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1 Derivation of (3, j)
In this section, we explain the intuition of how to derive the equation
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1.1 1D Intuition

To start with, we consider the one-dimension case. Filling the missing foreground Qp is equivalent to
extrapolate a discrete-time signal g[n] for n > 0, with known values of g[n] for n < 0. There are various
ways of extrapolation. Here, we consider the method that enforces the smoothness across the boundary.
More precisely, we want

gln] = gln = 1] = g[n — 1] = g[n — 2], (2)
where g[n] — g[n — 1] is the finite difference approximation to the derivative at n, and g[n — 1] — g[n — 2] is
the finite difference approximation to the derivative at n — 1. Thus, the condition means that the slope at
g[n] should be the same as the slope at g[n — 1]. Determining g[n] from (2) is straight-forward, because
g[n — 1] and g[n — 2] are known. Thus,

gln] = 2g[n — 1] — g[n — 2.

1.2 2D Intuition

Extending the idea to the two-dimensional setting, we want the gradient of a two-dimensional signal
gli, 7] at pixel (i, j) to be similar to the gradients of its neighborhood. Since the two-dimensional gradient
is directional, there are multiple equations for predicting g¢[i, j]:

gli,jl —gli+p,j+4ql = gli +p,j + ] — g[+2p,j + 2q], (3)

where p = ¢ = {—1, 0, 1}. Determining g[¢, j] is not as easy, because there are multiple equations in (3).
Unless for some specific situations, in general g[i, j] needs to solved by fitting the neighborhood. To this
end, we consider the set of valid neighborhoods

A={(p,q)|gli+p.i+q #0,[p| <1,]¢ <1}

Here, the set A denotes the set of pixels that are neighbors of g[i, j] and they are known. Then, finding
gli, j] from the pixels in A becomes the minimization problem

gli,j] = argmin > (gli, j] — 2gli + p,i + g + gli + 2p,i + 2q))?,
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of which the solution can be found by considering the first order optimality, yielding
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1.3 Stability Condition

The condition ¢’'[n] = ¢’[n—1] has a problem that it leads to unbounded prediction, because if ¢'[n—1] > 0,
then g[n] — oo as n — oo. To ensure boundedness, instead of using ¢'[n] = ¢'[n — 1], we require
g'In] = Lg'[n—1] for n > 0, and ¢'[n] = ¢’[n — 1] for n = 0. Consequently, the recursion is defined as

gln] = (1—1—%) g[n—l]—%g[n—Q] for n >0, (4)

with the initial condition ¢[0] = 2¢[—1] — g[—2]. Intuitively, this recursion forces the slope at every
extrapolation location to be reduce by a factor depending on the physical distance from the object
boundary. The following proposition shows the boundedness of this method.

Proposition 1. Suppose that g[—1] and g[—2] are bounded, and hence g|0] = 2g[—1] — g[—2] is also

]
bounded. g[n] satisfying the condition g'[n] = Lg'[n — 1] has the recursion

1 1
gln] = <1+ﬁ) g[n—l]—ﬁg[n—Q], forn >0, (5)
and g[n] is bounded for all n.

Proof. Since ¢'[n] = g[n] — gln — 1], ¢'[n] = 5g¢'[n — 1] implies g[n] — g[n — 1] = L(g[n — 1] - g[n — 2]).
By rearranging the terms we have (5). The boundedness can be proved by induction: g[1] and g[2] are
bounded, because ¢[0], g[—1] are bounded. Assume that g[k] and g[k + 1] are bounded, then by triangle

inequality |g[k + 2]| < (1 + k_i2) gk + 1] + =3 [g[k]| is also bounded. O

Incorporating the idea of diminishing gradient so that g[é, j] is bounded, we have
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where k is the shortest distance from the unknown pixel (4, j) to the known set Q5. Replace the g[i, j]
by ¥ (i, j) and g[i + p,j + p|] by &(i + p, j + p), we have
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2 Boundedness of A/f\B

In this section, we show the following statement.

Proposition 2. R R
[(axhp) - (1—asxhp)  Afg|| <||(1—axhp) - Afg|,

where the norm || - || is Frobenius-norm.

Proof. Note that for each pixel Afg(i,7), |(a*hp)(i,§) (1 —axhp)(i,j) - Afp(i, 7)| < (1—a*hp)(i, ) -
Afgp(i,7)] because 0 < (a * hp)(i,j) < 1. Summing the squares of individual elements completes the
proof. O



3 Shock Filter

In this section we briefly describe the shock filter. Given an input image f, shock filter first applies a
smoothing blur kernel, typically a Gaussian blur kernel of size 9 x 9 and variance ¢ = 1. The purpose of
applying the smoothing kernel to the input image is to remove textures and noise.

In the k-th iteration of the shock filter, the k£ + 1-th solution is given by
fRHL = £F — Bsign(AFF)|VEF|);.

Here Vf = [f,;f,] is the gradient of f and Af = f2f,, + 2f,f,f,, + £ f,, is the Laplacian of f. 3(=1) is
the step size.

4 Edge Selection

Finally we provide some brief discussion on the edge selection mask M. First, given a blurred image g
we define a metric

_ \/|hA * 8|2 + [ha xgy[?
ha o« /]ga]? + [gy[? + 0.5

where hy is a 5 x 5 a 5 x 5 uniform average kernel. The numerator hy % g, is the average of the
horizontal gradient within a 5 x 5 window. Therefore, if there are small objects/textures/noise, positive
and negative gradients will cancel out each other. On the other hand, the denominator ha*+/|g,[? + |gy[?
is the average of the absolute gradient, which is always positive. As a result, R differentiates the large
objects versus small texture in the window.

To rule out small values of R, one can set a threshold as
R = max{R — 7,0},
where 7, is a threshold. Finally, we define the edge selection mask as

M = max {R- \/Ifs2 + [£5 2 — 7.0}

where 7 is a threshold, £* is the shock filtered image, f; and f; are gradients of £*.



