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Abstract

Exchangeable graph models (ExGM) subsume a
number of popular network models. The math-
ematical object that characterizes an ExXGM is
termed agraphon Finding scalable estimators of
graphons, provably consistent, remains an open
issue. In this paper, we propose a histogram es-
timator of a graphon that is provably consistent
and numerically efficient. The proposed estima-
tor is based on a sorting-and-smoothing (SAS)
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1.1. Non-parametric representation of a graph

In this paper, we consider a non-parametric perspective
of modeling network data using the exchangeable graph
models (ExGM). The notion of exchangeability is due to
de Finetti, later generalized by Aldoud981), Hoover
(1979 and KallenbergZ005. A connection between pop-
ular parametric models and exchangeable graph models has
been recently madédoff, 2008 Bickel & Chen 2009.

The non-parametric(limit) object that characterizes an
ExXGM is often termed @raphon As we will define for-

mally in Section 2, a graphon iadimensional continuous
function on|0, 1] — [0, 1] that generates random graphs.
Since a graphon is a model for network data, any model
based inference, prediction and hypothesis testing can be
performed using a graphomlfyd et al, 2019. For in-
stance, when comparing networks that span different sam-
ple sizes, graphons provide a natural solution: If two sam-
ples of a network are generated from the same ExGM, they
should have the same graphon, and hence, comparing two
networks can be done by comparing two graphons.

growing research area in statistics and machine learningased on 2D histograms. The challenge of the problem is
over the past decad&bldenberg et al.2009 Kolaczyk  wyo-fold. First, since graphons are unique up to measure-
2009 Airoldietal., 201]). Among many models, the preserving transformations, it is important to identif th
parametricfamilies have been the major focus in the lit- congitions under which graphons can be uniquely recov-
erature because of their simplicity and analytic tractabil greq (e.g., se¥ang et al, 2013. Second, it is desirable for

ity. Popular examples of these parametric models in graphon estimator to be provably consistent.
clude the exponential random graph modélaéserman

2005 Hunter & Handcock 2006, the stochastic block-
model (Nowicki & Snijders 2001, the mixed mem-
bership model Airoldi etal., 2008, the latent space Previous methods of graphon estimation algorithms can be
model (Hoff et al, 2002, the graphlet Azari & Airoldi,  classified into two categories as follows.

2012 and many others. However, as the complexities ofT
the networks increase, it becomes increasingly more chah
lenging to fit the data using a particular parametric model.

algorithm, which first sorts the empirical degree
of a graph, then smooths the sorted graph using
total variation minimization. The consistency of
the SAS algorithm is proved by leveraging spar-
sity concepts from compressed sensing.

1. Introduction

1.2. Related work

he first category is to perform graphon estimation con-
itioned on the node arrangement. When the node ar-
rangement is conditioned on, we can bypass the dif-
ficult problem of identifying a canonical representation
Proceedings of thes1** International Conference on Machine Of the graphon. For example, the universal singular
Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- value thresholding Chatterje¢ and the matrix comple-
right 2014 by the author(s). tion (Keshavan et al2010 seek low-rank structures of the
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adjacency matrix, whereas the stochastic blockmodel ap2. Graphons and identifiability
proximation @Airoldi et al., 2013 Chan et al.2013 groups
similar nodes to form community structures. However,
since the estimations are conditioned on the node arrang
ment, the resulting graphons are not canonical.

The purpose of this section is to introduce the concepts of a
g_raphon and discuss the conditions under which a graphon
can be uniquely identified.

Different from the first category, the second category of2 1. pefinition of a graphon
methods estimateanonicalgraphons. In Bickel et al,
2011), the authors proposed a method of moments whichVe let G be the adjacency matrix of a graph with the
is theoretically consistent for that purpose. However,(i,j)th entry denoted by7;; € {0,1}. For an infinitely
the method requires knowledge all wheels of the net- Sized grapiG:, we say thats is exchangeable if it satisfies
work, and hence is computationally infeasible. Choi etthe following definition.
al. (Choietal, 2012 Choi & Wolfe) attempted the prob- Definition 1. An infinite random arrayG = (Gi;)i jen iS
lem by a clustering approach, but they stopped at the clusexchangeable if
tering step without actually estimating the graphon. In
(Lloyd et al, 2012, Lloyd et al. considered a Bayesian ap- N4 o

. (Glj) - (G (z)o’(]))v (1)
proach to estimate a graphon. However, the MCMC sam-
pling process of the algorithm is computationally inteesiv o, any permutation.
Moreover, there is no consistency guarantee of the esti-

mator. More recently, other groups have begun explorin@efinition 1 is also known as thint exchangeability, be-

alternative approache#plfe & Olhede Tang et al.2013  cause the permutation is applied to both rows and columns
Latouche & Robin 2013 Olhede & Wolfg. Yet, none of  simultaneously@rbanz & Roy.

these methods ateoth consistent and computationally ef-

ficient. We refer to all random graph models that satisfy exchange-

ability as exchangeable graph models (ExGM). A use-
ful characterization of an EXGM is given by the Aldous-
Hoover theorem.

In this paper, we propose a histogram a}pproach to eStirr_'atféheorem 1 (Aldous-Hoover) An infinite random array
graphons. Our method, called the Sortlng-And-SmoothmgiGij)i,jEN is exchangeable if and only if there is a random

(SAS) algorithm,_ ponsists of two steps. In the first SteP’n?easurablefunctioF . [0,1]* — {0,1} such that
we sort the empirical degrees and rearrange the nodes o

the graph for a canonical ordering. In the second step, we
compute the histogram of the sorted graph and smooth the
histogram by a total variation minimization. Details of the
SAS algorithm are presented in Section 3.

1.3. Contributions

(Gij) £ (F(U:, U;,Uy)), )

where (U;)ien and (Uj;); jen are sequences of i.i.d.
Uniform[0, 1] random variables.

The estimator returned by the SAS algorithm is consistent.

The consistency proof leverages the sparsity concepts fromihe functionF' in Theoreml defines ayraphon
compressed sensing. In particular, we show, in Theoremnyqfinition 2 (Graphon) A graphonuw is a symmetric mea-
3, that if the true graphon satisfies some Lipschitz condiyiaple function - [0,1]2 — [0, 1] such that

tions and has sparse gradients, then the mean squared error

(MSE) of the estimator i®((log n)/n), wheren is the size 1 iU < w(UU))
of the network. Discussion of the consistency is presented FU,U;,U;;) =1 N ©v = (3)
in Section 4. T 0, otherwise,

We test the SAS algorithm on both simulation data and reayhere (U/;),cy and (Uij)ijen are sequences of ii.d.
data (Section 5). The experiment of using the simulationyniform|o, 1] random variables.

data indicates that the SAS algorithm is superior to, both

in terms of estimation quality and speed, several existingequivalently, 8) can be expressed as the following two-
methods. Applying the SAS algorithm to real data, we esstage sampling scheme:

timate graphons of two large-scale social networks and re-

veal some structures. These results provide an alternative U, iid Uniform[0, 1]
way of analyzing large-scale network data. Gy | ULU; ~ Bernoulli(z;(l}i U,)). (4)

Therefore, a finite sized network generated from a graphon
can be regarded as a finite sample drawn accordirg)to (
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2.2. ldentifiability of a graphon

To understand the identifiability issue of a graphon, it is
important to discuss measure preserving transformations.

Definition 3 (Measure Preserving Transformationh
transformationy : [0,1] — [0, 1] is measure-preserving
w.r.t. a measurg if it is measurable, and for al € [0, 1],

(e~ (A)) = p(A). (5)

For example, ifp is a measure preserving transformation

andU ~ Uniform[0, 1], theny(U) is also distributed uni-
formly on [0,1]. Similarly, if ¢ is a measure preserving
transformation, then the graphon

w'(u,v) Ew(p(w), o(v))

defines the same ExGM asbecause there exists a trans-
formation such thaty andw’ are identical.

/

w w

Figure 1.Example of a pair of twin graphonsy andw’ are not
identifiable if we randomly permute their columns and rows.

For example, if we consider andw’ in Figurel, and a
graphonw” (u,v) = 1/2, thenw” is twin-free butg(u) =
g (u) = g"(u), whereg, ¢’ andg” are marginalizations of
w, w’ andw”, respectively.

The identifiability issue of a graphon arises because thdhe necessary and sufficient condition for a graphon to

converse of Definitior8 is not true in general: liv and

be identifiable is to require strict monotonicity of degrees

w’ define the same ExGM, there may not exist a mea{Bickel & Chen 2009 Yang et al, 2013.

sure preserving transformatiof such thatw(u,v) =
w' (¢’ (u),¢’'(v)) (Diaconis & Janson2008. For exam-
ple, the functionsw(u,v) = wv and w'(u,v) (2u
mod 1)(2v mod 1) define the same ExGM, but there is
no’ such thato(u,v) = w' (¢’ (u), ' (v)).

A formal statement of the above observation is given by the

following theorem, which says that we need to findar
of measure-preserving transformatianandy’ in order to
show thatw is unique.

Theorem 2((Diaconis & Jansoj2008, Thm. 7.1) Letw
andw’ be two graphons. Thein(w, w’) = 0 if and only if
there exist measure-preserving transformatigrand ' :
[0,1] — [0, 1] such that

w(ep(u),o(v) = w'(¢'(u),¢'(v)), (6)
where the distancén(w,w’) is the cut-norm defined by
(Lovasz & Szegedy009§.

A consequence of TheorePris the notion of twin-free:

Definition 4 (Twin-free Borgs et al.2010). A graphonw
is calledtwin-freeif for anyw; andus € [0, 1], w(uy,v) #
w(ug,v) for almost allv € [0, 1].

Essentially, the twin-free condition excludes the case

umn permutations. For example, the pair shown in Fidure
are twin, and hence they are not identifiable.

Condition 1 (Strict Monotonicity of Degree) A graphon
w has a unique representation if and only if there exists
w™ such that

-1
gcan (u) dZEf/ wcan (u’ U)dv

0
is strictly increasing (or decreasing). The graphoff is
called the canonical representation of

It is evident that the strict monotonicity condition im-
plies twin-free, but not vice versa. In addition, if we let
U ~ Uniform[0, 1], then strict monotonicity implies that
g¢™(U) is absolutely continuous.

In the rest of the paper we assume that all graphons of in-
terests satisfy the strict monotonicity condition. Foraiot
tional simplicity, we drop the superscrig}<*”, and denote

w as the canonical representation.

3. The sorting-and-smoothing algorithm
3.1. Overview

The intuition of the proposed SAS algorithm is based on the

where two graphons can be made identical by row and co?OHOWIng idea: As the size of a graph grows, the (sorted)

empirical degree should converge to the ideal (canonical)
degree distribution. Therefore, if we can sort the empiirica
degree of a given graph, then by applying suitable smooth-

The twin-free condition is necessary but not sufficienting algorithms we can find an estimate of the canonical
for identifying a unique graphon when we marginalize agraphon.

graphon Qrbanz & Roy:

g(u)d:ef/ol w(u,v)d.

Following this intuition, we propose a two-stage algorithm
In the first stage, we sort the rows and columngofo
obtain a sorted grapH according to the empirical degree.
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Figure 2.lllustration of the SAS algorithm. Given an observed gréphwe first sortGG using the empirical degrees to g@t Then, a
local histogram¥{ is computed and a total variation minimization is used tedaine an estimata*’.

In the second stage, we compute a histogﬁamf A, and proximation defines
apply a total variation minimization to find an estimai&'.

Anillustration of the SAS algorithm is shown in Figu2e N 1 I
Hij = ) Z Z Aihtin,jhtin s (10)
3.2. Stage 1: Sorting n=tn=t
The purpose of the sorting step is to rearrange the observét'd correspondingly
graphG so that the rearranged empirical degrees are mono- -
. . . . « 1
tonically increasing. To this end, we compute the empirical Hij = — Z Z Aihtiy bt (11)
degree h* = =
d; dzerz Gij, (7)  for some parametér > 0 denoting the size of each block.
j=1
_ . ’ Equations 10) and (L1) indicate that the stochastic block-
and define a permutatiansuch thatlz1) < ... < ds(»).  model approximationgH;;) and(H;;) are the histograms
Then, we define a rearranged graph of (A;;) and (4;;), respectively. Since all function val-
~ ues in the same block are identical, the effective degrees of
Aij = G5()5(), (®)  freedom in(H,;) and (H;;) arek x k instead ofn x n,

) o wherek = |n/h] is the number of blocks.
where an example is shown in Figute
Total Variation Minimization

It is important to note that since the permutatidiis de-  \yhjje the network histogram estimation step is consistent,

fined by the empirical degrees, it could be different fromy, o decay rate of the error can be further improved by in-
the true permutation that defines the canonical graphon a?Foducing a total variation minimization step.

cording to the node arrangement. To differentiate the em-

pirical permutatiors and the true permutation, we define The total variation minimization step is based on a sparsity
o as the oracle permutation that sorts the node laf@éls ~ assumption of the true graphan Analogous to natural
such thatl/, (1) < ... < Uy(,. Correspondingly, we de- images, we assume that graphonssparsein the gradi-

fine the oracle ordered graph as ents. Discretizing the continuous graphorinto ak x k
grid, the assumption suggests thaheeds to have a small
Aij = Go(i)o(h)- (9) total variation
k k ow 2 ow )
.O. . i _ ow ow ’ 12
3.3. Stage 2: Smoothing [wllzv ;; (ax)ij + (8y )ij (12)

Network Histogram Estimation
Once the graph is rearranged to have monotonically inyhere2« and 22 denote the horizontal and vertical finite
creasing degrees, the graphon estimation problem becomggterence ofw, fyespectively.

finding a smooth surface that best fit4;;). To this end, ) o )

we consider a simplified version of the stochastic block-Using the total variation concept, the refinement step can
model approximationAiroldi et al., 2013 which approx- D€ posed as the following minimization problem:

imates the continuous graphon using a piecewise constant

sty RTPN ; ~ 7
function. More precisely, the stochastic blockmodel ap- “° — arg?mm [7llTv, subject tdjr— Hl]2 <e, (13)
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where]|- || is the matrix Frobenius norm, aad> Oisapa- Lemma 1 (Piecewise Constant Function Approximation)
rameter that controls the fidelity between the total vasiati Let w € [0,1]"*" be the true graphon and let/* €
solution7 and the histograni/. To solve the minimization [0, 1]*** be the histogram approximation defined(it6).
problem (3), we use the alternating direction method of Then,
multipliers (ADMM) (Chan et al.2011).

/

C
[H” @ Lpxn — w3 < 72 (17)

We remark that the size @'’ is k x k. To ensure that the _ _
Vy&hereC” is a constant independent of

final estimate have the same size as the true graphon,

define the final estimate as Therefore, it remains to find an upper bound|@f* —

W% = D @ Lpuh, (14)  H"||3. (The last expectation irl6) can be bounded using
Cauchy’s inequality.) In the following subsections, we-dis
uss how each step of the SAS algorithm contributes to this
pper bound.

wherel,, . ;, denotes an all 1 matrix of siZzex i, and® de-
notes the Kronecker product operator. Therefore, the finaE
estimateiv..; has a sizer x n.
) 4.1. Consistency of empirical degree sorting
3.4. Complexity

) ) To establish the consistency of the empirical degree gprtin
The (_:om_plexny of the SAS glgonthm can be a_malyzed byWe must first establish the relationship between the oracle
cp_r15|der|ng eac_h s_tep_lnd|V|duaIIy._ I_n computing the em'permutatior(o(i)) and the oracle degrée,;)).
pirical degree distributionQ(n) additions are used. The _ .
sorting procedure, in general, requiré¥n logn) com- Lemma 2. Let o(i) be the oracle permutaltlon such that
parisons. Therefore, the complexity for sorting is aboutUs(1) < Us(2) < - < Us(ny- Letg(u) = [ w(u,v)dv,
O(nlogn) multiplications plus®(n) additions. Next, for ~and assume that there exists constants> 0 and L; > 0
the histogram computation, computing each value of théuch that
bin requires®(h?) additions, and there ar¢ = (n/h)?
bins. Thus a t(ota)l o0 (n?) additions are needed(. l/:in)ally, Lolz —yl < lg(z) —g()| < Lalr —yl, ~ (18)
the total variation minimization is solved orkax k array.
Thus, the complexity of the ADMM step ©(k? log k?).
(See Chan et al. 2011 for discussions.) Combing these
results we can show that the overall complexity of the SASIf
algorithm is O(nlogn + k?logk?) multiplications plus

O(n?) additions. o
on
oty = doy| </ == (19)

4. Consistency

forany0 < z < 1and0 < y < 1. Then, the following
result holds.
o@ _ o)

1 logn
< g\ o then

1 _loen
_ _ , L _ with probability at leastl — 8¢ '**7 e
In this section we discuss the statistical consistency ®f th
proposed SAS algorithm. Conversely, if(19) holds with probability at leastl —
——L-logn
Analyzing the consistency of the SAS algorithm is equiva-8€ o , then
lent to determining an upper bound of the error oli o(j)’ ) \/@[ 1 N 1 N 1 ]
MSE dZEf LE |:H,a}est _ wH%] n n n 3L1 3L1L2 LQ ’
n2 (20)
——1 _Joen
= i? (IE [W2|@" — H"|2] + E [ H” @ 1nxn — w||2]  with probability at leastt — 40e =1
n
+2E [(@" — H*)"(H" @ 1pxn — w)] ), (15)  The interpretation of Lemma is as follows. First, 18)
. . o is the two-sided Lipschitz condition, with Lipschitz con-
whereH™ is the histogram approximation af. stantsL, andL,. The Lipschitz condition enforces the de-
L b gree distributiory(u) to be well-behaved so that there is
HY = 3 Z Z Wintiy jhtis - (16)  no abrupt transition for both aljdg—l. Second, the for-
i1=1j1=1 ward statement suggests that if the oracle ordered indices

have bounded differences, then correspondingly the empir-
Before we proceed, we note that the second expectatioical degrees should also have bounded differences. Con-
in (15) is a classical result of approximating a continuousversely, 0) suggests that if we can bound the difference
function by step functions. The bound is given in the fol-in empirical degrees, then the difference in the true posi-
lowing Lemma. tions should also be bounded.
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As an immediate consequence of Lem&awve observe (23), we find a solutiont®” that best fits 23) and has the
that for any fixed;, if we choosej such thair(j) = o(i),  minimum total variation.

then the converse of Lemnzamplies the following. To characterize the solution of the total variation miniaiz

Corollary 1. If ‘dg(i) — d&(i)‘ < 10% holds with prob-  tion problem, we first define the-sparsity of the gradient
of a functionH™.

logn

1
ili _Q, 18L2
ability atleastl —8e ***1 =, then Definition 5. A function H* € [0,1]*** is s-sparse in
. ey gradient if its gradientV H" has at most non-zero en-
o(i) o(i) logn .
— - —| <Oy — tries.
n n

. With this definition, we apply the following result in com-
holds with probability at least — 40e *:¥ | where pressed sensing.

C = 51 + 30; + 1, is a constant independent of Lemma 5 ((Needell & Ward Theorem A) If H = H™ +

n + pwith 2 = E[||n + p||3], then the solutiomw®” of

logn

Therefore, if the errofd, ;) — dz(;| is small, then the er-

ror betweer (i) anda (i) will also be small. @' = argmin|[7rv  subject to |7 — H|z <e,
T

4.2. Consistency of the histogram estimator satisfies the condition

During the histogram estimation step, the error associated @ — HY |, < IVH®Y — (VHY)4|]1 L

with the empirical degree sorting is translated to the error - NG ’

between the empirical histografhand the ideal histogram
H. This is reflected in the following lemma.

Lemma 3 (Bounds on|H — H|). Letw be the ground o R _
truth graphon and assume thatis Lipschitz with constant  LemmaSindicates that the errdii™ — H* || is controlled
L > 0. If H and H are defined according t(11) and (10), by the perturbatiorr and the sparse approximation error

where(-)s denotes the function reconstructed from the
most significant non-zero entries of the argument.

respectively, then [VH®" — (VH")4|l1. Sinces? = E[l|ln + pl3], andn
andp are defined according t@3), ¢ is upper bounded by
=~ k* logn (21) and @2). For the sparse approximation error term, in
_ 21 o M 272:05M _ )
E[l# - Hll < 75 <2 AL > general| VH" — (VH"),||1 # 0 becausdl® is not nec-
) 55 logn essarilys-sparse in gradient. However, in practice, many
+k <4C L T) 5 (21)  real world networks are sparsee( number of edges are

much fewer than number of nodes). Therefore, for practi-
where( is a constant independent of cal consideration it is often reasonable to assumeAftat

is s-sparse in gradientand §& H* — (VH")s||1 = 0.
We also establish the relationship betwéérand the step
approximationf ™. 4.4. Overall consistency
Lemma 4 (Bounds on||H — H"||2). Let H be the step
function approximation of the graphanand letH be the
histogram defined a@d.1). Then,

In summary, the overall consistency is given by the follow-
ing theorem.

Theorem 3(Consistency of SAS algorithm)_etw be the

k4 true graphon with the following properties: (i is Lip-
w2 < 2o
E[| # - H*|2] < n2’ (22) schitz with constanL. > 0; (i) g(u) = folw(u,v)dv is
Lipschitz as defined in Lemn (iii) H" is s-sparse in
4.3. Consistency of total variation smoothing gradient. Then, the MSE of the SAS estimator satisfies
To analyze the total variation minimization step, we first MSE < O logn ’ (24)
observe that n
H=H"+H-H+H— H". (23) and henc&ISE — 0 asn — oo andk/n — 0, wherek is
——— —

M - the number of blocks defined(hl).
Thgrefore, if we cons_ideHw as the desired function to be 5. Experimental results
estimated, and considgrand p as perturbations added to
H"™,thenH can be regarded as a noisy observatioll8f ~ After establishing the theoretical results, we now present
Consequently, by applying total variation minimization to simulation results of the proposed SAS algorithm.
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5.1. Simulations SAS (Proposed) USVT SBA
F

The first experiment considers a number of graphons listed '
in Tablel. The choices of these graphons are made to in-
clude both low rank and high rank graphons, where the rank
is measured numerically usind 800 x 1000 discretization

of the continuous graphons. Among the 10 graphons listed
in Table1, we note that graphon no. @ (u,v) = wv is a (@)1.09 x 107°  (b)8.69 x 107® (c)1.60 x 103
special case of the eigenmodeld(ff, 2008, graphon no. 5 F i

w(u,v) = 1/(1+exp{—10(u?+v?)}) is a variation of the
logistic model presented iltChatterjeg and graphon no. 6

w(u,v) = |u — v| is the latent distance modeti¢ff et al, / .

E
|

Hi

2002. Other graphons are chosen to demonstrate the ro-
bustness of the SAS algorithm.

(d)1.37x 107*  (e)1.24 x 1072 (f) 7.38 x 10~*

[ ID | w(u,v) | rank(w) | Figure 3.Comparisons between the SAS algorithm, the USVT
1 ") 1 algorithm Chatterjeg and the SBA algorithm Airoldi et al.,
2 exp{—(u®7 4 v*7)} 1 2013. Numbers indicate the mean squared error. (a)-(c):
3 1 [ug + 02 4 yl/2 4 vl/g} 2 Graphon 5; (d)-(f): Graphon 10. SAS algorithm uges log n.
4 1 SBA algorithm uses an oraclethat minimizes the MSE. In this
4 2(u+0) 2 example, we set = 1000
5 L 10 bie. -
1+exp{—10(u?+v2)}
6 |u — v 1000
7 1+exp{_(max(u,lv)umin(u,v)g} 1000 Figure3 displays two examples of the estimated graphons.
8 exp{— max(u, v)3/*} 1000 As shown in the figure, we see that while the USVT algo-
9 | exp{—3 (min(u,v) + ul/2 +0¥/2)} 1000 rithm returns a reasonable estimate for graphon no.5 (which
10 log(1 + 0.5 max(u, v)) 1000 has a low rank), it returns a relatively worse estimate for

graphon no. 10 (which has a high rank). Looking at the
Table 1 List of graphons for testing. The rank ofis estimated  SBA algorithm, it is evident that using the oracle binwidth
from 21000 x 1000 discretization of the graphon. h, the average MSE is lower than that of USVT. However,

the SBA algorithm tends to return a graphon with few com-
We compare the SAS algorithm with the universal sin-munities. Thisis notfavorable if the network has non-block

gular value thresholding (USVT) algorithnChatterjep ~ Structures. In contrast, the SAS algorithm returns results

(Airoldi et al,, 2013. These two algorithms are the exist- 9raphons.

ing methods that have provable consistency and are numey Figure4 we show the runtime comparison between the
ically efficient. However, since both of these two methodsgpag algorithm and the USVT algorithm. Both algorithms
do not have a sorting step, we apply the sorting step of thgre implemented on an Intel 3.5GHz machine with 16GB
SAS algorithm prior to running the two algorithms. For the Ram, Windows 7 / MATLAB R7.12.0 platform. The run-

choice of binwidth, we seth = logn for the SAS algo-  ime plot indicates that the SAS algorithm has a signifi-
rithm, and an oraclé that minimizes the MSE for the SBA  cantly lower complexity than the USVT algorithm.

algorithm {.e., using the ground truth).

The results of the experiment are shown in Téhlevhere  5.2. Real data analysis

we report th‘? mean squared error (MSE) of the estimategs an application of the proposed SAS algorithm, we
graphons using th_e SAS algorithm, the USVT algor't.hmconsider the problem of estimating graphons from real-
and the SBA algorithm. To reduce the random ﬂuctuatlon§NOrId networks. For this purpose, we consider the col-
caused by independent reaIi;ations of the rgndom graph?aboration network of arXiv astro,physics (ca-AstroPh)
we average the MSE over 50independent trials. Two CaS€3nd the who-trusts-whom network of Epinions.com (soc-
of graph sizes are considered: = 2.00 ar_1dn = 1000. Epinions1) from Stanford Large Network Dataset Collec-
The results show that t_he SAS algorithm in gen_eral OUIPETion1 The ca-AstroPh network is a symmetric binary graph
forms the USVT algorithm and the SBA algorithm. Av- ., hjgting ofi .8 x 104 nodes and.9 x 10° edges, whereas

eraggd over the 10 testing graphons, we see that the SAg, soc-Epinions-1 network is an unsymmetrical binary
algorithm achieves the lowest MSE among all three meth-

ods. Thttp://www.cise.ufl.edu/research/sparse/matrices/SNA
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n = 200 n = 1000
ID SAS (Proposed) USVTQhatterje@ SBA (Airoldi et al., 2013 SAS (Proposed) USVTGhatterjeg  SBA (Airoldi et al., 2013
1 6.59e-04+ 5.18e-05  1.90e-03- 1.88e-04 2.77e-03 1.60e-04 8.56e-05+ 3.42e-06  3.86e-041.70e-05 9.00e-04- 1.70e-05
2 4.92e-04+ 6.81e-05 2.18e-03 1.95e-04 2.36e-03- 1.97e-04 7.12e-05+ 5.92e-06 4.46e-041.84e-05 1.39e-03- 3.99e-05
3 6.95e-04+ 7.52e-05  3.12e-03- 2.32e-04 5.08e-03- 2.26e-04 9.60e-05+ 5.78e-06  9.69e-042.67e-05 8.66e-04- 1.90e-05
4 6.48e-04+ 5.30e-05 3.51e-03- 1.93e-04 2.77e-03 1.49e-04 7.82e-05+ 5.17e-06 8.83e-042.47e-05 1.43e-03- 2.63e-05
5 9.74e-05+ 2.76e-05  3.15e-03- 8.76e-19 3.13e-03- 3.31e-04 1.09e-05+ 1.66e-06  8.69e-057.03e-06 1.60e-03- 3.45e-05
6 4.29e-02+ 9.27e-05 8.91e-02 1.23e-03 4.37e-0% 1.20e-04 4.19e-02+ 9.58e-06 8.42e-021.70e-04 4.22e-0% 1.42e-05
7 4.81e-04+ 7.50e-05  2.40e-03- 1.77e-04 2.71e-03 2.09e-04 8.48e-05+ 7.47e-06  6.76e-041.81e-05 1.21e-03 3.65e-05
8 9.38e-04+ 1.21e-04 6.27e-03 1.58e-03 1.52e-03 1.52e-04 1.73e-04+ 1.30e-05 1.66e-084.56e-05 6.81e-04- 2.14e-05
9 6.50e-04+ 7.73e-05 2.87e-03 2.32e-04 3.96e-03 3.25e-04 1.02e-04+ 5.15e-06 1.26e-083.01e-05 1.15e-03- 3.44e-05
10 7.67e-04+ 1.01e-04  4.74e-03 6.25e-04 1.13e-03 1.23e-04 1.37e-04+ 1.02e-05  1.24e-083.30e-05 7.38e-04 1.67e-05

| Average | 4.83e-03+ 7.43e-05

1.19e-02- 4.65e-04

6.91e-03- 1.99e-04

| 4.27e-03+ 6.74e-06

9.18e-083.91e-05

5.22e-032.06e-05 |

Table 2.Mean squared error (averagestd. dev.) comparisons between the SAS algorithm, the USY§arithm (Chatterjeg and the
SBA algorithm QAiroldi et al., 2013. MSE is averaged over 50 independent trials.

Run Time (Seconds)

Figure 4.Run time comparison between USVCTHatterjeg and

ca-AstroPh network, the graphon shows close collabora-

T
—O— USVT
.5 ==s=— SAS (proposed)

500

i i
1000 1500

n

2000

the SAS algorithm (averaged over 10 graphons listed in TBble

Figure 5.Estimated graphons for real networks. Left: Collabo-
ration network of arXiv astro physics (ca-AstroPh)= 1.8 x
Right: who-trusts-whom network of Epinions.com (soc-

10%.

Epinionsl)n = 7.5 x 10%.

graph consisting 6f.5x 10* nodes and.1x 10° edges. For

6. Concluding remarks

tions among a group of people concentrated around the
top left corner of the graphon.
1 of small communities along the diagonal.
1 Epinionsl network, the graphon indicates that there are

some influential nodes which consistently interact among

themselves. These can be seen from the repeated patterns
of the graphon.

We remark that or the ca-AstroPh network= 1.8 x 10%)

and the soc-Epinions-1 network & 7.5 x 10%), the esti-
mations are completed in 20 seconds and 170 seconds, re-
spectively, on a PC using an unoptimized MATLAB code.
This provides a strong indication of the scalability of the
SAS algorithm to larger networks.

It also shows a number

For the soc-

The Sorting-And-Smoothing (SAS) algorithm is a consis-

tent and efficient graphon estimation algorithm. The SAS
algorithm consists of two steps. In the first step, the ob-
served graph is rearranged so that the degrees are mono-
tonically increasing. In the second step, a histogram es-
timation and a total variation minimization is applied to
estimate a smooth surface that best fits the observed data.
The SAS algorithm is evaluated on both simulation data
and real network data. Our simulation results indicate that
the SAS algorithm outperforms the universal singular value
thresholding algorithm and the stochastic blockmodel ap-
proximation algorithm. On large-scale real networks, the
SAS algorithm returns consistent graphon estimates.

Code Available at: https://github.com/airoldilab/SAS
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