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Abstract—Liquid crystal display (LCD) devices are well known
for their slow responses due to the physical limitations of liquid
crystals. Therefore, fast moving objects in a scene are often per-
ceived as blurred. This effect is known as the LCD motion blur.
In order to reduce LCD motion blur, an accurate LCD model and
an efficient deblurring algorithm are needed. However, existing
LCD motion blur models are insufficient to reflect the limitation
of human-eye-tracking system. Also, the spatiotemporal equiva-
lence in LCD motion blur models has not been proven directly in
the discrete 2-D spatial domain, although it is widely used. There
are three main contributions of this paper: modeling, analysis, and
algorithm. First, a comprehensive LCD motion blur model is pre-
sented, in which human-eye-tracking limits are taken into consid-
eration. Second, a complete analysis of spatiotemporal equivalence
is provided and verified using real video sequences. Third, an LCD
motion blur reduction algorithm is proposed. The proposed al-
gorithm solves an ��-norm regularized least-squares minimization
problem using a subgradient projection method. Numerical results
show that the proposed algorithm gives higher peak SNR, lower
temporal error, and lower spatial error than motion-compensated
inverse filtering and Lucy–Richardson deconvolution algorithm,
which are two state-of-the-art LCD deblurring algorithms.

Index Terms—Human visual system, liquid crystal displays
(LCDs), motion blur, subgradient projection, spatial consistency,
temporal consistency.

I. INTRODUCTION

L IQUID CRYSTAL display (LCD) devices are known to
have slow responses due to the physical limitations of

liquid crystals (LC). LC are organic fluids that exhibit both
liquid and crystalline like properties. They do not emit light
by themselves, but the polarization phase can be changed by
electric fields [1]. A common circuit used in LCD to control
the electric fields is known as the thin-film transistor (TFT)
[2]. Although TFT responds quickly, it takes some time for the
LC to change its phase. This latency is known as the fall time
if the signal is changing from high to low, or the rise time if
the signal is changing from low to high. Since the fall and rise
times are not infinitesimal, the step response of an LC exhibits
a sample-hold characteristic (see Fig. 1).
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Fig. 1. Signaling characteristics of a cathode ray tube (CRT) and an LCD.
CRT shows spontaneous response, whereas LCD demonstrates a sample-hold
response.

Compared to LCD, traditional cathode ray tube (CRT) dis-
plays do not have the sample-hold characteristic. When a phos-
phor is exposed to electrons, it starts to emit light. As soon as
the electrons leave, the phosphor stops emitting light. The la-
tency of a phosphor is typically between 20 and 50 s [2], but
the time interval between two frames is 16.67 ms for a 60-frame
per second video sequence. In other words, the latency of a phos-
phor becomes negligible compared to the frame interval.

Due to the sample-hold characteristic of LCs, fast moving
scenes displayed on the LCD are often seen blurred. This phe-
nomenon is known as the LCD motion blur. We emphasize the
word “motion” because if the scene is stationary, LCD and CRT
will give essentially the same degree of sharpness.

A. Review of Existing Methods

There are a number of methods to reduce LCD motion blur.
Backlight flashing presented by Fisekovi et al. [3] is one of the
earliest methods. In this method, the backlight (typically a cold
cathode fluorescent lamp, CCFL) is controlled by a pulsewidth
modulation [4]. Backlight flashing reduces motion blur but it
also causes fluctuation in luminance. If the flashing rate is not
high enough, the luminance fluctuation can be seen by human
eyes, hence, causing eye strains. Therefore, in order to surpass
the human eye limit (MPRT1 5.7 ms [6]), some advanced CCFL
control methods are used, such as the active lamp technique pre-
sented by Yoon et al. [6].

Signal overdrive [7] is another commonly used method to re-
duce motion blur. The motivation to overdrive a signal is that the
phase change of an LC is faster if the electric field is stronger.
This phenomenon is explained in [1] and experimentally veri-
fied in [8]. Therefore, if the input signal is changing from 0 to
200 (in grayscale), then instead of sending a signal from 0 to
200, the overdrive circuit produces a signal from 0 to 210 (or a
different value, depending on the circuit). Signal overdriving is

1MPRT stands for motion picture response time. [5]
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Fig. 2. Two commonly used frame rate up conversion (FRUC) method. Top:
full frame insertion method by motion compensation (MC). Bottom: black
frame insertion method.

often implemented using a lookup table, and a particular value
is determined by the intensity change of a pixel. Image contents
such as spatial and temporal consistencies are not considered.

Frame rate up conversion (FRUC) schemes is the third class
of methods. The motivation of FRUC is that if the LC response
can be improved, then the frame rate of LCD should also be
increased. There are two major FRUC methods in the market:
one is black frame insertion, as presented by Hong et al. [9], and
the other one is full frame insertion presented in many papers
such as [10]–[14]. Fig. 2 illustrates these two FRUC methods.

The last class of methods is the signal processing approach,
in which the input signal is oversharpened so that it can com-
pensate the motion blur caused by the LCD. Among all the
methods, the motion-compensated inverse filtering (MCIF)
techniques presented by Klompenhouwer and Velthoven [15] is
the most popular one. MCIF first models motion blur as a finite
impulse response (FIR) filter. Then, it finds an approximated
inverse of the FIR filter to oversharpen the image. MCIF can
also be used together with FRUC scheme, as presented in
[16]. Another signal-processing approach is the deconvolution
method proposed by Har-Noy and Nguyen [17]. In [17], the
authors show that the deconvolution method gives better image
quality than MCIF in terms of peak SNR (PSNR) and visual
subjective tests.

B. Objectives and Related Work

There are three objectives of this paper: modeling, simulation,
and algorithm.

First of all, we present a mathematical model for the hold-type
LCD motion blur in the spatiotemporal domain. We do not con-
sider the problem in the frequency domain as Klompenhouwer
and Velthoven do in [15], because a video sequence is intrinsi-
cally a space-time signal [18]. It is more intuitive to study the
motion blur in the spatiotemporal domain directly.

The modeling part of this paper is a generalization of [19].
In [19], Panet al. show a fundamental equation for LCD motion
blur modeling [(7) of [19]]. However, they implicitly assume
that the human eyes are able to track objects perfectly. This is
not true in general because our eyes have only limited range of
tracking speed (See Section III). The same finding is reported
by He et al. [20]. However, He et al. do not explain the cause
of such a limit and they do not justify their MCIF design from
a human visual system point of view. In contrast, our study of

the eye-tracking limit is based on literature of cognitive science
and verified using subjective tests.

The second objective of this paper is to provide a tool for the
simulation of motion blur. A limitation of Pan’s equation [(7)
of [19]] is that the integration has to be performed in the tem-
poral domain. To do so, the time step of the integration should
be small, for otherwise, the integration cannot be approximated
using a finite sum. Since the frame rate of a video sequence is
fixed, in order to make the time step small, we need to inter-
polate intermediate frames. Temporal interpolation is time con-
suming: if the time step is 1/10 of the time interval between
frames, then ten intermediate frames are needed. Therefore, the
simulation of motion blur will be difficult unless there is an al-
ternative method, which will be discussed in Section II.

The spatiotemporal equivalence has been used extensively
in the literature but not proved. For example, Kurita [21] used
the spatiotemporal equivalence to improve LCD image quality;
Becker used the spatiotemporal equivalence to show the relation
between blur edge width (BEW) and blur edge time for back-
light scanning [4]; Tourancheau used the spatiotemporal equiv-
alence to compare four commercially available LCD TVs [22];
Klompenhouwer showed the relation between BEW and fre-
quency response of the blur operation [known as the temporal
modulation transfer function (MTF)] [23]. Yet, none of these
papers attempted to prove the spatiotemporal equivalence rigor-
ously.

The most relevant paper in proving the spatiotemporal equiv-
alence is [24]. Klompenhouwer drew a connection between the
spatial and temporal apertures in a somewhat different—and
very elegant—manner. However, a precise numerical approx-
imation scheme for evaluating the continuous time integration
in the discrete spatial domain is not pursued. Also, Klompen-
houwer’s paper is focused on the unit step input signal (which
is a 1-D signal), whereas our study focuses on the general video
signals.

The third objective of this paper is to propose a deconvolution
algorithm based on the spatiotemporal equivalence.

A limitation of Klompenhouwer and Velthoven’s MCIF [15]
is that the MCIF cannot take into account of the spatial and
temporal consistencies. Spatial consistency means that a pixel
should have a value similar to its neighbors, unless it is along
an edge in an image. Temporal consistency means that a pixel
value should not change abruptly along the time axis, for oth-
erwise, it will be seen as flickering artifacts. In this paper, we
use a spatial regularization function to penalize variations in
the spatial domain caused by noise. The -normed regulariza-
tion function used in our method is able to suppress the noise
while preserving the edges. We also use a temporal regulariza-
tion function to maintain the smoothness of the images along
the time axis. In [25], Yao et al. proposed similar regularization
functions in the context of coding artifacts removal. However,
their problem setup is easier than ours because there is no blur-
ring operators in their problem.

C. Organization

The organization of this paper is as follows. In Section II, we
prove the spatiotemporal equivalence. We show by experiments
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that the spatial approximation to the temporal integration is ac-
curate. In Section III, we present the findings of human-eye-
tracking limits. Visual subjective tests are used to determine the
optimal length of the FIR motion blur filter. In Section IV, we
present the proposed algorithm. Comparisons with MCIF and
Lucy–Richardson algorithm are discusses.

II. SPATIOTEMPORAL EQUIVALENCE

A. Review of LCD Motion Blur Model

For completeness, we provide a brief introduction to the LCD
motion blur model. Most of the material presented in this section
is due to Pan et al. [19].

Let be a frame sampled at time and suppose
has a motion vector . Let be the step re-

sponse of the display, where the subscript can either be CRT
or LCD. By Pan et al. [19], the image shown on the display is

(1)

An implicit assumption used in [19] is that the human-eye-
tracking system is perfect, meaning that we can track any mo-
tion at any speed. Based on this, the motion compensated image
formed on the retina becomes

(2)

Now assume that there is no low-pass filtering of the human
visual system (HVS), then the observed signal becomes

(3)

To facilitate the discussion of this paper, we focus on the hold-
type LCD. In this case, the step response of LCD is given by
a boxcar signal, i.e., for and

for otherwise. With this setup, the image shown
by an LCD is

(4)

B. Proof of Spatiotemporal Equivalence

The integral in (4) can be evaluated by performing an inte-
gration over time . However, for a digitized version
of the signal , there is no information between two
consecutive frames. Therefore, it is never possible to compute
the integral exactly. To alleviate this issue, an approximation
scheme must be used. In the following, we discuss a spatiotem-
poral equivalence that allows us to approximate the temporal
integration (4) by a spatial integration. But before we discuss

Fig. 3. Illustration of spatiotemporal equivalence. To evaluate the integral in
(4), we first fix a position �� � � � and consider the pixel values at different
times � � �� � � � � �. The average is taken over the time, therefore, it is the
average across the four marked pixels on the right-hand side. However, since
these four frames are identical to each other (after motion compensation), we
can evaluate the temporal average by averaging four adjacent pixels (in spatial
domain).

the main theorem, we would like to provide some intuitive ar-
guments.

Fig. 3 shows a video sequence. When integrating (4), we are
essentially taking an average over the pixel values at a fixed
position but at different time instants. Since all frames are highly
correlated to each other (assume that there is no abrupt motions),
we can approximate the average over different time instants as
a spatial average over the pixel’s neighborhoods. In this sense,
we can transform the temporal average into a spatial average
problem.

Definition 1: Given the velocities and the sample-
hold period , we let be an integer mul-
tiple of and , and define two sequences

Define
is sorted in an

ascending order.
Define the weights using the following algorithm:
For every ,
1) If , then , and .
2) If , then , and

.
3) .

Definition 1 is used to characterize the discrete running index
and count the repeated indices, which will become clearer when
we prove the theorem. As a quick example, consider

, and . Using Definition 1, we have
and . If
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we concatenate these two sequences and sort them, then we have
. Thus, entries of

are

...
...

Theorem 1: Assume that for
. Let be the sample-hold period of the LC, and

be an integer multiple of and
. Also, let and be the largest integer smaller than

and , respectively, i.e.,

where is the floor operator. Then, the integral (4) can be
evaluated as follows:

(5)

where is defined in Definition 1.
Proof: We first explain the assumption that

if . Digital video is a sequence of
temporally sampled images of a continuous scene. Unless the
scene contains extremely high-frequency components, such as a
checkerboard pattern, typically the correlation between frames
is high. Since no intermediate image is captured between two
consecutive frames, we assume that
if . Other assumptions about the intermediate images are
also possible, such as a linear translation from frame
to . But for simplicity, we assume that
holds until the next sample arrives.

Using this assumption, we have

(6)

Let be an integer multiple of and
. Also, we let the finite difference interval be .

Then, the integral in (6) can be approximated by a finite sum

(7)

Now assume that is a digital image at a particular
time . Since the image is composed of a finite number of pixels
and each pixel has a finite size, we have

if and . Therefore, the above
sum can be partitioned into groups as follows:

where is defined by Definition 1. In each
term , the indices (similarly
for ) are given by

Using the definition of in Definition 1, we can further
simplify the above expression as follows:

where and .
As explained earlier, the importance of Theorem 1 is that the

temporal problem is transformed into a spatial problem. There-
fore, the temporal motion blur can now be treated as spatial blur
problem.

C. Example

To illustrate the meaning of the parameters in Theorem 1, we
show an example. Suppose that there is a diagonal motion of

pixel per second and pixel per second,
and let us assume that the LCD has a sample-hold period of

s. Since , we may define
( and is an integer multiple of ). Let

, then and (See Definition
1), and and .

We define and . Concate-
nating and sorting and yields . Therefore,

1)
2)
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3)
4) for otherwise.

Thus, the observed LCD signal can then be computed as fol-
lows:

D. Discussion

There are some observations regarding Theorem 1.
First, Theorem 1 shows that although the perceived LCD blur

is a temporal average, it can be approximated by a spatial av-
erage.

Second, the skewness of is determined by the direction
of the motion. If (as in our example), then
becomes diagonal; if , then becomes vertical;
and if , then becomes horizontal. In these three
special cases, all the nonzero entries of are identical. If
the motion direction is not horizontal, vertical, or diagonal, then
an entry of is larger if the distance between the line along
the motion direction and is closer.

Third, magnitude of the motion determines the length of the
filter , hence, the blurriness of the perceived image. If
there is no motion, then and therefore, there will
be no blur. However, if the motion is large, then will be
long, and therefore, the averaging effect will be strong.

Fourth, compared to a 60-Hz LCD monitor, a 240-Hz LCD
monitor shows better perceptual quality because it refreshes four
times faster than a 60-Hz monitor. This effect can be reflected
by reducing the sample-hold period and hence the length of
the filter .

E. Numerical Implementation of Theorem 1

Algorithm 1 Compute and

Fix a time instant , and LCD decay time .

Step 1: Use motion estimation algorithm to detect .

Step 2: Define weights according to Definition 1.

Step 3: Set , if or for some (to
be discussed in Section III).

Step 4: Compute using via discrete
convolution in (5).

Algorithm 1 is a pseudocode for numerical implementation
of Theorem 1. The algorithm consists of four steps. In the
first step, motion vectors are computed using methods such, as
full search, three-step search [26], directional methods [27],
or hybrid methods [28]. The second step is to define the blur

kernel according to definition (1). Note that each
is defined locally, meaning that one motion vector defines
one . If there is a collection of motion vectors, then
correspondingly there will be a collection of . In step 3,

is limited to a finite length and width for modeling the
eye-tracking property, which will be discussed in Section III.
Lastly, the output can be computed via a discrete convolution
shown in (5).

F. Comparison Between Spatial and Temporal Integration

To verify Theorem 1, we compare the integration (4) and spa-
tial integration (5) using simulations. Our simulation method-
ology follows from [29], where the authors show that the sim-
ulation is a good substitute for a comprehensive experiment to
measure LCs response.

Fig. 4 shows four simulation results. 2 For each video se-
quence, two consecutive frames are collected, and the relative
motion is computed using a full search algorithm [26]. Ten mo-
tion-compensated frames are inserted via standard H.264 mo-
tion-compensation algorithm. This is to simulate a continuous
time signal. The temporal integration is calculated as the average
of the ten motion-compensated frames.

To measure the difference between spatial and temporal in-
tegration, PSNR values are computed (see Table I). As shown,
on an average, the PSNR is higher than 40 dB, which implies
a small difference between the two methods. However, the
computing time using the spatial approximation is significantly
shorter than the temporal integration (we used a FRUC by
linear interpolation).

III. EYE MOVEMENT LIMIT

In Section II, we assume that our eye-tracking system is per-
fect, i.e., we can track moving objects at any speed. This as-
sumption makes the derivation simpler, but it is not true in re-
ality. A more realistic model is that our eyes have a speed limit.
We provide supports to this argument through the literature in
cognitive science and visual subjective tests.

A. Eye Tracking

In Rayner’s review [30] on eye-tracking system, he mentions
that when we look at a scene, our eyes are rapidly moving. The
rapid movement is known as the saccades, which can be as high
as 500 . However, at such a high speed, we can hardly see
any visual content. This phenomenon is known as the saccade
suppression [31], [32]. Therefore, most of the images perceived
are obtained during a period of time (typically about 200–300
ms) between saccades. This period is known as the fixation. If an
object is moving quickly, then the duration of fixation is short-
ened, and hence, the perceptual quality reduces. Therefore, even
if our eyes may be able to track an object, we may not be able
to see what it is.

The relation between object speed and perceived sharpness
can be concluded from the following findings.

1) Westerink and Teunissen [33] conducted two experiments
about the relation between perceptual sharpness and the
picture speed. In their first experiment, they asked the

2Complete set of videos are available online at http://videoprocessing.ucsd.
edu/~stanleychan
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Fig. 4. Simulation results of spatial and temporal integration. Top row: original input image; middle row: simulated blur using spatial integration; and bottom
row: simulated blur using temporal integration.

TABLE I
COMPARISON BETWEEN SPATIAL INTEGRATION AND TEMPORAL INTEGRATION.
MAXIMUM MV REFERS TO THE MAXIMUM MOTION VECTOR IN THE IMAGE.
PSNR MEASURES THE DIFFERENCE BETWEEN THE SPATIAL INTEGRATION TO

THE TEMPORAL INTEGRATION. HIGHER PSNR IMPLIES SMALLER DIFFERENCE

viewers to track a moving image with their heads stay
at a fixed position (referred to as the fixation condition).
The conclusion is that the perceived sharpness drops to a
minimum score when picture speed is beyond 5 s ([33,
Fig. 4]). A similar conclusion can also be drawn from [34].

2) In the second experiment by Westerink and Teunissen [33],
viewers were allowed to move their heads (referred to as
the pursuit condition). The conclusion is that the perceived
sharpness drops to a minimum score when picture speed is
beyond 35 s ([33, Fig. 6]).

3) Bonse [35] studied a mathematical model for temporal
subsampling. They mentioned that there is a maximum
eye-tracking velocity of 5 –50 s , which had been ex-
perimentally justified by Miller and Ludvigh [36].

4) Glenn and Glenn [37] studied the discrimination of human
eyes on televised moving images of high resolution (300
line) and low resolution (150 line). Their results show that
it is harder for human eye to discriminate high- from low-
resolution images if the speed increases.

5) Gegenfurtner et al. [38] studied the relation between
pursuit eye movement and perceptual performance. The
viewers were asked to track a moving image of speed

4 s . Results show that the recorded the eye velocities
are ranged between 3 and 4.5 s .

The conclusion of these findings is that when picture motion
increases, the perceptual sharpness decreases. In some experi-
ments, the maximum picture speed is found to be 5 for fix-
ation condition, and 35 s for pursuit condition. Beyond this
threshold, our eyes are unable to capture visual content from the
image.

B. LCD Model With Eye Tracking

The existence of the maximum eye-tracking speed implies
that the LCD model has to be written as follows:

where and are the eye-tracking speed. If the picture speed
is low, then our eyes are able to capture the visual content, and
hence, and . However, if the picture speed is
beyond the threshold, then the difference accounts
for the images that we cannot see.

Consequently, we apply this observation to design inverse fil-
ters to reduce LCD motion blur. Previous efforts in inverse filter
design for LCD motion blur can be found in [15], [17], and [39].
In these papers, the inverse filter is designed according to the
estimated point-spread function . If has a narrow
frequency support, then noise in an image will be amplified by
the inverse filter.

Due to the presence of the maximum eye-tracking speed, we
know that fast moving objects cannot be seen clearly. Therefore,
a natural question is that whether it is necessary to construct a
very long and let its inverse filter to introduce flickering
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Fig. 5. Video 2 Stockholm. The sequence is processed using [39], with different values of �.

TABLE II
AVERAGE TV ERROR [DEFINED IN (8)] AROUND ADJACENT PIXELS

artifacts. To this end, we find that it is more appropriate to limit
the size of as follows:

where denotes the maximum number of pixels along the hor-
izontal and vertical directions. For example, means that
the size of is at most 4 4 pixels.

The exact value of is difficult to determine as it depends on
a number of factors such as the conditions of 5 for fixation
and 35 for pursuit. To compromise this issue, we seek a
method to estimate a value of so that it can be used for our
deblurring algorithm, which will be described next.

C. Experiments

To determine the maximum length of the filter , we
performed a visual subjective test.

Three video sequences are used in this test, where each video
sequence consists of a global horizontal motion. The motion
vectors are determined by full search algorithm, and the point-
spread function is found using Algorithm 1. In order to
determine the maximum length for , we truncate
using six different values of . For each , we oversharpen the
video sequence by using the optimization approach presented in
[39]. The optimization problem is solved using a conjugate gra-
dient algorithm (LSQR [40]), with damping constant .
Maximum number of iterations is set to be 100, and tolerance
level is set to be .

Fig. 5 shows the results. When increases, it can be observed
that more artifacts are introduced. To quantify the amount of
artifacts, we calculate the average total variation (TV) around
neighborhood pixels

TABLE III
SUBJECTIVE TESTS TO DETERMINE THE MAXIMUM LENGTH �

(8)

where is the image under consideration, and and
are the number of columns and rows of , respectively.
Table II shows the total variation error.

The visual subjective test procedure follows from Interna-
tional Telecommunication Union Radiocommunication Sector
(ITU-R) BT. 1082, Section 8 [41]. Eighteen human viewers
were invited to the experiment. For each of the three video se-
quences, there are six levels of the maximum lengths

. means that is a delta function, which in
turn implies that there is no inverse filtering. means that

has a size of 6 6, and therefore, there is a substantial
inverse filtering. Each time, the viewers were presented a refer-
ence and a processed video sequence simultaneously. They were
asked to tell whether the processed one showed any distracting
artifacts. If they replied no, then would be increased until the
level such that noise became appealing. The videos were played
on a PC with 2.8-GHz CPU, 8-GB DDR2 RAM, ATI Radeon
2600 XT 512 MB video card. The video sequences were un-
compressed, played at 60 frames per second.

The mean and variance of is shown in Table III. It can be
observed that if we limit the size of the point-spread function

to 4 4 (on average) and apply the conjugate gradient
algorithm to deblur the image, viewers can perceive the max-
imum degree of sharpness before they notice artifacts.

A limitation of this experiment is that it relies on the for-
mulation in [39]. If other formulations such as the spatial and
temporal regularization functions (See Section IV) are used, the
maximum length can possibly be increased as artifacts can be
suppressed more using these methods.
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IV. DEBLURRING ALGORITHM

The objective of this section is to propose a deblurring algo-
rithm for LCD motion blur reduction.

A. Optimization Formulation

First, by spatiotemporal equivalence (5), we know that the
observed (blurred) image is related to the original (sharp) image
by a linear convolution. Therefore, we can apply the standard
imaging model (see, e.g., [42]) to model the image formation as
follows:

(9)

where and are vectors that
denote the sharp image and the observed (blurred) im-
ages respectively. Here, is the vectorization oper-
ator, which stacks an image into a long column vector, according
to the lexicographical order. is a block circulant matrix de-
noting the blurring (convolution) operator, and is an additive
noise term.

The LCD deblurring problem may be formulated within an
optimization framework by considering the least-squares mini-
mization problem

(10)

where denotes the -norm. The choice of -norm is based
on the assumption that the noise is Gaussian. The bounds on
the optimization variable is to ensure that a pixel value does
not exceed the range of or in the normalized
scale.

Problem (10) is ill-posed because the operator often has
a large condition number. Therefore, in the presence of noise,
solving (10) may lead to undesirable images. To resolve this
issue, the standard method is to introduce a regularization func-
tion and solve

(11)

In statistics, the regularization is also known as the prior infor-
mation about the image. The constant is a regularization pa-
rameter that weights the objective function relative to the regu-
larization term.

B. Spatial Regularization

The spatial regularization function is defined by the gradients
of the image. Specifically, we define the directional gradient op-
erators , and as follows:

where is the unknown image, and rep-
resent the directional derivative operators along the horizontal
and vertical directions, respectively, and and represent
the directional derivative operators along the direction from top
left to bottom right and from top right to bottom left, respec-
tively. The transposes of these operators are as follows:

The spatial regularization function is defined as follows:

(12)

where the subscript represents the direction.
This spatial regularization is a special case of the bilateral TV
introduced by Farsiu et al. [43]–[45]. It can also be considered
as an approximation to the conventional TV regularization in-
troduced by Rudin et al. [46]. In [25], Yao et al. used a regular-
ization function similar to ours for the application of removing
coding artifacts.

The advantage of using the proposed spatial regular-
ization over the conventional Tikhonov regularization

is that Tikhonov regularization
cannot preserve sharp edges. Fig. 6 shows some comparisons
between the proposed spatial regularization and Tikhonov
regularization. Detailed discussions can be found in [47] and
[48].

C. Temporal Regularization

Although the spatial regularization function can be applied
to each frame of a video individually, the temporal consistency
of the video is not guaranteed. Temporal consistency describes
whether two adjacent frames have a smooth transition. If a pixel
has a sudden increase/decrease in brightness along the time axis,
then it is said to have temporal inconsistency. As an illustration,
two consecutive frames taken from a real video are shown in
Fig. 7. Note that pixels around the edges of the window have
different intensities in the two adjacent frames, although they
are at the same location.

To enhance the temporal consistency, we introduce a regu-
larization function along the temporal direction. A similar ap-
proach was previously used by Yao et al. for denoising [25].
The temporal regularization function is defined as follows:

where is a geometric wrap (i.e., motion compensation), and
is the solution of the previous frame. The interpretation of

is that the current solution should be close to the pre-
vious solution after motion compensation. Thus, by minimizing

, we can reduce the temporal noise.
The effectiveness of the proposed temporal regularization

function can be seen in Fig. 7. Fig. 7(a) and (b) shows two
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Fig. 6. Comparison between various regularization functions. (a) Solution obtained by minimizing ��� ��� . (b) Solution obtained by Tikhonov ������ �

��� � , where � � ������. (c) Solution obtained by minimizing the proposed method ��� � �� � ��� � , where � � ������.

Fig. 7. Two consecutive frames. (a), (b) No temporal regularization. (c), (d)
With temporal regularization.

consecutive frames without temporal regularization, where as
Fig. 7(c) and (d) shows two consecutive frames with temporal
regularization. It can be observed that the transition of pixel
values is smoother in (c) and (d) than (a) and (b).

D. Convolution Operator

The convolution operator is constructed based on the mo-
tion vectors. If the motion is global, then corresponds to a
spatially invariant point-spread function. In this case, is a
block-circulant-with-circulant-block (BCCB) matrix [49], and
it can be diagonalized by Fourier transforms [50]. As a result,
computation of the matrix–vector product can be performed
in operations, where is the number of pixels.

For general video sequences, the motion is not global, and
therefore, does not correspond to a spatially invariant point-
spread function. In the worst case, where every pixel has a dif-

ferent motion, each pixel will have a different point-spread func-
tion. Because of this, does not have the BCCB structure,
and therefore, it cannot be diagonalized by Fourier transforms.
Hence, to compute the matrix–vector multiplication , one has
to do it in the spatial domain directly. The complexity is in the
order of , where is the number of image pixels, and
is the number of pixels of the largest point-spread function.

Since the motion is not global in general, many existing al-
gorithms cannot be used as they assume to a BCCB matrix.
These methods include the half quadratic penalty methods by
Huang et al. [51], Wang et al. [52], Geman and coauthors [53],
[54], and Yao et al. [25], the interior point method by Nesterov
[55], and the projected gradients methods by Chambolle [56].
In the following, we present a method that supports both BCCB
matrices and general matrices.

E. Subgradient Projection Algorithm

The overall optimization problem is

minimize

(13)

where and are two regularization parameters.
Subgradient projection is a variation of the steepest descent

algorithm. Given the th iterate, the algorithm updates the
th iterate by

where is the step size, and is the gradient operator.
Since the term is not differentiable, we consider its subgra-
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dient instead of the gradient. The (sub)gradients of individual
terms are

(14)

(15)

(16)

where if if , and 0 if .
The simple bound constraints can be handled by projecting

out-of-bound components to their closest bounds. In other
words, we set

(17)

where denotes the th component of .
The step size is chosen to satisfy the “square summable but

not summable” rule (see, e.g., [57]–[59])

In our problem, we choose , for some max-
imum number of iterations , typically .

We also implemented the Armijo line search algorithm [60],
[61]. For fixed constants , and , we
let . If

, then the step size is
reduced by , until the condition is satisfied.

In theory, subgradient projection algorithm with the square
summable rule has provable convergence [57], [59]. But in prac-
tice, if we allow the algorithm to terminate early, then the Armijo
line search algorithm often gives better PSNR than square sum-
mable rule.

Algorithm 2 shows the pseudocode for our projected subgra-
dient algorithm using the Armijo line search.

Algorithm 2 Subgradient Projection Algorithm

Set and (Typically, ).

Set initial step size .

Initialize variables.

while do

Compute the gradients as defined in (14)–(16).

Armijo Line Search to determine step size .

Update

end while

Regarding the regularization parameters and , Bertsekas
[58] mentioned that these parameters can never be known prior
to solving the problem. There are some methods to estimate the
parameters, such as generalized cross validations by Nguyen et
al. [62], or the -curve criteria discussed in Hansen’s book [63].
But these methods are not guaranteed to work for the nondiffer-
entiable term. Therefore, in this paper, we test the images with
a sequence of and , and choose the ones that balance PSNR,
run time, and perceptual quality. In fully automated settings, an
updating strategy based on a nonreference metric [64] can be
used.

F. Experiments

In this section, we compare the performance of the pro-
posed spatiotemporal deblurring algorithm versus existing
algorithms. In particular, we measure three quantities of the
deblurred signal.

1) Mean Square Error: The first quantity is the PSNR, which
is defined as follows:

where MSE is the mean square error, defined as follows

where are the number of rows and columns of the image,
respectively, and is the minimization solution. PSNR measures
the solution fidelity, and higher PSNR implies that the difference
between and is smaller.

2) Spatial Consistency: Spatial consistency is a qualitative
measurement of the deviation between neighborhood pixels. To
quantify the spatial consistency, we define

This quantity measures the TV of the solution . If is large,
then it is likely that is noisy.

3) Temporal Consistency: Temporal consistency describes
the smoothness of the video along the time axis. Given two con-
secutive frames and , and the motion vector field, we de-
fine

where is a geometric warping operator such that is the
motion-compensated frame with respect to .

4) Results: We ran two experiments, both are panning
camera scenes. The videos have global horizontal motion blur,
with some small local motions.

The specification of the video is as follows: the size is
640 480 and it is stored as a sequence of 8-bit grayscaled
bit maps, therefore, each pixel has a dynamic range of 256
levels. For better numerical stability, we normalize the image
by dividing the pixel values by 255. The video is supposed
to be played at 60 fps, with 300 frames in total. We ran our
experiment on a PC with AMD Dual Core 3 GHz, 8-GB RAM,
Radeon-HD2600XT graphics card, Windows XP-64 OS.
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Fig. 8. Experiment 1: the upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a) Original
signal. (b) Signal synthesized by MCIF [15]. (c) Signal synthesized by Lucy–Richardson [17]. (d) Signal synthesized by proposed method.

Fig. 9. Experiment 2: the upper row shows the synthesized signal that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal. (a) Original
signal. (b) Signal synthesized by MCIF [15]. (c) Signal synthesized by Lucy–Richardson [17]. (d) Signal synthesized by proposed method.

The results are shown in Figs. 8 and 9. The upper rows of
the figures show the signals synthesized by different methods,
namely MCIF [15], LR [17], and the proposed method. As
shown, the synthesized signals of MCIF and LR contain a
lot of noise. These noise are often inconsistent in time, and
so when the images are moving, viewers will see flickering
artifacts. In contrast, the proposed method controls the amount
of noise, both spatially and temporally. Flickering is suppressed
significantly.

The lower row of the figures show the simulated images that
an viewer would see. We emphasize that these are simulated im-
ages because the actual images formed on the retina of a viewer
are never accessible. To simulate the observed signal, we apply

to the synthesized signal .
Numerical results using PSNR, and are given in

Table IV. Although the proposed method does not have a PSNR
as high as Lucy Richardson, it shows a 2 dB improvement to

the original input images. More important observations are the
spatial consistency and the temporal consistency: the proposed
method yields significantly lower error than the other two
methods.

It should be noted that although our regularization functions
has a better performance than existing methods in preserving
edges, suppressing noise and enhancing temporal consistency,
restoration of texture areas is still challenging. In areas where
the magnitude of texture gradient is comparable to the magni-
tude of noise gradient, our current algorithm has limited per-
formance in removing the noise while keeping the texture. Our
future research is to develop methods to restore texture areas.

G. Visual Subjective Test

We ran a visual subjective test to verify our results. The
subjective test is based on the single stimulus non-categorical
judgment method described in ITU-R BT.500-11 [65]. In this
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TABLE IV
COMPARISONS BETWEEN MCIF, LUCY–RICHARDSON, AND THE PROPOSED METHOD

TABLE V
SUBJECTIVE TEST RESULTS OF MCIF, LR, AND THE PROPOSED METHOD

test, 11 human viewers were invited to compare the MCIF,
Lucy–Richardson (LR) algorithm, and the proposed method
on the picture quality improvement of Stockholm and Shield
sequences. For each test, viewers were asked to compare the
original and the processed sequences on separate sides of the
screen. Viewers then gave a score on a continuous scale to in-
dicate whether one image was “much better,” “better,” “slightly
better,” or “the same” as the other image. We used a 24-inch
Samsung 730B LCD with 8-ms response time.

Table V shows the average and standard deviation of the sub-
jective test scores. In the table, the average scores are all posi-
tive, meaning that the method improves the perceptual quality
when compared to the original sequence. Additionally, magni-
tude of the average scores using the proposed method is the
highest among the three methods, which implies that viewers
ranked the proposed method as the best result among the three
methods.

In order to test the statistical significance of the perceptual
testing results, we employ the students t-test, where the null hy-
pothesis is that the average score is , i.e., the proposed
algorithm has no positive effect over the original sequence. If
we let the confidence interval , then the rejection
region is , where is the average score,
is the standard deviation, and is the number of viewers. It
can be shown that the value of MCIF, LR, and
the proposed method are 0.6406, 0.2528, and 0.4105, respec-
tively, for Stockholm, and 0.5384, 0.4404, and 0.4270, respec-
tively, for Shield. Since all are greater than these figures, we
conclude that all three methods give improvements to the orig-
inal sequence. In addition, it can be shown that for the proposed
method, the gap between the average score and the lower bound

is larger than that of the other two methods. This implies that
statistically the proposed method gives a more positive effect to
the original sequence than the other two methods.

V. CONCLUSION

This paper has three contributions. First, we proved the equiv-
alence between temporal and spatial integration. The equiva-
lence allows us to simulate the LCD blur efficiently in the spa-
tial domain, instead of a time-consuming integration in the tem-
poral domain. Experiments verified that computing the LCD
motion blur in the spatial domain is as accurate as computing
it in the temporal domain. Second, we studied the limit of eye
movement speed. Based on a number of papers in the cogni-
tive science literature, we showed that perceptual quality re-
duces as picture motion increases. Beyond certain speed limit,
human eyes cannot retrieve any useful content from the pic-
ture. Consequently, we showed that the size of the LCD motion
blur filter should be limited, and the optimal size can be de-
termined using a visual subjective test. Third, we proposed an
optimization framework to preprocess the LCD signal so that it
can compensate the motion blur. In order to maintain the spatial
and temporal consistencies, we introduced an -norm regular-
ization function on the directional derivatives and an -norm
regularization function on difference between current and pre-
vious solutions. Experimental results showed that our proposed
method has relatively higher PSNR, and lower spatial and tem-
poral error than state-of-art algorithms. Future research direc-
tions include the robustness of the algorithm toward the errors
introduced by motion estimation algorithms, and methods to re-
store texture areas.
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