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Simple Forecasts and Paradigm Shifts

HARRISON HONG, JEREMY C. STEIN, and JIALIN YU∗

ABSTRACT

We study the asset pricing implications of learning in an environment in which the true

model of the world is a multivariate one, but agents update only over the class of simple

univariate models. Thus, if a particular simple model does a poor job of forecasting

over a period of time, it is discarded in favor of an alternative simple model. The theory

yields a number of distinctive predictions for stock returns, generating forecastable

variation in the magnitude of the value-glamour return differential, in volatility, and

in the skewness of returns. We validate several of these predictions empirically.

IN ATTEMPTING TO MAKE EVEN THE MOST BASIC KINDS of forecasts, we can find our-
selves inundated with a staggering amount of potentially relevant raw data. To
take a specific example, suppose you are interested in forecasting how General
Motors’ stock will perform over the next year. The first place you might turn
is to GM’s annual report, which is instantly available online. GM’s 2004 10-K
filing is more than 100 pages long, and is filled with dozens of tables as well
as a myriad of other facts, footnotes, and esoterica. And this is just the begin-
ning. With a few more clicks, it is easy to find countless news stories about GM,
assorted analyst reports, and so forth.

How is one to proceed in the face of all this information? Both common sense,
as well as a large literature in psychology, suggest that people simplify the fore-
casting problem by focusing their attention on a small subset of the available
data. One powerful way to simplify is with the aid of a theoretical model. A
parsimonious model focuses the user’s attention on those pieces of information
that are deemed to be particularly relevant for the forecast at hand, and has
her disregard the rest.

Of course, it need not be normatively inappropriate for people to use simple
models, even exceedingly simple ones. There are several reasons why simpli-
fying can be an optimal strategy. First, there are cognitive costs to encoding
and processing the additional information required by a more complex model.
Second, if the parameters of the model need to be estimated, the parsimony
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inherent in a simple model improves statistical power: For a given amount of
data, one can more precisely estimate the coefficient in a univariate regres-
sion than the coefficients in a regression with many right-hand-side variables.
Thus, simplicity clearly has its normative virtues. However, a central theme in
much of the psychology literature is that people generally do something other
than just simplifying in an optimal way. Loosely speaking, it seems that rather
than having the meta-understanding that the real world is in fact complex and
that simplification is only a strategy to deal with this complexity, people tend
to behave as if their simple models provide an accurate depiction of reality.1

Theoretical work in behavioral economics and finance has begun to explore
some of the consequences of such normatively inappropriate simplification. For
example, in many recent papers about stock market trading, investors pay at-
tention to their own signals and disregard the signals of others, even when these
other signals can be inferred from prices. The labels for this type of behavior
vary across papers: Sometimes it is called “overconfidence” (in the sense of in-
vestors overestimating the relative precision of their own signals), sometimes
it is called “bounded rationality” (in the sense that it is cognitively difficult to
extract others’ signals from prices), and sometimes it is called “limited atten-
tion.” But labels aside, the reduced forms often look quite similar.2 The common
thread is that, in all cases, agents make forecasts based on a subset of the in-
formation available to them, yet they behave as if these forecasts were based
on complete information.

While this general approach is helpful in understanding a number of phenom-
ena, it also has an important limitation, in that it typically takes as exogenous
and unchanging the subset of available information that an agent restricts her-
self to. For example, it may be reasonable to posit that investors with limited
attention have a general tendency to focus too heavily on a firm’s reported earn-
ings, while ignoring other numbers and footnotes.3 At the same time, it seems
hard to believe that even relatively naı̈ve investors would not lose some of their
faith in this sort of valuation model following the highly publicized accounting
scandals at firms such as Enron, WorldCom, and Tyco. If so, new questions
arise: How rapidly will investors move in the direction of a new model, one that
pays less attention to reported earnings and more attention to numbers that
may help flag accounting manipulation or other forms of misbehavior? And,
what will be the implications of this learning for stock returns?

Our goal in this paper is to begin to address these kinds of questions. As
in previous work, we start with the assumption that agents use simple models

1 For textbook discussions, see, for example, Nisbett and Ross (1980) and Fiske and Taylor (1991).

We review this and related work in more detail below.
2 A partial list includes: (1) Miller (1977), Harrison and Kreps (1978), Varian (1989), Kandel and

Pearson (1995), Morris (1996), Odean (1998), Kyle and Wang (1997), Daniel et al. (1998), Hong

and Stein (2003a), and Scheinkman and Xiong (2003), all of whom couch their models in terms of

either differences of opinion or overconfidence; (2) Hong and Stein (1999), who appeal to bounded

rationality; and (3) Hirshleifer and Teoh (2003), Sims (2003), Peng and Xiong (2006), and Della

Vigna and Pollet (2004), who invoke limited attention.
3 See, for example, Hirshleifer and Teoh (2003) for a discussion of this idea.
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that consider only a subset of available information. But unlike this other work,
we then go on to explicitly analyze the process of learning and model change. In
particular, we assume that agents keep track of the forecast errors associated
with their simple models. If a given model performs poorly over a period of
time, it may be discarded in favor of an alternative model, albeit an equally
oversimplified one, that would have done better over the same period.

To be more precise, our setup can be described as follows. Imagine a stock
that at each date t pays a dividend of Dt = At + Bt + εt, where At and Bt can
be thought of as two distinct sources of public information, and εt is random
noise. The idea that an agent uses an oversimplified model of the world can
be captured by assuming that her forecasts are based on either the premise
that Dt = At + εt (we refer to this as having an “A model”) or the premise that
Dt = Bt + εt (we refer to this as having a “B model”). Suppose the agent initially
starts out with the A model, and focuses only on information about At in gener-
ating her forecasts of Dt. Over time, the agent keeps track of the forecast errors
that she incurs with the A model and compares them to the errors she would
have made had she used the B model instead. Eventually, if the A model per-
forms poorly enough relative to the B model, we assume that the agent switches
over to the B model; we term such a switch a “paradigm shift.”4

This type of learning is Bayesian in spirit, and we use much of the standard
Bayesian apparatus to formalize the learning process. However, there is a crit-
ical sense in which our agents are not conventional fully rational Bayesians:
We allow them to update only over the class of simple univariate models. That
is, their priors assign zero probability to the correct multivariate model of the
world, so that no matter how much data they see, they can never learn the true
model.5

This assumption yields a range of empirical implications, which we develop
in a stock market setting. Even before introducing learning effects, the premise
that agents use oversimplified models, and hence do not pay attention to all
available information, allows us to capture well-known “underreaction” phe-
nomena such as momentum (Jegadeesh and Titman (1993)) and post-earnings
announcement drift (Bernard and Thomas (1989, 1990)). Nevertheless, the pri-
mary contribution of the paper lies in delineating the additional effects that
arise from our learning mechanism. We highlight five of these effects. First,
learning generates a value-glamour differential, or book-to-market effect (Fama

4 Our rendition of the learning process is inspired in part by Thomas Kuhn’s (1962) classic, The
Structure of Scientific Revolutions. Kuhn argues that scientific observation and reasoning is shaped

by simplified models, which he refers to as paradigms. During the course of what Kuhn refers to

as “normal science,” a single generally accepted paradigm is used to organize data collection and

make predictions. Occasionally, however, a crisis emerges in a particular field, when it becomes clear

that there are significant anomalies that cannot be rationalized within the context of the existing

paradigm. According to Kuhn, such crises are ultimately resolved by revolutions, or changes of

paradigm, in which an old model is discarded in favor of a new one that appears to provide a better

fit to the data.
5 The idea that agents attempt to learn but assign zero probability to the true model of the world

is also in Barberis, Shleifer, and Vishny (1998). We discuss the connection between our work and

this paper below.
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and French (1992), Lakonishok, Shleifer, and Vishny (1994)). Second, and more
distinctively, there is substantial variation in the conditional expected returns
to value and glamour stocks. For example, a high-priced glamour stock that has
recently experienced a string of negative earnings surprises, a situation one
might label “glamour with a negative catalyst,” has an increased probability of
a paradigm shift that will tend to be accompanied by a large negative return.
Thus, the conditional expected return on the stock is more strongly negative
than would be anticipated on the basis of its high price alone. Symmetrically, a
low-priced value stock has an expected return that is more positive when it has
also experienced a recent series of positive earnings surprises, that is, when it
can be characterized as “value with a positive catalyst.”

The same reasoning also yields our third and fourth implications: Even with
symmetric and homoskedastic fundamentals, both the volatility and skewness
of returns are stochastic, with movements that can be partially forecasted based
on observables. In the above example of a glamour stock that has experienced a
series of negative earnings shocks, the increased likelihood of a paradigm shift
corresponds to elevated conditional volatility as well as to negative conditional
skewness.

Finally, these episodes will be associated with a kind of revisionism: When
there are paradigm shifts, investors will tend to look back at old, previously
available public information and to draw very different inferences from it than
they had before. In other words, when asked to explain a dramatic movement
in a company’s stock price, observers may point to data that have long been in
plain view in the company’s annual reports, but that were overlooked under
the previous paradigm.

In developing our results, we consider two alternative descriptions of the
market-wide learning process. First, we examine a setting in which there is
a single representative agent who does the same thing that researchers in
economics and many other scientific fields typically do when they make model-
based forecasts: She engages in model selection, that is, she picks a single fa-
vorite model, as opposed to model averaging. The model-selection case is par-
ticularly helpful in drawing out the intuition for our results, so we discuss it
in some detail. But this approach naturally raises the question of how well our
conclusions stand up in the presence of heterogeneity across investors, each of
whom may have a different favorite model at any point in time. Therefore, we
also consider the case of model averaging, which can be motivated by thinking
of a continuum of investors, each of whom practices model selection, but applies
a different threshold when deciding whether to switch from one model to an-
other. Interestingly, the qualitative predictions that emerge are very similar to
those in the model-selection case. This suggests that the key to these results is
not the distinction between model selection versus model averaging, but rather
the fact that, in either case, we restrict the updating process to the space of
simple univariate models.

The rest of the paper is organized as follows. Section I reviews some of the
literature in psychology that is most relevant for our purposes. In Section II,
we lay out our theory and use heuristic arguments to outline its qualitative
implications for stock returns. In Section III, we run a series of simulations
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in order to make more quantitatively precise predictions, which we then go on
to examine empirically. In Section IV, we briefly discuss the recent history of
Amazon.com in an effort to illustrate the phenomenon of revisionism. Section
V looks at the connection between our work and several related papers, and
Section VI concludes.

I. Some Evidence from Psychology

The idea that people use overly simplified models of the world is a funda-
mental one in the field of social cognition. According to the “cognitive miser”
view, which has its roots in the work of Simon (1982), Bruner (1957), and
Kahneman and Tversky (1973), humans have to confront an infinitely com-
plex and ever-changing environment, yet are endowed with a limited amount
of processing capacity. Thus, in order to conserve on scarce cognitive resources,
they use theories, or schema, to organize data and make predictions.

Schank and Abelson (1977), Abelson (1978), and Taylor and Crocker (1980)
review and classify these knowledge structures, and highlight some of their
strengths and weaknesses. These authors argue that theory-driven/schematic
reasoning helps people to improve their performance at a number of tasks, in-
cluding the interpretation of new information, the storage and retrieval of infor-
mation in memory, the filling-in of gaps due to missing information, and overall
processing speed. At the same time, there are also several disadvantages, such
as incorrect inferences (due, for example, to stereotyping), oversimplification, a
tendency to discount disconfirming evidence, and incorrect memory retrieval.6

Fiske and Taylor (1991, p. 13) summarize the cognitive miser view as follows:

The idea is that people are limited in their capacity to process informa-
tion, so they take shortcuts whenever they can . . . People adopt strate-
gies that simplify complex problems; the strategies may not be norma-
tively correct or produce normatively correct answers, but they emphasize
efficiency.

Indeed, much of the psychology literature takes more or less for granted
the idea that people will not use all the available information in making their
forecasts. Instead, this literature focuses on the specific biases that shape which
kinds of information are most likely to be attended to. For example, according to
the well-known availability heuristic (Tversky and Kahneman (1973)), people
tend to overweight information that is easily available in their memories, that
is, information that is especially salient or vivid.

6 Kuhn (1962) discusses an experiment by Bruner and Postman (1949) in which individual sub-

jects are shown to be extremely dependent on a priori models when encoding the most simple kinds

of data. In particular, while subjects can reliably identify standard playing cards (such as a black
six of spades) after these cards have been displayed for just an instant, they have great difficulty

in identifying anomalous cards (such as a red six of spades) even when they are given an order

of magnitude more time to do so. However, once they are aware of the existence of the anomalous

cards, that is, once their model of the world is changed, subjects can identify them as easily as the

standard cards.
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Our theory relies on the general notion that agents disregard some relevant
information when making forecasts, but importantly, it does not invoke an ex-
ogenous bias against any one type of information. Thus, in our setting, At and Bt

can be thought of as two sources of public information that are a priori equally
salient; only after an agent endogenously opts to use the A model can At be said
to become more “available.”

Another prominent theme in the work on theories and schemas is that of
theory maintenance. Simply put, people tend to resist changing their models,
even in the face of evidence that, from a normative point of view, would appear to
strongly contradict these models. Rabin and Schrag (1999) provide an overview
of much of this work, including the classic contribution of Lord, Ross, and Lepper
(1979). Nevertheless, even if people are stubborn about changing models, one
probably does not want to take the extreme position that they never learn from
the data. As Nisbett and Ross (1980, p. 189) write,

Children do eventually renounce their faith in Santa Claus; once popular
political leaders do fall into disfavor . . . Even scientists sometimes change
their views. . . . No one, certainly not the authors, would argue that new
evidence or attacks on old evidence can never produce change. Our con-
tention has simply been that generally there will be less change than
would be demanded by logical or normative standards or that changes
will occur more slowly than would result from an unbiased view of the
accumulated evidence.

Our efforts below can be seen as very much in the spirit of this quote. That is,
while we allow for the possibility that it might take a relatively large amount
of data to get an agent to change models, our whole premise is that, eventually,
enough disconfirming evidence will lead to the abandonment of a given model
and to the adoption of a new one.

Although the idea of theory maintenance is well developed, the psychology
literature seems to have produced less of a consensus as to when and how
theories ultimately change. Lacking such an empirical foundation, our approach
here is intended to be as axiomatically neutral as possible. We measure the
accumulated evidence against a particular model like a Bayesian would, that
is, as the updated probability (given the data and a set of priors) that the model
is wrong. However, we do not impose any further biases in terms of which sorts
of data get weighted more or less heavily in the course of the Bayesian-like
updating.

II. Theory

A. Basic Ingredients

A.1. Linear Specification for Dividends

We consider the market for a single stock. There is an infinite horizon, and
at each date t, the stock pays a dividend of Dt = Ft + εt ≡ At + Bt + εt, where
At and Bt can be thought of as two distinct sources of public information, and
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εt is random noise. Each of the sources of information follows an AR(1) process,
so that At = ρAt−1 + at and Bt = ρBt−1 + bt, with ρ < 1. The random variables
at, bt, and εt are all independently normally distributed, with variances of va,
vb, and vε, respectively. For the sake of symmetry and simplicity, we restrict
ourselves in what follows to the case in which va = vb.

Immediately after the dividend is paid at time t, investors see the re-
alizations of at+1 and bt+1, which they can use to estimate the next divi-
dend, Dt+1. Assuming a constant discount rate of r, this dividend forecast
can then be mapped directly into an ex-dividend present value of the stock
at time t. For a fully rational investor who understands the true structure
of the dividend process and who uses both sources of information, the ex-
dividend value of the stock at time t, which we denote by VR

t , is given by
VR

t = k(At+1 + Bt+1), where k = 1/(1 + r − ρ) is a dividend capitalization
multiple.

By contrast, we assume that investors use overly simplified univariate mod-
els to forecast future dividends, and hence to value the stock. In particular,
at any point in time, any individual investor believes that one of the follow-
ing possibilities obtains: (1) the dividend process is Dt = At + εt (we refer
to this as the “A model”) or (2) the dividend process is Dt = Bt + εt (we re-
fer to this as the “B model”). Thus, an investor who uses the A model at
time t has an ex-dividend valuation of the stock VA

t , which satisfies VA
t =

kAt+1, and an investor using the B model at time t has a valuation VB
t , where

VB
t = kBt+1.7

A.2. Log-Linear Specification for Dividends

The above linear specification for dividends has a number of attractive
features. First and foremost, it lets us write down some very simple closed-
form expressions that highlight the central economic mechanisms at work
in our theory. At the same time, the linear specification is less than ideal
from an empirical realism perspective; for example, it allows for the possi-
bility of negative dividends and prices, and it forces us to work with dollar
returns rather than percentage returns. So, while we use the linear specifi-
cation to help build intuition in the remainder of this section, when we cal-
ibrate the model for testing purposes in Section III, we also consider a log-
linear variant in which log(Dt) = At + Bt + εt, but in which the stochastic
processes for At, Bt, and εt are the same as described above. Appendix B
gives the details of how prices and returns are computed in the log-linear
case.

7 Note that another possible univariate model is to forecast future dividends based solely on

observed values of past dividends. That is, one can imagine a “D model,” where VD
t = kDt. As a

normative matter, the D model may be more accurate than either the A or the B models. (This

happens when vε is small relative to the variances of At and Bt.). But given their mistaken beliefs

about the structure of the dividend process, agents will always consider the D model to be dominated

by both the A and the B models.
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B. Benchmark Case: No Learning

In order to have a benchmark against which to compare our subsequent
results, we begin with a simple no-learning case in the context of the linear
specification for dividends. Assume that there is a single investor who always
uses the A model, so that the stock price at time t, Pt, is given by Pt = VA

t =
kAt+1. The (simple) excess return from t − 1 to t, which we denote by Rt, is
defined by Rt = Dt + Pt − (1 + r) Pt−1.8 It is straightforward to show that we
can rewrite Rt as Rt = zA

t + kat+1, where zA
t is the forecast error associated

with trying to predict the time-t dividend using model A, that is, where zA
t =

Bt + εt. In other words, under the A model, the excess return at time t has two
components, (1) the forecast error zA

t , and (2) the incremental A-news about
future dividends, kat+1.

With these variables in hand, some basic properties of stock returns can be
immediately established. Consider first the autocovariance of returns at times
t and t − 1. We have that cov(Rt, Rt−1) = cov(zA

t , zA
t−1) + kcov(zA

t , at). With a little
manipulation, this yields

cov(Rt , Rt−1) = ρvb/(1 − ρ2). (1)

This expression reflects the positive short-run momentum in returns that arises
from a “repeating-the-same-mistake” effect. Since the investor uses the same
wrong model to make forecasts for times t − 1 and t, in both cases ignoring the
persistent B information, her forecast errors zA

t−1 and zA
t are positively corre-

lated, which tends to induce positive autocovariance in returns.
Another item of interest is the covariance between the price level and future

returns, cov(Rt, Pt−1). Since all dividends are paid out immediately as realized
(there are no retained earnings), and since the scale of the dividend process
never changes over time, it makes sense to think of the stock as a claim on an
asset with a constant underlying book value. Thus, one can interpret the price
of the stock, which is stationary in our model, as an analog to the market-to-
book ratio, and cov(Rt, Pt−1) as a measure of how strongly this ratio forecasts
returns. With no learning, it is easy to show that cov(Rt, Pt−1) = 0.

Thus, absent any learning considerations, the linear specification for divi-
dends delivers a momentum-like pattern in stock returns, but nothing else. In
particular, there is no value-glamour effect, and returns are symmetrically and
homoskedastically distributed.9

8 Again, when using the linear dividend specification, it is easier to work with arithmetic returns

as opposed to percentage returns. Given that the price level is stationary in our setting, this is a

relatively innocuous choice.
9 The no-learning case can be enriched by allowing for heterogeneity among investors. Suppose

a fraction f of the population uses model A, and (1 − f ) uses model B. We can demonstrate that this

setup still generates momentum in stock returns. More interestingly, momentum is strongest when

there is maximal heterogeneity among investors, that is, when f = 1/2. Since such heterogeneity

also generates trading volume, we have the prediction that momentum will be greater when there is

more trading volume, which fits nicely with the empirical findings of Lee and Swaminathan (2000).

Although this extension of the no-learning case strikes us as promising, we do not pursue it in detail

here, as our main goal is to draw out the implications of our particular learning mechanism.
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C. Learning: Further Ingredients

To introduce learning, we must specify several further assumptions. The first
of these is that at any point in time t, an agent believes that the dividend process
is governed by either the A model or the B model, that is, she believes that either
Dt = At + εt or Dt = Bt + εt. The crucial point is that the agent always wrongly
thinks that the true process is a univariate one and attaches zero probability
to the correct, bivariate model of the world.

For the purposes of a general analytical treatment, we allow for the pos-
sibility that the agent might believe that the underlying dividend process
switches over time, between being driven by the A model versus the B
model, according to a Markov chain. Let πA be the conditional probability
that the agent attaches to dividends being generated by the A model in the
next period given that they are being generated by the A model in the cur-
rent period, and define πB symmetrically. Finally, to keep things simple, set
πA = πB = π .

In our simulations, we focus on the limiting scenario of π = 1, in which
the agent (correctly) thinks that nature is unchanging, so that there is only a
single model that applies for all time. This strikes us as the simplest and most
naturally motivated account of beliefs. The only technical issue it raises is that
with π = 1, the extent of learning is nonstationary, and depends on the length of
the sample period: After a long stretch of time, there is a high probability that
the agent will be almost convinced by one of the two models, thereby making
further paradigm shifts extremely unlikely.

Alternatively, if one is interested in making the learning process station-
ary, and thereby giving our results a more steady-state flavor, one can as-
sume that 1/2 < π < 1, which means that the agent thinks that both states
are persistent but not perfectly absorbing. As a practical matter, it turns
out that when we simulate stock prices and learning over empirically plau-
sible horizons, we obtain very similar results either way, so the fundamen-
tal predictions of the model do not turn on whether we assume π = 1
or π < 1.

With the assumptions in place, a first step is to describe how Bayesian up-
dating works, given the structure and the set of priors that we have specified.
It is important to stress that in our setting, one does not want to interpret such
Bayesian updating as corresponding to the behavior of a fully rational agent,
since we have restricted the priors in such a way that no weight can ever be
attached to the correct model of the world. Let pt be the probability weight on
the A model going into period t. To calculate the posterior going into period
t + 1, recall that for each model, we can construct an associated forecast error,
with zA

t = Bt + εt being the error from the A model and zB
t = At + εt being the

error from the B model. Intuitively, the updating process should tilt more in
the direction of model A after period t if zA

t is smaller than zB
t in absolute value,

and vice versa.
More precisely, conditional on the A model as well as on the realization of

At, Dt has a normal density with mean At and variance vε, which we denote by
fA(Dt | At), and that satisfies
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f A(Dt | At) = 1

σε

φ

(
Dt − At

σε

)
= 1

σε

φ

(
z A

t

σε

)
, (2)

where φ(·) is the standard normal density and σ ε is the square root of vε. Sim-
ilarly, conditional on the B model as well as on the realization of Bt, Dt has a
normal density with mean Bt and variance vε, which we denote by fB(Dt | Bt),
and that satisfies

f B(Dt | Bt) = 1

σε

φ

(
Dt − Bt

σε

)
= 1

σε

φ

(
z B

t

σε

)
. (3)

Next, we define the variable xt+1 as follows:

xt+1 = pt Lz/(pt Lz + (1 − pt)), (4)

where Lz is the likelihood ratio given by

Lz = f A(Dt | At)/ f B(Dt | Bt) = exp
(−[(

z A
t

)2 − (
z B

t

)2]/
2vε

)
. (5)

Note that the likelihood ratio is always nonnegative, and increases the smaller
is zA

t relative to zB
t in absolute value. With these definitions in place, standard

arguments can be used to show that the Bayesian posterior going into period
t + 1 is given by (see, e.g., Barberis, Shleifer, and Vishny (1998), or Hong and
Rady (2002))

pt+1 = p∗ + (πA + πB − 1)(xt+1 − p∗), (6)

where p∗ = (1 − πB)/(2 − πA − πB) is the fraction of the time that the dividend
process is expected to spend in the A-model state over the long run. Given our
assumption that πA = πB, it follows that p∗ = 1/2, and (6) reduces to

pt+1 = 1/2 + (
2π − 1)(xt+1 − 1/2

)
. (7)

Observe that in the limiting case in which π = 1, we have that pt+1 = xt+1.
This is the point mentioned earlier: Bayesian beliefs in this case are nonsta-
tionary, and eventually drift toward a value of either zero or 1. In contrast, if
π < 1, Bayesian beliefs are stationary, with a long-run mean weight of 1/2 being
attached to the A model. In either case, however, it is clear that the updating
process leans more toward the A model after period t if zA

t is smaller than zB
t in

absolute value, and vice versa.
An essential piece of intuition for understanding the results that follow comes

from asking how the speed of learning varies over time. Heuristically, the speed
of learning measures the rate at which pt adjusts toward either 1 (perfect cer-
tainty in the A model) or zero (certainty in the B model). O’Hara (1995) es-
tablishes that the speed of learning is proportional to relative entropy. In our
setting, the relative entropy �t is given by

�t =
∫ ∞

−∞
f A

(
Dt | At

)
log

f A
(
Dt | At

)
f B

(
Dt | Bt

) dDt . (8)
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Straightforward calculation based on (8) yields

�t =
(
At − Bt

)2

2vε

. (9)

Equation (9) says that there is more rapid learning in period t when At and Bt are
further apart. This makes intuitive sense. In the limit, if At = Bt, the two models
generate exactly the same forecasts, so there is no scope for distinguishing
them in the data. In contrast, when the two models generate widely divergent
forecasts, the next realization of dividends has the potential to discriminate
strongly in favor of one or the other.

This observation gets to the heart of why there can be predictable variation
in various moments of stock returns in our framework. Consider as an example
volatility. If an econometrician can infer when At and Bt are relatively far apart,
then, according to (9), he will be able to estimate when the potential for learning
is high, and by extension, when stock return volatility is likely to be above its
unconditional average.

D. Model Selection

As noted above, one way to proceed is to think of the market as a whole in
terms of a single representative investor and to assume that this representative
investor practices model selection. In other words, at time t, the representative
investor has a preferred null model that she uses exclusively. Moreover, as
long as the accumulated evidence against the null model is not too strong, it is
carried over to time t + 1.

To be more precise, we define the indicator variable IA
t to be equal to 1 (zero)

if the investor’s null model at time t is the A (B) model. We then assume the
following dynamics for IA

t

If I A
t = 1, then I A

t+1 = 1, unless pt+1 < h. (10)

If I A
t = 0, then I A

t+1 = 0, unless pt+1 > (1 − h). (11)

Here, h is a critical value that is less than one half. Thus, the investor main-
tains a given null model for the purposes of making forecasts until the updated
(Bayesian) probability of it being correct falls below the critical value. So, for
example, if her original null is the A model and h = 0.05, she continues to make
forecasts exclusively with it until it is rejected at the 5% confidence level. Once
this happens, the B model assumes the status of the null model and it is then
used exclusively until it too is rejected at the 5% confidence level. Clearly, the
smaller is h, the stronger is the degree of resistance to model change; the psy-
chological literature on theory maintenance discussed above can therefore be
thought of as suggesting a value of h relatively close to zero.

This formulation raises an important issue of interpretation. On the one
hand, we motivate the assumption that the investor uses a univariate forecast-
ing model at any point in time by appealing to limited cognitive resources, the
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idea being that it is too difficult to simultaneously process both the A and B
sources of information for the purposes of making a forecast. Yet, the investor
does use both the A and B sources of information when deciding whether to
abandon her null model: The Bayesian updating process for pt that underlies
her model selection criterion depends on both zA

t and zB
t . In other words, the

investor is capable of performing quite sophisticated multivariate operations
when evaluating which model is better, but is unable to make dividend fore-
casts based on more than a single variable at a time, which sounds somewhat
schizophrenic.

One resolution to this apparent paradox relies on the observation that, in
spite of the way in which we formalize things, it is not necessary for our results
that the representative investor actively reviews her choice of models as fre-
quently as once every period. Indeed, it is more plausible to think of the two
basic tasks that the investor undertakes—forecasting and model selection—as
happening on different time scales, and therefore involving different trade-offs
of cognitive costs and benefits. For an active stock market participant, divi-
dend forecasts have to be updated continuously as new information comes in.
Thus, the model that generates these forecasts needs to be simple and not too
cognitively burdensome, or it will be impractical to use in real time.10

In contrast, it may well be that the investor steps back from the ongoing task
of forecasting and does systematic model evaluation only once in a long while;
as a result, it might be feasible for this process to be more data intensive.11

Indeed, it is not difficult to incorporate this sort of timing feature explicitly into
our analysis, by allowing the investor to engage in model evaluation only once
every m periods, with m relatively large. Our limited efforts at experimentation
suggest that this approach yields results that are qualitatively similar to those
we report below.

E. Model Averaging

As will become clear, the representative-investor/model-selection approach
described above provides a useful way to communicate the main intuition be-
hind our results. But it is important to underscore that these results do not
hinge on the discreteness associated with the model selection mechanism. To
illustrate this point, we also consider the “smoother” case in which the market

10 This is why we are reluctant to assume that any individual agent acts as a model averager. If

a model averager assigns a probability pt to the A model at time t, her forecast of the next dividend

would be pt At+1 + (1 − pt) Bt+1. However, such a forecast is no longer a cognitively simple one to make

in real time, as it requires the agent to make use of both sources of information simultaneously.

And if we are going to endow the agent with this much high-frequency processing power, it is less

clear how one motivates the assumption that she does not consider more complicated models in

her set of priors.
11 Moreover, much of this low-frequency model evaluation may happen at the level of an entire

investment community, rather than at the level of any single investor. For example, each investor

may need to work alone with a given simple model to generate her own high-frequency forecasts,

but may once in a while change models based on what she reads in the press, hears from fellow

investors, etc. Again, the point to be made is that no single investor is literally going to be engaging

in cognitively costly model evaluation on a continuous basis.
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price is based on model averaging, that is, where Pt = ptkAt+1 + (1 − pt) kBt+1.
One way to motivate such model averaging is by appealing to a particular form
of heterogeneity across investors.

To see this, suppose that there is a continuum of investors distributed uni-
formly across the interval (0, 1), each of whom individually practices model
selection. All investors share the same underlying Bayesian update pt of the
probability of the A model being correct at time t, with pt evolving as before.
But now, each investor has her own fixed threshold for determining when to use
the A model as opposed to the B model: The investor located at point i on the
interval uses the A model if and only if pt > i.12 This implies that the fraction
of investors in the population using the A model at time t is given by pt. To
the extent that the market price is just the weighted average of individual in-
vestors’ estimates of fundamental value, this in turn implies that Pt = ptkAt+1 +
(1 − pt) kBt+1.13

F. Implications for Stock Returns: Some Intuition

In Section III below, we use a series of simulations to provide a full-blown
quantitative analysis that covers both the linear and log-linear specifications
for dividends, as well as the cases of model selection and model averaging. But
before doing so, we attempt to provide a heuristic sense for the mechanism
driving our results. This is most transparently done in the context of the linear
specification with model selection, so we focus exclusively on this one combina-
tion for the remainder of this section.

Assuming that we are in a model-selection world, suppose for the moment
that the representative investor is using the A model at time t − 1, so that
Pt−1 = kAt. There are two possibilities at time t. The first is that there will be
no paradigm shift, so that the investor continues to use the A model. In this
case, Pt = kAt+1, and the return at time t, which we denote by RN

t , is given by

RN
t = z A

t + kat+1 = Bt + εt + kat+1. (12)

Alternatively, if there is a paradigm shift at time t, the investor switches over
to using the B model, in which case the price is Pt = kBt+1, and the return,
denoted by RS

t , is

12 One can interpret investors with low thresholds as those who have an innate preference for

the A model.
13 This motivation is admittedly loose. In a dynamic model, it is not generally true that price

simply equals the weighted average estimate of fundamental value as short-term trading consid-

erations may arise; for example, investors may try to forecast the forecasts of others. Nevertheless,

since we just want to demonstrate that our results are not wholly dependent on model selection,

the model-averaging case is a natural point of comparison. An alternative way to motivate model

averaging is in terms of a single representative investor who is a classical Bayesian (given the

set of priors described above) and who therefore puts weight pt on the A model at time t. Another

advantage of this interpretation is that it avoids the “schizophrenia” problem alluded to above,

since the representative investor now uses both sources of information in making her forecasts

at any point in time. The disadvantage is that it is no longer the case that every individual actor

makes forecasts that are simple in nature.
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RS
t = z A

t + kbt+1 + ρk(Bt − At) = Bt + εt + kbt+1 + ρk(Bt − At). (13)

Observe that RS
t = RN

t + k(bt+1 − at+1) + ρk(Bt − At). Simply put, the return in
the paradigm shift case differs from that in the no-shift case as a result of
current and lagged A-information being discarded from the price and replaced
with B-information.

Let us begin by revisiting the magnitude of the value-glamour effect, as prox-
ied for by cov(Rt, Pt−1). (Recall that we have cov(Rt, Pt−1) = 0 in the no-learning
case.) In Appendix A, we show that irrespective of whether we begin in the A
regime or the B regime, cov(Rt, Pt−1) can be decomposed as follows

cov(Rt , Pt−1) = cov
(
RS

t , Pt−1/shift
) ∗ prob(shift)

+ cov
(
RN

t , Pt−1/no shift
) ∗ prob(no shift). (14)

Substituting in the definitions of RN
t and RS

t from (12) and (13), and simplifying,
we can rewrite (14) as

cov(Rt , Pt−1) = k{cov(εt , At) + cov(At , Bt)}
+ ρk2{cov(At , Bt/shift) − var(At/shift)} ∗ prob(shift). (15)

Note that both the cov(εt, At) term as well as the first cov(At, Bt) term in (15)
are unconditional covariances. We have been assuming all along that these
unconditional covariances are zero. Thus, (15) can be further reduced to

cov(Rt , Pt−1) = ρk2{cov(At , Bt/shift) − var(At/shift)} ∗ prob(shift). (16)

Equation (16) clarifies the way in which a value-glamour effect arises in the
presence of learning. A preliminary observation is that cov(Rt, Pt−1) can only
be nonzero to the extent that the probability of a paradigm shift, prob(shift),
is nonzero: As we have already seen, there is no value-glamour effect absent
learning. When prob(shift) > 0, two distinct mechanisms are at work. First,
there is a negative contribution from the −var(At/shift) term. This term reflects
the fact that A-information is abruptly removed from the price at the time of a
paradigm shift. This tends to induce a negative covariance between the price
level and future returns, since, for example, a positive value of At at time t − 1
will lead to a high price at this time, and then to a large negative return when
this information is discarded from the price at time t.

Second, and more subtly, there is the cov(At, Bt/shift) term. While the un-
conditional covariance between At and Bt is zero, the covariance conditional on
a paradigm shift is not. To see why, think about the circumstances in which
a shift from the A model to the B model is most likely to occur. Such a shift
will tend to happen when the underlying Bayesian posterior pt moves sharply,
that is, when there is a lot of Bayesian learning. According to equation (9), the
relative entropy �t, and hence the speed of learning, is greatest when At and Bt

are far apart. Put differently, if At = Bt, there is no scope for Bayesian learning,
and hence no possibility of a paradigm shift.
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This line of reasoning suggests that cov(At, Bt/shift) < 0, which in turn makes
the overall value of cov(Rt, Pt−1) in (16) even more negative, thereby strengthen-
ing the value-glamour differential.14 When a paradigm shift occurs, not only is
A-information discarded from the price, it is also replaced with B-information.
And conditional on a shift occurring, these two pieces of information tend to
be pointing in opposite directions. So, if a positive value of At at t − 1 has led
to a high price at this time, there will tend to be an extra negative impact on
returns in the event of a paradigm shift at t (above and beyond that associ-
ated with just the discarding of At), when Bt enters into the price for the first
time.

Importantly, in our setting learning generates more than just a simple time-
invariant value-glamour effect: It also creates predictable variation in the ex-
pected returns to value and glamour stocks. To see why, recall that return
predictability based on price levels is entirely concentrated in those periods in
which paradigm shifts occur. Thus, if an econometrician can track variation
over time in the probability of a paradigm shift, he will also be able to forecast
when such predictability is likely to be the greatest.

Again, the key piece of insight comes from the expression for relative entropy
�t in (9), which tells us that there is more potential for learning when the A
model and the B model produce divergent forecasts. What does this mean in
terms of observables? To be specific, think of a situation in which At is very
positive, so the stock is a high-priced glamour stock. Going forward, there will
be more scope for learning if, in addition, Bt is negative. This will tend to show
up as negative values of the forecast error zA

t , since zA
t = Bt + εt. In other words,

if a high-priced stock is experiencing negative forecast errors, this is a clue that
the two models are at odds with one another.

A sharper prediction of our theory, therefore, is that a high-priced glamour
stock will be particularly vulnerable to a paradigm shift, and hence to a sharp
decline in prices, after a series of negative z-surprises about fundamentals.
One might term such an especially bearish situation “glamour with a negative
catalyst.” The conversely bullish scenario, “value with a positive catalyst,” in-
volves a low-priced value stock and a series of positive z-surprises.15 The closest
empirical analog to such z-surprises would probably be either: (1) a measure
of realized earnings in a given quarter relative to the median analyst’s earn-
ings forecast, or (2) the stock price response to an earnings announcement.
In our empirical work, we use the latter of these two variables as a proxy for
z-surprises.

14 We are able to prove analytically that cov(At, Bt/shift) < 0 for the limiting case in which

the persistence parameter ρ approaches zero. (The proof is available on request). In addition, we

exhaustively simulate the model over the entire parameter space to verify that this condition holds

everywhere else.
15 The idea that value and/or glamour effects are more pronounced in the presence of such cata-

lysts has some currency among practitioners. For example, the Bernstein Quantitative Handbook

(2004) presents a variety of quantitative screens that “we believe lead to outperformance.” One of

these screens, labeled “Value With a Catalyst,” is chosen to select “undervalued stocks reporting a

positive earnings surprise” (pp. 22–23).
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When we say that a glamour stock has more negative expected returns condi-
tional on a recent string of disappointing earnings surprises, we need to stress
a crucial distinction. This phenomenon is not simply a result of adding together
the unconditional value-glamour and momentum effects. Rather, in the context
of a regression model that forecasts future returns, our theory predicts that
not only should there be book-to-market and momentum variables, but also
interaction terms that represent the product of book-to-market with proxies for
the direction of recent earnings surprises. In other words, we would expect an
interaction term for glamour and bad news to attract a negative coefficient, and
an interaction term for value and good news to attract a positive coefficient. We
highlight this prediction in both our simulations and our empirical work below.

The same basic mechanisms produce forecastable movements in stock re-
turn volatility and skewness. As a comparison of equations (12) and (13) makes
clear, volatility is inherently stochastic in our setting because returns have
more variance at times of paradigm shifts than at other times. Moreover, these
movements in volatility can be partially forecasted by an econometrician using
exactly the same logic as above. For example, a high-priced glamour stock is
more apt to experience a paradigm shift, which will manifest itself not only as a
negative return, but also as an unusually large absolute price movement, after
a sequence of negative fundamental surprises. Again, this is because such neg-
ative surprises are an indicator that the A and B models are in disagreement,
which, according to the relative entropy formula in (9), raises the potential for
learning.

Analogous arguments apply for conditional skewness. First, glamour stocks
will tend to have more negatively skewed returns than value stocks. This is
because the very largest movements in glamour stocks, those associated with
paradigm shifts, will on average be negative, and conversely for value stocks.
This feature of our theory is reminiscent of classic accounts of bubbles, as the
potential for the sudden popping of a bubble in a high-priced glamour stock sim-
ilarly generates negative conditional skewness. However, while the popping of
a bubble is exogenous in Blanchard and Watson (1982), our theory endogenizes
it.16 Moreover, we have the sharper prediction that these general skewness ef-
fects will be more pronounced if one further conditions on recent news. Thus,
the negative skewness in a glamour stock will be strongest after it has experi-
enced a recent string of bad news, and the positive skewness in a value stock
will be greatest after a string of good news.

Although we have focused our discussion on the model-selection case, the
intuition for the model-averaging case is very similar. With model selection,
the notion of effective learning at the market level is dichotomous: Either there
is a paradigm shift in a given period, or there is not. But this discreteness is not
what is driving the results. Rather, what matters for the various asset pricing
patterns is that an econometrician can forecast when there is likely to be a lot of
learning, that is, he can tell when the A and B models are pointing in opposite
directions. With model averaging, the amount of market-wide learning that

16 Abreu and Brunnermeier (2003) can also be thought of as a theory that endogenizes the

collapse of bubbles.
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takes place is a continuous variable, but the econometrician can still partially
forecast it for the same reason as before. In particular, when a glamour stock
is observed to have a series of negative earnings surprises, this suggests that
there is a divergence between the A and B models, which, according to equation
(9), tells us that the relative entropy, and hence the speed of learning, is likely to
be high. The implications for conditional variation in value and glamour return
premia, in volatility, and in skewness all follow from this ability to anticipate
variation in the intensity of learning over time.

III. Simulations and Empirical Tests

In order to flesh out the implications of the theory more fully, and to assess
their quantitative importance, we now turn to a series of simulations. The sim-
ulations cover both the linear and log-linear dividend specifications, as well
as the model-selection and model-averaging cases. However, before turning to
the details, we should stress an important general caveat. When we generate
a panel of stock returns, we do so by applying our learning model to each in-
dividual stock in the panel independently. In other words, we assume that all
learning happens at the stock level and is uncorrelated across stocks. This may
well not be the most attractive assumption; for example, it may make more
sense to posit that investors apply a common paradigm to all stocks in the
same industry.

We do not explore the implications of such correlated learning for stock re-
turns, but depending on exactly how it is modeled, it would appear to have the
potential to introduce a variety of further complexities. To take just one ex-
ample, correlated learning will tend to make all stocks in an industry co-move
together strongly. This raises the possibility that some of what we are currently
interpreting as a value-glamour effect might be “explained away” by differences
in factor loadings of one sort or another.

This caveat must be borne in mind when comparing our simulation results
to the data. To the extent that our current formulation of the learning process
omits some potentially important elements, the empirical analysis should not
be thought of as an attempt to test the broader theory in a quantitatively precise
fashion. Rather, the goal is to see if a first-generation version of the theory can
deliver effects of an economically interesting magnitude, and to highlight the
dimensions along which the current version appears to fall short.

A. Calibration

In each of our simulations, we create a panel of 2,500 independent stocks,
which we then track for 100 periods. When we calibrate the parameters, we
treat each period as corresponding to one calendar quarter, so that with 100
periods, we have a 25-year panel. (This matches up closely with the length of
our empirical sample period, which runs from 1971 to 2004.) We then repeat
each of these 2,500-stock-by-100-quarter exercises 100 times. As will become
clear, this appears to be more than sufficient to generate precise estimates of
the moments of interest.
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The simulations require that we specify the following parameters: The vari-
ances va, vb, and vε, the persistence parameter ρ, the discount rate r, the Markov
transition parameter π , and the model rejection critical value h. Note, however,
that h only plays a role in the case of model selection—we do not need to specify
a value of h for the model-averaging case.

We begin by setting π = 1 and h = 0.05. The former assumption corresponds
to the scenario in which agents believe that there is a single simple model that
is correct for all time, that is, agents do not believe that there is regime shifting
with respect to the underlying model of the world.17 The latter assumption
implies that the status quo model is discarded when the updated probability
of it being correct falls below 5%. We set the discount rate to r = 0.015, which
corresponds to an annualized value of 6%. We also simplify things by assuming
that all the variances are the same, that is, that va = vb = vε = v. Our task
then boils down to coming up with empirically realistic values of v and of the
persistence parameter ρ.

We pick these two parameters so as to roughly match observed levels of earn-
ings persistence and stock return volatility. Given the assumption that va = vb =
vε = v, the autocorrelation properties of dividends in our model are entirely
pinned down by the persistence parameter ρ. (See Appendix C for details.) We
set ρ = 0.97, which implies a first-order autocorrelation of log dividends (in
the log-linear specification) of 0.94. This lines up closely with the value of the
first-order autocorrelation coefficient of 0.96 that we estimate using quarterly
data on the log of real S&P operating earnings over the period 1988 to 2004.18

Once all the other parameters have been chosen, there is a one-to-one map-
ping between v and stock return volatility, although this mapping depends on
the nature of the learning process (i.e., model selection vs. model averaging)
and is not something that we can express in closed form. After some experi-
mentation, we set v to 0.00001 in the linear specification and to 0.045 in the
log specification. As we will see momentarily, these values lead to annualized
stock return volatilities in the neighborhood of 30%.

B. Simulation Results: Linear Dividend Specification

Table I displays our simulation results for the linear dividend specification.
The table contains three panels: Panel A for the no-learning benchmark case,
Panel B for the case of model selection, and Panel C for the case of model averag-
ing. Within each panel, we display two sets of three regressions each; these are
simply Fama–MacBeth (1973) regressions that we run on the simulated data
samples. Again, recall that the samples are 2,500-stock-by-100-quarter panels.

17 However, as a robustness check, we redo all of the simulations below with a steady-state

version of the model in which π is reset to 0.95. Given our 25-year simulation horizon, the results

are very similar, both qualitatively and quantitatively, to those with π = 1.
18 We use data on operating earnings, rather than dividends, for calibration purposes. This is

because unlike in our theoretical setting, real-world dividends are not exogenous, but rather are

heavily smoothed by managers. Thus, observed earnings arguably provide a better match for the

theoretical construct of “dividends.”
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The numbers reported in the tables are the mean coefficients across the 100
trials of each panel regression, along with the t-statistics associated with these
means.

In the first regression of each set, we forecast (annualized) returns in quarter
t based on four variables: (1) A value-glamour proxy, namely, the price level at
the end of quarter t − 1; (2) a recent news proxy, namely, the sum of the z-
surprises over quarters t − 4 through t − 1; (3) a Value ∗ GoodNews interaction
term; and (4) a Glamour ∗ BadNews interaction term. The price level and news
variables are continuous, and are standardized so as to have zero mean and
unit standard deviation. The interaction terms are dummy variables. In the
so-called “2 × 2 sort,” Value ∗ GoodNews takes the value of 1 if and only if the
price level is below the median value and the news proxy is above the median
value for that quarter. Similarly, Glamour ∗ BadNews takes the value of 1 if and
only if the price level is above the median value and the news proxy is below
the median value for that quarter.

The second and third regressions are identical to the first, except that in-
stead of forecasting returns over the next quarter, we forecast the (annualized)
volatility and skewness of returns over the next four quarters, from t through
t + 3. Note that we need to do the forecasting over more than one quarter
simply because we cannot compute volatility and skewness using just a single
quarterly return.

The second set of three regressions in each panel is similar, except that we
use a “3 × 3” sort. This means that the Value ∗ GoodNews dummy only takes the
value of 1 if the price level is in the lowest one third of values and the news proxy
is in the highest one third of values for that quarter; the Glamour ∗ BadNews
dummy is defined analogously. In other words, with the 3 × 3 sort, we assign
a smaller and more extreme set of stocks to both the Value ∗ GoodNews and
Glamour ∗ BadNews portfolios each quarter.

The results in Panel A for the no-learning benchmark case confirm what we
establish above analytically. When predicting returns, the only variable that
enters significantly is the news proxy, which attracts a coefficient of 0.0579,
meaning that a one-standard deviation increase in the value of past z-surprises
increases expected returns by 5.79% in annualized terms. There is no value-
glamour effect, nor any interaction of value or glamour with the news proxy.
When predicting volatility and skewness, none of the variables has a meaning-
ful effect, that is, volatility and skewness are simply constants.

Things get more interesting when we move to Panels B and C, which cover
the cases of model selection and model averaging. Because the basic thrust of
the results is similar across these two panels, as well as across the 2 × 2 and
3 × 3 sorts, we focus our discussion on the model-selection case with a 2 × 2
sort. Consider first the regression that forecasts returns. The coefficient on the
news proxy is similar to before, at 0.0760. But now, there is also an unconditional
value-glamour effect, as seen in the coefficient on the price variable of −0.0407.
This implies that all else equal, a one-standard deviation increase in price
reduces expected returns by 4.07% on an annualized basis.

Moreover, the Value ∗ GoodNews and Glamour ∗ BadNews terms attract sig-
nificant coefficients of 0.0760 and −0.0757, respectively. In other words,
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controlling for the price level and past news, a stock that is in the
Value ∗ GoodNews quadrant has an additional expected return of 7.60% on an
annualized basis, while a stock that is in the Glamour ∗ BadNews quadrant has
an expected return that is reduced by 7.57%. Again, these interaction effects
are the key differentiating prediction of our theory.

Turning to the regression that forecasts volatility, we find that the only two
significant predictor variables are the Value ∗ GoodNews dummy and the Glam-
our ∗ BadNews dummy, each of which attracts a positive coefficient of 0.0598.
Thus, when a stock is in either of these quadrants, annualized volatility is in-
creased by 5.98 percentage points. As we have seen above, this is because the
potential for learning is elevated in these situations.

With respect to skewness, Value ∗ GoodNews forecasts positive skewness,
and Glamour ∗ BadNews forecasts negative skewness, as anticipated in our
intuitive discussion. In addition, the price level has a negative impact on fu-
ture skewness—this is the “bubble-popping” effect mentioned above—while the
news proxy has a positive impact.

In addition to the results shown in Table I, we also examine in the linear
setting an alternative “rational-learning” benchmark. In this variant, investors
update just as in the model-averaging case of Panel C, but the objective reality
is that dividends are either generated by the simple A model or by the simple B
model. In other words, investors’ perception of the environment now coincides
with objective reality, so they can be thought of as standard rational Bayesians.

Volatility is stochastic in this setting, since the intensity of learning varies
over time. However, none of the distinctive predictions that obtain in Panels
B and C emerge with fully rational learning. Instead, we get an outcome that
exactly mirrors Panel A: Neither returns, nor volatility, nor skewness is at
all forecastable based on the value-glamour proxy, the news proxy, or any of
their interactions. We therefore conclude that rational learning per se is not
sufficient to generate the effects that we emphasize, even those for volatility,
and that these effects are attributable to our particular rendition of the learning
process.

C. Simulation Results: Log-Linear Dividend Specification

Table II presents the simulation results for the log-linear dividend specifi-
cation. The format is identical to Table I, with the following exceptions. First,
we omit the panel corresponding to the no-learning benchmark, and show only
the model-selection and model-averaging cases.19 Second, all returns are in
percentage terms, rather than in dollars. And third, when we compute skew-
ness, this now refers to the skewness of log returns.20

19 It turns out that the no-learning benchmark is not quite as clean in the log-linear case due to

second-order Jensen’s inequality effects that arise. In particular, many of the regression coefficients

that were almost exactly zero in the linear no-learning case are now statistically different from

zero, albeit still small in economic terms.
20 This is natural, since absent learning log returns should be symmetrically distributed in this

log-linear setting.
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The qualitative results run closely parallel to those in Table I, and the eco-
nomic magnitudes are generally similar. As before, consider the model-selection
case with a 2 × 2 sort as a concrete example. Now when forecasting returns, the
Value ∗ GoodNews and Glamour ∗ BadNews terms attract coefficients of 0.0712
and −0.0877, respectively. When forecasting volatility, the corresponding co-
efficients are 0.0517 and 0.0528. Again, these would seem to be economically
interesting magnitudes.

Finally, we should underscore that for the parameter values used in Table
II, the model-selection case generates an unconditional annualized volatility
of 27.8%, while the model-averaging case generates a volatility of 28.2%, both
of which are realistic values for individual stocks. Thus, it appears that we
can obtain economically interesting predictions without having to crank up the
underlying variances in our model to implausible levels.

D. Empirical Results

Tables I and II embody the quantitative predictions of our theory. In
Table III, we investigate these predictions empirically. Our empirical analysis
is motivated in part by the observation that, in spite of the enormous literature
on value-glamour effects, momentum, and post-earnings announcement drift,
little work focuses on the interaction effects that are at the heart of our theory.
The two exceptions that we are aware of are Asness (1997) and Swaminathan
and Lee (2000), both of which we discuss further below. In any event, it would
seem that there is room for much more work in this area, and our efforts here
should be thought of as just a brief first cut.

We use CRSP stock return data and earnings announcement dates from
Compustat over the period 1971 to 2004 to create a direct empirical analog to
Table II.21 Our methodology is as follows. First, in place of the “price” variable
in the simulations, we use the log of the market-to-book ratio, log(M/B). As in
the simulations, this variable is normalized to have zero mean and unit stan-
dard deviation in any given cross section so as to make the magnitudes of the
empirical and simulated coefficients directly comparable.

Second, in place of the “news” variable, we use the sum of the earnings an-
nouncement returns from the prior four quarters, with each return based on
the 3-day interval (−1 to 1) around the announcement. Again, this variable
is normalized to have zero mean and unit standard deviation in any cross
section. As we stress above, announcement returns are the closest analog to
the z-surprises that we use in the simulations, since absent a paradigm shift,
the stock return at the moment of a dividend realization is exactly equal to the
z-surprise.

With these two proxies in hand, we can define the Value ∗ GoodNews
and Glamour ∗ BadNews dummies exactly as before for either the 2 × 2 or

21 Our sample includes all firms for which we have data on returns and market capitalization

from CRSP, and data on earnings dates and book value from Compustat. We also require that book

value be positive. The earnings dates are only available from Compustat beginning in the 1970s,

which explains our sample period.
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3 × 3 sort. Finally, we run Fama and MacBeth (1973) regressions to forecast
returns, volatility, and skewness based on the four predictors, just as in the
simulations.22

The results for returns line up remarkably well with our theoretical pre-
dictions. As would be expected based on previous research, the coefficient
on log(M/B) is negative, and the coefficient on the news variable is posi-
tive. More strikingly from the perspective of our theory, the coefficient on
Value ∗ GoodNews is significantly positive, while that on Glamour ∗ BadNews
is significantly negative. This is true in both the 2 × 2 and 3 × 3 sorts.23 The
economic magnitudes are also in the same ballpark as, albeit somewhat smaller
than, those from the log-linear simulations in Table II. In the 2 × 2 sort, the
coefficient on Value ∗ GoodNews is 0.0205, while that on Glamour ∗ BadNews
is −0.0255. In the 3 × 3 sort, the corresponding numbers are 0.0454 and
−0.0237.

The results for volatility and skewness are more mixed. In the 3 × 3 sort,
our theoretical predictions for volatility emerge strongly, with coefficients on
Value ∗ GoodNews and Glamour ∗ BadNews of 0.0824 and 0.0424, respectively.
But in the 2 × 2 sort, the coefficients on these interaction terms are much
smaller, and of the wrong sign. In the skewness regressions, the coefficient on
Value ∗ GoodNews is significantly positive, as predicted, in both the 2 × 2 and
3 × 3 sorts. But the coefficient on Glamour ∗ BadNews is very close to zero in
both cases. Finally, consistent with both our theory and with previous empirical
work by Chen, Hong, and Stein (2001), skewness is significantly more negative
for high market-to-book stocks.

Overall, we draw the following conclusions from the work reported in this sec-
tion. First, when calibrated with realistic parameter values, our theory delivers
quantitative predictions that are of an economically interesting order of mag-
nitude. In other words, the conditional variation in expected returns, volatility,
and skewness generated by the theory is of first-order importance relative to
the unconditional values of these moments. Second, the directional predictions
of the theory for expected returns (most notably, the novel predictions regarding
the effects of the interaction terms Value ∗ GoodNews and Glamour ∗ BadNews)

22 One difference between the empirical setting and the simulations is that in the former, we can

take advantage of daily data to more precisely estimate volatility and skewness. This is what we

do in Table III, where volatility and skewness are estimated based on one quarter’s worth of daily

returns. However, we get similar results if instead we estimate volatility and skewness based on

four quarters’ worth of quarterly returns, as in the simulations.
23 Swaminathan and Lee (2000) present closely related evidence, using double sorts rather than

Fama–MacBeth regressions. Using data from 1974 to 1995, they do a 5 × 5 sort of stocks along two

dimensions: book-to-market and earnings surprises. In the most negative earnings surprise quin-

tile, glamour stocks (i.e., those in the lowest quintile of book-to-market) underperform moderately

priced stocks (those in the middle quintile of book-to-market) by 4.71% per year. In contrast, in the

highest earnings surprise quintile, the corresponding underperformance figure for glamour stocks

is only 0.83% per year. With value stocks, the picture is reversed: They outperform moderately

priced stocks by more when earnings surprises are in the upper quintile as opposed to the lower

quintile, by 4.78% versus 1.55%. Also related are the findings of Asness (1997), who uses double

sorts to study the interaction of book-to-market and price momentum.
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are uniformly supported by the data. The theory also seems to have some ex-
planatory power for movements in volatility and skewness, though not all of
the predictions for these two moments come through as unambiguously.

IV. Revisionism: Equity Analysts and Amazon.com

In addition to its quantitative predictions for various moments of stock re-
turns, our theory also implies the existence of a kind of revisionism: When there
are paradigm shifts, investors will tend to look back at previously available pub-
lic information and to draw different inferences from it than they had before.
In an earlier version of this paper (Hong and Stein (2003b)), we illustrate the
phenomenon of revisionism with a detailed account of equity analysts’ reports
on Amazon.com over the period 1997 to 2002, focusing both on the models that
analysts use to arrive at their valuations for Amazon, and on how these models
change over time. Here we just provide a brief summary of the narrative, and
refer the interested reader to the working paper for details from the individual
analyst reports.

In the period from its IPO in May 1997 up through its stock price peak in
December of 1999, analysts offering valuations for Amazon repeatedly stressed
its long-run revenue growth potential. At the same time, they explicitly dis-
missed the fact that Amazon’s gross margins were much lower than those of
its closest off-line retailing peers like Barnes & Noble. In fact, several ana-
lysts made a point of arguing that Barnes & Noble was the wrong analogy to
draw, and that Amazon should be viewed as a fundamentally different type of
business.

After a disappointing Christmas season in 1999, when Amazon’s sales fell
below expectations and the stock price began to drop precipitously, there ap-
pears to have been an abrupt shift in perspective. Many analysts began to point
out the similarities between Amazon and off-line retailers, and started to em-
phasize gross margins in making their forecasts and recommendations. Indeed,
a number of their post-1999 reports gave a lot of play to unfavorable data on
Amazon’s margins that had already been widely available for some time. And
strikingly, some now used this stale data to justify downgrading the stock. This
is just the sort of revisionism that our theory suggests.

V. Related Work

A large literature in game theory examines the implications of learning by
less than fully rational agents.24 While we share some of the same behavioral
premises as this work, its goals are very different from ours, as for the most
part, it seeks to understand the extent to which learning can undo the effects
of agents’ cognitive limitations.25 For example, a commonly studied question in

24 Early contributions to the learning-in-games literature include Robinson (1951), Miyasawa

(1961), and Shapley (1964). For a survey of more recent work, see Fudenberg and Levine (1998).
25 A similar comment can be made about the literature that asks whether learning by boundedly

rational agents leads to convergence to rational expectations equilibria. See, for example, Cyert

and DeGroot (1974), Blume, Bray, and Easley (1982), and Bray and Savin (1986).
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this literature is whether learning will in the long run lead to convergence to
Nash equilibrium.

Perhaps the paper that is closest to ours is that of Barberis et al. (1998),
hereafter BSV.26 As we do, BSV consider agents who attempt to learn, but who
are restricted to updating over a class of incorrect models. In their setting, the
models are specifically about the persistence of the earnings process—in one
model shocks to earnings growth are relatively permanent, while in another
model these shocks are more temporary in nature.27 BSV’s conclusions about
under- and overreaction to earnings news then follow directly from the mistakes
that agents make in estimating persistence.

In our theory, the notion of a model is considerably more abstract: A model is
any construct that implies that one sort of information is more useful for fore-
casting than another. Thus, a model can be a metaphor such as “Amazon is just
another Barnes & Noble,” which might imply that it is particularly important
to study Amazon’s gross margins. Or alternatively, a model can be “Company
X seems a lot like Tyco,” which might suggest looking especially carefully at
those footnotes in Company X’s annual report where relocation loans to execu-
tives are disclosed. We view it as a strength of our approach that we are able to
obtain a wide range of empirical implications without having to spell out such
details.

The representative-agent/model-selection version of our theory is also rem-
iniscent of Mullainathan’s (2000) work on categorization. Indeed, our notion
that individual agents practice model selection, instead of Bayesian model av-
eraging, is essentially the same as Mullainathan’s treatment of categoriza-
tion. In spite of this apparent similarity, however, it is important to reiterate
that our main empirical predictions do not follow from a discrete category-
switching mechanism as in Mullainathan (2000), but rather from the fact that
agents restrict their updating to the class of simple models, which in turn en-
ables an econometrician to forecast variations in the intensity of learning over
time.

VI. Conclusions

This paper can be seen as an attempt to integrate learning considerations
into a behavioral setting in which agents are predisposed to using overly sim-
plified forecasting models. The key assumption underlying our approach is that

26 Other recent papers on the effects of learning for asset prices include Timmerman (1993),

Wang (1993), Veronesi (1999), and Lewellen and Shanken (2002). In contrast to our setting or that

of BSV, these papers consider a rational expectations setting and look at how learning about a

hidden and time-varying growth rate for dividends leads to stock market predictability and excess

volatility.
27 In BSV, agents put zero weight on the model with the correct persistence parameter. One might

argue that this assumption is hard to motivate, since the correct model is no more complicated or

unnatural than the incorrect models that agents entertain. By contrast, in our setting the correct

multivariate model is more complicated than the simple univariate models that agents actually

update over.
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agents update only over the class of simple models, placing zero weight on
the correct, more complicated model of the world. As we demonstrate, this as-
sumption yields a fairly rich set of empirical implications, many of which are
supported in the data. Moreover, these implications seem to be robust to aggre-
gation. That is, they come through either when there is a single representative
agent who practices model selection, or when there is a market comprising het-
erogeneous agents, in which case the market can be said to practice a form of
model averaging.

Appendix A. Derivation of Equation (14)

First, observe that

cov(Rt , Pt−1) = E(Rt Pt−1) − E(Rt)E(Pt−1). (A1)

Similarly,

cov(Rt , Pt−1 | shift) = E(Rt Pt−1 | shift)

− E(Rt | shift)E(Pt−1 | shift), (A2)

and

cov(Rt , Pt−1 | no shift) = E(Rt Pt−1 | no shift)

− E(Rt | no shift)E(Pt−1 | no shift). (A3)

We can also decompose E(RtPt−1) as

E(Rt Pt−1) = E(Rt Pt−1 | shift) Pr(shift)

+E(Rt Pt−1 | no shift) Pr(no shift).
(A4)

Therefore, to establish equation (14), it suffices to prove that

E(Pt−1 | shift) = E(Pt−1) = E(Pt−1 | no shift) = 0. (A5)

For E(Pt−1 | shift) we can write

E(Pt−1 | shift) =
∫

Pt−1 f (Pt−1 | shift) dPt−1

= 1

Pr(shift)

∫
Pt−1 Pr(shift | Pt−1) f (Pt−1) dPt−1, (A6)

where the latter equality follows from an analog to Bayes’s rule (a detailed proof
of which is available upon request). Next, note that

Pr(shift | Pt−1 = x) = Pr(shift | Pt−1 = −x). (A7)

This property holds because of the symmetry of the normal learning process
in equation (5) around zero. We also know that the unconditional distribution
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f (Pt−1) is symmetric around zero. Therefore, it follows that E(Pt−1 | shift) = 0,
since for any function g(x) that is symmetric around zero,

∫
x g (x) dx = 0. Iden-

tical logic establishes that E(Pt−1 | noshift) = 0, and hence that E(Pt−1) = 0.

Appendix B: Stock Prices in the Log-Linear Case

We assume that dividends follow the process Dt = exp(At + Bt + εt), where
At = ρAt−1 + at, Bt = ρBt−1 + bt, at ∼ N(0, va), bt ∼ N(0, vb), and εt ∼ N(0, vε).
We begin by calculating the stock price for an investor who understands the
true model. This is given in Proposition A1, which is an application of the main
result in Ang and Liu (2004).

PROPOSITION A1: When r > 0, the rational stock valuation VR
t for an investor who

understands the true model is

V R
t =

∞∑
s=1

exp

(
−rs + ρs−1

(
At+1 + Bt+1

) + 1

2
(va + vb)

1 − ρ2(s−1)

1 − ρ2
+ 1

2
vε

)
. (B1)

Proof : Observe that the rational stock valuation is simply the expected
present value of future dividends (assuming the true dividend process)

V R
t = Et

[ ∞∑
s=1

exp(−rs)Dt+s

]
=

∞∑
s=1

exp(−rs)Et exp(At+s + Bt+s + εt+s). (B2)

We expand the three terms inside the second exponential function of the ratio-
nal stock valuation as follows

At+s + Bt+s + εt+s

= ρ(At+s−1 + Bt+s−1) + at+s + bt+s + εt+s

= ρ2(At+s−2 + Bt+s−2) + ρ(at+s−1 + bt+s−1) + at+s + bt+s + εt+s

= · · ·
= ρs−1(At+1 + Bt+1) + ρs−2(at+2 + bt+2)

+ · · · +ρ(at+s−1 + bt+s−1) + at+s + bt+s + εt+s. (B3)
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Substituting this expansion inside the exponential function and taking expec-
tations gives us

Et exp(At+s + Bt+s + εt+s)

= exp

[
ρs−1(At+1 + Bt+1) + 1

2
(va + vb)

s−2∑
n=0

ρ2n + 1

2
vε

]

= exp

[
ρs−1(At+1 + Bt+1) + 1

2
(va + vb)

1 − ρ2(s−1)

1 − ρ2
+ 1

2
vε

]
. (B4)

Substituting the expression in (B4) back into the rational valuation formula
above yields

V R
t =

∞∑
s=1

exp

(
−rs + ρs−1(At+1 + Bt+1) + 1

2
(va + vb)

1 − ρ2(s−1)

1 − ρ2
+ 1

2
vε

)
. (B5)

Q.E.D.

The rational stock valuation depends on an infinite sum. Ang and Liu (2004)
point out that when r > 0, successive terms in the summation decrease expo-
nentially fast and VR

t can be approximated via the first m terms in the summa-
tion for some large m. In our simulations, we set m = 1,000.

With this rational stock valuation in hand, we can then work out the prices for
the cases of no learning, model selection, and model averaging. For an investor
who uses model A and ignores signal B, his valuation is

V A
t =

∞∑
s=1

exp

(
−rs + ρs−1 At+1 + 1

2
va

1 − ρ2(s−1)

1 − ρ2
+ 1

2
vε

)
, (B6)

which we derive by assuming that Dt = exp(At + εt), where At = ρAt−1 + at,
at ∼ N(0, va), and εt ∼ N(0, vε), and applying Proposition A1. Similarly, for an
investor using model B, his valuation is

V B
t =

∞∑
s=1

exp

(
−rs + ρs−1 Bt+1 + 1

2
vb

1 − ρ2(s−1)

1 − ρ2
+ 1

2
vε

)
, (B7)

which we derive by assuming that Dt = exp(Bt + εt), where Bt = ρBt−1 + bt,
bt ∼ N(0, vb), and εt ∼ N(0, vε), and applying Proposition A1.

We determine the stock price at time t for the three different cases (no learn-
ing, model selection, and model averaging) in the following way. In the no-
learning case, we assume the investor sticks to model A and the stock price is
given by

Pt = V A
t . (B8)
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Under the model-selection case, the stock price is determined by the current
model

Pt =
{

V A
t if model A

V B
t if model B

. (B9)

In the model-averaging case, the stock price is given by the average of the
valuations under models A and B, weighted by the proportion of investors (pt)
using each model, that is,

Pt = pt V A
t + (1 − pt)V B

t . (B10)

In each of these cases, the stock return is calculated simply as

Rt = Pt + Dt

Pt−1

− 1, (B11)

where Pt is given by one of the three cases (no learning, model selection,
and model averaging) and Dt follows the true log-linear specification given
above.

Appendix C: Calibration

We now provide calculations of the first-order autocorrelation of log dividends
that is useful in the calibration of our model. We set va = vb = vε = v and given
that log Dt = At + Bt + εt, we compute the variance of this process as

V0 = var(log Dt) = 2v
1 − ρ2

+ v =
(

2

1 − ρ2
+ 1

)
v. (C1)

The first-order auto-covariance of this process is

V1 = cov(log Dt , log Dt−1)

= cov(At + Bt + εt , At−1 + Bt−1 + εt−1)

= cov(At , At−1) + cov(Bt , Bt−1)

= 2ρ

1 − ρ2
v.

(C2)

The first-order autocorrelation of the log dividends implied by the log-linear
specification is

V1

V0

=
2ρ

1 − ρ2

2

1 − ρ2
+ 1

= 2ρ

3 − ρ2
. (C3)

The parameter ρ uniquely determines the serial correlation of log divi-
dends. When ρ = 0.97, the implied first-order autocorrelation is 0.94, roughly
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matching the first-order autocorrelation for S&P 500 quarterly log real op-
erating earnings during the period of 1988 to 2004 (which we calculate to
be 0.96).28
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