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ABSTRACT

This paper addresses the problem of two-layer out-of-focus blur removal from a single image, in which either the
foreground or the background is in focus while the other is out of focus. To recover details from the blurry parts,
the existing blind deconvolution algorithms are insufficient as the problem is spatially variant. The proposed
method exploits the invariant structure of the problem by first predicting the occluded background. Then a
blind deconvolution algorithm is applied to estimate the blur kernel and a coarse estimate of the image is found
as a side product. Finally, the blurred region is recovered using total variation minimization, and fused with the
sharp region to produce the final deblurred image.
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1. INTRODUCTION

1.1 Two-layer Blur

For an image consisting of multiple layers of depth – objects at different depth locations – only one of them can
be in focus using a standard camera. Those not being focused are blurred, and this type of blur is referred to as
the out-of-focus blur. In terms of wave optics, out-of-focus blur is the result of additional (or insufficient) phase
propagation from the desired image plane to the actual image plane [1, Ch. 6.4]. Recovering an out-of-focus
blurred image using post-processing computational techniques is an ill-posed non-linear problem in general, and
seeking a universal solution is almost impossible. However, in a simplified scenario where there is only one
foreground object and a background scene, recovering the image becomes a more tractable problem. The goal
of this paper is to present a method that restores both the foreground and background, using a single image at
a low computational cost.

Although the two-layered problem is a special case of the general out-of-focus blur problem, some challenges
remain. The first challenge is the spatially variant property due to different blurs occuring in the foreground and
background. Spatially variant blur is computationally difficult because Fourier Transforms cannot be applied.
The second challenge is the need for blind deconvolution as the blur kernel is unknown. Blind deconvolution is
difficult because simultaneous recovery of image and kernel is a nonlinear ill-posed problem.

1.2 Related Works

Most of the existing image deblurring literature assumes that the blur is spatially invariant so that the observed
image is related to the input image as

g = h ∗ f + η,

where g is the observed blur image, f is the unknown sharp image, h is the blur kernel, η is the noise and ∗
denotes the 2D convolution.

If h is known, the problem of recovering f from g can be done using classical methods such as Wiener
deconvolution,2 Lucy-Richardson deconvolution,3 or regularized least-squares deconvolution.4 Better approaches
such as total variation minimization5 and its variations6, 7 can also be used. With the new implementation by
Chan et al.,8 solving a TV problem can be done in less than a second for a moderate sized image in MATLAB.
Advanced image deblurring algorithms9 can be used if high quality recovery results are required.
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If h is unknown, blind deconvolution methods are needed to repeatedly estimate the blur kernel and predict
the underlying image in an alternating minimization procedure. Cho and Lee10 proposed a fast and reliable
blind deconvolution algorithm using image gradients. Later, Xu and Jia11 improved this method by selecting
strong gradients. Note, however, that these methods are only applicable to invariant blurs.

The problem that interests us is the case where h is spatially variant. However, only few papers discuss
spatially variant deblurring. Among these, perhaps the most widely used approach is by Nagy and O’Leary,12

which suggests that spatially variant blur could be modeled as:

g =

p∑
i=1

αi · (hi ∗ f), (1)

where p is the number of blur kernels, hi is the i-th blur kernel, αi is a binary mask indicating the contribution of
the i-th kernel, and “·” denotes element-wise multiplication. The problem of (1) is that it is inadequate to model
a two-layered blur. Jia13 reported that ringing artifact is generated by a moderately advanced deconvolution
algorithm even if the true blur kernel is known. Similar observations are found in Dai and Wu,14 suggesting that
some fundamental issues are present.

The most relevant work to us is a global minimization method proposed by Dai and Wu.15 In their work, they
considered the two-layer blur problem as a giant global minimization and proposed an iterative reweighted least
squares (IRLS) algorithm to solve the problem. While their approach gives satisfactory results, the computation
time is large.

The goal of this paper is to achieve the following two objectives. First, we show that although the two-layer
blur is spatially invariant, it can be transformed to two invariant sub-problems so that fast algorithms can be
applied. Second, we propose a new blur kernel estimation method that uses information from both the image
content and alpha-matte edges.

2. IMAGING MODEL

The imaging model of a two-layered blur is the foundation of all subsequent analysis discussed in this paper.
Therefore, in this section, we provide justifications to our model. More details can be found in the literature.15–17

2.1 Limitation of Classical Model

Figure 1. Limitation of the Classical Model. The right image is a simulation of (2) in an extreme situation where hF is
a delta function and hB is a “disk” function with large radius. Unwanted color bleeding is observed around the object
boundary, which is wrong because the foreground color should not contribute to the background blur. The background
color should be sky blue in the circled region. The left image is the result of spatially variant TV minimization.8

As we discussed in the introduction, the classical model (1) is widely used but there are fundamental problems.
To understand the problem, we consider the formation of a sharp foreground and blurred background image.
This image is formed according to (1) by

g = α · (hF ∗ f) + (1 −α) · (hB ∗ f), (2)

where hF is the delta function, hB is the blur for the background, and α is the alpha matte that indicates the
location of foreground pixels.18 The interpretation of (2) is that the image f is first blurred using hF and hB,
and then cropped and combined according to α.



If the classical model were valid for the formation of a sharp foreground and blurred background image, then
one should be able to recover the image (reasonably well) by using methods such as,813 or.14 However, even with
a good estimate of the blur kernel and a fine-tuned algorithm, ringing artifacts still appear at the foreground
object boundary as shown in the left image of Fig. 1.

2.2 Model Used in This Paper

Our model was used by McGuire et al.,17 which suggested that the image f can be expressed as f = α · fF +(1−
α) · fB , where fF denotes the foreground and fB denotes the background. Consequently, the observed image is

g = hF ∗ (α · fF ) + (1−α ∗ hF ) · (hB ∗ fB). (3)

Note that the order of convolution “∗” and the element-wise multiplication “·” cannot be switched. Also, it is
assumed that hF has a small support.

Observing (3), we find that there is no cross convolution terms such as hF ∗ fB or hB ∗ fF , which would
appear in (2) if we substitute f = α · fF +(1−α) · fB . For example, for the case where hF is the δ-function, our
model (3) implies

g = (α · fF ) + (1−α) · (hB ∗ fB), (4)

whereas Nagy and O’leary’s model (2) implies

g = α · f + (1−α) · (hB ∗ f) = α · (α · fF + (1 −α) · fB) + (1−α) · (hB ∗ (α · fF + (1−α) · fB))
= α · fF + (1 −α) · (hB ∗ (α · fF + (1−α) · fB)), (5)

where we used the facts α ·α = α and α · (1−α) = 0. It can be seen that (4) and (5) coincides if the underlined
term fF in (5) is replaced by fB, which suggests that the cross convolution term hB ∗ αfF causes the color
bleeding shown in Fig. 1.

3. EXPLOITING INVARIANT STRUCTURES

By definition of a two-layered out-of-focus blur problem, the observed image consists of two regions in which
each region is homogeneously blurred by a blur kernel. Assuming that the blur kernels are known (estimation
of kernels are discussed in Section 4), recovering for each region is a classical invariant deconvolution problem.
However, the question is how to partition a variant problem into two invariant sub-problems.

3.1 Background Blur / Foreground Sharp Case

A background blur is characterized by setting hF = δ-function in (3) so that the observed image is given in (4).
With the assumption that the ground truth alpha-matte α is available, the foreground component α · fF equals
to α · g, and hence g −α · fF = (1−α) · g. Since it is also true that g −α · fF = (1−α) · (hB ∗ fB), we have

(1−α) · g = (1−α) · (hB ∗ fB). (6)

Our goal is to determine fB. Solving (6) would be a standard deconvolution problem if the term (1 − α) were
invertible, which is not possible due to the binary nature of α. However, the singularity of (1 − α) implies the
existence of many g̃ such that g̃ �= g but (1 − α) · g̃ = (1 − α) · g. In fact, any g̃ in the following form would
satisfy (6):

g̃(i, j) =

{
(hB ∗ fB)(i, j), if (i, j) ∈ ΩB ,

any function ψ(i, j), if (i, j) ∈ ΩF ,

where g̃(i, j) denotes the (i, j)-th pixel of g̃, ΩB = {(i, j) |α(i, j) = 0} is the set of background pixel coordinates,
and ΩF = {(i, j) |α(i, j) = 1} is the set of foreground pixel coordinates. The arbitrary function ψ(i, j) is chosen
such that the deconvolution problem g̃ = hB ∗ fB yields good results. Choosing a meaningful ψ(i, j) is equivalent
to inpainting the pixels for ΩF .



Figure 2. [Left] The background component with occluded region unfilled (i.e., ψ(i, j) = 0). [Right] Deblurring result of
the left image.

A naive choice of ψ(i, j) is that ψ(i, j) = 0 for any (i, j) ∈ ΩF , which means that no inpainting is performed.
As one can expect, ringing artifacts will appear. Fig. 2 shows an example where we use hB = Gaussian blur
kernel (σ = 2). The deconvolution is performed using a regularized Wiener filter.

To reduce oscillation, we must fill ΩF carefully so that the transient between ΩF and ΩB is smooth. This
can be achieved by minimizing the image gradient near the boundary of ΩF and ΩB. Specifically, we initially set
g̃(i, j) = (hB ∗ fB)(i, j) for (i, j) ∈ ΩB and g̃(i, j) = 0 for (i, j) ∈ ΩF . Then for any pixel (i, j) at the boundary
of ΩF and ΩB, we define A as the set of non-zero pixels of neighborhood of (i, j):

A = {(p, q) | g̃(i+ p, i+ q) �= 0, |p| ≤ 1, |q| ≤ 1},

and define the function ψ(i, j) as

ψ(i, j) =
1

|A|
∑

(p,q)∈A

(
1 +

1

k

)
g̃(i+ p, i+ q)− 1

k
g̃(i+ 2p, i+ 2q), (7)

where k is the shortest distance from the unknown pixel (i, j) to the known set ΩB. The motivation behind this
ψ(i, j) is that we want to fill the missing pixel such that the image gradient across the boundary is minimized.
Full derivation can be found in the Supplementary material. The outline of the algorithm is given in Algorithm
1.

Algorithm 1 Proposed Inpainting Algorithm

Given g̃, ΩF and ΩB .
// Outward Version
Partition ΩF into K rings from the outermost to the innermost, with each ring one pixel in width.
// Inward Version
Partition ΩB into K rings from the innermost to the outermost, with each ring one pixel in width.
for k = 1 : K do
for each (i, j) on the k-th ring do
Determine A = {(p, q) | g̃(i+ p, i+ q) �= 0, |p| ≤ 1, |q| ≤ 1}.
Calculate ψ(i, j) = 1

|A|
∑

(p,q)∈A
(
1 + 1

k

)
g̃(i+ p, i+ q)− 1

k g̃(i+ 2p, i+ 2q),

end for
end for

Asymptotically, Algorithm 1 becomes a moving average when k → ∞, because g̃(i, j) → 1
|A|

∑
(p,q)∈A g̃(i +

p, i + q). In fact, except for small k, experimentally the difference between Algorithm 1 and the simple moving
average is almost visually indistinguishable. Fig. 3 shows the result of applying Algorithm 1 to fill ΩF .

As shown in Fig. 3, the central region of g̃ does not seem visually pleasing. However, we argue that the goal
is to fill ΩF so that there are less ringing artifacts for the deconvolution step. As a comparison, we applied a
state-of-the-art exemplar-based inpainting algorithm by Criminisi et at.19 Shown in Fig. 4 are the inpainting
results of Algorithm 1 and the method by Criminisi et al.. In terms of visual quality, it is clear that the method
by Criminisi et al. is significantly better than Algorithm 1. However, since Criminisi et al.19 did not impose



Figure 3. Filling ΩF for Image No.5 . From Left to Right: The intermediate result of inpainting at iteration 0, 20, 40
and final respectively. Left: ΩF . When inpainting starts, the algorithm fills the occluded region from outside to inside.
Right: the inpainted g̃.

(a) Proposed inpainting method (b) Inpainting method by Criminisi et al.19

Figure 4. Comparisons between the proposed inpainting method and the exemplar-based inpainting method by Criminisi
et al.19 Top: inpainting results and zoom-in. Bottom: deblurring results and zoom-in.

smoothness criteria at the boundary, ringing artifacts are present. In contrast, the smoothness condition at the
boundary of ΩF is explicitly enforced by Algorithm 1. There are artifacts occurring in the center part of ΩF ,
but these can be covered by gF as they are far from the boundary. Note also that the computational complexity
of Algorithm 1 is significantly lower than the method by Criminisi et al..

3.2 Foreground Blur / Background Sharp Case

In the case of foreground blur, we set hB = δ-function in (3). Thus, the observed image is g = hF ∗ (α · fF ) +
(1−α ∗ hF ) · fB . Our goal is to determine fF . Rearranging the terms we have

gF = g− (1−α ∗ hF ) · fB = hF ∗ (α · fF ). (8)

Therefore, assuming that α, hF are correctly estimated, solving for α · fF from gF in (8) is a standard decon-
volution once fB is known. However, fB is never known exactly because part of fB is occluded by the blurring
edge of fF

∗. Thus, given an estimate f̂B, for example using Algorithm 1, there is an error term ΔfB so that

f̂B = fB +Δf̂B . (9)

Substituting (9) into (8) yields

gF = g− (1 −α ∗ hF ) · (f̂B −Δf̂B) = g − (1−α ∗ hF ) · f̂B + (1−α ∗ hF ) ·Δf̂B . (10)

In (10), only g and (1 −α ∗ hF ) · f̂B can be calculated. Multiplying α ∗ hF to both sides of (10) yields

(α ∗ hF ) · [hF ∗ (α · fF )] = (α ∗ hF ) ·
[
g − (1−α ∗ hF ) · f̂B + (1−α ∗ hF ) ·Δf̂B

]
. (11)

∗The central interior region of fF is not important because it is the same as the central interior region of g.



It can be shown that
‖(α ∗ hF ) · (1−α ∗ hF ) ·Δf̂B‖ ≤ ‖(1−α ∗ hF ) ·Δf̂B‖,

implying that the effect of Δf̂B is reduced by multiplying (α ∗ hF ). Therefore, we want to approximate (α ∗
hF ) · (1 −α ∗ hF ) ·Δf̂B instead of (1−α ∗ hF ) ·Δf̂B .

Now, two issues remain: (i) We need an approximation for (α ∗ hF ) · (1 −α ∗ hF ) ·Δf̂B because Δf̂B is not
known; (ii) Given the approximation and hence the right hand side of (11), we need to solve for α · fF .

Let us consider the second question first. Given gF , we want to solve α · fF from the equation

(α ∗ hF ) · gF = (α ∗ hF ) · [hF ∗ (α · fF )]. (12)

Solving (12) is similar to solving (6), which both requires inpainting and deconvolution. However, (12) is more
difficult than solving (6) because α ∗ hF is not a binary mask. Here we propose two inpainting strategies. The
first strategy inpaints the background using the background color, which can be accomplished using Algorithm
1 (inpainting inwards). The second strategy inpaints the background using the foreground color, which can
also be accomplished using Algorithm 1 (inpainting outwards). In both methods, since there is no sharp cut off
between foreground and background, the algorithm starts from some definite background (or foreground) pixels.
In our method, we start from K pixels from the expected object boundary (estimated from α), where K is the
one-sided width of the blur kernel.

Denoting gB the inpainted background, ΩM = {(i, j) | 0 < (α∗hF )(i, j) < 1}, ΩF = {(i, j) | (α∗hF )(i, j) = 1},
and ΩB = {(i, j) | (α ∗ hF )(i, j) = 0}, we construct an approximately invariant blur image

g̃(i, j) =

⎧⎪⎨⎪⎩
gF (i, j), (i, j) ∈ ΩF ,[
(α ∗ hF ) · gF + (1− α ∗ hF ) · gB

]
(i, j), (i, j) ∈ ΩM ,

gB(i, j), (i, j) ∈ ΩB,

(13)

Based on (13), we propose an approximation for (α ∗ hF ) · (1 −α ∗ hF ) ·Δf̂B. Substituting (10) to the ΩM

case of (13), (13) becomes

g̃ = (α ∗ hF ) · g︸ ︷︷ ︸
foreground with edge residue

− (α ∗ hF ) · (1−α ∗ hF ) · f̂B︸ ︷︷ ︸
≈edge residue

+ (1 −α ∗ hF ) · gB︸ ︷︷ ︸
inpainted background

+ (α ∗ hF ) · (1−α ∗ hF ) ·Δf̂B . (14)

The four terms in (14) have individual meaning: (α ∗hF ) ·g is the foreground component; (α ∗hF ) · (1−α∗
hF ) · f̂B is the foreground edge residue remaining in (α ∗hF ) · g; (1−α ∗hF ) · gB is the background component
to be added. The sum of the first three terms is an image with a dark ring around the object boundary, because
excessive boundary intensity is subtracted by (α ∗ hF ) · (1 − α ∗ hF ) · f̂B. Therefore, the fourth term must
compensate for the presence of the dark ring. Hence, going back to the first question, we choose

(α ∗ hF ) · (1−α ∗ hF ) ·Δf̂B = (α ∗ hF ) · (1−α ∗ hF ) · gB.

The results are shown in Figs. 5 and 6.

Finally, given the right hand side of (14), we solve the deconvolution problem g̃ = hF ∗ f̃ . The solution f̃ is

then combined with the estimated background f̂B to give the final solution f = α · f̃ + (1−α) · f̂B.

4. BLUR KERNEL ESTIMATION

In this section we discuss the proposed kernel estimation. Our method is an improved version of Xu and Jia,11

Fergus et al.20 and Cho and Lee.10 Therefore, the focus of this section is on the modifications we make.



(a) (b) (c)
Figure 5. (a) Input blurred image g. (b) Inpainted result g̃ using inpainting method 1. (c) Inpainted result g̃ using
inpainting method 2

(a) (b) (c) (d)
Figure 6. Illustration of (14) using inpainting method 2. (a) The observed image extracted by alpha-matte (α∗hF ) ·g. (b)
Subtract the result of (a) with the estimated background (α∗hF ) ·

[
g− (1−α ∗ hF ) · f̂B

]
. (c) Add the result of (b) with

the newly inpainted background (α ∗ hF ) ·
[
g − (1−α ∗ hF ) · f̂B + (1−α ∗ hF ) ·Δf̂B

]
. (d) Add the result of (c) with

an approximation from the object boundary (α ∗ hF ) ·
[
g − (1−α ∗ hF ) · f̂B + (1−α ∗ hF ) ·Δf̂B

]
+ (1−α ∗ hF ) · gB .

4.1 Kernel Estimation by Strong Edges

A blurred image is the result of convolving a sharp image and the blur kernel. Thus, if one wants to estimate
the blur kernel from a blurred image, a rough estimate of the sharp image must be used.20

To obtain such a sharp image estimate, we use the shock filter.5, 10 Without discussing the details of a shock
filter, we consider the shock filter as a module that takes an image g and produces an output image gS :

gS = shock filter(g).

Next, we use the fact that not all gradients of gS are useful for blur kernel estimation.11 Therefore, we multiply
a mask M to the image gradient ∇gS . We consider this edge selection process as a module that takes a shock
filtered image gS to produce an output image ∇sgS:

∇sgS = edge selection(gS) = M · ∇gS .

Therefore, h can be estimated from

h = argmin
h

‖∇sgS ∗ h−∇sg‖2 + λ‖h‖2. (15)

4.2 Kernel Estimation by Alpha-Mattes

A limitation of (15) is that (15) depends on the availability of strong edges in an image. In a two-layered blur
image, it is possible that the foreground or background component does not have strong edges. For example,
Fig. 7(b) shows an image where the cropped area of the foreground component does not have significant color
variation.

For a two-layered blur problem, the alpha-matte provides useful information for blur kernel estimation because
the alpha-matte is also blurred by the same blur kernel.13 Therefore, by studying the transient characteristics
of the alpha-matte, blur kernel can be estimated. For example in Fig. 7(a), while the cropped region in (b) does
not have strong edges, the alpha-matte does. The estimation using alpha-matte is similar to (15):

h = argmin
h

‖∇αS ∗ h−∇α‖2 + λ‖h‖2, (16)

where α is the estimated alpha-matte e, and αS = shock filter(α).



Algorithm 2 Recovering from background blur

Given g. Estimate hB and α (see Section 4).
Estimate g̃ using Algorithm 1.
Solve the deconvolution g̃ = hB ∗ fB .
Form the solution f = α · g + (1−α) · fB .

Algorithm 3 Recovering from foreground blur

Given g. Estimate hF and α (see Section 4).

Estimate f̂B using Algorithm 1.
Estimate g̃ by (13).

Solve the deconvolution g̃ = hF ∗ f̃ .
Form the solution f = α · f̃ + (1−α) · f̂B.

4.3 Kernel Estimation using both Strong Edges and Alpha-Matte

The observation that alpha-matte can be used when edges in the foreground region are weak suggests that
reversely the strong edges can be used when alpha-mattes are inaccurate. Show in Fig. 7(c)-(d) is an example
where the alpha-matte of the hair regions cannot be estimated correctly, but there are strong edges in the cropped
region. Therefore, to incorporate the strengths of both methods, we consider the estimation as

h = argmin μ‖∇sgIS ∗ h−∇sgI‖2 + γ‖∇αS ∗ h−∇α‖2 + λ‖h‖2, (17)

where μ, γ and λ are parameters to be discussed. Analytical solution for (17) exists, and is given by

h = F−1

{
μF(∇sgIS) · F(∇sgI) + γF(∇αS) · F(∇α)

μ|F(∇sgIS)|2 + γ|F(∇αS)|2 + λ

}
, (18)

where F is the Fourier Transform operator, (·) denotes the complex conjugate over the argument and “·” is
the element-wise multiplication. Though not written explicitly in (17), the gradients ∇sgIS (and similarly for
∇αS) are assumed to contain both horizontal and vertical directions, i.e., ∇sgIS = [∂sxgIS , ∂

s
ygIS ]. Thus,

F(∇sgIS) ·F(∇sgI) = F(∂sxgIS) ·F(∂sxgI)+F(∂sygIS) ·F(∂sygI), and |F(∇sgIS)|2 = |F(∂sxgIS)|2+ |F(∂sygIS)|2.

4.4 Choosing Parameters

The next question to ask is how to choose the parameters μ, γ and λ. Without loss of generality we set μ = 1, as
the minimizer of (17) is unchanged if we scale the objective function in (17) by 1

µ . Thus it remains to determine

γ and λ. λ is the parameter for ‖h‖2. Typically, meaningful results are found using a λ within the range
10−3 ≤ λ ≤ 10−2. In our experiments, λ is fixed at λ = 10−2.

Choice of γ is a critical one as it sets relative emphasis between ‖∇gIS ∗ h−∇gI‖2 and ‖∇αS ∗ h−∇α‖2.
Our proposed method is based on the confidence of α. The confidence measure indicates the chance of getting an
accurate alpha-matte. If it is likely that α is a reliable estimate, then the weighing factor γ for ‖∇αS ∗h−∇α‖2
should be large. Otherwise, γ should be small.

γ can be evaluated from the performance across different methods. The intuition is that if an image is easy
to be alpha-matted, then results of different alpha-matting methods should be similar. To verify our claim, we
conducted an experiment by studying 15 alpha-matting methods available in.21 Alpha-matting results (small
tri-map case, 8 images per method), and the corresponding SAD scores are recorded. Discarding the worst
performing method, we compute, for each pixel, the variance of alpha-matte values across the methods. That is,
given an alpha-matte αk produced by the k-th method, we compute

V(i, j) = Var{α1(i, j), α2(i, j), . . . ,αk(i, j)}.



(a) (b) (c) (d)

Figure 7. (a)-(b): An example where there is no strong edge in the cropped area, but the alpha-matte estimate is good.
In this case, large γ can be used. (c)-(d): An example where the alpha-matte is not well estimated, but there is strong
edge in the cropped area. In this case, large μ shall be used.
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Figure 8. Variance maps V for images “troll”, “doll”, and “elephant”. White indicates variance = 0, and black indicates
variance = maximized.

V (i, j) is a map in which each pixel is the variance of the alpha-matting methods (see Fig. 8). It is a measure of
agreement among the methods, for lower variance means the methods give similar alpha-matte values. Average
of the variance over the entire image is then computed as

v̄ =
1

n

∑
i,j

V(i, j),

where n is the number of pixels in V. In Fig. 8(d), we show the relation between the average SAD score and
the average variance for the 8 images provided in.21 It can be seen that the variance and the SAD score shows
a linear relation. This result implies that in the absence of ground-truth, the performance variance between
methods is a good indicator of whether the image is easy to be alpha-matted.

The above experiment suggests that for each pixel of α, we can use a number of alpha-matting algorithms to
measure the confidence. In our algorithm, we use shared matting, grow-cut22 and closed-form matting.23 More
methods can be considered, but computing time will increase.

Finally, we define γ as
γ = C exp{−av̄}, (19)

where the constants a = 1000 and C = 0.65 are determined empirically.

4.5 Iterative Update of f and h

Our problem is a blind deconvolution problem. Therefore, intermediate update of the solution fI is required
for the iterative update of h. Given the current estimate h, fI is updated by solving the following minimization
problem

fI = argmin
fI

‖fI ∗ h− gI‖2 + κ‖∇fI −∇sgIS‖2. (20)

(20) is derived from an MAP framework consisting of a Gaussian fidelity term and a Gaussian prior. The
Gaussian prior ‖∇fI −∇sgIS‖2 measures the goodness of fit between the gradient of the unknown image fI and
the gradient of the shock filtered image gIS . The Gaussian prior ‖∇fI −∇sgIS‖2 performs better than ‖∇fI‖2
in preserving edges and suppressing ringing artifacts.11 The parameter κ is fixed at κ = 10−2.



Algorithm 4 Blur Kernel Estimation

Given g and α0. Crop an interior region gI from the foreground of g, and αI from α0.
Initially set fI = gI . Let α = α0.
while Not converge do
Compute fIS = shock filter(fI). Compute αS = shock filters(α).
Compute ∇sfIS = edge selection(fIS).
Estimate μ, γ, λ, κ and ρ, then compute

h = argmin
h

μ‖∇sfIS ∗ h−∇sfI‖2 + γ‖∇αS ∗ h−∇α‖2 + λ‖h‖2

fI = argmin
fI

‖fI ∗ h− gI‖2 + κ‖∇fI −∇sgIS‖2

α = argmin
α

‖h ∗α−αI‖2 + ρ‖α‖TV

end while

The updated solution fI is then feedback to (17) by applying shock filter fIS = Shock Filter(f) and replaces
gIS using fIS in (17). Therefore, the iterative update of fI and h is equivalent to solving

fI = argmin
fI

‖fI ∗ h− gI‖2 + κ‖∇fI −∇sfIS‖2, fIS = Shock Filter(fI),

h = argmin
h

μ‖∇sfIS ∗ h−∇sfI‖2 + γ‖∇αS ∗ h−∇α‖2 + λ‖h‖2.

The iteration repeats, until the relative change ‖f (k+1)
I − f

(k)
I ‖2/‖f (k)I ‖2 ≤ 10−3, where f

(k)
I is the solution at the

k-th iteration.

In case of foreground blur, α is a blurred alpha-matte which needs to be deblurred. To deblur α, we consider
the following minimization

α = argmin
α

‖h ∗α−αI‖2 + ρ‖α‖TV , (21)

where ‖α‖TV =
∑

i

√
[∇xα]2i + [∇yα]2i is the isotropic total variation norm, and ρ is a regularization parameter.

The blur kernel estimation step is outlined in Algorithm 4. The background blur case is similarly performed,
where we set γ = 0, and crop an interior region from the background of g.

5. RESULTS

A data set of 27 training images from http://www.alphamatting.com are downloaded for the comparisons.
These images are all composed of a sharp foreground object and an out-of-focus blurred background scene. For
images no.1-23, the object is placed in front of a high-definition (HD) monitor showing some background scenes,
whereas for images no.24-27, the object is placed in front of real 3D scenes. Ground-truth alpha-mattes are
available in this data set, but we will also test the proposed algorithm with estimated alpha-mattes later.

5.1 Blur Kernel Estimation

First, we compare the proposed kernel estimation method with the method by Fergus et al.20 and the method
by Xu and Jia.11 Note that Xu and Jia supersedes Cho and Lee,10 and the method by Fergus et al.20 is used by
Dai and Wu.15

We synthesize two foreground blur images using a Gaussian blur kernel of size 19 × 19 and variance σ = 3
(See Fig. 9 and Fig. 10). Shared matting24 is applied to the blurred images so that alpha-mattes are estimated.
Interior regions were cropped manually.

In Fig. 9, the cropped interior region does not have strong edges. Thus, applying20 and11 to the interior
region does not produce good estimates (Fig. 9(a)-(b)). On the other hand, when the alpha-matte is poorly



estimated (Fig. 10), applying20 and11 to the alpha-matte does not give good estimates (Fig. 10(d)-(e)). The
proposed method automatically weights the emphasis on the alpha-matte and the cropped region. Therefore,
the kernel estimation result is better than the other two methods.

(a) Fergus-image (b) Xu-image (c) Proposed

Image No.7 (d) Fergus-α (e) Xu-α (g) ground-truth

Figure 9. Kernel estimation for Image no. 7. (a) Fergus et al.20 on cropped region. (b) Xu and Jia11 on cropped region.
(c) Proposed method. (d) Fergus et al.20 on alpha-matte. (e) Xu and Jia11 on alpha-matte. (f) Ground-truth kernel.

(a) Fergus-image (b) Xu-image (c) Proposed

Image No.8 (d) Fergus-α (e) Xu-α (g) ground-truth

Figure 10. Kernel estimation for Image no. 8. (a) Fergus et al.20 on cropped region. (b) Xu and Jia11 on cropped region.
(c) Proposed method. (d) Fergus et al.20 on alpha-matte. (e) Xu and Jia11 on alpha-matte. (f) Ground-truth kernel.

5.2 Real Background Blur

Next we compare the overall performance of the proposed method with three existing spatially variant deconvo-
lution algorithms.

The first method to be compared is the spatially variant Lucy-Richardson (LR) algorithm.13, 14 In this
method, the spatially variant blur h is expressed as a linear combination of invariant blurs. The deblurring step
is performed via an iterative approach as

f (k+1) = f (k) ·
[
h′ ∗

( g

h ∗ f (k)
)]
,

where f (k) is the solution of the k-th iteration, h′ is the flipped version of h, i.e., h′(m,n) = h(−m,−n). The
multiplication “·” and the division in the parenthesis are element-wise operations. The algorithm terminates
when ‖f (k+1) − f (k)‖2/‖f (k)‖2 ≤ 10−3.

The second method is a modified version of the total variation (TV) minimization using augmented Lagrangian
method.8 We express the spatially variant operator h as a non circulant matrix H. Then the f -subproblem
(Equation (14) in Chan et al.8)

(μHTH+ ρDTD)f = μHTg+ ρDTu−Dy

is solved using conjugate gradient iterations.

The third method is the one by Dai and Wu,15 which is the most relevant method to our approach. This
method solves the minimization problem

minimize
fF , fB

‖g− αfF − (1− α)(hB ∗ fB)‖2 + λ1‖fF ‖TV + λ2‖fB‖TV , (22)



(a) Input Image no. 22 (b) TV-minimization,8 85.35sec

(c) Lucy-Richardson,13, 14 7.15sec (d) IRLS,15 369.14sec

(e) Proposed (Ground-Truth α), 9.45sec (f) Proposed (Estimated α), 9.62sec
Figure 11. Real image background deblurring for Image No. 22. In methods shown here, TV-minimization, Lucy-
Richardson, IRLS and Proposed (Ground-Truth α) use the ground-truth alpha-matte for blur kernel estimation and
deblurring. However, Proposed (Estimated α) uses the shared matting method for the same tasks.

using an iterative reweighted least-squares (IRLS) method. Here, we use the standard isotropic TV norm ‖ · ‖TV

instead of the lp-norm (p = 0.8) in,15 because the goal of this paper is not to compare different TV norms. In
solving (22), fF and fB are determined simultaneously. Since the linear operators in (22) are not block-circulant,
Fourier Transform cannot be used. Therefore, the speed of solving (22) is expected to be slow.

Fig. 11 is one of the 27 images being tested. Referring to the image, the foreground is sharp and the
background is blurred. Since the blur kernels are unknown, we applied the proposed algorithm to estimate the
blur kernel. The estimated blur kernel is then applied to the three existing methods listed in Fig. 11.

Two versions of the proposed method are also tested. Proposed (Ground-Truth α) uses the ground-truth
alpha-matte for kernel estimation, background inpainting and deblurring, whereas Proposed (Estimated α) uses
the shared matting results for kernel estimation, background inpainting and deblurring.

The run-time of these methods are recorded based on a desktop computer with Intel Quadcore Q9550 2.8GHz,
4GB DDR3, MATLAB/ Windows 7. It can be seen that the proposed method shows significantly faster speed
than Dai and Wu’s method,15 and better recovery results than the method by Chan et al.8

5.3 Synthetic Foreground Blur

We now show the PSNR and SSIM comparisons between existing methods. To do so, the foreground of the 27
testing images are synthetically blurred. The blur kernel in this experiment is a Gaussian blur kernel with size
19× 19 and variance σ = 3. Since the methods by Chan et al.,8 Dai and Wu14 and Jia13 are evidently not able
to handle the two-layer blur, comparing to Dai and Wu15 is sufficient.



For Dai and Wu,15 we first apply the proposed kernel estimation algorithm to estimate the blur kernel. Once
the kernel is estimated, it is fixed in the iteration of the IRLS algorithm. For fairness alpha-matting is performed
using shared matting,24 same as the proposed method.

Some results are shown in Fig. 12. It can be observed that the proposed method generally produces similar
image quality. However, the run time is significantly shorter. PSNR, SSIM and the run-times are listed in Table
1.

(a) Blurred Image no. 23 (b) Dai and Wu15, 30.5dB, SSIM 0.85, 293sec

(e) Proposed-1, 30.3dB, SSIM 0.84, 9.4sec (f) Proposed-2, 31.6dB, SSIM 0.85, 9.4sec

(c) g̃ using Proposed-1 (d) g̃ using Proposed-2
Figure 12. Synthetic image foreground deblurring for Image No. 23. PSNR, SSIM, and Run-time can be referred to Table
1.

5.4 Real Foreground Blur

Finally, we applied the proposed algorithm to deblur real images with blurred foreground. The images were
captured using a Canon ESO REBEL T2i camera. The focal length is 24mm, and ISO is 400. The images
consist of a toy placed in front of posters with different background contents. The distance between the object
and the background is approximately 30cm.

To recover the foreground image, we applied the shared matting algorithm to first extract the foreground
object (with blurred edges). Then, the proposed blur kernel estimation method is run to determine the blur
kernel, and consequently the deblurring step could be performed.

Fig. 13 shows one of the results. Similar to the case of synthetic blur, the proposed method is able to
recover the image giving comparable quality with Dai and Wu’s method.15 However, the computation time of
the proposed method is significantly shorter.

More results are available at http://videoprocessing.ucsd.edu/~stanleychan.

6. CONCLUSION

This paper has two main contributions. First, we proposed a new blur kernel estimation algorithm for the two-
layer out-of-focus blur problem. The new algorithm encapsulates the strength of two existing classes of methods
by utilizing both the alpha-matte transient and image gradient. Experimental results showed that the new



(a) Input Image (b) Virtual background and blur kernel

(c) Dai and Wu15 (d) Proposed

Figure 13. Real image foreground deblurring (1). (a) The input image is captured using Canon ESO T2i camera. The
background is about 30cm from the foreground. (b) The virtual background created by the proposed algorithm and the
blur kernel estimated using the proposed algorithm. (c) Deblurring results by Dai and Wu.15 (d) Deblurring results by
the proposed method. In this image, alpha-matte is estimated using shared-matting.

algorithm is more robust than existing blur kernel estimation methods. Second, we proposed a new method to
transform the spatially variant blur problem to two spatially invariant blur problems so that fast deconvolution
algorithms can be used. The new method predicts the occluded background for the background blur case, and
creates virtual background for the foreground blur case. Experimental results showed that the proposed method
produces better recovery results than existing methods while at a significantly faster speed.

The proposed method is limited by a number of factors: accuracy of the initial alpha-matte estimation,
signal-to-noise ratio of the image, degree of blurriness of the image, and presence of object motion. Future
research shall be focused on overcoming these issues.
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