheme (i.e., p = ξ1) allows
for easy analysis and provides useful insights, the performance
of the proposed MCNLM algorithm can be significantly
improved by using properly chosen nonuniform sampling
patterns. We present the design of such patterns in this section.

A. Design Formulation

The starting point of seeking an optimal sampling pattern
is the general probability bound provided by Theorem 1. A
challenge in applying this probability bound in practice isthat
the right-hand side of (15) involves the complete set of weights
{wj} and the full NLM resultz. One can of course compute
these values, but doing so will defeat the purpose of random
sampling, which is to speed up NLM bynot computing all
the weights{wj}. To address this problem, we assume that

0 < wj ≤ bj ≤ 1, (18)

where the upper bounds{bj} are either knowna priori or can
be efficiently computed. We will provide concrete examples
of such upper bounds in Section IV-B. For now, we assume
that the bounds{bj} have already been obtained.

Using (18) and noting that0 ≤ xj , z ≤ 1, we can see that
the parameters{αj , βj} in (15) are bounded by

|αj | ≤ bj(1 + ε) and |βj | ≤ bj(1 + ε),

respectively. Meanwhile,0 ≤ µB ≤ 1. It then follows from
(15) that

Pr [|Z(p)− z| > ε] ≤ exp {−nξ}

+ 2 exp





−n(µBε)

2/(1 + ε)

2
(

1+ε
n

∑n
j=1 b

2
j

(
1−pj

pj

)
+ εM(p)

)




 , (19)

whereM(p)
def
= max

1≤j≤n

(
bj max

{
1,

1−pj

pj

})
/3.

Given a set of parametersξ, ε and{bj}, we seek sampling
patternsp to minimize the probability bound in (19), so that
the random MCNLM estimateZ(p) will be tightly concen-
trated around the full NLM resultz. Equivalently, we solve
the following optimization problem.

(P0) :

argmin
p

1+ε
n

∑n
j=1 b

2
j

(
1−pj

pj

)
+ εM(p)

subject to 1
n

n∑
j=1

pj = ξ and0 < pj ≤ 1.
(20)

In general,(P0) does not have a closed-form solution. Because
of this, and sinceε ≪ 1, we omit the termεM(p) in (20) and
consider a simpler problem:

(P1) :

argmin
p

n∑
j=1

b2j

(
1−pj

pj

)

subject to 1
n

n∑
j=1

pj = ξ and0 < pj ≤ 1.
(21)

Before providing a justification for using(P1) instead
of (P0), we first note that(P1) is a variation of the the
classical water-filling optimization problem [40], for which
simple closed-form solutions exist. In particular, we derive in
Appendix D the following solution to(P1).

Theorem 2 (Optimal Sampling Patterns):The solution to
(P1) is given by

pj = min {bjτ, 1} , for 1 ≤ j ≤ n, (22)

where the parameterτ is chosen so that
∑

j pj = nξ.
Remark 3: It is easy to verify that

g(x) =

n∑

j=1

min {bjx, 1} − nξ (23)

is a piecewise linear and monotonically increasing function.
Moreover,g(0) = −nξ < 0 and g(+∞) = n(1 − ξ) > 0.
Thus, the parameterτ can be uniquely determined as the root
of g(x).

Given the closed-form solution in (22), we are now ready
to quantify the difference between the original problem(P0)
and the simplified version(P1).

Proposition 3: Let p0 andp1 be the solution to(P0) and
(P1), respectively. Then

c(p0) ≤ c(p1) ≤ c(p0) +O(ε), (24)

where c(p)
def
= 1+ε

n

∑n
j=1 b

2
j

(
1−pj

pj

)
+ εM(p) is the cost

function in (P0).
The above result, shown in Appendix E, justifies the use of

the simpler problem(P1) in place of(P0). Indeed, forε ≪ 1,
the inequalities in (24) guarantee that the performance of the
sampling patternp1 obtained by solving(P1) will be similar
to that obtained by solving(P0).

B. Optimal Sampling Patterns

To construct the optimal sampling pattern prescribed by
Theorem 2, we need to find{bj}, which are the upper bounds
on the true similarity weights{wj}. At one extreme, the
tightest upper bounds arebj = wj , but this oracle scheme
is not realistic as it requires that we know all the weights
{wj}. At the other extreme, we can use the trivial upper bound
bj = 1. It is easy to verify that, under this setting, the sampling
pattern in (22) becomes the uniform pattern,i.e., pj = ξ for
all j. In what follows, we present two choices for the upper
bounds that can be efficiently computed and that can utilize
partial knowledge ofwj .

1) Bounds from spatial information:The first upper bound
is designed for internal (i.e., single image) denoising where

8

there is often a spatial term in the similarity weight,i.e.,

wj = ws
j w

r
j . (25)

One example of the spatial weight can be found in (4). Since
wr

j ≤ 1, we always havewj ≤ ws
j . Thus, a possible choice is

to set
bsj = ws

j . (26)

The advantage of the above upper bound is thatbsj is a function
of the spatial distancedi,j between a pair of pixels, which
is independent of the image dataX and Y. Therefore, it
can be pre-computed before running the MCNLM algorithm.
Moreover, since{bj} is spatially invariant, they can be reused
at all pixel locations.

2) Bounds from intensity information:For external image
denoising, the patches inX and Y do not have any spatial
relationship, as they can come from different images. In this
case, the similarity weightwj is only due to the difference in
pixel intensities (i.e., wj = wr

j), and thus we cannot use the
spatial bounds given in (26). To derive a new bound for this
case, we first recall the Cauchy-Schwartz inequality: For any
two vectorsu,v ∈ R

d and for any positive-definite weight
matrix Λ ∈ R

d×d, it holds that

|uT
Λv| ≤ ‖u‖Λ ‖v‖Λ.

Settingu = y − xj , we then have

wj = e−‖y−xj‖2

Λ
/(2h2

r) ≤ e−((xj−y)TΛv)2/(2h2

r‖v‖2

Λ)

≤ e−(x
T
j s−y

T
s)2 = brj , (27)

where s
def
= Λv/

(√
2hr‖v‖Λ

)
. The vector v can be

any nonzero vector. In practice, we choosev = 1 with
Λ = diag {1/d, . . . , 1/d} and we find this choice ef-
fective in our numerical experiments. In this case,brj =

exp
{
−(xT

j 1− yT
1)2/(2d2h2

r)
}

.
Remark 4:To obtain the upper boundbrj in (27), we need to

compute the termsyTs andxT
j s, which are the projections of

the vectorsy andxj onto the one-dimensional space spanned
by s. These projections can be efficiently computed by con-
volving the noisy image and the images in the reference set
with a spatially-limited kernel corresponding tos. To further
reduce the computational complexity, we also adopt a two-
stage importance sampling procedure in our implementation,
which allows us to avoid the computation of the exact values
of {bj} at most pixels. Details of our implementation are given
in a supplementary technical report [41].

Example 3:To demonstrate the performance of the various
sampling patterns presented above, we consider denoising one
pixel of theCameramanimage as shown in Figure 6(a). The
similarity weights are in the form of (25), consisting of both
a spatial and a radiance-related part. Applying the result of
Theorem 2, we derive four optimal sampling patterns, each
associated with a different choice of the upper bound, namely,
bj = wj , bj = bsj , bj = brj , andbj = bsjb

r
j . Note that the first

choice corresponds to anoraclesetting, where we assume that
the weights{wj} are known. The latter three are practically
achievable sampling patterns, wherebsj and brj are defined in
(26) and (27), respectively.

(a) Target pixel to be denoised

50 100 150 200 250

50

100

150

200

250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Oracle sampling pattern

50 100 150 200 250

50

100

150

200

250

0.05

0.1

0.15

0.2

(d) Intensity

50 100 150 200 250

50

100

150

200

250
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(c) Spatial

50 100 150 200 250

50

100

150

200

250

0.1

0.2

0.3

0.4

0.5

0.6

(e) Spatial + Intensity

Fig. 6: Illustration of optimal sampling probability for the case
hr = 15/255, hs = 50. (a) Cameraman image and the target
pixel. We overlay the spatial weight on top ofcameramanfor
visualization. (b) Optimal sampling pattern w.r.t.wj (oracle
scheme). (c) Spatial upper boundbsj . (d) Intensity upper bound
brj . (e) Spatial and intensity upper boundbsj · brj .

Figure 6(b)–(e) show the resulting sampling patterns. As can
be seen in the figures, various aspects of the oracle sampling
pattern are reflected in the approximated patterns. For instance,
the spatial approximation has more emphasis at the center than
the peripherals whereas the intensity approximation has more
emphasis on pixels that are similar to the target pixel.

To compare these sampling patterns quantitatively, we plot
in Figure 7 the reconstruction MSE associated with different
patterns as functions of the average sampling ratioξ. Here,
we set hr = 15/255 and hs = 50. For benchmark, we
also show the performance of the uniform sampling pattern.
It is clear from the figure that all the optimal sampling
patterns outperform the uniform pattern. In particular, the
pattern obtained by incorporating both the spatial and intensity
information approaches the performance of the oracle scheme.

V. EXPERIMENTAL RESULTS

In this section we present additional numerical experiments
to evaluate the performance of the MCNLM algorithm and
compare it with several other accelerated NLM algorithms.

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 9

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

E
[|
Z
−

z
|2

]

ξ

Oracle Sampling
Spatial Approximation
Intensity Approximation
Spatial+Intensity Approximation
Uniform Sampling

Fig. 7: Denoising results of using different sampling schemes
shown in Figure 6. Setting of experiment: noiseσ = 15/255,
hs = 50, hr = 15/255, patch size5× 5.

A. Internal Denoising

A benchmark of ten standard test images are used for this
experiment. For each image, we add zero-mean Gaussian noise
with standard deviations equal toσ = 10

255 ,
20
255 ,

30
255 ,

40
255 ,

50
255

to simulate noisy images at different PSNR levels. Two choices
of the spatial search window size are used:21×21 and35×35,
following the original configurations used in [1].

The parameters of MCNLM are as follows: The patch size
is 5 × 5 (i.e., d = 25) and Λ = I/d. For each choice of
the spatial search window size (i.e., ρ = 21 or ρ = 35), we
definehs = (⌊ρ/2⌋)/3 so that three standard deviations of the
spatial Gaussian will be inside the spatial search window. The
intensity parameter is set tohr = 1.3σ/255.

In this experiment, we use the spatial information bound
(26) to compute the optimal sampling pattern in (22). In-
corporating additional intensity information as in (27) would
further improve the performance, but we choose not to do so
because the PSNR gains are found to be moderate in this case
due to the relatively small size of the spatial search window.
Five average sampling ratios,ξ = 0.05, 0.1, 0.2, 0.5, 1, are
evaluated. We note that whenξ = 1, MCNLM is identical
to the full NLM.

For comparisons, we test the Gaussian KD tree (GKD) algo-
rithm [26] with a C++ implementation (ImageStack [42]) and
the adaptive manifold (AM) algorithm [27] with a MATLAB
implementation provided by the authors. To create a mean-
ingful common ground for comparison, we adapt MCNLM as
follows: First, since both GKD and AM use SVD projection
[18] to reduce the dimensionality of patches, we also use in
MCNLM the same SVD projection method by computing the
10 leading singular values. The implementation of this SVD
step is performed using an off-the-shelf MATLAB code [43].
We also tune the major parameters of GKD and AM for their
best performance,e.g., for GKD we sethr = 1.3σ/255 and
for AM we set hr = 2σ/255. Other parameters are kept at
their default values as reported in [26], [27].

Table I and Table II summarize the results of the experiment.
Additional results, with visual comparison of denoised images,
can be found in the supplementary technical report [41]. Since
MCNLM is a randomized algorithm, we report the average
PSNR values of MCNLM over 24 independent runs. The
results show that for the 10 images, even at a very low
sampling ratio,e.g., ξ = 0.1, the averaged performance of
MCNLM (over 10 testing images) is only about0.35 dB to
0.7 dB away (depending onσ) from the full NLM solution.
When the sampling ratio is further increased toξ = 0.2, the
PSNR values become very close (about a0.09 dB to 0.2 dB
drop depending onσ) to those of the full solution.

In Table III we report the runtime of MCNLM, GKD and
AM. Since the three algorithms are implemented in different
environments, namely, MCNLM in MATLAB/C++ (.mex),
GKD in C++ with optimized library and data-structures, and
AM in MATLAB (.m), we caution that Table III is only meant
to provide some rough references on computational times. For
MCNLM, its speed improvement over the full NLM can be
reliably estimated by the average sampling ratioξ.

B. External Dictionary-based Image Denoising

To test MCNLM for external dictionary-based image de-
noising, we consider the dataset of Levin and Nadler [11],
which contains about 15,000 training images (aboutn ≈ 1010

image patches) from the LabelMe dataset [44]. For testing, we
use a separate set of 2000 noisy patches, which are mutually
exclusive from the training images. The results are shown in
Figure 8.

10
−6

10
−5

10
−4

10
−3

10
−2

29

29.5

30

30.5

31

31.5

32

32.5

33

Sampling Ratio

P
S
N

R
(d

B
)

Optimal Sampling
Uniform Sampling
Full Solution

Fig. 8: External denoising using MCNLM. The external
dataset containsn = 1010 patches. 2000 testing patches are
used to compute the PSNR. The “dotted” line indicates the
full NLM result reported in [11]. The “crossed” line indicates
the MCNLM result using uniform sampling pattern, and the
“circled” line indicates the MCNLM result using the intensity
approximated sampling pattern.

Due to the massive size of the reference set, full evaluation
of (1) requires about one week on a 100-CPU cluster, as
reported in [11]. To demonstrate how MCNLM can be used

10

TABLE I: Single image denoising by MCNLM, using the optimal Gaussian sampling pattern. The case whenξ = 1 is equivalent
to the standard NLM [2]. GKD refers to [26]. AM refers to [27].Shown in the table are PSNR values (in dB).

ξ 0.05 0.1 0.2 0.5 1 GKD AM 0.05 0.1 0.2 0.5 1 GKD AM
σ Baboon512× 512 Barbara 512× 512

10 30.74 31.14 31.57 31.63 31.63 31.17 28.9132.14 32.65 33.04 33.20 33.20 32.72 30.48
20 26.73 27.08 27.22 27.29 27.29 26.67 25.7828.19 28.66 29.06 29.22 29.23 28.40 26.88
30 24.43 24.77 24.97 25.08 25.08 24.58 24.2725.84 26.38 26.68 26.85 26.85 25.91 24.92
40 23.24 23.56 23.8 23.92 23.93 23.28 23.3824.13 24.71 25.06 25.23 25.24 24.29 23.75
50 22.05 22.63 22.99 23.12 23.12 22.24 22.6622.77 23.49 23.91 24.07 24.07 23.08 22.95
σ Boat 512× 512 Bridge 512 × 512

10 32.20 32.62 32.85 32.93 32.93 32.54 30.9229.52 29.27 29.05 29.08 29.08 29.64 28.49
20 28.56 29.26 29.57 29.70 29.70 28.69 27.9925.46 25.36 25.36 25.41 25.41 25.72 25.40
30 26.38 27.15 27.49 27.67 27.66 26.47 26.1123.64 23.74 23.86 23.92 23.92 23.85 23.74
40 24.88 25.69 26.02 26.21 26.21 24.90 24.8322.28 22.66 22.83 22.92 22.92 22.67 22.65
50 23.46 24.33 24.85 25.05 25.05 23.66 23.8621.21 21.67 21.90 22.00 22.01 21.73 21.82
σ Couple512× 512 Hill 256× 256

10 31.98 32.40 32.62 32.72 32.72 32.40 30.8430.54 30.51 30.44 30.49 30.49 30.89 30.12
20 28.21 28.55 28.78 28.88 28.88 28.19 27.5726.95 27.14 27.17 27.26 27.26 27.14 26.95
30 25.80 26.42 26.69 26.81 26.81 25.97 25.7625.13 25.46 25.64 25.75 25.75 25.28 25.34
40 24.21 25.03 25.38 25.54 25.54 24.52 24.5623.76 24.38 24.66 24.81 24.82 24.14 24.37
50 23.14 23.93 24.42 24.59 24.59 23.39 23.7222.83 23.46 23.87 24.02 24.02 23.10 23.57
σ House256× 256 Lena512× 512

10 34.07 34.76 35.36 35.50 35.50 34.51 33.0734.69 35.48 36.02 36.15 36.15 34.90 34.04
20 30.52 31.45 32.33 32.53 32.54 30.41 29.6230.82 31.88 32.44 32.64 32.65 30.91 30.47
30 27.89 29.06 29.81 30.04 30.04 27.81 27.2728.49 29.64 30.23 30.50 30.50 28.52 28.44
40 26.12 27.21 27.92 28.20 28.20 26.04 25.7026.53 27.73 28.47 28.76 28.76 26.72 26.97
50 24.70 25.86 26.66 26.98 26.99 24.76 24.7925.16 26.29 27.03 27.34 27.35 25.29 25.81
σ Man 512× 512 Pepper512× 512

10 32.32 32.58 32.72 32.79 32.79 32.56 31.4932.78 33.49 33.85 33.94 33.95 33.35 31.63
20 28.56 29.13 29.37 29.49 29.49 28.78 28.3728.99 29.87 30.32 30.46 30.46 29.38 28.43
30 26.68 27.26 27.69 27.85 27.85 26.74 26.6226.48 27.33 27.82 27.98 27.98 26.81 25.88
40 25.12 25.94 26.45 26.65 26.66 25.27 25.3924.68 25.61 26.09 26.29 26.29 25.01 24.25
50 23.91 24.92 25.48 25.71 25.72 24.13 24.5223.24 23.91 24.41 24.61 24.61 23.49 23.00

TABLE II: Average PSNR over 10 testing images. Bold values are the minimum PSNRs that surpass GKD and AM.

σ 0.05 0.1 0.2 0.5 1 GKD AM
10 32.10 32.49 32.75 32.84 32.84 32.47 31.00
20 28.30 28.84 29.16 29.29 29.29 28.43 27.75
30 26.08 26.72 27.09 27.25 27.24 26.19 25.84
40 24.50 25.25 25.67 25.85 25.86 24.68 24.59
50 23.25 24.05 24.55 24.75 24.75 23.49 23.67

TABLE III: Runtime (in seconds) of MCNLM, GKD and AM. Implementations: MCNLM: MATLAB/C++ (.mex) on Windows
7, GKD: C++ on Windows 7, AM: MATLAB on Windows 7.

Image Size Search Window / Patch Size / PCA dimension0.05 0.1 0.2 0.5 1 GKD AM
512× 512 21× 21 / 5× 5 / 10 0.495 0.731 1.547 3.505 7.234 3.627 0.543

(Man) 35× 35 / 9× 9 / 10 1.003 1.917 3.844 9.471 19.904 4.948 0.546
256× 256 21× 21 / 5× 5 / 10 0.121 0.182 0.381 0.857 1.795 0.903 0.242
(House) 35× 35 / 9× 9 / 10 0.248 0.475 0.954 2.362 4.851 1.447 0.244

to speed up the computation, we repeat the same experiment
on a 12-CPU cluster. The testing conditions of the experiment
are identical to those in [11]. Each of the 2000 test patches
is corrupted by i.i.d. Gaussian noise of standard deviation
σ = 18/255. Patch size is fixed at5 × 5. The weight
matrix is Λ = I. We consider a range of sampling ratios,
from ξ = 10−6 to ξ = 10−2. For each sampling ratio, 12

independent trials are performed and their average is recorded.
Here, we show the results of the uniform sampling pattern and
the optimal sampling pattern obtained using the upper bound
in (27). The results in Figure 8 indicate that MCNLM achieves
a PSNR within0.2dB of the full computation at a sampling
ratio of 10−3, a speed-up of about1000-fold.

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 11

VI. CONCLUSION

We proposed Monte Carlo non-local means (MCNLM), a
randomized algorithm for large-scale patch-based image filter-
ing. MCNLM randomly chooses a fraction of the similarity
weights to generate an approximated result. At any fixed
sampling ratio, the probability of having large approximation
errors decays exponentially with the problem size, implying
that the approximated solution of MCNLM is tightly con-
centrated around its limiting value. Additionally, our analysis
allows deriving optimized sampling patterns that exploit partial
knowledge of weights of the types that are readily available
in both internal and external denoising applications. Experi-
mentally, MCNLM is competitive with other state-of-the-art
accelerated NLM algorithms for single-image denoising in
standard tests. When denoising with a large external database
of images, MCNLM returns an approximation close to the
full solution with speed-up of three orders of magnitude,
suggesting its utility for large-scale image processing.

ACKNOWLEDGEMENT

The authors thank Anat Levin for sharing the experimental
settings and datasets reported in [11].

APPENDIX

A. Proof of Theorem 1

For notation simplicity, we shall drop the argumentp in
A(p), B(p) andZ(p), since the sampling patternp remains
fixed in our proof. We also defineA/B = 1 for the case when
B = 0. We observe that

Pr [|Z − z| > ε] = Pr [|A/B − z| > ε]

= Pr [|A/B − µ| > ε ∩ B = 0]

+ Pr [|A/B − µ| > ε ∩ B > 0]

≤ Pr [B = 0]

+ Pr [|A− µB| > εB ∩ B > 0]

≤ Pr [B = 0] + Pr [|A− µB| > εB] . (28)

By assumption,wj > 0 for all j. It then follows from the
definition in (8) thatB = 0 if and only if Ij = 0 for all j.
Thus,

Pr[B = 0] =
n∏

j=1

(1 − pj) = exp





n∑

j=1

log(1− pj)





(b1)

≤ exp



−

n∑

j=1

pj





(b2)
= exp {−nξ} . (29)

Here,(b1) holds becauselog(1−p) ≤ −p for 0 ≤ p ≤ 1; and
(b2) is due to the definition thatξ = 1

n

∑n
j=1 pj .

Next, we provide an upper bound forPr [|A− zB| > εB]
in (28) by considering the two tail probabilities
Pr [A− zB > εB] and Pr [A− zB < −εB] separately.
Our goal here is to rewrite the two inequalities so that
Bernstein’s inequality in Lemma 1 can be applied. To this
end, we define

αj
def
= wj(xj − z − ε) and Yj

def
= αj

(
Ij
pj

− 1

)
.

We note thatz = µA/µB, whereµA andµB are defined in
(9) and (10), respectively. It is easy to verify that

Pr [A− zB > εB] = Pr



 1

n

n∑

j=1

Yj > − 1

n

n∑

j=1

αj





= Pr



 1

n

n∑

j=1

Yj > εµB



 . (30)

The random variablesYj are of zero-mean, with variance

Var [Yj] =
α2
j

p2j
Var[Ij] = α2

j

1− pj
pj

.

Using Bernstein’s inequality in Lemma 1, we can then bound
the probability in (30) as

Pr [A− zB > εB]

≤ exp





−n(µBε)
2

2
(

1
n

∑n
j=1 α

2
j

(
1−pj

pj

)
+Mα(µBε)/3

)



 , (31)

where the constantMα can be determined as follows:

|Yj | =
{
|αj |

(
1−pj

pj

)
, if Ij = 1

|αj |, if Ij = 0.

≤ |αj |max

{
1,

1− pj
pj

}
.

Thus,Mα = max
1≤j≤n

(
|αj |max

{
1,

1−pj

pj

})
.

The other tail probability,i.e., Pr [A− zB < −εB], can be
bounded similarly. In this case, we let

βj
def
= wj(xj − z + ε) and Ỹj

def
= −βj

(
Ij
pj

− 1

)
.

Then, following the same derivations as above, we can show
that

Pr [A− zB < −εB]

≤ exp





−n(µBε)
2

2
(

1
n

∑n
j=1 β

2
j

(
1−pj

pj

)
+Mβ(µBε)/3

)



 , (32)

whereMβ = max
1≤j≤n

(
|βj |max

{
1,

1−pj

pj

})
. Substituting (29),

(31) and (32) into (28), we are done.

B. Proof of Proposition 1

The goal of the proof is to simplify (15) by utilizing the
fact that0 ≤ xj ≤ 1, 0 ≤ z ≤ 1, 0 < wj ≤ 1 andp = ξ1. To
this end, we first observe the following:

|αj | = wj |xj − z − ε| ≤ wj(1 + ε).

Consequently, for0 < ξ ≤ 1/2, Mα is bounded as

Mα = max
1≤j≤n

(
|αj |max

{
1,

1− ξ

ξ

})
(a)

≤ (1 + ε)

(
1− ξ

ξ

)
,

12

where in (a) we used the fact thatwj ≤ 1 and ξ ≤ 1/2.
Similarly,

|βj | ≤ wj(1 + ε) and Mβ ≤ (1 + ε)

(
1− ξ

ξ

)
.

Therefore, the two negative exponents in (15) are lower
bounded by the following common quantity:

n(µBε)
2

2
(

1
n

∑n
j=1 w

2
j (1 + ε)2

(
1−ξ
ξ

)
+ µBε(1 + ε)

(
1−ξ
ξ

)
/3
)

(b)

≥ n(µBε)
2

2
(

1
n

∑n
j=1 wj(1 + ε)2 + µBε(1 + ε)/3

)
(

ξ

1− ξ

)

=
n(µBε)

2

2 (µB(1 + ε)2 + µBε(1 + ε)/3)

(
ξ

1− ξ

)

≥ nµBε
2

2(1 + ε)(1 + 4ε/3)

(
ξ

1− ξ

)
.

Defining f(ε)
def
= ε2/(2(1 + ε)(1 + 4ε/3)) yields the desired

result.

C. Proof of Proposition 2

The MSE can be computed as

E

[
(Z(p)− z)2

]
(a)
=

∫ ∞

0

Pr
[
(Z(p)− z)2 > ε

]
dε

(b)
=

∫ 1

0

Pr
[
(Z(p)− z)

2
> ε
]
dε,

where(a) is due to the “layer representation” of the expecta-
tions (See,e.g., [45, Chapter 5.6]), and(b) is due to the fact
that |Z(p)− z| ≤ 1. Then, by (16), we have that
∫ 1

0

Pr
[
(Z(p)− z)

2
> ε
]
dε

≤ e−nξ + 2

∫ 1

0

exp

{
−nµBf(

√
ε)

(
ξ

1− ξ

)}
dε.

By the definition off(ε), it is easy to verifyf(
√
ε) ≥ 3ε/28.

Thus,
∫ 1

0

Pr
[
(Z(p)− z)

2
> ε
]
dε

≤ e−nξ + 2

∫ 1

0

exp

{
−nµB (3ε/28)

(
ξ

1− ξ

)}
dε

≤ e−nξ +
1

n

(
56

3µB

)(
1− ξ

ξ

)
.

D. Proof of Theorem 2

Removing constant terms in the objective in (21) that are
independent ofp, we can simplify(P1) as

minimize
p1,...,pn

n∑

j=1

b2j
pj

s.t.
1

n

n∑

j=1

pj = ξ, and pj ≤ 1.

Here, we have ignored the constraints thatpj ≥ 0 for all j,
but we will verify that these positivity constraints are indeed
satisfied by the solution we get.

The Lagrangian of the above problem is

L(p,λ, ν) =
n∑

j=1

b2j
pj

+

n∑

j=1

λj(pj − 1) + ν




n∑

j=1

pj − nξ


 ,

(33)

where p = [p1, . . . , pn]
T are the primal variables,λ =

[λ1, . . . , λn]
T are the Lagrange multipliers associated with the

constraintspj ≤ 1, andν is the Lagrange multiplier associated
with the constraint

∑n
j=1 pj = nξ.

The first order optimality conditions imply the following:

• Stationarity: ∇p L = 0. That is,− b2j
p2

j

+ λj + ν = 0.

• Primal feasibility:
∑n

j=1 pj = nξ andpj ≤ 1.
• Dual feasibility: λj ≥ 0, andν ≥ 0.
• Complementary slackness: λj(pj − 1) = 0.
The last condition, complementary slackness, implies that, for
eachj, one of the following cases always holds:λj = 0 or
pj = 1.

Case 1:λj = 0. Substituting this into the stationarity
condition yieldspj = bj/

√
ν. Sincepj ≤ 1, we must have

bj ≤
√
ν.

Case 2:pj = 1. In this case, the stationarity implies that
b2j = λj + ν = 0. Sinceλj ≥ 0, we must havebj >

√
ν.

Combining these two cases, we obtain

pj =

{
bj√
ν
, if bj ≤

√
ν,

1, if bj >
√
ν.

Thus, it remains to determineν. This can be done by using the
primal feasibility condition that1n

∑n
j=1 pj = ξ. In particular,

consider the functiong(x) defined in (23), wherex = 1/
√
ν.

The desired value ofν can thus be obtained by finding the
root of the equationg(x). Sinceg(x) is a monotonically in-
creasing piecewise-linear function, the parameterν is uniquely
determined, so isp.

E. Proof of Propositon 3

It follows from the definition ofp0 that c(p0) ≤ c(p1). So
we just need to establish the second inequality in (24). We
note that, sincep1 is the optimal solution to(P1), it holds
that

c(p1)− εM(p1) ≤ c(p0)− εM(p0),

and thus

c(p1) ≤ c(p0) + εM(p1)− εM(p0) ≤ c(p0) + εM(p1),

where the second inequality is due to the fact thatM(p0) ≥ 0.
Next, we provide an upper bound for

εM(p1) = max
1≤j≤n

(
bj max

{
1,

1− pj
pj

})
ε/3, (34)

wherepj = min(bjτ, 1) as given in (22). For eachj, if bjτ ≥
1/2, thenpj ≥ 1/2 and

bj max {1, 1/pj − 1} = bj ≤ 1. (35)

For the other case, whenpj = bjτ < 1/2, we have

bj max {1, 1/pj − 1} = 1/τ − bj ≤ 1/τ. (36)

CHAN et al.: MONTE-CARLO NON-LOCAL MEANS 13

Substituting (35) and (36) into (34), we get

εM(p1) ≤ εmax {1, 1/τ} /3. (37)

Finally, to obtain an estimate of1/τ , we note thatτ is the
unique root of the functiong(x) defined in (23). It is easy to
verify that

g

(
nξ∑
j bj

)
≤ nξ∑

j bj

∑

j

bj − nξ = 0 = g(τ).

Since g(x) is a monotonically increasing function, we must
have τ ≥ nξ/

∑
j bj ≥ ξ/µB. Combining this bound with

(37), we get

εM(p1) ≤ max (1, µB/ξ) ε/3 = O(ε).

REFERENCES

[1] A. Buades, B. Coll, and J. Morel, “A review of image denoising
algorithms, with a new one,”Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2005.

[2] A. Buades, B. Coll, and J. Morel, “Denoising image sequences does
not require motion estimation,” inProc. IEEE Conf. Advanced Video
and Signal Based Surveillance (AVSS), Sep. 2005, pp. 70–74.

[3] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the
non-local-means to super-resolution reconstruction,”IEEE Trans. Image
Process., vol. 18, no. 1, pp. 36–51, Jan. 2009.

[4] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,“Non-local
sparse models for image restoration,” inProc. IEEE Int. Conf. Computer
Vision (ICCV), Oct. 2009, pp. 2272–2279.

[5] K. Chaudhury and A. Singer, “Non-local patch regression: Robust
image denoising in patch space,” inProc. IEEE Int. Conf. Acoustics,
Speech and Signal Process. (ICASSP), 2013, available online at
http://arxiv.org/abs/1211.4264.

[6] P. Milanfar, “A tour of modern image filtering,”IEEE Signal Processing
Magazine, vol. 30, pp. 106–128, Jan. 2013.

[7] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,”IEEE Trans. Image Process., vol.
22, no. 4, pp. 1620–1630, Apr. 2013.

[8] D. Van De Ville and M. Kocher, “SURE-based non-local means,” IEEE
Signal Process. Lett., vol. 16, no. 11, pp. 973–976, Nov. 2009.

[9] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,”IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[10] M. Zontak and M. Irani, “Internal statistics of a singlenatural image,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
Jun. 2011, pp. 977–984.

[11] A. Levin and B. Nadler, “Natural image denoising: Optimality and
inherent bounds,” inProc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Jun. 2011, pp. 2833–2840.

[12] A. Levin, B. Nadler, F. Durand, and W. Freeman, “Patch complexity,
finite pixel correlations and optimal denoising,” inProc. 12th European
Conf. Computer Vision (ECCV), Oct. 2012, vol. 7576, pp. 73–86.

[13] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via
nonlocal means of similar neighborhoods,”IEEE Signal Process. Lett.,
vol. 12, no. 12, pp. 839–842, Dec. 2005.

[14] P. Coupe, P. Yger, and C. Barillot, “Fast non local meansdenoising for
3D MR images,” inProc. Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2006, pp. 33–40.

[15] T. Brox, O. Kleinschmidt, and D. Cremers, “Efficient nonlocal means
for denoising of textural patterns,”IEEE Trans. Image Process., vol. 17,
no. 7, pp. 1083–1092, Jul. 2008.

[16] T. Tasdizen, “Principal components for non-local means image denois-
ing,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2008, pp.
1728 –1731.

[17] J. Orchard, M. Ebrahimi, and A. Wong, “Efficient nonlocal-means
denoising using the SVD,” inProc. IEEE Int. Confe. Image Process.
(ICIP), Oct. 2008, pp. 1732 –1735.

[18] D. Van De Ville and M. Kocher, “Nonlocal means with dimensionality
reduction and SURE-based parameter selection,”IEEE Trans. Image
Process., vol. 20, no. 9, pp. 2683 –2690, Sep. 2011.

[19] J. Darbon, A. Cunha, T. Chan, S. Osher, and G. Jensen, “Fast nonlocal
filtering applied to electron cryomicroscopy,” inProc. IEEE Int. Sym.
Biomedical Imaging, 2008, pp. 1331–1334.

[20] J. Wang, Y. Guo, Y. Ying, Y. Liu, and Q. Peng, “Fast non-local algorithm
for image denoising,” inProc. IEEE Int.Conf. Image Process. (ICIP),
Oct. 2006, pp. 1429–1432.

[21] V. Karnati, M. Uliyar, and S. Dey, “Fast non-local algorithm for image
denoising,” inProc. IEEE Int. Conf. Image Process. (ICIP), 2009, pp.
3873–3876.

[22] R. Vignesh, B. Oh, and J. Kuo, “Fast non-local means (NLM)
computation with probabilistic early termination,”IEEE Signal Process.
Lett., vol. 17, no. 3, pp. 277–280, Mar. 2010.

[23] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,”Int. J. Computer Vision, vol. 81, no. 1,
pp. 24–52, Jan. 2009.

[24] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis, “Improved fast
Gauss transform and efficient kernel density estimation,” in Proc. Int.
Conf. Computer Vision (ICCV), Oct. 2003, pp. 664–671.

[25] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering
using the permutohedral lattice,” inProc. EUROGRAPHICS, 2010,
vol. 29, pp. 753–762.

[26] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “GaussianKD-trees
for fast high-dimensional filtering,” inProc. of ACM SIGGRAPH, 2009,
Article No. 21.

[27] E. Gastal and M. Oliveira, “Adaptive manifolds for real-time high-
dimensional filtering,”ACM Trans. Graphics, vol. 31, no. 4, pp. 33:1–
33:13, 2012.

[28] H. Bhujle and S. Chaudhuri, “Novel speed-up strategiesfor non-local
means denoising with patch and edge patch based dictionaries,” IEEE
Trans. Image Process., vol. 23, no. 1, pp. 356–365, Jan. 2014.

[29] S. Arietta and J. Lawrence, “Building and using a database of one trillion
natural-image patches,”IEEE Computer Graphics and Applications, vol.
31, no. 1, pp. 9–19, Jan. 2011.

[30] F. Meyer and X. Shen, “Perturbation of the eigenvectorsof the
graph Laplacian: Application to image denoising,”Applied and Com-
putational Harmonic Analysis, 2013, In press. Available online at
http://arxiv.org/abs/1202.6666.

[31] H. Talebi and P. Milanfar, “Global image denoising,”IEEE Trans. Image
Process., 2014, In press.

[32] P. Drineas and M. W. Mahoney, “On the Nystrom method for approxi-
mating a Gram matrix for improved kernel-based learning,”J. Machine
Learning Research, vol. 6, pp. 2153–2175, 2005.

[33] A. Dembo and O. Zeitouni,Large deviations techniques and applica-
tions, Springer, Berlin, 2010.

[34] G. R. Grimmett and D. R. Stirzaker,Probability and Random Processes,
Oxford University Press, 3rd edition, 2001.

[35] S. Bernstein,The Theory of Probabilities, Gastehizdat Publishing House,
Moscow, 1946.

[36] S. H. Chan, T. Zickler, and Y. M. Lu, “Fast non-local filtering by
random sampling: It works, especially for large images,” inProc. IEEE
Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), 2013.

[37] R. Serfling, “Probability inequalities for the sum in sampling without
replacement,”The Annals of Statistics, vol. 2, pp. 39–48, 1974.

[38] F. Chung and L. Lu, “Concentration inequalities and martingale
inequalities: a survey,”Internet Mathematics, vol. 3, no. 1, pp. 79–127,
2006.

[39] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carloalgorithms
for matrices I: Approximating matrix multiplication,”SIAM J. Comput-
ing, vol. 36, pp. 132–157, 2006.

[40] S. Boyd and L. Vandenberghe,Convex Optimization, Cambridge
University Press, 2004.

[41] S. H. Chan, T. Zickler, and Y. M. Lu, “Monte-Carlo non-local means:
Random sampling for large-scale image filtering — Supplementary
material,” Tech. Rep., Harvard University, 2013, [Online]available
at http://scholar.harvard.edu/stanleychan.

[42] A. Adams, “Imagestack,” https://code.google.com/p/imagestack/.
[43] G. Peyre, “Non-local means MATLAB toolbox,”

http://www.mathworks.com/matlabcentral/fileexchange/13619.
[44] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “LabelMe: a

database and web-based tool for image annotation,”Int. J. Computer
Vision, vol. 77, no. 1-3, pp. 157–173, May 2008.

[45] W. Feller, An Introduction to Probability Theory and its Applications,
vol. 2, John Wiley & Sons, 2nd edition, 1971.

https://code.google.com/p/imagestack/

ar
X

iv
:1

31
2.

73
66

v1
 [

cs
.C

V
]

27
 D

ec
 2

01
3

1

Monte CarloNon-Local Means: Random
Sampling for Large-Scale Image Filtering

(Supplementary Material)
Stanley H. Chan,Member, IEEE,Todd Zickler,Member, IEEE,

and Yue M. Lu,Senior Member, IEEE

Abstract

This supplementary document provides the following additional information of the main article.

• Implementation of Theorem 2 (General Sampling Case)
• Implementation of Uniform Sampling Patterns
• Implementation of Spatially Approximated Sampling Patterns (for Internal Denoising)
• Implementation of Intensity Approximated Sampling Patterns (for External Denoising)
• Additional Experimental Results

I. IMPLEMENTATION OF THEOREM 2 (GENERAL SAMPLING CASE)

The optimal sampling pattern presented in Theorem 2 of the main article is

pj = min{bjτ, 1}, for 1 ≤ j ≤ n, (1)

where the parameterτ is the root of the function

g(τ) =

n
∑

j=1

min{bjτ, 1} − nξ. (2)

Sinceg(·) is piecewise linear and monotonically increasing, withg(0) = −nξ < 0 and g(+∞) = n(1 − ξ) > 0,
the parameterτ can be uniquely determined. In this section, we discuss an efficient way to determineτ .

A. The Bisection Method

In determiningτ , we choose the bisection method because of its efficiency androbustness.Gradient-based and
Newton type of algorithms are not recommended as these algorithms require a region of convergence. Identifying
such region could be challenging for the functiong(·) defined in (2).

The bisection method is an iterative procedure that checks the signs of the two pointsτa, τb and their midpoint
τc = (τa+τb)/2. If τc has the same sign asτa, thenτc replacesτa. Otherwise,τc replacesτb. The iteration continues
until the residue|τa − τb| is less than a tolerance level, or wheng(τc) is sufficiently close to 0.

Pseudo-code of the bisection method is shown in Algorithm 1.For a smallξ, we find that by settingτa = 0 and
τb = 10, the bisection method converges in 10 iterations with a precision |g(τc) − 0| < 10−1, which is sufficient
for our problem.

B. Cost Reduction by Quantization

The cost of evaluating the functiong(τ) for a fixed τ is O(n), because of the multiplication ofbj · τ and the
minimum operator in (2). To reduce the cost, we quantize the weightsbj by constructing the histogram ofbj .

The authors are with the School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Contact Emails:{schan,zickler,yuelu}@seas.harvard.edu.

http://arxiv.org/abs/1312.7366v1

2

Algorithm 1 The Bisection Method

Input: τa, τb.
Output:τc.
Initialize: Fa = g(τa), Fb = g(τb), Fc = ∞.

while |τa − τb| > tol and |Fc − 0| > tol do
Defineτc = (τa + τb)/2, and evaluateFc = g(τc).
if Fa < 0 andFc > 0 then

Setτb = τc, andFb = Fc.
else

Setτa = τc, andFa = Fc.
end if

end while

Let q be the number of bins of the histogram, we define two sequences{ut}qt=1 and{lt}qt=1 such thatlt ≤ bj ≤ ut
for somet, and for1 ≤ j ≤ n. These two sequences denote the upper and lower bounds of thevalues in thet-th
bin, respectively. Also, we let the center of each bin be

bct =
ut + lt

2
,

and we let the number of elements in thet-th bin be

nt =
∣

∣

∣
{bj | lt ≤ wj ≤ ut, for j = 1, . . . , n}

∣

∣

∣
.

Then, the valueg(τ) can be approximated by

g(τ) ≈
q

∑

t=1

ntmin {1, bctτ} − nξ. (3)

The advantage of using (3) instead of (2) is that the cost of evaluating (3) isO(q), which is smaller thanO(n) as
in (2).

II. I MPLEMENTATION OF UNIFORM SAMPLING PATTERNS

Uniform sampling is the fundamental building block of MCNLM’s optimal sampling patterns. In this section,
we discuss the implementation of uniform sampling for MCNLM. The techniques presented here will be used in
other sections of this report.

For clarity we present the pseudo-codes using MATLAB language, although in practice the codes are implemented
in C++.

A. Naive Implementation

To begin with, we consider the following naive implementation of uniform sampling:
if (rand(1)<xi)
I(j) = 1;

else
I(j) = 0;

end
whererand(1) is the MATLAB command for generating a random number from Uniform[0, 1]. The output of
the above procedure is a sequence of i.i.d. Bernoulli randomvariables{Ij}nj=1 with probability ξ.

The problem of this naive implementation is that the random numberrand(1) has to be generated on-the-fly
for n times. These random numbers have to be compared against a double precision numberξ for n times, and to
be multiplied by the number of pixels of the image. Thus, the overall cost is not trivial.

Remark: In practice, the lineI(j)=1 can be replaced by the actual denoising steps,e.g.A = A + w(j)*x(j)/xi
andB = B + w(j)/xi, to improve efficiency.

3

B. Fast Implementation

Our proposed implementation is to replace the on-the-fly Bernoulli sampling by a pre-defined (fixed) sequence
of sampling indices. To this end, we define

k = round(xi*n);
idx = randi(n,k,1);

The commandk = round(xi*n) returns the average number of samples to be picked, and the commandidx
= randi(n,k,1) returns a list ofk random indices drawn uniformly from{1, . . . , n}. Different from the naive
implementation, the indicesidx arereusedfor denoising allm pixels. Therefore, the overall cost of the algorithm
is O(k) (for generating the random indices), as compared withO(nm) operations in the naive implementation.
The pseudo-code of the alternative implementation is shownin Algorithm 2.

Algorithm 2 Uniform Sampling

Input: xi,n.
Determinek = round(xi*n).
Constructidx = randi(n,k,1).
for i=1:m do

for t=1:k do
Setj = idx(t).
Computew(j) and perform other steps of NLM.

end for
end for

We emphasize that the alternative implementation is only anapproximationof the method described in the main
article, because the same sampling pattern is used for allm pixels and hence introduces correlation. However, in
practice, we find that the impact of the correlation is small to the denoising quality. One way to minimize the
correlation is to define multiple sampling patterns and use different patterns within certain spatial neighborhood.

III. I MPLEMENTATION OF SPATIALLY APPROXIMATED SAMPLING PATTERNS (FOR INTERNAL DENOISING)

In this section we discuss the implementation of the spatially approximated sampling patterns presented in Section
IV.B.1 of the main article. To begin with, we recall that the spatially approximated sampling pattern is derived
from the spatial weight

bsj = e−d2

i,j/(2h
2

s), (4)

where di,j is the Euclidean distance between the spatial locations of the i-th and j-th pixels. Sincedi,j is the
distance, without loss of generality we can seti = 0.

Sincebsj ≈ 0 when di,j > 3hs, we set a cutoffρ = 3hs so that any pixelj located at a position farther than
ρ from the i-th pixel will be discarded. (See Section I.B.1 for the definition of ρ.) We let the number of nonzero
elements of{bsj} bens.

A. Pre-Defined Sampling Indices

The goal of the fast implementation is to generate a sequenceof sampling indicesj1, . . . , jk by exploiting{bsj}.
To this end, we first compute the parameterτ using the bisection method:

tau = bisection_method(bs, xi, n_s);

where the limitns is the number of non-zero{bsj}. The computed parameterτ determines the sampling pattern
{pj}:

pj =

{

bsj τ, bsj ≥ 1/τ,

1, bsj < 1/τ.

The sampling pattern thus returns a sequence of indices for denoising:

for j=1:n_s

4

if (rand(1)<p(j))
I(j) = 1;

end
end

Similar to the uniform sampling case, the random indices generated by the above procedure are reused.

B. Comparisons

The performance of the spatially approximated sampling pattern is useful for smallhs. In Figure 1 and Figure 2,
we show two denoising examples of using the oracle sampling pattern, the uniform sampling pattern, and the
spatially approximated sampling pattern. The algorithm isimplemented on MATLAB/C++ (.mex), and supports
multi-core processing. The run time shown in the figures are recorded based on a 4-CPU 3.5GHz PC.

(a) Oracle sampling (b) Uniform sampling (c) Spatially approx. sampling
1.07 sec, 31.78 dB 0.37 sec, 28.58 dB 0.40 sec, 31.47 dB

Fig. 1: House(256 × 256). Noise level isσ = 20/255. Search radius= 21 × 21. Parameters arehr = 20/255,
hs = 10/3, ρ = 10. Patch size= 5× 5. Sampling Ratioξ = 0.1.

(a) Oracle sampling (b) Uniform sampling (c) Spatially approx. sampling
3.58 sec, 29.14 dB 2.02 sec, 27.68 dB 2.53 sec, 29.10 dB

Fig. 2: Man (512 × 512). Noise level isσ = 20/255. Search radius= 21 × 21. Parameters arehr = 20/255,
hs = 10/3, ρ = 10. Patch size= 5× 5. Sampling Ratioξ = 0.1.

IV. I MPLEMENTATION OF INTENSITY APPROXIMATED SAMPLING PATTERNS (FOR EXTERNAL DENOISING)

The problem of the spatially approximated sampling patternis that it is not applicable to external denoising,
because patches in external databases do not necessarily have spatial correlations. In this case, the intensity

5

approximated sampling pattern described in Section IV.B.2can be used.
The idea of intensity approximated sampling is to realize that

wj ≤ e−(xT
j s−y

T
s)2 = brj ,

wheres = Λ1/(
√
2hr‖1‖Λ). (See Section IV.B.2 for details.) The quantitiesxT

j s and yTs can be effectively
computed by projectingxj (andy) onto the one-dimensional space spanned bys. If {xj} are patches collected
from an image, thenxT

j s can be computed through convolution [1].
An implementation concern about the projection is that since the number ofwj (i.e., n) is large for external

denoising, it will be inefficient to compute projectionsxT
j s andyTs for all j = 1, . . . , n. In this section, we present

a fast method that implements the intensity approximated sampling pattern without computing all projections.

A. Overview

The overall idea of the method is to use a two-stage importance sampling procedure [2]. The motivation is
that if sampling a probability distributionpj (which is brj in our problem) is difficult, we can first sample an
easy-to-compute distributionrj such that

pj ≤ rj , (5)

and re-sample the already picked samples according to the probability pj

rj
. It can be justified by seeing that for a

Bernoulli random variableIj, the probability of gettingIj = 1 is

pj = rj ·
pj
rj
. (6)

Clearly, the critical point is thatrj must be an upper bound ofpj for all j. Therefore, in the following we discuss
a procedure to find a valid and efficient upper boundrj .

B. Quantization of{xj}
For notational simplicity we define

xj = xT
j s, and y = yTs

as the projected signals. Then, we quantize the sequence{xj}nj=1 into aq-bin histogram with binsB1, . . . ,Bq. Each
bin Bt (t = 1, . . . , q) contains a lower boundary and an upper boundary,lt andut, respectively. In other words,

Bt
def
={j | lt ≤ xj ≤ ut}, (7)

for t = 1, . . . , q. To illustrate this idea pictorially, in Figure 3 we show a sorted sequence{xj}. The dotted horizontal
lines are the bin boundaries. In this plot, there areq = 16 bins.

Note that the quantization is independent of the denoising process. Therefore, it can be executed off-line when
preparing the dataset.

C. Quantization of{brj}
Our next step is to determine an upper boundrj of pj using{Bt}qt=1. First, We determine the binBt0 that covers

the pointy:
lt0 ≤ y ≤ ut0 ,

by sweeping throught0 = 1, . . . , q. The motivation is that we wantBt0 to contain indices that are potentially the
closest toy.

Then, for allj ∈ {1, . . . , n}, we define the upper bound

rj =











e−(y−ut)2 , t ∈ {1, . . . , t0 − 1}, andj ∈ Bt,

1, j ∈ Bt0 ,

e−(y−lt)2 , t ∈ {t0 + 1, . . . , q}, andj ∈ Bt.

(8)

It follows that
brj ≤ rj, (9)

6

0 2 4 6 8 10 12 14

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
{xj}

n
j=1

Fig. 3: Illustration of the quantization process. The datasetX used in this example containsn = 1.26×106 samples.
The blue line is the sequence{xj}nj=1 (sorted). The black dotted lines are the quantization boundaries. The red
solid line isy.

as illustrated in Figure 4.

0 2 4 6 8 10 12 14

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
{br

j}
n
j=1

Fig. 4: Illustration of the quantization ofbrj . The blue solid line is{brj}nj=1. The red solid line is the upper bound
rj defined by (8).

D. Drawing Samples

Oncerj is defined, the two-stage sampling procedure can be described as follows. We computeτ for the sequence
{rj} to determine a probability distribution

rj = rjτ. (10)

Becauserj is piecewise constant,rj is also piecewise constant. Therefore, drawing samples according to rj is
equivalent to drawinguniformly random samples at a probabilityrj. Thus, the fast implementation presented in
Section II.B above can be used.

Sincerj is an upper bound ofbrj , the number of samples collected at the Stage-1 sampling is guaranteed to be
more thannξ. However, an excessively large number of samples is undesirable as it requires more computation for
Stage-2. In order to control the number of samples, we can choose an appropriate number of quantization levelsq.
In our experiment, we find thatq = 8 to q = 64 is sufficient for most cases.

7

In the Stage-2 sampling, we compute the weightbrj

brj = e−(xj−y)2 , (11)

for all j’s that are picked in Stage-1. Then we define the probability

pj = brjτ
′, (12)

by computing an appropriateτ ′. Finally, we pick the weights at a probability

pj/rj =
brjτ

′

rjτ
.

V. A DDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional numerical results forSection V of the main article. The 10 testing images
are shown in Figure 5.

Fig. 5: Ten “standard” testing images for experiments.

Tables I and II are the extended version of the table in the main article. Table I shows the results when the window
size is21× 21 and the patch size is5× 5, whereas II shows the results when the window size is35× 35 and the
patch size is9×9. In the extended tables, we show the PSNR values of using boththe uniform sampling pattern and
the spatially approximated sampling pattern. It is evidentthat the spatially approximated sampling pattern produces
significantly higher PSNR than the uniform sampling pattern, e.g., 32.14dB (approx.) versus 30.47dB (uniform) for
Barbara at ξ = 0.05 (Table I). It is also indicative to see that when the spatial search window increases,i.e., hs
increases, the spatially approximated sampling pattern has a small advantage over the uniform sampling pattern.
For example, the gain ofBarbara at ξ = 0.05 for the case of35× 35 search window is 0.36dB, whereas the gain
is 1.67dB for the case of21 × 21 search window.

In Figure 6, we show a visual comparison between MCNLM, NLM [3], GKD [4] and AM [5]. In this experiment,
we considered the imageMan (512× 512) corrupted with noise of standard deviationσ = 30/255. To denoise the
image, we set search window size as21× 21, and patch size as5× 5. The sampling pattern used is the spatially
approximated sampling pattern.

REFERENCES

[1] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via nonlocal means of similar neighborhoods,”IEEE Signal Process.
Lett., vol. 12, no. 12, pp. 839–842, Dec. 2005.

[2] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
[3] A. Buades, B. Coll, and J. Morel, “Denoising image sequences does not require motion estimation,” inProc. IEEE Conf. Advanced

Video and Signal Based Surveillance (AVSS), Sep. 2005, pp. 70–74.
[4] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “GaussianKD-trees for fast high-dimensional filtering,” inProc. of ACM SIGGRAPH,

2009, Article No. 21.
[5] E. Gastal and M. Oliveira, “Adaptive manifolds for real-time high-dimensional filtering,”ACM Trans. Graphics, vol. 31, no. 4, pp.

33:1–33:13, 2012.

8

TABLE I: Single image denoising by MCNLM, using the spatially approximated sampling pattern. The case when
ξ = 1 is equivalent to the standard NLM [3]. GKD refers to [4]. AM refers to [5]. The figures are PSNR values
(dB). Window size is21× 21. Patch size is5× 5.

ξ 0.05 0.1 0.2 0.5 1 GKD AM 0.05 0.1 0.2 0.5 1 GKD AM
σ Sampling Baboon512× 512 Barbara 512 × 512

10 approx. 30.74 31.14 31.57 31.63 31.63 31.17 28.9132.14 32.65 33.04 33.20 33.20 32.72 30.48
uniform 29.51 29.95 30.45 31.12 30.47 31.26 32.10 32.87

20 approx. 26.73 27.08 27.22 27.29 27.29 26.67 25.7828.19 28.66 29.06 29.22 29.23 28.40 26.88
uniform 25.03 26.27 26.95 27.29 26.01 27.27 28.32 29.11

30 approx. 24.43 24.77 24.97 25.08 25.08 24.58 24.2725.84 26.38 26.68 26.85 26.85 25.91 24.92
uniform 22.40 23.85 24.89 25.08 23.06 24.95 25.98 26.70

40 approx. 23.24 23.56 23.80 23.92 23.93 23.28 23.3824.13 24.71 25.06 25.23 25.24 24.29 23.75
uniform 21.09 22.61 23.44 23.92 21.94 23.24 24.45 25.11

50 approx. 22.05 22.63 22.99 23.12 23.12 22.24 22.6622.77 23.49 23.91 24.07 24.07 23.08 22.95
uniform 19.42 21.43 22.44 22.91 20.38 22.06 23.18 23.88

σ Sampling Boat 512× 512 Bridge 512 × 512

10 approx. 32.20 32.62 32.85 32.93 32.93 32.54 30.9229.52 29.27 29.05 29.08 29.08 29.64 28.49
uniform 30.47 31.42 32.24 32.70 29.05 29.29 29.63 29.51

20 approx. 28.56 29.26 29.57 29.70 29.70 28.69 27.9925.46 25.36 25.36 25.41 25.41 25.72 25.40
uniform 26.16 27.67 28.74 29.40 24.59 25.33 25.73 25.65

30 approx. 26.38 27.15 27.49 27.67 27.66 26.47 26.1123.64 23.74 23.86 23.92 23.92 23.85 23.74
uniform 23.66 25.53 26.60 27.38 22.13 23.41 23.93 23.95

40 approx. 24.88 25.69 26.02 26.21 26.21 24.90 24.8322.28 22.66 22.83 22.92 22.92 22.67 22.65
uniform 21.84 23.73 25.03 25.97 20.78 21.88 22.62 22.93

50 approx. 23.46 24.33 24.85 25.05 25.05 23.66 23.8621.21 21.67 21.90 22.00 22.01 21.73 21.82
uniform 20.28 22.50 23.76 24.74 19.57 20.75 21.70 21.94

σ Sampling Couple512× 512 Hill 256× 256

10 approx. 31.98 32.4 32.62 32.72 32.72 32.40 30.8430.54 30.51 30.44 30.49 30.49 30.89 30.12
uniform 30.32 31.35 31.93 32.43 29.82 30.40 30.73 30.75

20 approx. 28.21 28.55 28.78 28.88 28.88 28.19 27.5726.95 27.14 27.17 27.26 27.26 27.14 26.95
uniform 26.31 27.35 28.41 28.83 25.68 26.59 27.18 27.36

30 approx. 25.80 26.42 26.69 26.81 26.81 25.97 25.7625.13 25.46 25.64 25.75 25.75 25.28 25.34
uniform 23.61 25.00 26.14 26.69 23.28 24.59 25.39 25.77

40 approx. 24.21 25.03 25.38 25.54 25.54 24.52 24.5623.76 24.38 24.66 24.81 24.82 24.14 24.37
uniform 21.58 23.54 24.62 25.35 21.85 23.15 24.10 24.57

50 approx. 23.14 23.93 24.42 24.59 24.59 23.39 23.7222.83 23.46 23.87 24.02 24.02 23.10 23.57
uniform 20.37 22.12 23.47 24.33 20.41 21.97 23.11 23.75

σ Sampling House256 × 256 Lena512× 512

10 approx. 34.07 34.76 35.36 35.50 35.50 34.51 33.0734.69 35.48 36.02 36.15 36.15 34.90 34.04
uniform 31.65 32.89 33.90 34.95 32.07 33.21 34.71 35.72

20 approx. 30.52 31.45 32.33 32.53 32.54 30.41 29.6230.82 31.88 32.44 32.64 32.65 30.91 30.47
uniform 26.98 28.67 30.42 31.87 27.70 29.44 30.97 32.20

30 approx. 27.89 29.06 29.81 30.04 30.04 27.81 27.2728.49 29.64 30.23 30.50 30.50 28.52 28.44
uniform 23.91 25.82 27.96 29.51 24.63 26.96 28.71 29.96

40 approx. 26.12 27.21 27.92 28.20 28.20 26.04 25.7026.53 27.73 28.47 28.76 28.76 26.72 26.97
uniform 21.57 24.20 26.23 27.67 22.80 24.89 26.78 28.19

50 approx. 24.70 25.86 26.66 26.98 26.99 24.76 24.7925.16 26.29 27.03 27.34 27.35 25.29 25.81
uniform 20.87 22.89 24.92 26.37 21.29 23.39 25.33 26.75

σ Sampling Man 512 × 512 Pepper512 × 512

10 approx. 32.32 32.58 32.72 32.79 32.79 32.56 31.4932.78 33.49 33.85 33.94 33.95 33.35 31.63
uniform 30.85 31.57 32.39 32.71 30.76 31.73 32.52 33.53

20 approx. 28.56 29.13 29.37 29.49 29.49 28.78 28.3728.99 29.87 30.32 30.46 30.46 29.38 28.43
uniform 26.60 27.61 28.74 29.37 25.75 27.55 28.72 30.11

30 approx. 26.68 27.26 27.69 27.85 27.85 26.74 26.6226.48 27.33 27.82 27.98 27.98 26.81 25.88
uniform 23.89 25.58 26.95 27.67 23.32 25.18 26.76 27.68

40 approx. 25.12 25.94 26.45 26.65 26.66 25.27 25.3924.68 25.61 26.09 26.29 26.29 25.01 24.25
uniform 21.87 23.89 25.38 26.37 21.58 23.56 24.94 25.95

50 approx. 23.91 24.92 25.48 25.71 25.72 24.13 24.5223.24 23.91 24.41 24.61 24.61 23.49 23.00
uniform 20.75 22.66 24.24 25.36 19.99 22.04 23.42 24.29

9

TABLE II: Single image denoising by MCNLM, using the spatially approximated sampling pattern. The case when
ξ = 1 is equivalent to the standard NLM [3]. GKD refers to [4]. AM refers to [5]. The figures are PSNR values
(dB). Window size is35× 35. Patch size is9× 9.

ξ 0.05 0.1 0.2 0.5 1 GKD AM 0.05 0.1 0.2 0.5 1 GKD AM
σ Sampling Baboon512× 512 Barbara 512 × 512

10 approx. 30.02 30.45 30.90 30.91 30.91 30.79 27.8630.38 30.32 30.30 30.34 30.35 32.67 29.41
uniform 29.11 29.55 29.93 30.44 30.02 30.30 30.45 30.49

20 approx. 26.51 26.8 27.01 27.03 27.03 26.23 24.9127.01 27.23 27.29 27.33 27.33 28.06 26.04
uniform 24.72 25.72 26.43 26.75 26.01 26.55 27.15 27.26

30 approx. 24.52 24.68 24.68 24.73 24.73 23.90 23.4525.55 25.86 25.94 25.99 25.99 25.60 24.13
uniform 22.88 24.04 24.64 24.79 24.13 25.02 25.59 25.94

40 approx. 23.40 23.41 23.46 23.51 23.52 22.57 22.6624.53 24.75 24.94 24.99 25.00 24.02 23.03
uniform 22.07 23.02 23.47 23.47 22.94 24.01 24.64 24.89

50 approx. 22.39 22.66 22.69 22.74 22.74 21.71 22.1423.55 23.85 24.01 24.08 24.08 22.86 22.28
uniform 21.33 22.30 22.63 22.69 22.01 23.09 23.65 24.00

σ Sampling Boat 512× 512 Bridge 512 × 512

10 approx. 31.69 32.14 32.41 32.43 32.43 32.16 29.5129.16 29.11 28.98 28.98 28.98 29.44 27.38
uniform 30.37 31.08 31.42 32.00 28.69 29.01 29.10 29.21

20 approx. 28.57 29.16 29.47 29.52 29.52 28.21 26.8825.30 25.23 25.27 25.29 25.29 25.13 24.43
uniform 26.38 27.64 28.43 29.17 24.16 24.84 25.14 25.30

30 approx. 26.89 27.30 27.54 27.59 27.59 25.83 25.0523.64 23.71 23.75 23.77 23.77 23.26 22.69
uniform 24.70 25.82 26.84 27.34 22.44 23.24 23.64 23.73

40 approx. 25.55 25.98 26.13 26.21 26.21 24.26 23.9022.45 22.58 22.64 22.67 22.68 21.97 21.65
uniform 23.30 24.77 25.46 26.12 21.48 22.17 22.50 22.69

50 approx. 24.32 24.75 24.92 25.01 25.01 23.11 23.0821.68 21.77 21.86 21.90 21.90 21.16 20.97
uniform 22.16 23.64 24.54 24.93 20.64 21.39 21.79 21.82

σ Sampling Couple512× 512 Hill 256× 256

10 approx. 31.72 32.22 32.51 32.54 32.54 32.17 29.4530.08 30.15 30.08 30.10 30.10 30.59 29.07
uniform 30.30 30.90 31.57 32.19 29.41 29.91 30.16 30.26

20 approx. 28.41 28.80 29.08 29.12 29.12 27.70 26.4426.88 27.06 27.03 27.05 27.05 26.51 25.90
uniform 26.20 27.30 28.19 28.90 25.26 26.14 26.79 27.12

30 approx. 26.39 26.69 26.87 26.92 26.92 25.34 24.7225.34 25.50 25.59 25.62 25.62 24.72 24.45
uniform 24.26 25.38 26.36 26.90 23.79 24.82 25.33 25.66

40 approx. 24.95 25.31 25.45 25.51 25.51 23.88 23.6924.26 24.44 24.58 24.62 24.62 23.48 23.52
uniform 23.31 24.40 25.08 25.44 22.74 23.68 24.26 24.55

50 approx. 23.82 24.17 24.34 24.41 24.41 22.88 22.9823.20 23.51 23.62 23.68 23.68 22.58 22.88
uniform 22.20 23.32 24.03 24.37 21.81 22.85 23.35 23.67

σ Sampling House256 × 256 Lena512× 512

10 approx. 33.57 34.30 34.69 34.75 34.75 34.27 31.4534.70 35.54 35.92 35.97 35.97 34.57 32.86
uniform 32.07 32.79 33.51 34.22 32.48 33.37 34.34 35.32

20 approx. 30.66 31.80 32.59 32.69 32.69 30.10 28.1931.73 32.41 32.85 32.94 32.94 30.46 29.40
uniform 27.90 29.16 30.28 31.87 28.81 30.19 31.52 32.55

30 approx. 28.88 30.04 30.66 30.79 30.79 27.32 26.0129.65 30.22 30.59 30.70 30.70 28.07 27.43
uniform 25.26 27.26 28.75 30.11 26.71 28.53 29.62 30.42

40 approx. 27.28 28.19 28.63 28.74 28.74 25.49 24.5227.70 28.34 28.70 28.81 28.82 26.41 26.13
uniform 23.92 25.80 27.30 28.41 25.16 26.84 27.90 28.58

50 approx. 26.08 26.80 27.16 27.32 27.33 24.22 23.7226.31 26.89 27.21 27.34 27.34 25.17 25.25
uniform 23.06 25.03 26.14 27.05 23.84 25.43 26.49 27.08

σ Sampling Man 512 × 512 Pepper512 × 512

10 approx. 31.73 32.04 32.32 32.34 32.34 32.14 30.2532.11 32.80 33.28 33.30 33.30 32.99 29.66
uniform 30.30 30.92 31.42 32.08 30.27 30.69 31.59 32.60

20 approx. 28.50 28.89 29.17 29.21 29.21 28.16 27.2328.78 29.64 30.16 30.21 30.21 28.70 26.79
uniform 26.63 27.67 28.38 29.04 25.84 27.03 28.12 29.44

30 approx. 26.85 27.36 27.51 27.56 27.56 26.06 25.5226.84 27.52 27.88 27.94 27.94 25.99 24.29
uniform 24.71 26.09 26.89 27.45 23.80 25.21 26.51 27.52

40 approx. 25.81 26.07 26.30 26.37 26.37 24.66 24.4325.26 25.81 26.15 26.21 26.21 24.35 22.74
uniform 23.67 24.97 25.78 26.26 22.56 23.95 25.18 25.95

50 approx. 24.74 25.12 25.37 25.45 25.45 23.59 23.7323.97 24.43 24.59 24.65 24.66 22.93 21.56
uniform 22.69 23.98 24.89 25.27 21.36 23.03 23.85 24.50

10

(a) noisy, 18.75dB (b) ξ = 0.05, 26.68dB (c) ξ = 0.1, 27.69dB

(d) ξ = 1, NLM [3], 27.85dB (e) GKD [4], 26.74dB (f) AM [5], 26.62dB

Fig. 6: MCNLM on Man (512× 512). Noise level isσ = 30/255. The search window has a finite size of21× 21.
Patch size is5× 5. Sampling pattern: spatially approximated sampling pattern.

	I Introduction
	I-A Background and Motivation
	I-B Related Work
	I-C Contributions

	II Monte Carlo Non-local Means
	II-A The Sampling Process
	II-B The MCNLM Algorithm

	III Performance Analysis
	III-A Large Deviations Bounds
	III-B General Error Probability Bound for MCNLM
	III-C Special Case: Uniform Sampling Patterns

	IV Optimal Sampling Patterns
	IV-A Design Formulation
	IV-B Optimal Sampling Patterns
	IV-B1 Bounds from spatial information
	IV-B2 Bounds from intensity information

	V Experimental Results
	V-A Internal Denoising
	V-B External Dictionary-based Image Denoising

	VI Conclusion
	Appendix
	A Proof of Theorem ??
	B Proof of Proposition ??
	C Proof of Proposition ??
	D Proof of Theorem ??
	E Proof of Propositon ??

	References
	I Implementation of Theorem 2 (General Sampling Case)
	I-A The Bisection Method
	I-B Cost Reduction by Quantization

	II Implementation of Uniform Sampling Patterns
	II-A Naive Implementation
	II-B Fast Implementation

	III Implementation of Spatially Approximated Sampling Patterns (for Internal Denoising)
	III-A Pre-Defined Sampling Indices
	III-B Comparisons

	IV Implementation of Intensity Approximated Sampling Patterns (for External Denoising)
	IV-A Overview
	IV-B Quantization of {xj}
	IV-C Quantization of {bjr}
	IV-D Drawing Samples

	V Additional Experimental Results
	References

