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ABSTRACT

We consider a non-parametric perspective of analyzing net-
work data. Our goal is to seek a limiting object of a se-
quence of exchangeable random arrays called the graphon.
We propose a numerically efficient algorithm for estimating
graphons and we show that the proposed algorithm yields a
consistent estimate as the size of the graph grows. Prelimi-
nary experiments show that the algorithm is effective in esti-
mating stochastic block-models and continuous graphons.

Index Terms— Network analysis, exchangeable random
graph model, stochastic blockmodel, non-parametric estima-
tion, graphon, graphlet.

1. INTRODUCTION

1.1. Models of Network Data

Network analysis is a rapidly evolving research topic. From
the pioneer work of Erdős to the recent surge of mining data
from large-scale online social networks, the statistical tools
for analyzing networks have been continuously advancing [1].
Neverthelss, these methods share the same common goal -
how do we extract the meaningful but hidden structure from
the data we observed?

Among many statistical methods and stylized models pro-
posed in the literature [2], perhaps the most commonly used
strategy is to seek a parametric model that best describes the
data so that subsequent inferences can be made. Some well-
known examples include, for example, exponential random
graph models [3, 4], stochastic block models [5, 6], mixed
membership stochastic block models [7], latent space models
[8], graphlets [9] and many others [10].

In this paper, we attempt to answer the same question,
but from a non-parametric and frequentists’ perspective. This
non-parametric model is originated from the theory of graph
limits [11, 12] for studying exchangeable random arrays [13].
The theory predicts that every convergent sequence of graphs
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has a limit object, which we call it graphon, that preserves
local and global properties of the graphs in the sequence. The
goal of this paper is to develop new statistical tools to analyze
network data from the graphon model.

1.2. Generating Random Graphs from a Graphon

To have a more precise understanding of a graphon, it is help-
ful to first understand how it generates a random graph.

First, we define a graphon as a measurable function w :
[0, 1]2 → [0, 1]. The input to the graphon is a pair of random
variables (ui, uj) ∈ [0, 1]2 drawn from a uniform distribution,
i.e., ui ∼ Uniform[0, 1], which can be interpreted as random
labels of the nodes in a network. Thus, for a network of n
nodes, there will be a set of n labels {ui}ni=1

.
Conditioned on (ui, uj), the output of the graphon is a

scalar w(ui, uj) ∈ [0, 1], which specifies the (conditional)
probability that the ith node and the jth node are linked given
the labels (ui, uj), i.e.,

Pr
[
G[i, j] = 1

∣∣ui, uj

]
= w(ui, uj) (1)

for i = 1, . . . , n and j = 1, . . . , n, where G[i, j] denotes the
(i, j)th entry of the graph adjacency matrix. A pictorial illus-
tration of the graph generating process is shown in Figure 1.
To elaborate the ideas further, we consider the following two
examples.

Example 1 (Erdős-Rényi Graph). The Erdős-Rényi graph
specifies that an edge linking any two nodes of the graph has
a probability p, identical for all labels (ui, uj). Therefore,
Pr[G[i, j] = 1 |ui, uj ] = p for all i, j. Hence, the graphon is
w(u, v) = p, for all (u, v) ∈ [0, 1]2.

Example 2 (Stochastic Block Models). A finite-class stochas-
tic block model is specified by the inter- and intra- class
probabilities of the nodes. Consider a network of K mem-
bership classes, we partition the unit interval [0, 1] equally
into K sub-intervals I1, . . . , IK , and assign the probability
of linking nodes i and j given the membership classes be
Pr[G[i, j] = 1 |ui ∈ Ik, uj ∈ Il] = pkl, for some constant
pkl, k ∈ {1, . . . ,K} and l ∈ {1, . . . ,K}. Therefore, the
graphon is a piecewise constant function: w(ui, uj) = pkl.
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Fig. 1: [Left] Given a graphon w : [0, 1]2 → [0, 1], we draw i.i.d. samples ui, uj from Uniform[0,1] and assign G[i, j] = 1
with probability w(ui, uj). [Middle] Heat map of an example graphon w. [Right] A random graph generated by the graphon
shown in the middle. The rows and columns of the graph are ordered by increasing ui (instead of i) for better visualization.

1.3. Problem Statement: How to Estimate a Graphon?

The problem of interest is the following fundamental ques-
tion: Given some observed graph adjacency matrices gener-
ated from a graphon w, can we make an estimate ŵ of w such
that ŵ → w with high probability as n→∞?

The proposed method in this paper is called the Stochas-
tic Block-model Approximation (SBA) algorithm. The SBA
algorithm, to our best knowledge, is the first frequentist’s ap-
proach in the literature to estimate the graphon from the ob-
served data. As the name suggested, the main idea of the
SBA algorithm is to approximatew by a two-dimensional step
function ŵ (the stochastic block model). The intuition is that
as n grows, the density of the spatially normalized graph on
[0, 1]2 should also grow. Consequently, the approximation er-
ror should converge to 0 as n→∞.

The rest of the paper is organized as follow. In Section 2
we present the SBA algorithm and discuss its properties.
Some preliminary experimental results are shown in Sec-
tion 3, and a concluding remark is given in Section 4. Due to
limited space, theories and proofs mentioned in this paper are
left to a follow up paper.

2. STOCHASTIC BLOCK APPROXIMATION

2.1. Overview of SBA Algorithm

The idea of the proposed SBA algorithm is to approximate a
continuous graphon w by a piecewise constant function ŵ. In
order to do that, we should first cluster the nodes {1, . . . , n}
into K membership classes B̂1, . . . , B̂K (called the blocks).
Once the blocks are identified, the probability of linking two
nodes (i.e., the value on the graphon) can be estimated from
the empirical frequency of the number of edges in the blocks:

ŵ(ui, uj) =
1

|B̂k||B̂l|

∑

x∈B̂k

∑

y∈B̂l

G[x, y]
def
= pkl,

where i ∈ B̂k and j ∈ B̂l. Therefore, the key question is how
to perform the clustering using only the observed graphs.

Example 3. Consider the graphon shown in Figure 2 where
there are K = 3 blocks. Assume that the n nodes have al-
ready been perfectly partitioned into these 3 blocks. Then,
the probability pkl (k, l ∈ {1, 2, 3}) can be estimated from
the empirical frequency of the edges in the (k, l)th sub-matrix
of the graph.

w(ui, ·)

w(uj , ·)

G[i, ·]

G[j, ·]

Fig. 2: An example graphon of K = 3 blocks (See Example
3). Dotted lines in the left denote the graphon slices: w(ui, ·)
and w(uj , ·); Dotted lines in the right denote the correspond-
ing slices of G[i, ·] and G[j, ·] (See Example 4).

2.2. Similarity of Graphon Slices

Our proposed clustering algorithm is based on the observa-
tion that if two nodes i and j belongs to the same block, then
the interaction from all other nodes to i should also be the
same as to j. Correspondingly, the horizontal cross-sections
of the graphon w(ui, ·) and w(uj , ·) must be equal, so does
the vertical cross-sections w(·, ui) and w(·, uj). Therefore, if
we ought to group {1, . . . , n} into K blocks, a natural way is
to compute the distance

dij =
1

2

(∫
1

0

(w(ui, y)− w(uj , y))
2
dy + . . .

+

∫
1

0

(w(x, ui)− w(x, uj))
2
dx

)
, (2)

and group nodes according to dij , because (2) is the L2 dis-
tances between the cross-sections.
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In practice, dij is never known and has to be estimated
from the observed graphs. Consider a set of 2T (an even
number of) observed graphs G1, . . . , G2T , our estimator d̂ij
for dij can be derived by first expressing dij as

dij =
1

2

[
(rii − rij − rji + rjj) + (cii − cij − cji + cjj)

]
,

where each cij =
∫
1

0
w(x, ui)w(x, uj)dx is one of the terms

that can be found by expanding the squares in (2), so does
rij =

∫ 1

0
w(ui, y)w(uj , y)dy. Inspecting this expression, we

propose to use the following estimator d̂ij for dij :

d̂ij =
1

2

[ 1

|S|

∑

k∈S

{
(r̂kii − r̂kij − r̂kji + r̂kjj) + . . .

+ (ĉkii − ĉkij − ĉkji + ĉkjj)
}]

, (3)

where S = {1, . . . , n}\{i, j} is the set of summation indices,
and so the summation

∑
k∈S{· · · } is analogous to the inte-

gration in (2). The individual terms in (3) are

ĉkij =
1

T 2


 ∑

1≤t1≤T

Gt1 [k, i]





 ∑

T<t2≤2T

Gt2 [k, j]


 , (4)

r̂kij =
1

T 2


 ∑

1≤t1≤T

Gt1 [i, k]





 ∑

T<t2≤2T

Gt2 [j, k]


 , (5)

and index k is equivalent to dummy variables x and y in (2).

Example 4. To interpret (4) and (5), it is helpful to refer to
Figure 2. If we want to determine dij , we need to compute
terms like

∫ 1

0
w(ui, y)w(uj , y)dy in (2). Since w(ui, ·) and

w(uj , ·) are not known, we approximate w(ui, ·) by G[i, ·]
and w(uj , ·) by G[j, ·].

The following theorem is the basis for a series of consis-
tency theories, of which details are left a follow up paper.

Theorem 1. The estimator d̂ij for dij is unbiased, i.e.,
E[d̂ij ] = dij . Further, for any ǫ > 0,

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e−

Sǫ2

4(1/2T+2ǫ/3) , (6)

where S is the size of the neighborhoodS, and 2T is the num-
ber of observations.

2.3. Clustering

The similarity metric d̂ij discussed above suggests one sim-
ple method to cluster the unknown labels {u1, . . . , un} using
a greedy approach as shown in Algorithm 1. Starting with
Ω = {u1, . . . , un}, we randomly pick a node ip and call it the
pivot. Then for all other vertices iv ∈ Ω\{ip}, we compute

the distance d̂ip,iv and check whether d̂ip,iv < ∆2 for some

precision parameter ∆ > 0. If d̂ip,iv < ∆2, then we assign
iv to the same block as ip. Ffter scanning through Ω once, a
block B̂1 = {ip, iv1 , iv2 , . . .} will be defined. By updating Ω

as Ω← Ω\B̂1, the process repeats until Ω = ∅.

Algorithm 1 Stochastic Block-model Approximation

Input: A set of observed graphs G1, . . . , G2T and the pre-
cision parameter ∆.
Output: Estimated stochastic blocks B̂1, . . . , B̂K .
Initialize: Ω = {1, . . . , n}, and k = 1.
while Ω 6= ∅ do

Randomly choose a vertex ip from Ω and assign it as the
pivot for B̂k: B̂k ← ip.
for Every other vertices iv ∈ Ω\{ip} do

Compute the distance estimate d̂ip,iv .

If d̂ip,iv ≤ ∆2, then assign iv as a member of B̂k:

B̂k ← iv.
end for
Update Ω: Ω← Ω\B̂k.
Update counter: k ← k + 1.

end while

The complexity of this algorithm is O(TSKn), where T
is half the number of observations, S is the size of the neigh-
borhood S, K is the number of blocks and n is number of
vertices of the graph.

3. PRELIMINARY EXPERIMENTAL RESULTS

In this section we provide preliminary evaluation results of
the proposed SBA algorithm. For the purpose of compar-
ison, we implemented two of the most recent algorithms
that could be potentially used for estimating graphons. The
first algorithm is the universal singular value thresholding
(USVT)[14]. The second algorithm is the Largest Gap Algo-
rithm (LG) [15], a stochastic block estimation algorithm to
detect block structures if there are large gaps in the degree
distribution.

The quality of the estimation is determined by the mean
squared error (MSE), defined as MSE = ‖w − ŵ‖2

2
/n.

3.1. Estimating Stochastic Blocks

Our first experiment is to evaluate the proposed SBA algo-
rithm for estimating stochastic blocks. For this purpose, we
generate a K = 3 graphon

w =



0.8 0.8 0.3
0.8 0.1 0.2
0.3 0.2 0.1


 ,

and constructed a random graph of n = 500 nodes with 2
observations (T = 1). The result is shown in Figure 3.
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(a) Ground Truth w (b) LG [15]

(c) USVT [14] (d) SBA (Proposed)

Fig. 3: Estimating stochastic block models of K = 3 classes.
The MSE values are: LG: MSE = 5.9 × 10−4, USVT:
MSE = 1.2 × 10−3, SBA (Proposed) MSE = 3.8 × 10−5.
Here, no. observations is 2 and n = 500.

3.2. Estimating Continuous Graphon

Our next experiment to consider a continuous graphon. In or-
der to show the ability of the proposed SBA algorithm, we
define w as a gray-scaled image on [0, 1]2, shown in Fig-
ure 4(a), and generate 20 observed graphs (T = 10), each
with n = 500 nodes. The results are shown in Figure 4.

4. CONCLUSION

Graphons are powerful non-parametric models for network
analysis, subsuming a wide range of existing parametric mod-
els and providing great flexibilities to model relational data.
The proposed stochastic block-model approximation (SBA)
algorithm is a numerically efficient algorithm to estimate the
graphon from a small collection of graphs that it generates.
From the preliminary experimental results, we found that
SBA yields the good estimation results on both stochastic
block models and continuous graphons. Future work will
be focused on theoretical aspects of the SBA algorithm and
applications of the graphon.
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