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ABSTRACT

We propose a fast subpixel motion estimation method for motion de-
blurring, where conventional motion estimation algorithms used in
video codings are too complex. The new algorithm is a combination
of block matching and optical flow. It does not require any interpo-
lation and it does not provide motion compensated frames. Thus it is
much faster than conventional methods. Statistical results show that
the new algorithm performs quickly and accurately. It also demon-
strates compatible performance with the benchmarking full search
algorithm, yet uses significantly less amount of time.

Index Terms— motion estimation, three step search, block
matching, optical flow, motion deblurring.

1. INTRODUCTION

Motion estimation (ME) is the essential element in video process-
ing. Especially in coding, the performance of motion estimation al-
gorithms can directly affect the performance of the coding scheme.
Therefore, despite its long history, motion estimation is still an im-
portant research topic for the video engineers. However, techniques
for video coding is not always applicable to other applications. One
of the examples is motion deblurring.

Motion blur appears in almost all practical video systems - either
a moving camera with stationary scene or a stationary camera with
moving scene (or both are moving, of course!). In order to restore
a video, a good estimate of the motion blur point spread function
(PSF), and hence the motion vector, is required. Now there are three
issues. First, to generate a PSF, all we needed is the motion vector,
whereas a motion compensated frame is irrelevant. This is quite dif-
ferent from video coding because for coding, motion compensated
frames are necessary for prediction error computation. Therefore, al-
most all motion estimation algorithms in coding perform estimation
and compensation simultaneously. Thus, if we use these methods
for deblurring, then it will be wasteful because motion compensated
frames are not needed.

The second issue is the repeated process of motion estimation.
It has been a well known problem in image processing community
that estimating a motion vector based on a pair of blurred images are
seldomly accurate. Therefore, a more reasonable strategy in motion
deblurring is to iteratively perform the motion estimation and deblur-
ring alternatively - we first make an initial estimate of the motion
vector, and refine it as we get sharper images from the deblurring
procedure, and repeats. Since this would require repeated motion
estimations, a one pass frame-to-frame motion estimation available
from video coding is not suitable.

The third issue is subpixel interpolation. As we mentioned in
the first issue, motion estimation algorithms in video coding perform
estimation and compensation simultaneously. In the estimation part,
the algorithm has to implicitly interpolate the image if subpixel accu-
racy is required. However the associated cost is higher for more pre-
cise motion vectors. For example, if we want to achieve a 0.125 pixel
accuracy, then we need to enlarge the image by 8 times along each
direction. Although state-of-art algorithms can selectively choose
where to interpolate, their cost is still high. Since we do not need
motion compensated frames anyway, we investigate an algorithm
that does not require any interpolation.

Because of these unique features, we propose a new hybrid mo-
tion estimation scheme. Our proposed method combines classical
block matching and optical flow. It first determines a coarse motion
vector using block matching, then refines itself using local approxi-
mations. This will be described in Section III.

Since the purpose of our algorithm is quite different from con-
ventional video coding schemes, it is difficult to have a fair com-
parison with existing algorithms. However, in order to confirm and
demonstrate the efficiency our algorithm, we will present several
simulations results and discuss their implications. This will be dis-
cussed in Section IV.

2. CLASSICAL METHODS REVIEW

2.1. Block Matching Algorithms

Fig. 1. Illustration of block matching methods.

Block matching method, as named, is a method that finds the
best matched block in the search space. As shown in Fig. 1, if we
want to find the best matching block in the frame 0, then one of the
most straight forward methods is to search over all possible positions
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Fig. 2. Block diagram of motion estimation using a combination of block matching algorithms and Taylor approximation (simplified optical
flow).

in the search range. Such exhaustive search is referred as full search
[1].

To reduce the number of search points, we can use more ad-
vanced searching techniques, e.g. three step search [2] and bilateral
ME [3]. Fig. 3 illustrates the concept of three step search [2] - at
the first step, nine candidates centered at (0, 0) with initial step size
are tested to find the best candidate with the least error. At the sec-
ond step, the center is moved to the best candidate and another eight
candidates are picked with half of the previous step size. In the third
step, the first and second step are repeated in many stages of picking
the candidates until the step size meets the accuracy requirement of
motion estimation.
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Fig. 3. An example of three step search scheme [2].

2.2. Optical flow

We describe a simplified version of classical optical flow [4]. Given
two consecutive frames f(x, y) and g(x, y) we have [5]

g(x, y) = f(x + Δx, y + Δy)

≈ f(x, y) + Δx
∂

∂x
f(x, y) + Δy

∂

∂y
f(x, y), (1)

which is the first order Taylor series approximation.
The optimal shift can be found by solving the minimization

problem
minimize

Δx,Δy
Φ(Δx, Δy) (2)

where

Φ(Δx, Δy) =
∑
x,y

(
g(x, y) − f(x, y)

− Δx
∂

∂x
f(x, y) − Δy

∂

∂y
f(x, y)

)2

. (3)

Since this is a linear least square problem, the optimal Δx, and
Δy can be determined by setting the derivative of the objective func-
tion to zero. Thus we have

∂Φ

∂Δx
= 0 and

∂Φ

∂Δy
= 0,

and consequently we can setup the following system of linear equa-
tions⎛

⎜⎝
∑
x,y

(
∂f
∂x

)2 ∑
x,y

∂f
∂x

∂f
∂y∑

x,y

∂f
∂x

∂f
∂y

∑
x,y

(
∂f
∂y

)2

⎞
⎟⎠ (

Δx
Δy

)
=

⎛
⎜⎝

∑
x,y

(g − f) ∂f
∂x∑

x,y

(g − f) ∂f
∂y

⎞
⎟⎠ . (4)

Therefore, by solving this system of linear equations we can deter-
mine the optimal solution. Note that in order to make Taylor approx-
imation valid, we implicitly assumed that |Δx| � 1 and |Δy| � 1.
For the computation of partial derivatives, one can approximate them
using finite difference, i.e. ∂f

∂x
= f(x + 1, y) − f(x, y) and ∂f

∂y
=

f(x, y + 1) − f(x, y).

3. PROPOSED METHOD

Our proposed motion estimation method is a combination of block
matching algorithm and the simplified optical flow (See Fig. 2). In
the first step, we use a block matching algorithm to determine inte-
ger pixel displacements Δx and Δy. If (Δx, Δy) is the true dis-
placement, then (Δx, Δy) determined by block matching algorithm
should be a good integer estimate of (Δx,Δy).

When (Δx, Δy) is determined, we shift the image block by Δx
pixels along x direction, and Δy pixels along y direction. Since the
shift is an integer factor, no interpolation is needed.

The second step of the algorithm is to use Taylor series approxi-
mation to refine the search. Since the shifted image f(x+δx, y+δy)
differs from the true image by only (δx, δy), where |δx| < 1 and
|δy| < 1, the Taylor series approximation is approximately valid.
So the overall displacement can be determined as

Δx = Δx + δx and Δy = Δy + δy (5)

Note that the first step can be implemented with any block
matching algorithm, for example full search, three step search,
phase plane correlation, or bilateral ME. Therefore the contribution
of this paper is that provided any block matching algorithm which
uses interpolation for subpixel accuracy, we can determine the sub-
pixel motion vector using the same algorithm without interpolation.
Hence the speed can be greatly enhanced.



4. ANALYSIS AND DISCUSSION

As we stated in the introduction, our algorithm is not designed for
video coding. So comparing with algorithms used in video com-
pression/ video transmission may not reflect the efficiency of our
algorithm. Therefore, we present a few analytical and experimental
results to prove the usefulness of our algorithm.

4.1. Analytical Error Analysis

In order to analyze the performance of the proposed algorithm, we
first prove that the proposed method can achieve lower error than
any classical block matching algorithms. The following equations
are derived in 1-dimension, but the derivations are also valid in 2D.

In 1-dimension, the optimal displacement Δ̂x is the solution of
d

dΔx
Φ(Δx) = 0, where Φ(Δx) =

∑
x(g(x)− f(x)− f ′(x)Δx)2.

So Δ̂x can be found as

Δ̂x =

∑
x f ′(x)[g(x) − f(x)]∑

x[f ′(x)]2
. (6)

Suppose that the true displacement is given by Δx, then the absolute
difference error can be determined as

|Δ̂x − Δx| =

∣∣∣∣
∑

x f ′(x)[g(x)− f(x)]∑
x[f ′(x)]2

− Δx

∣∣∣∣
=

∣∣∣∣
∑

x f ′(x)[g(x)− f(x)] − Δx
∑

x[f ′(x)]2∑
x[f ′(x)]2

∣∣∣∣
=

∣∣∣∣
∑

x f ′(x)[g(x)− f(x) − Δxf ′(x)]∑
x[f ′(x)]2

∣∣∣∣
=

∣∣∣∣∣
∑

x f ′(x)[ 1
2
f ′′(ξ)(Δx)2]∑

x[f ′(x)]2

∣∣∣∣∣
≤ 1

2
max

ξ

∣∣f ′′(ξ)
∣∣ ∑

x |f ′(x)|∑
x |f ′(x)|2 (Δx)2, (7)

where the Generalized Mean Value Theorem is applied in the fourth
line, which states that there exists ξ such that

g(x) = f(x + Δx) = f(x) + Δxf ′(x) +
1

2
f ′′(ξ)(Δx)2. (8)

The next step is to bound the above expression. First, note that
max f(x) = 1 and min f(x) = 0. So max f ′(x) = 1, min f ′(x) =
−1, and hence max |f ′′(x)| = 2. Next, suppose full search is ap-
plied to determine the nearest integer at the first stage, then Δx is at
most 0.5, thus (Δx)2 ≤ 0.25. Furthermore, moving objects usually
show positive gradient at front moving edges, and negative gradient
at tail moving edges. Therefore, the overall sum of these positive
and negative gradients is small, but the sum of squared gradients is

large. From our experience, the typical value of
∑

x |f ′(x)|∑
x |f ′(x)|2 is less

than 1
20

. Therefore, putting these together, the error is bound by

|Δ̂x − Δx|proposed ≤ 0.0125.
To compare with full search, note that full search rounds off the

computed motion vector to its closest 1/8 fraction, so the error bound
is given by |Δ̂x − Δx|full ≤

(
1
2

) (
1
8

)
= 0.0625. Compared to the

proposed method, this error is much larger. Since full search is more
accurate (though slower) than most classical block matching algo-
rithms, this results implies that the proposed method can find a more
accurate motion vector than other methods.

4.2. Experimental Error Analysis
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Fig. 4. Sum square error of the motion vectors compared to the true
motion.

In this section we verify the above analytical results by exper-
iments. We randomly generate 1000 true motion vectors and shift
1000 images according to these true motion vectors.1 Gaussian noise
is also added to imitate a real video sequence. The objective of this
experiment is to investigate whether the proposed algorithm can de-
tect the true motion vectors.

Fig. 4 shows the sum square error of the estimated motion
vector and the true motion vectors. The block matching algorithm
for this experiment is three step search (TSS). As shown, the pro-
posed method gives significantly smaller error at all listed noise vari-
ance levels. Nevertheless, the average computing time for TSS is
1.4112 seconds (based on 1/8 pixel accuracy), whereas the proposed
method is only 0.0538 seconds. 2.

4.3. Motion Compensation Comparison

The third comparison is to show that our algorithm can achieve
PSNRs as some of the existing algorithms. Here we choose to com-
pare with full search because (1) the proposed method works for
any block matching algorithm. Thus if one wishes to compare with
a customized block matching ME, we can implement this ME for
the first step to determine the integer pixel motion, and use Taylor
approximation for the second step to determine the subpixel motion.
As long as the original ME requires interpolation, the proposed
method can improve the efficiency. In other words it is indepen-
dent of the original ME; (2) Full search is the most robust and
most accurate block matching algorithm. If the proposed method
can achieve similar PSNR as that of full search, while reducing its
implementation time, then the proposed method can also achieve
similar performance in conjunction with other ME methods.

We tested the algorithms on three real video sequences. Let
adjacent frames be denoted by f(x, y) and g(x, y) respectively,
then using the algorithm we can reconstruct a motion compen-
sated frame f̃(x, y). The residual between the f(x, y) and f̃(x, y)
will be used to compute the PSNR, which is defined to be PSNR =

10 log10

(
1

MSE

)
, where MSE = 1

MN

N∑
y=1

M∑
x=1

(
f(x, y) − f̃(x, y)

)2

.

1To shift an image with fractional pixels e.g. 3.124 pixels, we first shift
the image by the closest integer pixel (e.g. 3 pixels), and use linear interpo-
lation to approximate the value at that fractional pixel location (e.g. 0.124
pixels).

2More studies about the speed can be found at http:
//videoprocessing.ucsd.edu/˜stanleychan



Fig. 5. PSNR curves of three video sequences. (Top) Train. (Mid-
dle) New York City. (Bottom) Stockholm. The average computing
time for proposed method is 0.5 seconds, whereas the full search is
15 seconds.

Fig. 6. Sample frame of testing video sequences. (Left) Train.
(Middle) New York City. (Right) Stockholm. Size: 280 × 280

The motion vectors are estimated using full search (to 1/4 pix-
els) and full search with Taylor approximation (truncated to 1/2, 1/4
and 1/8 pixels, respectively). Given the estimated motion vectors,
the motion compensated frames are generated using standard H.264
interpolation filters.

The goal of this simulation is to show that (1) when motion vec-
tors estimated by the proposed method becomes more accurate, the
PSNR increases; (2) at all three subpixel accuracy levels (1/2, 1/4,
and 1/8), the PSNR of the motion compensated frames using pro-
posed method is comparable to the one performed by full search; (3)
the computation time of the proposed method is significantly shorter.
Fig. 5 summarizes the results.

4.4. Motion Deblurring Results

Last, we apply the proposed method to LCD deblurring [6]. LCD
deblurring is a particular motion blur problem where an overdriven
signal has to be inversely synthesized so that it compensates the slow
response (hence temporal blur) of the LCD. To solve this problem,
the most important step is to determine the motion and form the point
spread functions at each block of the image. This can be done us-
ing any existing ME algorithms, but these are usually slow as they
require interpolations. So the proposed method is used to find the
motion vectors.

After estimating the point spread functions we solve a least
square problem of minimize‖Ax − b‖2

2, where A is a shift varying
convolution matrix characterized by the point spread functions, x
is the unknown vector, and b is the target sharp image stacked in
lexicographic order (See [6] for details).

Fig. 7(left) shows the perceived signal using the original image
as the input to the LCD, and Fig. 7(right) shows the perceived sig-
nal using the synthesized overdriven signal. The motion vectors are
computed using full search with Taylor approximation.

Fig. 7. LCD deblurring results. (Left) The perceived signal using
original input. (Right) The perceived signal using synthesized sig-
nal, where motion vectors are determined by full search with Taylor
approximation.

5. CONCLUSION

In this paper we propose a motion estimation method that only aims
at providing motion vectors. A particular application of the proposed
method is for motion deblurring, where no interpolation is needed.
Since no interpolation is needed, the method is tremendously faster
than any exiting block matching algorithms. Analytical and experi-
mental results show that the method can provide more accurate mo-
tion vectors and comparable motion compensated frames when com-
pared to full search.
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