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Abstract: This paper presents theoretical results on the condition numbers of spatially

variant convolution matrices. We show that they are bounded by the condition numbers of its

circulant components.
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1. Introduction

Image restoration is an inverse problem where the goal is to recover a sharp image from a blurry and noisy observation.

Using the classical shift-invariant imaging system model [1], the input-output relationship is given by

g = Hf+η ,

where f is a vector denoting the unknown (potentially sharp) image, g is the observed blurry and noisy image, η is the

noise vector, and H is a matrix that models the blur (convolution matrix).

If the blur is spatially invariant, meaning that all pixels of the image f are identically blurred, then the matrix H has

a block-circulant-with-circulant-block (BCCB) structure [2]. In this case, H can be diagonalized using Fourier trans-

forms as H = FHΛF, where F is the discrete Fourier transform (DFT) matrix, Λ is the (diagonal) eigenvalue matrix,

and (·)H is the conjugate transpose of the argument. However, if the blur is spatially variant, H is not diagonalizable

using DFT matrices, thus making the spectral analysis of H difficult.

In the literature, studies on spatially variant convolution matrices are limited. Most of the work is on developing a

restoration algorithm instead of analyzing the properties of such matrices. Nagy and O’Leary [5] proposed a singu-

lar value decomposition (SVD) method to approximate spatially variant convolution matrices so that the restoration

problem can be solved using conjugate gradient. Later, Kamm and Nagy [6] extended the idea to separable spatially

variant convolution matrices. However, analysis on the spatially variant convolution matrix was not pursued.

The goal of this paper is to study the eigenvalues of HHH, which play a vital role in solving the normal equation for

the least-squares minimization often used in image restoration:

minimize
f

‖Hf− g‖2+α‖Df‖2
, (1)

where α is a regularization parameter and D is a linear transformation applied to f. We estimate the upper and lower

bounds on the largest and smallest eigenvalues of HHH, and hence the condition number of HHH. We are particularly

interested in spatially-variant convolution matrices arising from spherical aberration and defocus with different object

depths. As each pixel is approximately blurred by a Gaussian point spread function (PSF), the eigenvalues of the PSFs

are nonnegative. Fig. 1 shows the simulation involving a spherical aberration and its restoration result.

2. Upper and Lower Bounds

For simplicity, the derivations presented in this paper are based on one-dimensional signals, but the results can be

extended to the two-dimensional case. All matrices are assumed to be of size n× n and have real entries. Since real

matrices can have complex eigenvalues, by the smallest (or largest) eigenvalue we mean the eigenvalue with the

smallest (or largest) complex modulus. The smallest and largest eigenvalues of a matrix H are denoted as λmin(H) and

λmax(H), respectively. Also, |Λ| denotes the element-wise complex modulus of Λ, and Λ∗ denotes the element-wise

complex conjugate of Λ.



(a) Original image (b) Simulated blurred image (c) Restored image

Fig. 1. An illustration of spherical aberration and restoration. The spatially variant convolution ma-

trix used in (b) is generated using [3]. The restoration is performed using a modification of the

least-squares total variation minimization [4].

Definition 1. [7] A matrix H is circulant if each row is a circular shift of its preceding row. If h is a column vector,

we use CircMtx(h,k) to denote the circulant matrix generated by h, with h being put in the k-th column.

Our approach to analyzing a spatially-variant convolution matrix H is to consider all circulant matrices generated

by the columns of H. Thus, we define the circulant components of H as follows.

Definition 2. Partitioning H into n column vectors as H = (h1|h2| · · · |hn), where hk denotes the k-th column of H, we

define the k-th circulant component of H as CircMtx(hk,k), denoted by Hk.

The following main result states that the smallest eigenvalue of HHH is lower-bounded by the smallest eigenvalue

among all of the circulant components of H.

Theorem 1. Let H be a spatially-variant convolution matrix, and let H1, H2, . . . ,Hn be the circulant components of

H. If all eigenvalues of Hk are nonnegative, the smallest eigenvalue of HHH is bounded from below by

|λmin(H
HH)| ≥ min

k

{

|λmin(Hk)|
2
}

,

where |λmin(Hk)| is the smallest eigenvalue of Hk.

Proof. Let Ek = diag{0, . . . , 1, . . . , 0} be a diagonal matrix with the (k,k)-th entry being 1. Using Ek, we can express

H as a sum of its circulant components as H = H1E1 + . . .+HnEn. Taking the conjugate transpose and multiplying

with H yields

HHH = ∑
i, j

EH
i HH

i H jE j. (2)

Let u be the eigenvector associated with λmin(H
HH). By multiplying uH and u on both sides of Eqn. (2), the (i, j)-th

term in the sum is

uH(EH
i HH

i H jE j)u = uHEH
i FHΛ∗

i FFHΛ jFE ju

≥ uHEH
i FH (|λmin(Λ

∗
i )||λmin(Λ j)|I)FE ju = uHEH

i FH (|λmin(Hi)||λmin(H j)|I)FE ju

= |λmin(Hi)||λmin(H j)|u
HEH

i FHFE ju =

{

|λmin(Hi)|
2|ui|

2
, if i = j,

0, if i 6= j,

because FHF = FFH = I, and EH
i E j = 0 if i 6= j. Here, ui is the i-th element of u. Note that the first inequality holds

because the eigenvalues of a Gaussian point spread function are real and nonnegative.

Therefore, the smallest eigenvalue of HHH is

|λmin(H
HH)| ≥

n

∑
i=1

|λmin(Hi)|
2|ui|

2 ≥

(

min
i
{|λmin(Hi)|

2}

)

n

∑
i=1

|ui|
2 = min

i
{|λmin(Hi)|

2},

because the eigenvector u has unit norm so that ∑n
i=1 |ui|

2 = 1. Thus, we have |λmin(H
HH)| ≥ mini

{

|λmin(Hi)|
2
}

.



By flipping the inequality signs in the above proof, we have a similar result for the maximum eigenvalue of HHH.

Theorem 2. Let H be a spatially-variant convolution matrix, and let H1, H2, . . . ,Hn be the circulant components of

H. If all eigenvalues of Hk are nonnegative, the largest eigenvalue of HHH is upper-bounded by

|λmax(H
HH)| ≤ max

k

{

|λmax(Hk)|
2
}

,

where |λmax(Hk)| is the largest eigenvalue of Hk.

Using Theorems 1 and 2, we derive a corollary for the condition number of HHH.

Corollary 1. Suppose H is a spatially-variant matrix, and let H1, . . . , Hn be the circulant components of H. The

condition number of HHH is bounded from above by

cond
(

HHH
)

≤
maxk

{

|λmax(Hk)|
2
}

mink {|λmin(Hk)|2}
, (3)

where λmin(Hk) and λmax(Hk) are the minimum and maximum eigenvalues of Hk, respectively.

Corollary 1 implies that a spatially-variant blur (e.g., spherical aberration) can be interpreted as a set of spatially-

invariant blurs. The condition number of HHH is never larger than the upper bound given in Eqn. (3). Moreover, in

the spherical aberration case where the blur consists of a collection of Gaussian PSFs, the bound in Eqn. (3) can be

computed using the PSFs with the largest and smallest variance. The following corollary is useful in analyzing the

solution to the regularized least-squares problem expressed in Eqn. (1).

Corollary 2. The smallest eigenvalue of HHH+αDHD is bounded by

∣

∣λmin

(

HHH+αDHD
)∣

∣ ≥ min
k

{

min
j

{

|λ
Hk
j |2 +α|λ D

j |
2
}

}

,

where λ
Hk
j is the j-th eigenvalue of HK and λ D

j is the j-th eigenvalue of D.

Proof. Let u be the eigenvector associated with the minimum eigenvalue of HHH+αDHD. It can be shown that
∣

∣λmin

(

HHH+αDHD
)
∣

∣ =
∣

∣

∣
uH

(

∑n
i, j=1 EH

i HH
i H jE j +αDHD

)

u

∣

∣

∣
≥ ∑n

k=1 λmin

(

|ΛHk |2 +α|ΛD|2
)

uHEH
i FHFE ju ≥

mink

{

min j

{

|λ
Hk
j |2 +α|λ D

j |
2
}}

.

3. Conclusion

Eigenvalues of spatially-variant convolution matrices are studied. If all their circulant components have nonnegative

eigenvalues, the smallest eigenvalue is lower bounded by the minimum eigenvalue among all its circulant components.

Consequently, bounds on condition numbers can be derived. We also derived the bounds on the eigenvalues of the

normal equation matrix arises from least-squares image restoration formulation.
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