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1 Numerical Algorithm

1.1 Assumptions

The stochastic ability θt follows a geometric random walk:

θt = θt−1εt

where εt is distributed lognormal with mean 1 and variane σ2ε

The wage is assumed to be a CES function, of the form:

wt (θt, st) =
(
cs × s1−ρt + cθ × θ1−ρt

) 1
1−ρ

with cs, cθ > 0

The cost function is isoelastic:

φ

(
yt

wt (θt, st)

)
=
κ

α

(
yt

wt (θt, st)

)α
The utility of consumption is log:

u (ct) = log (ct)

The cost function of education is linear with an adjustment factor scaled by the adjustment coeffi -

cient ca > 0

Ct (st−1, et) = et + ca

(
et
st−1

)η
st−1
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1.2 Normalizing the problem

Variables and functions:

To reduce the number of state variables, define the normalized variables s̃t−1 = st−1/θt−1, ẽt =

et/θt−1, ỹt = yt/θt−1, c̃t = ct/θt−1.

The following relations then hold: s̃t = (s̃t−1 + ẽt) /εt

w̃t = wt (εt, s̃tεt) = wt (εt, s̃t−1 + ẽt) = wt (θt, st) /θt−1 = wt/θt−1

φ
(
ỹt
w̃t

)
= φ

(
yt
wt

)
C̃t = Ct (s̃t−1, ẽt) = Ct (st−1, et) /θt−1

Densities:

The densities of θt and εt are related in the following ways:

f (θt|θt−1) =
1

θtσε
√

2π
exp

{
−(log θt − log θt−1 − µ)2

2σ2ε

}
hence: since logεt = log θt − log θt−1

gε (εt) =
1

εtσε
√

2π
exp

{
−(log εt − µ)2

2σ2ε

}

so that:

f (θt|θt−1) = ge (εt) /θt−1

The derivatives of the densities are:

∂f (θt|θt−1)
∂θt−1

= f (θt|θt−1) =
1

θtσε
√

2π

(log θt − log θt−1 − µ)

σ2ε

1

θt−1
exp

{
−(log θt − log θt−1 − µ)2

2σ2ε

}

∂gε (εt)

∂εt
=

−1

εtσε
√

2π

(log εt − µ)

2σ2ε
exp

{
−(log εt − µ)2

2σ2ε

}
so that

g̃ε (εt) := gε (εt) + εt
∂gε (εt)

∂εt
= θ2t−1

∂f (θt|θt−1)
∂θt−1

= θ2t−1g (θt|θt−1)

In particular, note that

f (θt|θt−1) dθt = gε (θt) dεt

and

g (θt|θt−1) dθt =
g̃ε (εt)

θt−1
dεt

Continuation Utilities:
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Define βfactort = 1 + β + ...+ βT−t = 1−βT−t+1
1−β and the following normalized variables:

ṽt ≡ E
(

T∑
s=t+1

βs−t−1(log (cs/θt)− φ (ys/ws)

)
= vt − βfactort+1 log (θt)

ω̃t
(
θt
)
≡ u (c̃t)− φ (ỹt/w̃t) + β

(
T∑

s=t+1

βs−t−1(log (cs/θt−1)− φ
(
ys/θt−1
ws/θt−1

))
= u (c̃t)− φ (ỹt/w̃t) + βṽt + β × βfactort+1 log εt

∆̃t ≡ ∆t/θt−1

Rewriting the constraints in terms of the normalized variables:

Starting from the promise-keeping constraints, we can write:∫
ωt (θt) f (θt|θt−1) dθt = vt−1

⇔
∫
ω̃t (εt) gε (εt) dεt = ṽt−1

The marginal utility promise-keeping constraint can be rewritten as:∫
ωt (θt) g (θt|θt−1) dθt = ∆t−1

⇔
∫
ω̃t (εt) g̃ε (εt) dεt = ∆t−1θt−1 = ∆̃t−1

∂ω̃ (εt)

∂εt
=

ỹt
w̃2t

dw̃t
dεt

φ′
(
ỹt
w̃t

)
+ β

∆̃t

εt
(1)

The full normalized program:

Let K̃t ≡ Kt/θt−1.The full program is then:

K̃t

(
ṽt−1, ∆̃t−1, s̃t−1

)
= min

∫ (
c̃t (εt)− ỹt (εt) + C̃t (s̃t−1, ẽt) +

1

R
εtK̃t+1

)
gε (εt) dεt

subject to (with constraint multipliers in brackets on each corresponding line):

∂ω̃ (εt)

∂εt
=

ỹt
w̃2t

dw̃t
dεt

φ′
(
ỹt
w̃t

)
+ β

∆̃t

εt
[µ (εt)]∫

ω̃t (εt) gε (εt) dεt = ṽt−1 [λt−1]∫
ω̃t (εt) g̃ε (εt) dεt = ∆̃t−1

[
γt−1

]
s̃tεt = s̃t−1 + ẽt

with the definition

g̃ε (εt) ≡ gε (εt) + εt
∂gε (εt)

∂εt
(2)
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1.3 First Order Conditions of the normalized problem

The first order conditions in the normalized problem, with respect to s̃t and ỹt are: (note that in this

case, we substitute the last constraint s̃tεt = s̃t−1 + ẽt directly to eliminate ẽt.

[s̃t] :

(
−∂C̃t
∂ẽt

+
ỹt
w̃t

∂w̃t
∂s̃t

+
1

R

∂K̃t+1

∂s̃t

)
− µ (εt)

gε (εt)

ỹt
w̃t
φ′
(
ỹt
w̃t

)
1

w̃2t

∂w̃t
∂εt

∂w̃t
∂s̃t

[ρ− 1] = 0 (3)

with the envelope condition:

∂K̃t+1

∂s̃t
=

∫ (
∂C̃t+1
∂ẽt+1

− ∂C̃t+1
∂s̃t

)
gε (εt+1) dεt+1

[ỹt] :

1−
φ′
(
ỹt
w̃t

)
u′ (c̃t) w̃t

 =
µ (εt)

gε (εt)

∂w̃t
∂εt

1

w̃2t
φ′
(
ỹt
w̃t

)1 +
φ′′
(
ỹt
w̃t

)
ỹt
w̃t

φ′
(
ỹt
w̃t

)
 (4)

The first-order conditions with respect to ṽt, ∆̃t are:

[ṽt] :
1

u′ (c̃t (εt))
=

1

Rβ
εtλt (εt) (5)

[
∆̃t

]
: −βR 1

ε2t

µ (εt)

gε (εt)
= γt (εt) (6)

While the law of motion of the co-state µ̇ (εt) is given by:

µ̇ (εt) =

(
− 1

u′t (c̃t)
gε (εt) + λt−1gε (εt)− γt−1

(
gε + εt

∂gε (εt)

∂εt

))
(7)

using the FOCs for ṽt and ∆̃t, we can rewrite the FOC for ỹt as:

[ỹt] :

[
1− 1

Rβ
εtλt (εt)φ

′
(
ỹt
w̃t

)]
=

µ (εt)

gε (εt)

∂w̃t
∂εt

1

w̃2t
φ′
(
ỹt
w̃t

)1 +
φ′′
(
ỹt
w̃t

)
ỹt
w̃t

φ′
(
ỹt
w̃t

)
 (8)

1.4 Solution algorithm

The solution works backwards from period t = T , with the initializations vT (ε) = 0, ∆T (ε) = 0,

ωT (ε) = uT (c)− φ (y/w) ∀ε.

The state space is modified relative to the theory part to be
(
θ−, λ−, γ−, s−

)
instead of (θ−, v−,∆−, s−).

With the normalization above, the state space has a generic element:

σt−1 ≡
(
λt−1, γt−1, st−1

)
Step 1:

Start with a guess for the continuation utility of the lowest type in a given period: ω0t ≡ ωt (ε).

For each such guess, and for all states, solve for the following choice variables in this order:
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Sove for yt as a function of (λt, et) using the first-order conditions (4) and (5).

Solve for et as a function of (λt, εt, µt;ω0t, σt−1) using foc (3).

Solve for λt as a function of (εt, µt;ω0t, σt−1) from (5), replacing c̃t as function of ω̃t and ṽt and

using the solutions yt (λt, (λt, εt, µt;ω0t, σt−1)) and et (λt, εt, µt;ω0t, σt−1) just computed.

Solve for γt (εt, µt;ω0t, σt−1).

Use the law of motion for µ (ε) in (7) to solve the differential equation for µ (ε), using (5) to replace

for 1
u′t(c̃t)

as a function of (εt, µt;ω0t, σt−1).

Step 2:

Check the boundary condition at µ
(
θ̄
)
.

With the normalization performed, the boundary condition is

µ
(
θ̄
)

= −γ̃t−1ε̄tgε (ε̄t)

Repeat step 1 if the boundary condition is not met to a satisfactory tolerance level.

Iterate on the initial guess ω0t until the boundary condition is met.

Step 3:

Once condition is met, work in the exact reverse order as listed in Step 1, to compute the choice

variables at their equilibrium values.

Step 4:

Having obtained the choice variables (et, yt, λt, γt):

ω̃t (σt−1, εt) is obtained from ω̃t (σt−1, εt) =
∫

∂
∂ε ω̃t (σt−1, εt) dε where ∂

∂ε ω̃t is as given in (1),

using the subsequent period’s policy function ∆̃t (σt) interpolated at the computed solutions for σt =

(λt, γt, st = st−1 + et).

To compute ṽt−1 (σt−1) , and ∆̃t−1 (σt−1), use their definitions:

ṽt−1 (σt−1) =

∫
ω̃t (σt−1, εt) ge (εt) dεt

∆̃t−1 (σt−1) =

∫
ω̃t (σt−1, εt) g̃ε (εt) dεt

with g̃ε (εt) as defined in (2).

2 Calibration

2.1 Endogenously calibrated parameters

The exogenously calibrated parameters were explained in the main text. The two endogenous targets

are explained in more detail here.
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• Ratio of the net present value of education over the net present value of income: The

US Department of Education (see Chang Wei, 2010) reports that among those enrolled full-time

in college, around 67% are in 4-year programs, and 33% in 2-year programs. The OECD (OECD,

2013) estimates the total resource cost of a year of tertiary study (including research activities)

to be $29,900. Mean GDP per capita over the same period is $47,000. Using R = 1.053, this

yields a ratio of the net present value of education expenses to the net present value of lifetime

income of around 13%. To allow for later-in-life investments, which are not taken into account in

this statistic, it is assumed that college costs represent 2/3 of all lifetime investments in human

capital, yielding a target ratio of the net present value of lifetime human capital expenses over

the net present value of lifetime income of 19%.

• Wage Premium: Autor et al. (hereafter AKK, 1998) report that around 38.6% of people

have some type of college degree. Hence, in the baseline economy, at any given taxes and exoge-

nous parameters, the top 38.6% in the population ranked by lifetime present value of education

spending are assumed to represent the real-life college-goers. Symmetrically, the bottom 38.6%

in terms of lifetime human capital spending are assumed to have no college. The middle 22.8%

are omitted to emphasize the delineation between college-goers and others, and to account for

the fact that some people might have some other type of education, or completed partial require-

ments toward a degree. Indeed, because of the continuous investments in the model, there is no

sharp distinction between “college”and “no-college”, and in particular, no notion of “a degree.”

The average wage of the “college-goers,”for the periods after which human capital investments

have been completed relative to the average wage of the “no college”agents, for the same years

is matched to the wage premium for college estimated in the literature, as reported in the text.

2.2 Alternative calibrations

2.2.1 The effects of the Hicksian complementarity coeffi cient

Figures (1) illustrates the effects of changing the value of the Hicksian coeffi cient of complementarity

ρθs. Two additional values, one below and one above 1 are explored. As mentioned in the main

text, moving away from a multiplicatively separable wage, i.e., setting ρθs further away from 1 in

either direction, increases the net wedge in absolute value. When human capital has more positive

redistributive or insurance value (i.e., ρθs falls), the net subsidy is larger and grows faster over time.

The opposite is true when the redistributive and insurance effects of human capital decrease (ρθs rises).

The gross wedge is only weakly monotone in ρθs; recall that the true incentive effect is in the net wedge

tst. The net wedge remains small overall. Panels (c) and (d) show that both the labor wedge and the
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Figure 1: The effects of the complementarity coeffi cient on optimal wedges

(a) Gross Human Capital Wedge
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(b) Net Human Capital Wedge
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(c) Labor Wedge
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(d) Capital Wedge
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(a) and (b): Dashed line marks time after which there are mostly no longer investments in human capital. Moving away
from a multiplicatively separable wage (ρθs = 1) increases the net wedge in absolute value. The gross wedge is weakly

monotone in ρθs.
(c) and (d): “No HC”denotes the case without human capital. Note that the lines for ρθs = 1.2 and ρθs = 0.5 overlap
almost perfectly. Both the labor wedge and the capital wedge are smallest when human capital has the strongest

redistributive and insurance effects (ρθs small). The conclusion from the main text that the labor and capital wedges
are smaller in the presence of human capital remains true for different values of ρθs.

capital wedge are smallest when human capital has the strongest redistributive and insurance effects.

The relation is not strictly monotone however: note how the lines or ρθs = 0.5 and ρθs = 1.2 overlap

almost perfectly. The conclusion from the main text that the labor and capital wedges are smaller in

the presence of human capital remains true for different values of ρθs.

2.2.2 The effects of higher volatility

Figures (2) highlight the effects of doubling the volatility of ability to 0.019. This higher volatility is

close to the 0.0161 found by Storesletten et al. (2004) for the years 1980-1996. All other parameters

are as in the main text.

More risk increases the value of insurance over life. When human capital has a positive insurance
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Figure 2: The effects of higher volatility on optimal wedges

(a) Gross Human Capital Wedge
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(b) Net Human Capital Wedge
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(c) Labor Wedge

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

ρ = 0.2, σ =0.0095
ρ = 1.2, σ =0.0095
ρ = 0.2, σ =0.019
ρ = 1.2, σ =0.019
no HC, σ = 0.0095
no HC, σ = 0.019

(d) Capital Wedge
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Dashed line marks time after which there are mostly no longer investments in human capital. A higher volatility
increases the optimal gross and net wedges and moves the optimum further away from full deductibility. “No HC”
denotes the case without human capital. A higher volatility of ability increases the optimal labor and capital wedges.
The optimal labor and capital wedges remain lower in the presence of human capital conditional on the volatility of

ability.
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Figure 3: The effects of the adjustment cost

(a) Gross Human Capital Wedge
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(b) Net Human Capital Wedge
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(c) Labor Wedge
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Dividing the adjustment cost parameter by 2, while adjusting the linear cost parameter cl so as to keep meeting the

target ratio of NPV of lifetime HC expenses over the NPV of lifetime income, increases the wedges only very slightly.

effect (ρθs ≤ 1) it is optimal to subsidize it more than when volatility is lower. Inversely, when human

capital has a negative insurance value, a higher volatility makes it optimal to tax it more on net. Note

however that the labor tax also increases when volatility is higher because insurance becomes more

valuable. Accordingly, part of the higher gross wedge merely compensates for the disincentive effect of

labor taxes on human capital. The net wedges are still well below 10% throughout life. The labor and

capital wedges remain lower when there is human capital than in the corresponding model without

human capital, conditional on the volatility of ability.

2.2.3 The effects of the adjustment cost

Figure (3) shows that dividing the adjustment cost by 2, while adjusting the linear cost parameter

cl and the HC scale cs so as to keep matching the two targets (the ratio of the NPV of lifetime HC

expenses to the NPV of lifetime income and the wage premium), only slightly increases the wedges.

Hence, the cost structure for HC does not make much difference for the optimal policies.
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Figure 4: Wedges with very high volatility and very low adjustment cost

(a) Gross Human Capital Wedge
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(b) Net Human Capital Wedge
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(c) Labor Wedge
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(d) Capital Wedge
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Dashed line marks time after which there are mostly no longer investments in human capital. A very high volatility
combined with a lot adjustment cost increases the gross wedges and net wedges considerably. “No HC”denotes the case

without human capital. The labor and capital wedges are higher when volatility is very high and there is a low
adjustment cost to human capital.

2.2.4 A scenario with high net wedges

To obtain high net wedges, a calibration is needed which has a very large volatility of 0.038, more

than double the high volatility in Storesletten et al. (2004). The rest of the parameters are as in the

main text, except that the adjustment cost parameter is ca = 1 linear cost parameter cl is set to 0.25

to meet the target ratio of expenses over lifetime income. This scenario remains consistent with the

target moments described above, except that the volatility is considerably higher than most estimates

in the literature.
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