Single Image Spatially Variant Out-of-focus Blur Removal Supplementary Material

Stanley Chan

1 Derivation of $\psi(i, j)$

In this section, we explain the intuition of how to derive the equation

$$
\begin{equation*}
\psi(i, j)=\frac{1}{|\mathcal{A}|} \sum_{(p, q) \in \mathcal{A}}\left(1+\frac{1}{k}\right) \widetilde{\mathbf{g}}(i+p, i+q)-\frac{1}{k} \widetilde{\mathbf{g}}(i+2 p, i+2 q) \tag{1}
\end{equation*}
$$

1.1 1D Intuition

To start with, we consider the one-dimension case. Filling the missing foreground Ω_{F} is equivalent to extrapolate a discrete-time signal $g[n]$ for $n \geq 0$, with known values of $g[n]$ for $n<0$. There are various ways of extrapolation. Here, we consider the method that enforces the smoothness across the boundary. More precisely, we want

$$
\begin{equation*}
g[n]-g[n-1]=g[n-1]-g[n-2] \tag{2}
\end{equation*}
$$

where $g[n]-g[n-1]$ is the finite difference approximation to the derivative at n, and $g[n-1]-g[n-2]$ is the finite difference approximation to the derivative at $n-1$. Thus, the condition means that the slope at $g[n]$ should be the same as the slope at $g[n-1]$. Determining $g[n]$ from (2) is straight-forward, because $g[n-1]$ and $g[n-2]$ are known. Thus,

$$
g[n]=2 g[n-1]-g[n-2]
$$

1.2 2D Intuition

Extending the idea to the two-dimensional setting, we want the gradient of a two-dimensional signal $g[i, j]$ at pixel (i, j) to be similar to the gradients of its neighborhood. Since the two-dimensional gradient is directional, there are multiple equations for predicting $g[i, j]$:

$$
\begin{equation*}
g[i, j]-g[i+p, j+q]=g[i+p, j+q]-g[+2 p, j+2 q] \tag{3}
\end{equation*}
$$

where $p=q=\{-1,0,1\}$. Determining $g[i, j]$ is not as easy, because there are multiple equations in (3). Unless for some specific situations, in general $g[i, j]$ needs to solved by fitting the neighborhood. To this end, we consider the set of valid neighborhoods

$$
\mathcal{A}=\{(p, q)|g[i+p, i+q] \neq 0,|p| \leq 1,|q| \leq 1\}
$$

Here, the set \mathcal{A} denotes the set of pixels that are neighbors of $g[i, j]$ and they are known. Then, finding $g[i, j]$ from the pixels in \mathcal{A} becomes the minimization problem

$$
g[i, j]=\underset{g[i, j]}{\operatorname{argmin}} \sum_{(p, q) \in \mathcal{A}}(g[i, j]-2 g[i+p, i+q]+g[i+2 p, i+2 q])^{2},
$$

of which the solution can be found by considering the first order optimality, yielding

$$
g[i, j]=\frac{1}{|\mathcal{A}|} \sum_{(p, q) \in \mathcal{A}} 2 g[i+p, i+q]-g[i+2 p, i+2 q]
$$

1.3 Stability Condition

The condition $g^{\prime}[n]=g^{\prime}[n-1]$ has a problem that it leads to unbounded prediction, because if $g^{\prime}[n-1]>0$, then $g[n] \rightarrow \infty$ as $n \rightarrow \infty$. To ensure boundedness, instead of using $g^{\prime}[n]=g^{\prime}[n-1]$, we require $g^{\prime}[n]=\frac{1}{n} g^{\prime}[n-1]$ for $n>0$, and $g^{\prime}[n]=g^{\prime}[n-1]$ for $n=0$. Consequently, the recursion is defined as

$$
\begin{equation*}
g[n]=\left(1+\frac{1}{n}\right) g[n-1]-\frac{1}{n} g[n-2] \quad \text { for } n>0 \tag{4}
\end{equation*}
$$

with the initial condition $g[0]=2 g[-1]-g[-2]$. Intuitively, this recursion forces the slope at every extrapolation location to be reduce by a factor depending on the physical distance from the object boundary. The following proposition shows the boundedness of this method.

Proposition 1. Suppose that $g[-1]$ and $g[-2]$ are bounded, and hence $g[0]=2 g[-1]-g[-2]$ is also bounded. $g[n]$ satisfying the condition $g^{\prime}[n]=\frac{1}{n} g^{\prime}[n-1]$ has the recursion

$$
\begin{equation*}
g[n]=\left(1+\frac{1}{n}\right) g[n-1]-\frac{1}{n} g[n-2], \quad \text { for } n>0 \tag{5}
\end{equation*}
$$

and $g[n]$ is bounded for all n.
Proof. Since $g^{\prime}[n]=g[n]-g[n-1], g^{\prime}[n]=\frac{1}{n} g^{\prime}[n-1]$ implies $g[n]-g[n-1]=\frac{1}{n}(g[n-1]-g[n-2])$. By rearranging the terms we have (5). The boundedness can be proved by induction: $g[1]$ and $g[2]$ are bounded, because $g[0], g[-1]$ are bounded. Assume that $g[k]$ and $g[k+1]$ are bounded, then by triangle inequality $|g[k+2]| \leq\left(1+\frac{1}{k+2}\right)|g[k+1]|+\frac{1}{k+2}|g[k]|$ is also bounded.

Incorporating the idea of diminishing gradient so that $g[i, j]$ is bounded, we have

$$
g[i, j]=\frac{1}{|\mathcal{A}|} \sum_{(p, q) \in \mathcal{A}}\left(1+\frac{1}{k}\right) g[i+p, i+q]-\frac{1}{k} g[i+2 p, i+2 q]
$$

where k is the shortest distance from the unknown pixel (i, j) to the known set Ω_{B}. Replace the $g[i, j]$ by $\psi(i, j)$ and $g[i+p, j+p]$ by $\widetilde{\mathbf{g}}(i+p, j+p)$, we have

$$
\psi(i, j)=\frac{1}{|\mathcal{A}|} \sum_{(p, q) \in \mathcal{A}}\left(1+\frac{1}{k}\right) \widetilde{\mathbf{g}}(i+p, i+q)-\frac{1}{k} \widetilde{\mathbf{g}}(i+2 p, i+2 q)
$$

2 Boundedness of $\Delta \widehat{\mathbf{f}}_{B}$

In this section, we show the following statement.

Proposition 2.

$$
\left\|\left(\alpha * \mathbf{h}_{F}\right) \cdot\left(1-\alpha * \mathbf{h}_{F}\right) \cdot \Delta \widehat{\mathbf{f}}_{B}\right\| \leq\left\|\left(1-\alpha * \mathbf{h}_{F}\right) \cdot \Delta \widehat{\mathbf{f}}_{B}\right\|
$$

where the norm $\|\cdot\|$ is Frobenius-norm.
Proof. Note that for each pixel $\Delta \widehat{\mathbf{f}}_{B}(i, j),\left|\left(\alpha * \mathbf{h}_{F}\right)(i, j) \cdot\left(1-\alpha * \mathbf{h}_{F}\right)(i, j) \cdot \Delta \widehat{\mathbf{f}}_{B}(i, j)\right| \leq\left(1-\alpha * \mathbf{h}_{F}\right)(i, j)$. $\Delta \widehat{\mathbf{f}}_{B}(i, j) \mid$ because $0 \leq\left(\alpha * \mathbf{h}_{F}\right)(i, j) \leq 1$. Summing the squares of individual elements completes the proof.

3 Shock Filter

In this section we briefly describe the shock filter. Given an input image \mathbf{f}, shock filter first applies a smoothing blur kernel, typically a Gaussian blur kernel of size 9×9 and variance $\sigma=1$. The purpose of applying the smoothing kernel to the input image is to remove textures and noise.

In the k-th iteration of the shock filter, the $k+1$-th solution is given by

$$
\mathbf{f}^{k+1}=\mathbf{f}^{k}-\beta \operatorname{sign}\left(\Delta \mathbf{f}^{k}\right)\left\|\nabla \mathbf{f}^{k}\right\|_{1}
$$

Here $\nabla \mathbf{f}=\left[\mathbf{f}_{x} ; \mathbf{f}_{y}\right]$ is the gradient of \mathbf{f} and $\Delta \mathbf{f}=\mathbf{f}_{x}^{2} \mathbf{f}_{x x}+2 \mathbf{f}_{x} \mathbf{f}_{y} \mathbf{f}_{x y}+\mathbf{f}_{y}^{2} \mathbf{f}_{y y}$ is the Laplacian of $\mathbf{f} . \beta(=1)$ is the step size.

4 Edge Selection

Finally we provide some brief discussion on the edge selection mask M. First, given a blurred image \mathbf{g} we define a metric

$$
\mathbf{R}=\frac{\sqrt{\left|\mathbf{h}_{A} * \mathbf{g}_{x}\right|^{2}+\left|\mathbf{h}_{A} * \mathbf{g}_{y}\right|^{2}}}{\mathbf{h}_{A} * \sqrt{\left|\mathbf{g}_{x}\right|^{2}+\left|\mathbf{g}_{y}\right|^{2}}+0.5}
$$

where \mathbf{h}_{A} is a 5×5 a 5×5 uniform average kernel. The numerator $\mathbf{h}_{A} * \mathbf{g}_{x}$ is the average of the horizontal gradient within a 5×5 window. Therefore, if there are small objects/textures/noise, positive and negative gradients will cancel out each other. On the other hand, the denominator $\mathbf{h}_{A} * \sqrt{\left|\mathbf{g}_{x}\right|^{2}+\left|\mathbf{g}_{y}\right|^{2}}$ is the average of the absolute gradient, which is always positive. As a result, \mathbf{R} differentiates the large objects versus small texture in the window.

To rule out small values of \mathbf{R}, one can set a threshold as

$$
\widetilde{\mathbf{R}}=\max \left\{\mathbf{R}-\tau_{r}, 0\right\}
$$

where τ_{r} is a threshold. Finally, we define the edge selection mask as

$$
\mathbf{M}=\max \left\{\widetilde{\mathbf{R}} \cdot \sqrt{\left|\mathbf{f}_{x}^{s}\right|^{2}+\left|\mathbf{f}_{y}^{s}\right|^{2}}-\tau_{s}, 0\right\}
$$

where τ_{s} is a threshold, \mathbf{f}^{s} is the shock filtered image, \mathbf{f}_{x}^{s} and \mathbf{f}_{y}^{s} are gradients of \mathbf{f}^{s}.

