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ABSTRACT
We present a novel stereo video disparity estimation method.
The proposed method is a two-stage algorithm. During the
first stage, initial disparity maps are computed in a frame-
by-frame basis. In the second stage, the initial estimates are
treated as a space-time volume. By setting up an l1-normed
minimization problem with a novel three-dimensional total
variation regularization, spatial smoothness and temporal
consistency are handled simultaneously. Due to our unique
formulation, any existing image disparity estimation tech-
nique may utilize our method as a post-processing step to
refine noisy estimates or to be extended to videos. The
proposed method shows superior speed, accuracy, and con-
sistency compared to state-of-the-art algorithms.

Index Terms— stereo vision, video disparity, signal de-
noising, augmented Lagrangian, total variation minimization

1. INTRODUCTION

Stereo disparity estimation is an integral problem associated
with 3D content delivery. Disparity is an important element
for an accurate 3D visual representation. In a two-camera
imaging system, disparity is defined as the vector difference
between the imaged object point in each image relative to the
focal point [1]. It is this disparity that allows for depth esti-
mation of objects in the scene via triangulation of the point
in each image. In rectified stereo, where both camera im-
ages are in the same plane, only horizontal disparity exists.
In this case, multiview geometry shows that disparity is in-
versely proportional to actual depth in the scene.
The problem of estimating disparity has been well-studied

for images. Numerousmethods have presented impressive re-
sults. However, simply applying even the best of these meth-
ods to individual frames of stereo sequences yields tempo-
rally inconsistent disparity maps. This is perceived as a high-
frequency flickering effect when the sequence is visualized.
Our goal in this paper is to present a systematic method

by which we generate accurate and spatio-temporally consis-
tent disparity maps from complex stereo video sequences. We
leverage the strengths of current state-of-the-art image-based
techniques, but, in addition, we explicitly enforce the consis-
tency of estimates in both space and time by treating the video
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as a space-time volume corrupted by noise. In so doing, we
provide an algorithm that has the capability of refining arbi-
trary image-based disparity estimation techniques and, at the
same time, extending them to the video domain.
In Section 2 we briefly discuss existing image- and video-

based disparity estimation techniques. Section 3 presents the
proposed algorithm. We evaluate the method and compare
results with one of today’s most advanced techniques in Sec-
tion 4. In Section 5 we discuss the implications of using our
algorithm and finally conclude with some closing remarks.

2. RELATED WORK

For static images, the problem of disparity estimation has
been thoroughly studied, with standardized databases, such
as Middlebury [2], aiding in the fast evolution of the myr-
iad techniques. The existing algorithms may be categorized
into one of two groups: local or global methods. Local meth-
ods treat each pixel (or an aggregated region of pixels) in the
reference image independently and try to infer the optimal
horizontal displacement to match it with the corresponding
pixel/region in the other image. In contrast, global methods
incorporate assumptions about depth discontinuities and esti-
mate disparity values by minimizing an energy function over
all pixels using techniques like Graph Cuts [3][4] or Hierar-
chical Belief Propagation (HBP) [5]. Generally local methods
tend to be fast but lack the accuracy of global methods. How-
ever, straightforward implementations of most global meth-
ods tend to be extremely slow. A thorough review of stereo
matching techniques can be found in [6].
For video sequences, on the other hand, solutions to the

stereo matching problem are few and far between. Largely
due to the computational bottleneck of dealing with multi-
dimensional data, lack of any real datasets with ground-truth,
and the unclear relationship between optimal spatial and tem-
poral processing for correspondence matching, few have ven-
tured to present viable solutions to the video disparity esti-
mation problem. The ones that have tried typically do so by
extending existing methods for images to videos, with the
debilitating drawback of computational times that make the
methods impractical for most applications.
In an attempt to build off the successful HBP approach,

[7] extends the matching cost representation to video by form-
ing a 3-dimensional Markov Random Field (MRF). The ap-

885978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



proach intuitively makes sense but, as we mentioned earlier,
computational times make it unusable in most cases. They
report algorithmic run times as high as 947.5 seconds for a
single 320× 240 frame on a powerful computer.
Scene Flow [8] and related work [9] try to utilize motion

flow fields to enforce temporal coherence. [8] defines a 3D
motion vector field whereas [9] uses median filtering along
vectors from traditional Optical Flow. However, the process
of flow field estimation itself introduces unnecessary errors
into the framework and, for high accuracy, requires significant
computational time as well. The median filtering technique
requires the flow fields to be computed as a pre-processing
step, and so it suffers from the same drawbacks.
Perhaps the most promising technique that we have come

across is that of [10], which shows practical, real-time usabil-
ity via a GPU implementation of HBP using an approximation
to locally adaptive support weights [11]. Their video method,
TDCB, integrates temporal coherence in a similar way to [7],
reporting computational times of 90 ms per frame (11.1 fps)
on a 400 × 300 image with 64 levels of disparity. They also
provide a synthetic dataset with ground-truth disparity maps.
We believe such datasets are a crucial fundamental step in ad-
vancing the maturation of video disparity estimation. Even
with their promising findings, we show that our algorithm is
capable of further refining their results in Section 4.
Additional methods have also been proposed, but they

normally require specific hardware, such as time-of-flight
sensors [12], or constraints on the data, such as static scenes
[13], that go beyond the scope of this paper.

3. PROPOSEDMETHOD

We avoid formulating the video disparity problem in space-
time, with the realization that such attempts become compu-
tationally impractical. Furthermore, image-based techniques
have been thoroughly studied and are much more advanced in
their implementations. We wish to leverage the breakthroughs
made in that research area. Yet the difficulty with operating
on each frame of a video sequence independently is that we
lose the consistency between consecutive frames. The noisy
estimates for each frame create a flickering effect over time
that is highly bothersome to the human visual system.
To improve the temporal consistency, we present a novel,

fast, and efficient method based on an augmented Lagrangian
method for total variation (TV) image restoration presented
in [14]. Chan et al. show that the method is faster than state-
of-the-art methods and yields superb results.
The proposed method consists of two steps. First, we

compute disparity estimates for each frame individually us-
ing our image-based method, which is discussed in Section
3.1. Then between neighboring pixels in space-time, we en-
force the disparity smoothness assumption that values should
vary smoothly except at object boundaries. With this assump-
tion, we can treat the temporal (and spatial) inconsistencies
as a signal corrupted with noise. By solving a new three-
dimensional TV minimization problem, the spatial and tem-

poral consistency is improved. The TV minimization is de-
tailed in Section 3.2.

3.1. Image-based Disparity Map Estimation

Our approach for static images is a global method using Hi-
erarchical Belief Propagation (HBP) for inferencing. HBP
maintains the accuracy of global methods, such as traditional
Belief Propagation and Graph Cuts, but rivals local methods
in computational time.
Let P be the set of pixels in an image and L be a finite set

of labels. The labels correspond to quantities that we want to
estimate at each pixel (i.e., the disparity). A labeling f assigns
a label fp ε L to each pixel p ε P . As with traditional global
methods, for each pixel we designate an energy function that
indicates how well that label fits:

E(f) =
∑

pεP

Dp(fp) +
∑

(p,q)εN

V (fp − fq) (1)

Dp(fp) is referred to as the data cost and V (fp − fq) is com-
monly called the smoothness cost in some literature, but it is
more accurate to refer to it as a discontinuity cost. Intuitively,
the data cost captures how well the labeling fits the node
(how well the disparity estimate matches the stereo informa-
tion). The discontinuity cost enforces the assumption that la-
bels should vary slowly almost everywhere except for signif-
icant changes along object boundaries. Neighboring pixels
in neighborhoodN are penalized according to how large the
difference is between their labels.
In our implementation, the data cost is computed over a

large window for each pixel using Yoon and Kweon’s locally
adaptive support weights [11], so that only points with a high
probability of belonging to the same object contribute signif-
icantly to the cost calculation. For the discontinuity cost,
we use the commonly employed truncated weighted linear
model, V (fp − fq) = min(α |fp − fq| , β), where fp and
fq are the labels we wish to assign to pixels p and q.
We use the method of Felzenszwalb et al. [5] to minimize

the energy over the entire image in a coarse-to-fine manner.
It iteratively passes messages from all pixels to their neigh-
bors in parallel. The message vector represents the minimal-
energy labeling of each node (pixel) and all the information
coming into it through the connected nodes. This current la-
beling, or belief, of each pixel is passed to its neighbors. The
idea is that after T iterations, information will have propa-
gated across the image and the minimization will lead to a
globally optimal disparity labeling across the image.

3.2. Video Disparity Estimation - Temporal Consistency

In the previous step, disparity maps are computed for each
frame individually. To enhance the temporal consistency of
the disparity maps, we make the observation that disparity
should generally be a piecewise smooth function in time, ex-
cept for discontinuities at object borders (in which case the
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value may drastically change). This is because objects do not
simply disappear from one frame to the next. However, this
smoothness assumption is normally violated in most initial
disparity maps, as there are inevitable estimation errors.
Realizing the fact that disparity maps have to be piece-

wise smooth, we propose to consider the sequence of dispar-
ity maps as a space-time volume, i.e., a three-dimensional
function f(x, y, t) with (x, y) being the spatial coordinates
and t being the temporal coordinate. By applying a denois-
ing algorithm to this space-time volume, we seek a piecewise
smooth solution which, on one hand, has less temporal noise,
and, on the other hand, preserves the disparity information
as much as possible. To this end, we consider the following
l1-minimization problem:

minimize
f

μ ‖f − g‖1 + ‖Df‖2 (2)

where f denotes the unknown disparity map (the vectorized
version of f(x, y, t)), g is the initial disparity map from the
previous step, and D = [βxD

T
x , βyD

T
y , βtDt]

T represents
the forward difference operators along the horizontal, vertical
and temporal directions. The parameters (βx, βy, βt) control
the relative emphasis being put on the spatial and temporal
terms. An l1-norm is chosen for the objective function, f −g,
because the target solution f is ideally piecewise smooth. The
regularization term ‖Df‖2 is the TV-norm on f .
Problem (2) is solved by first introducing two intermedi-

ate variables r = f − g and u = Df , and transforming the
unconstrained problem into an equivalent constrained mini-
mization problem. Then an augmented Lagrangian method
is used to handle the constraints, and an alternating direction
method (ADM) is used to solve the sub-problems iteratively.
Due to limited space, we refer the reader to [14] for the details
of this method.
There are three significant features of the proposed algo-

rithm. First, disparity maps are now considered as a space-
time volume, instead of individual frames. This allows us to
handle both spatial and temporal consistency simultaneously,
by tuning the parameters (βx, βy, βt). Second, as opposed to
most of the existingmethods that try to enhance temporal con-
sistency by heuristic means, the proposed algorithm is guar-
anteed to find the global minimum of problem (2), because
(2) is convex. Third, the proposed algorithm is fast. Typical
run time for a 300×400 resolution sequence is approximately
2 seconds per frame on MATLAB, which implies the possi-
bility for real-time processing with a compiled language.

4. ANALYSIS AND DISCUSSION

In Fig.1, we show six frames of a zoomed-in region of the
left view from the ”Old Timers” sequence [15], along with
per-frame disparity map estimates and refinements using our
TV method. Notice that the image-based results contain both
spatial noise and temporal inconsistencies, particularly in the
background area on the right side. After refinement, these
errors are removed while object edges are still preserved.

Fig. 1. Disparity Refinement for Old Timers. Top: Stereo Left
View. Middle: Initial Disparity Estimate. Bottom: Processed
Spatio-temporally Consistent Estimates.

Fig. 2. Disparity Refinement for Synthetic Street Sequence.
Top: Original. Middle: Disparity. Bottom: Processed.

While visually the results are clearly better after refine-
ment, it is difficult to quantitatively assess the performance.
Because of the lack of stereo sequences with ground truth
disparity maps, effective evaluation of video disparity esti-
mation techniques has been limited. We believe this may be a
pivotal reason why so few methods currently exist to handle
videos. Fortunately, Richardt et al. [10] share our sentiments
and have created a set of five synthetic stereo sequences with
associated disparity maps, which we use for evaluation. Fig.
2 contains five frames of ”Street”, one of these sequences,
processed with our method. The results again are a set of
consistent estimates.
To simulate real sequences, we add Gaussian noise, dis-

tributed as N (0, 20), to the synthetic videos. We add this
noise because stereo images from real cameras will not com-
pletely match each other due to a variety of reasons, such
as luminance or sensor response differences. We run our
method, HBP-TV, on all 5 sequences to compare with the
two top image methods presented by Richardt et al., DCB
and DCB2, and their spatio-temporal method, TDCB. Table 1
illustrates that our method achieves superior results on nearly
every dataset by a significantly large margin using the per-
centage of bad pixels metric. A bad pixel is defined as any
pixel that has an estimated disparity that deviates from the
true value by an amount larger than a certain threshold (set at
1 in our case).
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Table 1. Comparison of methods with noise ∼N (0, 20). Av-
erage percent of bad pixels (threshold of 1) for all frames.
Technique Book Street Tanks Temple Tunnel
HBP-TV 26.97 17.69 26.50 18.01 29.50
TDCB 38.95 24.17 29.34 29.89 33.01
DCB 47.24 30.91 33.56 37.59 24.04
DCB2 53.92 38.02 45.67 40.97 31.19

Table 2. Versatility of TV for the various disparity methods.
Average percent of bad pixels (threshold of 1) for all frames.
Technique Book Street Tanks Temple Tunnel
TDCB-TV 27.10 17.45 23.25 21.94 32.21
TDCB 38.95 24.17 29.34 29.89 33.01
DCB-TV 35.31 22.45 23.00 27.38 22.41
DCB 47.24 30.91 33.56 37.59 24.04

DCB2-TV 48.66 31.91 41.28 32.14 30.43
DCB2 53.92 38.02 45.67 40.97 31.19

We next evaluate the efficacy of our TV method in im-
proving arbitrary disparity estimates. We take the output of
each of the three competing methods and apply TV enhance-
ment. Table 2 tabulates these results. In every instance, we
enhance the disparity estimation technique, even with TDCB,
the method that already incorporates temporal information.
To validate the robustness of our method, we allow the

additive noise to range from a σ of 0 to 100 as [10] does to
evaluate performance under a large range of signal degra-
dation. This time we leave out the left-right consistency
post-processing step. Fig. 3 illustrates the results we achieve.
Again, our method nearly always lower bounds the com-
peting method. For the sake of space, we only show the
results of the overall best competing method (TDCB). For
more results and video sequences, please refer to our website:
http://videoprocessing.ucsd.edu/∼ramsin/research/disparity.

5. CONCLUSION

We have proposed a robust video disparity estimation tech-
nique that enforces spatio-temporal consistency among all
frames. Our two-part method first performs image-based
disparity estimates, and then, treating each frame as part of
a space-time cube, we apply 3D total variation minimiza-
tion to remove noise and enhance results. We have shown
the method to be resilient even in large amounts of noise.
Furthermore, we have illustrated that in general our method
can be used to refine the results of any disparity estimation
technique suffering from impulsive noise or estimation errors.
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