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ABSTRACT

This paper studies the issue of which filters should be used for
feature point detection. Classical feature point detection meth-
ods, e.g., SIFT, are based on the scale-space theory in which
Gaussian filters are proven to be optimal under the scale-space
axiom. However, the recent method SURF demonstrates em-
pirically that a box filter can also achieve good performance
even though it violates the scale-space axiom. This leads to
the question: Is Gaussian filters necessary for feature point de-
tection? Based on the analysis using filter bank and detection
theory, we show that theoretically it is possible for a box fil-
ter to perform better than the Gaussian filter. Additionally, we
show that a new filter, pyramid filter, performs better than both
box and Gaussian filters in some situations.

Index Terms— feature point detection, SIFT, SURF

1. INTRODUCTION

1.1. Feature Extraction

Extracting feature points of an image is a fundamental prob-
lem in computer vision. Good feature points allow one to per-
form correspondence match across different viewing angles,
hence making it possible to extract camera parameters, cali-
brate cameras, rectify, interpolate-extrapolate and render im-
ages, etc. Features of interests depend on the application and
the availability of a mathematical model. Common examples
include edges, texture and blobs.

Feature extraction is a well-studied subject under the
framework of multiscale image representation, also known
as the scale-space theory [1]. Feature extraction consists of
two major components: detection, which aims at finding the
location of a feature, and description, which aims at finding a
set of labels to describe the feature. The focus of this paper is
the detection part.

∗Corresponding author: L. Liu, email: l7liu@ucsd.edu. This work
is supported in part by NSF grant CCF-1065305.

†S. Chan performed the work while at UC San Diego.

1.2. Scale-space Representation

To detect a feature point, we form a scale-space volume [2]

L(x, y,σ) = g(x, y;σ) ∗ I(x, y), (1)

where I(x, y) is the input image, g(x, y;σ) = 1
2πσ2 e

− x2+y2

2σ2

is a Gaussian filter, and “∗” denotes convolution. A precise
definition of a feature point depends on the application. In this
paper, we focus on detecting blobs. In this case, we define a
feature point as the local minimum of the Hessian determinant

detHL(x, y,σ) = LxxLyy − LxyLyx, (2)

where Lxx, Lyy, Lxy, Lyx are the second-order directional
derivatives. In literature, Gaussian filters are used in (1)
because they optimal under the scale-space axioms [3]. How-
ever, convolution with a Gaussian filter is computationally
intensive. Thus, Bay et al. [4] proposed a zero-order ap-
proximation, known as SURF, and later, Hussein et al. [5]
generalized the idea to higher order approximations. Interest-
ingly, their experimental results show that the non-Gaussian
filters perform not much worse, sometimes even better, than
the Gaussian filters. This leads to the question: except for
satisfying the scale-space axioms, what are reasons of using
Gaussian filters? Or simply, do we really need Gaussian filters
for feature detection?

1.3. Objectives

The objective of this paper is to study the performance of fea-
ture detection algorithms. We show the following results:

Unified Framework: Popular feature detection methods,
SIFT [2] and SURF [4], can be generalized under the
proposed filter bank framework.

Detection Analysis: Performance of a feature detectionmethod
depends on the match between the object and the filter.
Therefore, although Gaussian filters are usually good
due to the intrinsic smoothness of natural images, there
are failure cases.
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Pyramid Approximation: Gaussian filter has a high com-
putational complexity. We propose an approximation
scheme that preserves properties of a Gaussian filter, but
achieves similar complexity as the box filter.

1.4. Notation

For notational simplicity we consider the analysis in one-
dimension, although the results are directly applicable to
higher dimensions. Input signal is denoted by I(t), and the
scale-space volume is denoted by L(t,σ). First and second
derivatives of L(t,σ) along the t-direction is given by L ′(t,σ)
and L′′(t,σ), respectively. Thus, the Hessian determinant is
detHL(t,σ) = L′′(t,σ). The one-dimensional Gaussian filter
is denoted by g(t;σ).

2. FILTER BANK FRAMEWORK

In this section we present a common framework of SIFT [2]
and SURF [4] for computing detHL(t;σ).

SIFT and SURF can be summarized as

SIFT: L′′(t,σ) = σ2g′′(t;σ) ∗ I(t), (3)
SURF: L′′(t,σ) = T [σ2g′′](t;σ) ∗ I(t), (4)

where T a non-linear function defined as T : C∞(R) →
C1(R)

T [σ2g′′](t;σ) =

{
1, σ2g′′(t;σ) ≥ 0,

−2, σ2g′′(t;σ) < 0,
(5)

and σ2 is the γ-normalization factor [1]. Note that (4) becomes
(3) when T is the identity operator.

In practice, (3) and (4) are evaluated using the difference
of Gaussian (DoG) method [2]. DoG states that for any σ ∈
[σk,σk+1],

σ2g′′(t;σ) ≈ g(t;σk+1)− g(t;σk).

Given a sequence {σk}nk=0 where σ0 = 0, we define ∆σk =
σk+1 − σk. Then using the fact that g(t;σk+1) = g(t;σk) ∗
g(t;∆σk), the filters in (3) and (4) can be realized using a filter
bank structure shown in Fig. 1.

Three important observations can be drawn from the filter
bank structure. First, ignoring the non-linear function T , the
filter bank is a perfect reconstruction system, because the sum-
mation of all output channels is the dirac delta function. Sec-
ond, in the kth stage, g(t;σk) and δ(t) − g(t;σk) are lowpass
and highpass filters, respectively. Therefore, except for the top
and bottom channel, all other outputs are bandpass filters with
bandwidth controlled by the closeness between adjacent σk’s.
Third, the frequency response of a Gaussian filter is Gaussian.

g(t;σ1)

δ(t)− g(t;σ1)

g(t;∆σ1)

δ(t)− g(t;∆σ1)

T (·)

T (·)

T (·)

Fig. 1. Filter bank implementation of the filters in SIFT [2]
(with T = 1) and SURF [4] (with T defined in (5)). This
figure shows a two-stage example.

Thus a Gaussian filter is non-negative and monotonically de-
creasing. However, when T is used, the frequency response
becomes a sinc function, which violates the non-negativity and
non-increasing condition of scale-space axiom.

3. DETECTION ANALYSIS

From the framework discussed in Section 2, we observe that
the box filters of SURF are approximations of the Gaussian
filters of SIFT. Historically, Gaussian filters are preferred be-
cause it is the necessary and sufficient condition for the scale-
space axiom. However, if our goal is only to detect the correct
feature location and not to accommodate the scale-space ax-
iom, then Gaussian filters may not be the best filter. We show
a counterexample in this section to verify our claims.

To start with, we consider an input signal

I(t) =

{
1, −T ≤ t ≤ T,

0, otherwise.
(6)

I(t) is a one-dimensional box function centered at the ori-
gin. Therefore, the feature point should be ideally located at
the origin. Now, suppose that white Gaussian noise n(t) ∼
N (0,σ2

N ) is added to the input signal so that the signal be-
comes s(t) = I(t) + n(t). The new Hessian determinants are

G(t,σ)
def
= σ2g′′(t;σ) ∗ I(t) + σ2g′′(t;σ) ∗ n(t),

H(t,σ)
def
= h′′(t;σ) ∗ I(t) + h′′(t;σ) ∗ n(t),

where h′′(t;σ) = T [σ2g′′](t;σ), with T defined in (5).

3.1. Analysis for Gaussian Filters (SIFT)

The following result gives the statistical description of the
Hessian determinant using Gaussian filter in the presence of
noise.

Proposition 1. Let v(t,σ) = σ2g′′(t;σ) ∗ I(t) and w(t,σ) =
σ2g′′(t;σ) ∗ n(t), it holds that

v(t,σ) =
1√
2π

[
− t+ T

σ
e−

(t+T )2

2σ2 +
t− T

σ
e−

(t−T )2

2σ2

]
.

132



Themean and autocorrelations (over t) ofw(t,σ) areE[w(t,σ)] =
0 and E[w(t,σ)w(t + τ,σ)] = σ4σ2

Ng′′(−τ ;σ) ∗ g′′(τ ;σ),
respectively. Hence, the variance of w(t,σ) is

Var [w(t,σ)] =
3σ2

N

8
√
πσ

. (7)

Proof. The deterministic part v(t) = σ2g′′(t;σ) ∗ I(t) can be
shown through direct substitution. For the noise part, since
convolution and expectation are both linear, they are inter-
changeable. Thus E[n(t)] = 0 implies E[w(t,σ)] = 0. The
autocorrelation is a standard result [6]. The variance is found
by evaluating the autocorrelation at τ = 0, i.e., Var [w(t,σ)] =
σ4σ2

Ng′′(−τ ;σ) ∗ g′′(τ ;σ)|τ=0.

Since ideally the feature point is at the origin, we say that
the feature is detected correctly ifG(0,σ) is a local minimum,
i.e., for any ε > 0, G(0,σ) ≤ G(t,σ) whenever |t| ≤ ε.
Consequently, we show the following corollary.

Corollary 1. For I(t) given by (6) and using a Gaussian fil-
ter, the probability of correct detection is characterized by the
random variable z(t,σ) = G(0,σ)−G(t,σ), where

z(t,σ) ∼ N
(
v(0,σ)− v(t,σ),

3σ2
N

4
√
πσ

)
. (8)

Proof. The probability of correct detection is P [G(0,σ) ≤
G(t,σ)], orP [G(0,σ)−G(t,σ) ≤ 0]. Let z(t,σ) = G(0,σ)−
G(t,σ), it holds that the mean of z(t,σ) is v(0,σ) − v(t,σ),
and the variance of z(t,σ) is twice of 3σ2

N

8
√
πσ
.

Corollary 1 provides a quantitative argument for the com-
parison of SIFT and SURF which will be discussed in Section
3.3. Before moving to the SURF case, we derive one addition
result to link T and σ.

Proposition 2. Given T , v(0,σ) is a local minimum of v(t,σ)
if and only if σ > T/

√
3. Furthermore, the optimal scaling

parameter σ∗ for which ∂v(0,σ)/∂σ = 0 is σ∗ = T .

Proof. The ideal location of the minimum is at the origin.
Thus v(0,σ) must be a local minimum for v(t,σ). By the
first and second order optimality conditions, v(0,σ) is a local
minimum if and only if ∂v(t,σ)

∂t |t=0 = 0 and ∂2v(t.σ)
∂t2 |t=0 > 0.

Through some calculation it can be shown that these are equiv-
alent to requiring σ > T/

√
3. The second statement can be

proved by taking ∂v(0,σ)
∂σ =0.

Fig. 2 illustrates the result of Proposition 2. This plot
shows the function v(t,σ) with magnitude indicated by the
color. In this plot T = 15, and so by Proposition 2 v(0,σ) is a
local minimum (along the t-dimension) iff σ > T/

√
3 ≈ 8.6.

Additionally, v(0,σ) achieves minimum at σ = T .
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Fig. 2. This plot shows that along the t-dimension, v(0,σ)
is a local minimum of v(t,σ) if σ > 8.6, and along the σ-
dimension, v(0,σ∗) is a local minimum of v(0,σ) if σ∗ = 15.

3.2. Analysis for Box Filters (SURF)

A similar result of (8) can be shown for the case of SURF. The
filter used in SURF is a zero-order approximation of g ′′(t;σ).
Following [4], h′′(t;σ) is defined as

h′′(t;σ) =






−2C/6, |t| ≤ C,

C/6, C < |t| ≤ 3C,

0, otherwise.
(9)

The factor C is a function depending on σ and it controls the
width of the filter [4]. The precise relationship between C and
σ is given by the following result (analogous to Prop. 2).

Proposition 3. Given σ, and let

C∗ = argmin
C

∫ ∞

−∞

[
σ2g′′(t;σ) − h′′(t;σ)

]2
dt,

then C∗ = ασ where α ≈ 0.91 is a constant.

The next two results are analogous to Proposition 1 and
Corollary 1, but for the case of h ′′(t;σ).

Proposition 4. If v(t,σ) = h′′(t;σ) ∗ I(t) and w(t) =

h′′(t;σ) ∗ n(t), then Var [w(t,σ)] = σ2
N

3C and

v(t,σ) =






− 2
3 , t = 0,

− 2
3 − t

2C , 0 < |t| ≤ 2C,
1
3 + t

6C , 2C < |t| ≤ 4C.

Corollary 2. For I(t) given by (6) and using h ′′(t;σ), the
probability of correct detection is characterized by the random
variable z(t,σ) = H(0,σ)−H(t,σ), where

z(t,σ) ∼ N
(
v(0,σ)− v(t,σ),

σ2
N

3C

)
. (10)
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3.3. Discussion

Corollaries 1 and 2 suggest a quantitative comparison between
SIFT and SURF. Shown in Fig. 3 is the probability of cor-
rect detection for SIFT and SURF. Both methods show re-
duced performance when noise increases, implying that the
local minimum becomes less likely to be located at the origin.
Comparing SIFT and SURF, SURF has higher correct detec-
tion probability in all cases. This implies that Gaussian filters
are not always the best filter for feature detection.

We want to put a remark here that the above analysis is
about the distortion of noise. There are other aspects which
should be further studied. The first aspect is the distortion
caused by affine transformation. The second aspect is the pres-
ence of similar patterns in the image [7].
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Fig. 3. Statistical comparisons between SIFT and SURF. This
figure shows the probability of correct detection as a function
of noise variance. T is the width of the signal defined in (6).

4. PYRAMID FILTER

To further illustrate our claim that Gaussian filters are not al-
ways the best filters in feature detection, we use the pyra-
mid filter (also known as the triangle filter) and show that it
achieves higher repeatability in some real images.

4.1. Derivation and Implementation

Pyramid filters are the first order approximations of the second
derivatives of Gaussian filters. In the one-dimensional case, a
pyramid filter p′′(t;σ) is defined by setting T as

p′′(t;σ) = T [σ2g′′](t;σ) =






2t
C − 2, 0 ≤ t ≤ C,
t
C − 1, C ≤ t ≤ 2C,

− t
C + 3, 2C ≤ t ≤ 3C,

whereC is defined in (9), and T [σ2g′′](t;σ) = T [σ2g′′](−t;σ).
An illustration of p′′(t;σ) is shown in Fig. 4.
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Fig. 4. Plots of g ′′(t;σ), h′′(t;σ), and p′′(t;σ). Curves are
scaled for visualization.

In the two-dimensional case, a pyramidfilter is constructed
by convolving the box filters, as shown in Fig. 5. The convo-
lution P (x, y,σ) = I(x, y) ∗ p′′(x, y;σ) is calculated using
repeated integration [8], and the concept of moment integral
images [9].

Fig. 5. Constructing the pyramid filters. There are two types
of pyramid filters: rectangular and square shapes. Both can be
constructed by convolving the box filters.

4.2. Evaluation

We consider two examples with homographies (viewpoint dif-
ference) in the dataset (totally 12 images), available at [10]
http://www.robots.ox.ac.uk/˜vgg/research/
affine/. In the test, the repeatability score, define as [11]

R =
number of correspondences

minimum number of points detected

is calculated. Two points x1 = (x1, y1) and x2 = (x2, y2) are
considered correspond if [11]
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(a) Reference (b)Test (c) Gaussian (d) Box (e) Pyramid

Fig. 6. Feature points detected using different filters. The third to fifth columns are zoom in regions of test image. Green ellipses
are features that have corresponding features in reference image and the yellow ellipses are features that have no corresponding
features in reference image.
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Fig. 7. Repeatability scores of the two images.

1. ‖x1−Hx2‖2 ≤ 1.5, whereH is a (known) linear trans-
formation that defines the homography,

2. The surface error for affine regions is less than a thresh-
old, which, roughly speaking, is the amount of overlap
between two ellipses - one being a region defined by
L(x1, y1,σ) and the other one being a region defined
by L(x2, y2,σ) where L(x, y,σ) can be G(x, y,σ),
H(x, y,σ), or P (x, y,σ).

5. CONCLUSION

Gaussian filters are not necessary for feature point detection.
Instead, the successfulness of feature point detection depends
on the match between the shape of the filter and that of the sig-
nal. We showed, in particular, a box signal in the presence of
noise can be better detected using a box filter than the Gaus-
sian filter. We also proposed a pyramid approximation of the
Gaussian filter to yield better detection rate than the box filter
while keeping a low complexity.

One question remains open is what kinds of features are
more common in an image. While not proved, we believe that

in natural images there are more features favorable to Gaussian
filters than the others. This claim requires further analysis.

6. APPENDIX

Detailed proofs and additional results of this paper are avail-
able at http://videoprocessing.ucsd.edu/˜LeeKang/
Research/Supplementary.pdf.
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