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1 Derivation of ψ(i, j)

In this section, we explain the intuition of how to derive the equation

ψ(i, j) =
1

|A|

∑

(p,q)∈A

(
1 +

1

k

)
g̃(i+ p, i+ q)−

1

k
g̃(i + 2p, i+ 2q). (1)

1.1 1D Intuition

To start with, we consider the one-dimension case. Filling the missing foreground ΩF is equivalent to
extrapolate a discrete-time signal g[n] for n ≥ 0, with known values of g[n] for n < 0. There are various
ways of extrapolation. Here, we consider the method that enforces the smoothness across the boundary.
More precisely, we want

g[n]− g[n− 1] = g[n− 1]− g[n− 2], (2)

where g[n]− g[n− 1] is the finite difference approximation to the derivative at n, and g[n− 1]− g[n− 2] is
the finite difference approximation to the derivative at n−1. Thus, the condition means that the slope at
g[n] should be the same as the slope at g[n− 1]. Determining g[n] from (2) is straight-forward, because
g[n− 1] and g[n− 2] are known. Thus,

g[n] = 2g[n− 1]− g[n− 2].

1.2 2D Intuition

Extending the idea to the two-dimensional setting, we want the gradient of a two-dimensional signal
g[i, j] at pixel (i, j) to be similar to the gradients of its neighborhood. Since the two-dimensional gradient
is directional, there are multiple equations for predicting g[i, j]:

g[i, j]− g[i+ p, j + q] = g[i+ p, j + q]− g[+2p, j + 2q], (3)

where p = q = {−1, 0, 1}. Determining g[i, j] is not as easy, because there are multiple equations in (3).
Unless for some specific situations, in general g[i, j] needs to solved by fitting the neighborhood. To this
end, we consider the set of valid neighborhoods

A = {(p, q) | g[i+ p, i+ q] 6= 0, |p| ≤ 1, |q| ≤ 1}.

Here, the set A denotes the set of pixels that are neighbors of g[i, j] and they are known. Then, finding
g[i, j] from the pixels in A becomes the minimization problem

g[i, j] = argmin
g[i,j]

∑

(p,q)∈A

(g[i, j]− 2g[i+ p, i+ q] + g[i+ 2p, i+ 2q])2,

of which the solution can be found by considering the first order optimality, yielding

g[i, j] =
1

|A|

∑

(p,q)∈A

2g[i+ p, i+ q]− g[i+ 2p, i+ 2q].
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1.3 Stability Condition

The condition g′[n] = g′[n−1] has a problem that it leads to unbounded prediction, because if g′[n−1] > 0,
then g[n] → ∞ as n → ∞. To ensure boundedness, instead of using g′[n] = g′[n − 1], we require
g′[n] = 1

n
g′[n− 1] for n > 0, and g′[n] = g′[n− 1] for n = 0. Consequently, the recursion is defined as

g[n] =

(
1 +

1

n

)
g[n− 1]−

1

n
g[n− 2] for n > 0, (4)

with the initial condition g[0] = 2g[−1] − g[−2]. Intuitively, this recursion forces the slope at every
extrapolation location to be reduce by a factor depending on the physical distance from the object
boundary. The following proposition shows the boundedness of this method.

Proposition 1. Suppose that g[−1] and g[−2] are bounded, and hence g[0] = 2g[−1] − g[−2] is also

bounded. g[n] satisfying the condition g′[n] = 1
n
g′[n− 1] has the recursion

g[n] =

(
1 +

1

n

)
g[n− 1]−

1

n
g[n− 2], for n > 0, (5)

and g[n] is bounded for all n.

Proof. Since g′[n] = g[n]− g[n − 1], g′[n] = 1
n
g′[n − 1] implies g[n] − g[n− 1] = 1

n
(g[n − 1]− g[n − 2]).

By rearranging the terms we have (5). The boundedness can be proved by induction: g[1] and g[2] are
bounded, because g[0], g[−1] are bounded. Assume that g[k] and g[k + 1] are bounded, then by triangle

inequality |g[k + 2]| ≤
(
1 + 1

k+2

)
|g[k + 1]|+ 1

k+2 |g[k]| is also bounded.

Incorporating the idea of diminishing gradient so that g[i, j] is bounded, we have

g[i, j] =
1

|A|

∑

(p,q)∈A

(
1 +

1

k

)
g[i+ p, i+ q]−

1

k
g[i+ 2p, i+ 2q],

where k is the shortest distance from the unknown pixel (i, j) to the known set ΩB. Replace the g[i, j]
by ψ(i, j) and g[i+ p, j + p] by g̃(i+ p, j + p), we have

ψ(i, j) =
1

|A|

∑

(p,q)∈A

(
1 +

1

k

)
g̃(i+ p, i+ q)−

1

k
g̃(i + 2p, i+ 2q).

2 Boundedness of ∆f̂B

In this section, we show the following statement.

Proposition 2.

‖(α ∗ hF ) · (1− α ∗ hF ) ·∆f̂B‖ ≤ ‖(1− α ∗ hF ) ·∆f̂B‖,

where the norm ‖ · ‖ is Frobenius-norm.

Proof. Note that for each pixel ∆f̂B(i, j), |(α ∗hF )(i, j) · (1−α ∗hF )(i, j) ·∆f̂B(i, j)| ≤ (1−α ∗hF )(i, j) ·

∆f̂B(i, j)| because 0 ≤ (α ∗ hF )(i, j) ≤ 1. Summing the squares of individual elements completes the
proof.
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3 Shock Filter

In this section we briefly describe the shock filter. Given an input image f , shock filter first applies a
smoothing blur kernel, typically a Gaussian blur kernel of size 9× 9 and variance σ = 1. The purpose of
applying the smoothing kernel to the input image is to remove textures and noise.

In the k-th iteration of the shock filter, the k + 1-th solution is given by

fk+1 = fk − β sign(∆fk)‖∇fk‖1.

Here ∇f = [fx; fy] is the gradient of f and ∆f = f2x fxx + 2fxfyfxy + f2y fyy is the Laplacian of f . β(= 1) is
the step size.

4 Edge Selection

Finally we provide some brief discussion on the edge selection mask M. First, given a blurred image g

we define a metric

R =

√
|hA ∗ gx|2 + |hA ∗ gy|2

hA ∗
√
|gx|2 + |gy|2 + 0.5

,

where hA is a 5 × 5 a 5 × 5 uniform average kernel. The numerator hA ∗ gx is the average of the
horizontal gradient within a 5× 5 window. Therefore, if there are small objects/textures/noise, positive
and negative gradients will cancel out each other. On the other hand, the denominator hA∗

√
|gx|2 + |gy|2

is the average of the absolute gradient, which is always positive. As a result, R differentiates the large
objects versus small texture in the window.

To rule out small values of R, one can set a threshold as

R̃ = max {R− τr , 0} ,

where τr is a threshold. Finally, we define the edge selection mask as

M = max
{
R̃ ·

√
|fsx |

2 + |fsy |
2 − τs, 0

}
,

where τs is a threshold, fs is the shock filtered image, fsx and fsy are gradients of fs.
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