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ABSTRACT

Stock-market trading is increasingly dominated by sophisticated professionals, as
opposed to individual investors. Will this trend ultimately lead to greater market
efficiency? I consider two complicating factors. The first is crowding—the fact that,
for a wide range of “unanchored” strategies, an arbitrageur cannot know how many
of his peers are simultaneously entering the same trade. The second is leverage—
when an arbitrageur chooses a privately optimal leverage ratio, he may create a fire-
sale externality that raises the likelihood of a severe crash. In some cases, capital
regulation may be helpful in dealing with the latter problem.

IN THE LAST 20 YEARS or so, there have been profound changes in the way that
money is managed. One indicator of these changes is the rapid growth of the
hedge fund industry, whose assets on a global basis have gone from $39 bil-
lion at year-end 1990 to $1.93 trillion as of the second quarter of 2008.1 Hedge
funds are commonly thought of as the prototypical sophisticated investors, for
a couple of reasons. First, many of their investment strategies are based on
extensive quantitative modeling, much of which has its roots in academic re-
search in finance.? Second, hedge funds often implement these strategies in an
aggressively leveraged fashion.

The growth of hedge funds is part of a broader trend toward professional
asset management. French (2008) documents that, in the stock market, indi-
vidual investors have been largely supplanted by institutions. Direct individual
ownership of U.S. equities, which was 47.9% in 1980, fell to 21.5% by 2007. At
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American Finance Association, San Francisco, January 4, 2009. I am indebted to Sam Hanson for
outstanding research assistance. I also thank John Campbell, Harrison Hong, Robin Greenwood,
Borja Larrain, Andrei Shleifer, Erik Stafford, Dimitri Vayanos, Ivo Welch, and seminar participants
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! These numbers are from Hedge Fund Research (HFR).

2 Of particular interest to many “quant” funds has been the large body of empirical work doc-
umenting various patterns of predictability in stock returns, many of which are strikingly robust
over time and across countries. A partial list includes: the value-glamour effect (Fama and French
(1992), Lakonishok, Shleifer, and Vishny (1994)); medium-run momentum (Jegadeesh and Titman
(1993)); post-earnings announcement drift (Bernard and Thomas (1989, 1990)); and the low returns
to firms with high levels of past accruals, equity issuance, or asset growth (Sloan (1996), Daniel
and Titman (2006), and Cooper, Gulen, and Schill (2008), respectively). See Asness, Moskowitz,
and Pedersen (2008) for a recent synthesis.
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the same time, turnover has exploded, reaching 215% in 2007.3 If one adopts
the view that individuals are naive investors while institutions are rational ar-
bitrageurs, these data would seem to suggest that we are converging to a world
in which the smart-money players trade intensively with one another, with the
dumb money playing a much-diminished role.

My goal in this paper is to explore the consequences of these developments for
market efficiency. I pose the following conceptual question. Imagine a market
in which there are both naive investors with biased expectations and fully
rational arbitrageurs. Now let the capital controlled by the latter group grow
increasingly large relative to that of the former. Is it the case that the market
is necessarily made more efficient, in the sense that prices on average wind up
closer to fundamental values, and nonfundamental sources of volatility become
less important?

At first glance, it might appear that the answer to this question would have
to be yes. Basic economic logic suggests that as more money is brought to bear
against a given trading opportunity, any predictable excess returns must be
reduced and eventually eliminated. This is nothing more than a zero-profit
condition that must be met when the risk tolerance of the arbitrageurs goes to
infinity. A corollary would seem to be that, to the extent that predictable excess
returns reflect an underlying inefficiency, their elimination must go hand in
hand with prices being pushed closer to fundamentals.

While the zero-profit intuition is certainly on target—enough money chas-
ing a given pattern in returns will necessarily eliminate that pattern—I argue
that the corollary does not follow. In particular, I argue that it need not be
the case that the elimination of predictability is associated with either an on-
average narrowing of the gap between prices and fundamentals, or a reduction
in nonfundamental volatility. Thus, while a larger number of sophisticated arbi-
trageurs certainly makes life more competitive and less profitable for the arbi-
trageurs themselves, it need not make the world a better place for those who look
to asset prices to provide a reliable reflection of underlying fundamental values.

Where, then, does the simple intuition about competition and market effi-
ciency go wrong? In the most general terms, complications arise when, in the
process of pursuing a given trading strategy, arbitrageurs inflict negative exter-
nalities on one another. In this paper,  model two distinct mechanisms by which
such externalities are created. The first has to do with what might be termed a
“crowded-trade” effect. For a broad class of quantitative trading strategies, an
important consideration for each individual arbitrageur is that he cannot know
in real time exactly how many others are using the same model and taking the
same position as him. This inability of traders to condition their behavior on
current market-wide arbitrage capacity creates a coordination problem and, as
I show further, in some cases can result in prices being pushed further away
from fundamentals.

A second way in which arbitrageurs inflict externalities on one another is
through their leverage decisions. If two traders follow the same set of signals

3 The numbers in this paragraph are taken from French (2008).
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and buy the same stocks using leverage, then if one is hit with a negative
shock—say, losses in an unrelated part of his portfolio—he will be forced to
liquidate some of the commonly held stocks to meet margin calls, potentially
creating a fire-sale effect in prices and inflicting losses on the other trader,
thereby generating another round of liquidations and price declines.

The crowded-trade issue has not, to my knowledge, received much formal
research attention. By contrast, the problems associated with leveraged arbi-
trageurs have been extensively studied, by, among others, Shleifer and Vishny
(1992,1997), Kyle and Xiong (2001), Gromb and Vayanos (2002), Morris and
Shin (2004), Allen and Gale (2005), and Brunnermeier and Pedersen (2008).
Indeed, the fire-sale mechanism analyzed in these papers occupies a central
place in accounts of the demise of Long-Term Capital Management (LTCM) in
1998, and more recently, the “quant crisis” of August 2007.

Where this paper differs from much of the previous literature is in analyzing
the consequences of both crowding and leverage in a setting in which arbi-
trageurs (i) have rational expectations; (ii) make optimizing leverage decisions
ex ante; and (iii) have access to a potentially infinite amount of equity capital.
Thus, with respect to the crowded-trade issue, I assume that each arbitrageur
makes an unbiased estimate of the number of others that are active in the mar-
ket at any point in time. And with respect to leverage, arbs can choose not to
borrow at all if they prefer not to face the risk of having to liquidate during a
fire sale; moreover, they have access to enough capital in the aggregate that
they can take positions of any size without having to resort to borrowing.

The usefulness of this approach can be illustrated by reference to the quant
crisis. During the week of August 6, 2007, many popular quantitative strategies
simultaneously experienced enormous negative returns—in several cases, the
daily movements were on the order of 10 or more standard deviations relative
to historical norms. The emerging consensus about this episode is that the prox-
imate causes of the crisis included overcrowding and overleverage: Too many
quant managers were invested in the same strategies, with too much leverage
(see, for example, Khandani and Lo (2007)). One way to interpret this story is
that it is about a set of one-time mistakes made by the quant managers: Given
the rapid growth in this sector, quant managers grossly underestimated the to-
tal amount of money invested in their favorite strategies and then compounded
this error by leveraging their positions to a degree that, at least in hindsight,
seems excessive. This one-time mistake interpretation of the crisis yields an op-
timistic view of the future. It suggests that, having learned the errors of their
ways, rational arbitrageurs will pull back from the most overcrowded strate-
gies and reduce their leverage. And once they do so, they will go back to being
a force for stability and market efficiency.

I do not dispute that there can be substantial learning in the wake of extreme
events such as those of August 2007. However, my analysis implies that such
learning is not necessarily a panacea. The problems associated with crowding
and leverage that I identify persist even when arbitrageurs fully understand
the structure of the world that they are operating in, arrive at unbiased esti-
mates of all of the relevant parameters, and optimize their capital structures
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accordingly. Thus, any remaining inefficiencies cannot be said to be the result
of one-time mistakes, but rather must be thought of as a more permanent part
of the landscape.

This last observation suggests a potential role for regulatory policy. In partic-
ular, my analysis of arbitrageur capital structure makes it clear that privately
chosen leverage ratios may be greater than socially optimal ones, implying that
some form of capital regulation might improve market efficiency. At the same
time, the analysis also points to some of the costs of such regulation, and high-
lights the difficulties associated with striking a proper balance.

In what follows, I develop two simple models to address the issues associated
with crowding and arbitrageur leverage choice. These models are presented in
Section I and II, respectively. Section III concludes the paper.

I. The Crowded-Trade Problem
A. Overview

I begin by exploring a simple model of the crowded-trade problem. This model
is built on two key premises. First, while there is potentially a large amount
of arbitrage capacity available to take on mispricings of any given stock at any
point in time, no individual arbitrageur knows exactly how much is available.
This uncertainty could reflect each arbitrageur’s imperfect information as to:
(i) the number of other players who might be pursuing a particular trading
strategy; (ii) their current capital and liquidity positions; or (iii) the nature of
their alternative investment opportunities.

Second, the trading strategy in question is one with no fundamental an-
chor: Arbitrageurs do not base their demand on an independent estimate of
fundamental value. As a result, their demand for an asset may be a nondecreas-
ing function of the asset’s price.* Strategies of this type are common in prac-
tice, and include many in which demand is independent of price, for example:
(i) buying the stocks of firms with low values of accruals, equity issues, or asset
growth; (ii) buying small-cap stocks in December; or (iii) buying stocks that are
expected to be added to a widely tracked index. There are also strategies in
which demand is an increasing function of price, such as those used to exploit
momentum in stock returns. In the model below, I focus on a post-earnings an-
nouncement drift (PEAD) strategy that has a momentum-like flavor: Arbs buy
when returns on the earnings announcement day are positive, and sell when
they are negative.

Trading strategies like these can certainly be profitable. However, they make
the market vulnerable to the effects of overcrowding. Consider a strategy of buy-
ing low-accrual stocks without regard to price. This strategy may earn positive
returns for an arbitrageur on average, to the extent that it exploits the tendency
of less rational investors to undervalue such stocks. However, if an unexpect-
edly large number of other arbs suddenly adopt the same strategy, there is no

4 In this sense, the arbitrageurs in my model are similar to the rational but uninformed investors
in Grossman and Stiglitz (1980).
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price-based mechanism to mediate the congestion that arises, and these stocks
may become overvalued.

This feature of the model distinguishes it from many standard treatments
of arbitrage, including DeLong et al. (1990a), where arbitrageurs observe fun-
damental value perfectly and thus have demands that are a simple function
of the gap between fundamentals and price. The DeLong et al. setting corre-
sponds most closely to spread trades, such as those involving “Siamese twin”
stocks (Froot and Dabora (1999)), where the spread itself is easily observed. In
a spread-trade situation, if an unexpectedly large number of arbs show up, the
spread narrows and each individual arb can adjust his demand accordingly. In
other words, the price mechanism mediates congestion, and there is no danger
of the market becoming overcrowded with arbitrageurs.

B. The Trading Opportunity: Some Investors Underreact to News

There is a stock that pays a terminal dividend at time 2 of V = F + ¢. The
disturbance term ¢ is normally distributed with a mean of zero and a variance
of 1, and it is realized at time 2. The fundamental F' is also normally distributed
with a variance of 1. As of time 0, the ex ante expectation of F is 0; the supply
of the stock is also equal to 0. So the time-0 price is given by Py = 0.

At time 1 there is a news release, which can be thought of as an earnings
announcement. This news release is seen by a group of investors that, follow-
ing Hong and Stein (1999), I label the “newswatchers.” However, while the
newswatchers are good at paying attention to fundamental information, they
do not process it in an unbiased fashion—rather, they underreact to it. That
is, the newswatchers observe the realization of F, but use this data to form a
biased expectation of V, E"(V) = F(1 — §), where §, which lies between 0 and 1,
measures the extent of their underreaction; higher values of § are associated
with a more extreme bias on the part of newswatchers.

Newswatchers have mean-variance preferences and unit aggregate risk tol-
erance. It follows that if they are the only players in the market, the time-1
price P1, as well as the return from time 0 to time 1, R (defined simply as the
change in price), are both given by

Py =R, =F(1-9). oY)

The return from time 1 to 2 is given by

SR,
Ry =V 1 =6F +¢ a_s) + &, (2)
and the expected return over the same interval is given by
SRq
E(R;|Ry) = . 3
(R2|R1) ) (3)

Thus, there is a drift-like pattern in returns: A high return when news is
released at time 1 forecasts further high returns from time 1 to 2, and more so
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when § is large. This type of continuation in returns is due to the underreaction
of the newswatchers to fundamental information. And clearly, it creates an
arbitrage opportunity.

C. The Arbitrage Response

Next, I introduce a set of rational arbitrageurs who also have mean-variance
preferences and who collectively have an aggregate risk tolerance of n. I then
consider how the market outcome depends on: (i) whether or not the arbs ob-
serve the fundamental F and (ii) whether there is any uncertainty about total
arbitrage capacity n.

C.1. Arbs Have Perfect Information

Suppose first that arbitrageurs observe the fundamental F, which they use
to form an unbiased estimate of V. Newswatcher demand at time 1 is given by
D" = F(1 — §) — P;. Arbitrageur demand at time 1 is given by D* = n(F — Py).
Note that the arbs condition their demand directly on F; this is a case where
their trading strategy does have a fundamental anchor, and where demand is
therefore a decreasing function of price.

Setting total demand equal to the supply of 0, we have

SF
P=F — . 4
! 1 +n) @
In this simple setting, more arbitrage always pushes prices closer to funda-
mentals: As arbitrage capacity n increases, the underreaction bias in prices is
monotonically reduced.

C.2. Arbs Do Not Observe Fundamentals

I now consider what happens when arbitrageurs do not observe the news
release F' at time 1, that is, when they trade without being able to condition
on a fundamental anchor. The interpretation is that while the nonarbitrage
segment of the investment community (as represented by the newswatchers)
makes some mistakes, as a group they have access to some valid information
about fundamentals that the arbs do not.

Even though they cannot condition on F, the arbs still understand the struc-
ture of the model, and are aware of the bias that the newswatchers have in
reacting to news. It follows that the arbs can make a profit by using a technical
trading strategy, where their demand takes the form

D¢ = npP; =n¢R;. (5)

Here, as in Hong and Stein (1999), the parameter ¢ is determined endoge-
nously by optimization on the part of the arbitrageurs. As part of this optimiza-
tion, arbs make an inference about future expected returns based on the current
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price P; (or equivalently, the most recent return R;). This demand yields the
following time-1 price

(1-9)

Pi=F—".
H G S

(6)

If both total arbitrage capacity n as well as newswatcher bias § are fixed
constants, it turns out that this case yields the same outcome as the one in
which the arbs observe F' directly. One way to understand this is to look at
equation (6), and to note that if both n and § are known by the arbs, they can
infer F based on the price P;. Given this inference, the arbs effectively have full
information and hence we must be back to the full-information solution where
P, =F —$§F/(1+n).

Although the outcome for prices is the same, it should be emphasized that it
is implemented differently when arbitrageurs do not observe F'. It can be easily
shown that in equilibrium, ¢ = §/(1 +n — §) > 0. The arbs now play a PEAD-
type strategy whereby they buy those stocks that have had positive announce-
ment returns, that is, their individual demands are an increasing function of
price, rather than a decreasing function as in the case where they condition
directly on fundamentals. This distinction is of no consequence for equilibrium
prices when aggregate arbitrage capacity is fixed, but is of crucial importance
if we further introduce uncertainty on this dimension.

C.3. Uncertainty about Total Arbitrage Capacity

Suppose that we can write n = N6, where N is the expected arbitrage capac-
ity at a given point in time, and 6 is a random variable with a mean of one,
independent of both F' and ¢, distributed on the interval [0}, 61, with 6, > 0.
This formulation implies that as the expected scale of the arbitrage sector (given
by N) goes up, so does uncertainty about the exact amount of arbitrage capital
that will be deployed on any given trade.

I continue to assume that, as before, each individual arb has a linear demand
of the form d* = ¢R;. It should be pointed out that this linear demand function
may no longer be unconditionally optimal when n is random—one might be
able to improve on it with a nonlinear strategy. So I am effectively restricting
arbs to simple strategies in what follows. I view this restriction as a reasonable
approximation to real-world arbitrage behavior. Moreover, the parameter ¢ is
still endogenous, so strategies are by definition optimal within the linear class,
and arbs always make nonnegative expected profits.

Given that demands have the same form, equation (6) for the time-1 price
continues to apply. What has changed, however, is that this price is no longer a
summary statistic for the fundamental news F, since it now is also influenced
by a second random variable, namely, n. Herein lies the danger for an individual
arb who formulates his demand based on just the return at time 1. On the one
hand, a large positive time-1 return could indicate a large realization of F,
which assuming underreaction on the part of the newswatchers, would make
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the arb want to take a big long position at time 1. On the other hand, a large
time-1 return could reflect a small positive realization of F, combined with an
unexpectedly high level of arbitrage activity n. In this case, it is possible that
the time-1 price has actually overshot its fundamental value, due to all the
arbitrage buying. If so, any individual arb would be better off taking a short
position.

To simplify the analysis, from this point forward I focus exclusively on the
limiting risk-neutral case where expected arbitrage capacity IV goes to infinity.
To do so I define ® = limy_, (N ). Here, ® can be thought of as a measure
of the expected trading intensity of the arbitrage sector as its risk tolerance
becomes arbitrarily large. With this definition in hand, the time-1 price can be
rewritten as

(1-9)

PP=F_———.
R PTS) @
It follows that the time-2 return is given by
F(—00)
= _— P == - .
Re=V ! (1-6d) e ®

To solve the model, we need to solve for the equilibrium value of ®, denoted by
®*. Observe that in the limiting risk-neutral case, expected returns to the linear
trading strategy must be 0. This zero-profit condition implies that cov(R1, Rg) =
0. Given the above expressions for returns, this means that, in equilibrium,
we must have

[M} -0. 9)

(1—-0d*)2

If one specifies the distribution of the random variable 0, as well as a value
of 8, equation (9) can be solved for the equilibrium trading intensity ®*. The
solution to (9) is in general quite complicated, but it can be made relatively
tractable if one picks a simple enough distribution for 6. Table I provides sev-
eral illustrations, focusing on cases where 6 has either a binomial or a uniform
distribution. The analytical expressions for ®* in these cases are given in the
Appendix. For each distribution, I compute ®*, E(P1/F), min(P; /F), max(P1/F),
and E | (P; — F)/F |, experimenting with different values of: (i) the underreac-
tion parameter § and (ii) the variance of 6.

The key messages from Table I can be summarized as follows. First, the time-
1 price underreacts to the fundamental F when there is a low realization of 6,
that is, min(P;/F) < 1. Second, the price overreacts to F when there is a high
realization of 0, that is, max(P;/F) > 1. These properties are intuitive, in that
there needs to be a balance of under- and overreaction across realizations of 6
in order for the zero-profit condition to be satisfied. If, instead, the price always

5To see this, note that demand is a linear function of R;, which implies that the return to the
strategy is proportional to R;R,. Setting expected returns equal to zero then yields E(R,R;) =
COV(RIRQ) =0.
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Table I
Solutions to the Crowded-Trade Model for Various Parameter Values
The table displays: (i) equilibrium trading intensity; (ii) the mean of price to fundamentals; (iii)
the minimum of price to fundamentals; (iv) the maximum of price to fundamentals; and (v) the
mean absolute gap between price and fundamentals. These values depend on the underreaction
parameter § and the distribution of 8, which governs arbitrage capacity.

Panel A: Symmetric Binomial: 6 = (1 — &) with Prob %, 6 = (1 + h) with Prob L; Var[9] = h?

h=0.5 h=06 h=0.7 h=0.8 h=09
Trading Intensity &*
§=0.1 0.095 0.093 0.091 0.089 0.087
§=0.2 0.180 0.174 0.168 0.161 0.155
§=03 0.257 0.245 0.233 0.223 0.212
5=04 0.326 0.308 0.291 0.276 0.263
§=05 0.388 0.365 0.344 0.325 0.308
EP1/F)
§=0.1 0.997 0.996 0.995 0.994 0.993
§=0.2 0.988 0.984 0.981 0.977 0.973
=03 0.971 0.964 0.957 0.950 0.944
§=04 0.945 0.933 0.923 0.915 0.907
=05 0.909 0.894 0.881 0.871 0.861
Min(P1/F)
§=0.1 0.945 0.935 0.925 0.916 0.908
§=0.2 0.879 0.860 0.842 0.827 0.813
§=03 0.803 0.776 0.753 0.733 0.715
5=04 0.717 0.684 0.657 0.635 0.616
§=05 0.620 0.585 0.558 0.535 0.516
Max(P1/F)
§=0.1 1.050 1.058 1.065 1.072 1.078
§=0.2 1.097 1.109 1.119 1.127 1.134
=03 1.139 1.151 1.160 1.168 1.174
§=04 1.173 1.183 1.189 1.194 1.197
=05 1.197 1.202 1.205 1.206 1.207
E|(P1-F)/F|
§=0.1 0.052 0.061 0.070 0.078 0.085
§=0.2 0.109 0.124 0.138 0.150 0.161
§=03 0.168 0.188 0.204 0.218 0.229
5=04 0.228 0.249 0.266 0.279 0.291
§=05 0.288 0.308 0.324 0.336 0.346

Panel B: Uniform: 6 is Uniformly Distributed on [(1 — &), (1 + &)]; Var[6] = h2/3

h=05 h =06 h=0.7 h=0.8 h =09
Trading Intensity &*
§=0.1 0.098 0.097 0.097 0.096 0.095
§=0.2 0.192 0.189 0.186 0.183 0.179
§=0.3 0.281 0.275 0.268 0.260 0.253
§=04 0.365 0.353 0.341 0.329 0.317
§=05 0.440 0.423 0.405 0.389 0.373
E(P/F)
§=0.1 0.999 0.999 0.998 0.998 0.997
§=0.2 0.995 0.993 0.991 0.989 0.987

(continued)
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Table I—Continued
Panel B: Uniform: 6 is Uniformly Distributed on [(1 — &), (1 + h)]; Var[6] = h2/3
h=05 h=06 h =07 h=08 h=09
§=0.3 0.987 0.982 0.977 0.973 0.968
§=04 0.971 0.962 0.953 0.945 0.936
§=05 0.944 0.929 0.915 0.902 0.889
Min(P1/F)
§=0.1 0.946 0.937 0.927 0.918 0.909
§=0.2 0.885 0.866 0.847 0.830 0.815
§=0.3 0.815 0.786 0.761 0.738 0.718
§=04 0.734 0.699 0.668 0.642 0.620
§=05 0.641 0.602 0.569 0.542 0.519
Max(P¢/F)
§=0.1 1.056 1.066 1.077 1.087 1.097
§=0.2 1.124 1.148 1.170 1.191 1.212
§=0.3 1.212 1.249 1.284 1.317 1.347
§=04 1.324 1.378 1.427 1.471 1.511
§=0.5 1.473 1.544 1.607 1.663 1.712
E|(P; — F)/IF|

§=0.1 0.027 0.032 0.037 0.042 0.047
§=0.2 0.060 0.070 0.081 0.090 0.099
§=0.3 0.099 0.115 0.130 0.144 0.156
§=04 0.147 0.169 0.188 0.205 0.220
§=05 0.206 0.233 0.256 0.275 0.292

Panel C: Skewed Binomial: § = 1/p with Prob p, § = 0 with Prob (1 — p); Var[6] =(1 - p)/p

p=0.1 p=0.2 p=0.3 p=04 p=0.5
Trading Intensity &*
§=0.1 0.041 0.059 0.071 0.079 0.085
§=0.2 0.056 0.089 0.114 0.133 0.149
§=0.3 0.064 0.109 0.146 0.176 0.203
§=04 0.071 0.125 0.171 0.213 0.250
§=05 0.076 0.138 0.194 0.245 0.293
E(P¢/F)
§=0.1 0.963 0.976 0.983 0.988 0.992
§=0.2 0.900 0.929 0.947 0.960 0.970
§=0.3 0.826 0.869 0.898 0.921 0.939
§=04 0.745 0.800 0.840 0.872 0.900
§=0.5 0.658 0.724 0.774 0.816 0.854
Min(P4/F)
§=0.1 0.900 0.900 0.900 0.900 0.900
§=0.2 0.800 0.800 0.800 0.800 0.800
§=0.3 0.700 0.700 0.700 0.700 0.700
§=04 0.600 0.600 0.600 0.600 0.600
§=0.5 0.500 0.500 0.500 0.500 0.500
Max(P1/F)

§=0.1 1.530 1.281 1.178 1.120 1.083
§=0.2 1.800 1.443 1.290 1.200 1.140
§=0.3 1.963 1.544 1.360 1.252 1.178
§=04 2.052 1.600 1.400 1.281 1.200
§=0.5 2.081 1.618 1.413 1.291 1.207

(continued)
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Table I—Continued

Panel C: Skewed Binomial: § = 1/p with Prob p, & = 0 with Prob (1 — p); Var[6]1=(1 — p)/p

p=0.1 p=0.2 p=0.3 p=04 p=0.5

|E(P1-F)/F|
§=0.1 0.143 0.136 0.123 0.108 0.092
§=0.2 0.260 0.249 0.227 0.200 0.170
§=03 0.366 0.349 0.318 0.281 0.239
5=04 0.465 0.440 0.400 0.352 0.300
§=05 0.558 0.524 0.474 0.416 0.354

underreacted to F', or always overreacted, there would exist a profitable trading
strategy that conditioned only on time-1 returns.

A more subtle result, and one that can be shown to hold generally—that is,
for any distribution of 6—is that on average, the time-1 price underreacts to
the fundamental F. The Appendix establishes the following:

ProposiTioN 1: For any nondegenerate distribution of the random variable 0,
there is underreaction on average, in the sense that E(P1/F) < 1.

The logic behind the proposition again flows from the zero-profit condition.
In equilibrium, arbitrageurs behave as trend chasers, buying when returns are
positive. Thus, their trading gains in those low-9 states when the price un-
derreacts must be exactly offset by their losses in those high-9 states when the
price overreacts. But note that in the high-0 states when there is overreaction—
that is, when more arbs show up than expected—prices move more for a given
fundamental shock and hence the linear return-based trading strategy buys
a larger quantity of shares. So the way the zero-profit condition works out is
that a smaller quantity times a larger expected profit on the underreaction
side is balanced against a larger quantity times a smaller expected loss on the
overreaction side.b

Finally, Table I shows that the average absolute distance between price and
fundamentals, E | (P; — F)/F |, can be either greater or smaller with infinite
arbitrage, as compared to the case of zero arbitrage. So the market can actually
be less efficient in a price-equals-fundamentals sense when there is infinite
arbitrage. This is more likely to be the case when the variance of 0 is greater, as
occurs in the skewed-binomial case shown in Panel C of the table. For example,
if § = 0.40, while 6§ = 0 with probability 0.8 and § = 5 with probability 0.2, we
have that E | (P; — F)/F | = 0.44 with infinite arbitrage. In contrast, if there is
no arbitrage whatsoever, E | (P — F)/F | = § = 0.40.

8 There is a winner’s curse logic at work here that is reminiscent of Rock’s (1986) model of IPO
underpricing: Even though IPO prices are on average below first-day trading values, arbitrageurs
who try to exploit this regularity by simply buying at the offer can nevertheless earn zero profits.
This is because the allocation mechanism tends to give them more shares in those states of the
world where the IPO price is too high, and fewer shares in those states of the world where it is too
low.
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To summarize, as arbitrage capacity grows large—that is, as N goes to
infinity—expected returns to the simple trading strategy that exploits under-
reaction are driven to 0, implying that cov(R1, Rs) = 0. Thus, increased com-
petition among the arbitrageurs has the usual consequences for their trading
profits. However, when there is uncertainty about the degree of crowding, the
elimination of predictability does not correspond to prices being driven to fun-
damental values. In fact, the time-1 price does not converge in expectation to
fundamentals. Even more strikingly, it is possible that prices can be further
from fundamentals on average than in a world with no arbitrage at all.

One interpretation of these results is that with random 6, there are two dis-
tinct effects associated with increased values of N: (i) the familiar stabilizing
impact of arbitrage; and (ii) a tendency for increased arbitrage capacity to also
act as a form of endogenous noise trade, since when N is larger, there is more
aggregate uncertainty about the total arbitrage response to any given event.”
Note that the magnitude of the latter effect depends on the underreaction pa-
rameter §: When § is larger, arbitrageurs are induced to trade more aggressively.
Therefore, to the extent that they impart noise to prices, this noise is magnified
as § increases. This is apparent in Table I. By contrast, holding § fixed, arbi-
trageurs trade less aggressively when there is more dispersion in 6. As a result,
an increase in the dispersion of 6 increases the on-average underreaction effect
described in Proposition 1; this too can be seen in Table I.

D. An Illustration: The MSCI Rebalancings of 2001-2002

The above ideas can be illustrated with a brief case study.® In December
2000, Morgan Stanley Capital International (MSCI) announced that it would be
changing the methodology used to construct its MSCI indexes from a system of
market-capitalization weighting to one of free-float weighting. This change was
to be implemented in two phases. The first effective date (when the index would
be partially revised) was set for November 30, 2001. The second effective date
(when the index would be fully revised) was set for May 31, 2002. At the time,
Lehman Brothers (2000) estimated that passive index managers worldwide
would be forced to make trades totaling over $54 billion in order to conform to
the new regime.

7By analogy to Grossman-Stiglitz (1980), one might say that an increase in N is like a simultane-
ous increase in both the number of rational uninformed traders (who do not observe fundamentals
but who make inferences from prices) and the number of noise traders. Alternatively, when N goes
to infinity and predictability in returns is eliminated, it must be that price equals the expected
value of fundamentals conditional on some information set. Thus, arbitrageurs move the market
from an equilibrium in which price is a biased reflection of the signal F to one in which price is an
unbiased reflection of a degraded signal, namely, a noisy combination of F' and 6; herein lies the
central tradeoff. I thank John Campbell for suggesting the latter interpretation.

81 am grateful to Robin Greenwood for bringing this case to my attention, and for pointing me
in the direction of the relevant research reports. Hau (2008) uses this case to explore a different
set of asset pricing issues.
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Because of tracking error considerations, index funds have an incentive to de-
lay some fraction of their portfolio adjustment until the two effective dates. This
creates an opportunity for arbitrageurs to buy stocks that are to be upweighted,
and short stocks that are to be downweighted, between the announcement and
the effective dates. In an idealized world, this arbitrage would bring the entire
price impact forward to the announcement date, and there would be no further
price movement on the effective dates.

However, if arbitrageurs trade in a price-insensitive manner, without con-
ditioning their demands for each stock on an estimate of what they think its
ultimate post-effective date value will be, an effect similar to the one in the
model may arise.? For example, suppose that on the initial announcement, the
price of a stock that is to be upweighted jumps from 100 to 108. One possibility
is that this reflects early demand from index funds, and that there will be more
of this demand on the effective date. In this case, the long-run price of the stock
may settle at 112, and an arbitrageur who unconditionally buys all upweighted
stocks will make a profit. Alternatively, it may be that much of the initial rise
is due to buying by other arbitrageurs, and that when they unwind on the ef-
fective date, the long-run price of the stock may settle back at 104. In this case,
it would be a mistake to buy at 108 because the trade is already overcrowded.

Something like this overcrowding phenomenon appears to have taken place
on the first effective date, November 30, 2001. According to Lehman Brothers
(2001), a strategy that was long stocks to be upweighted and short stocks to be
downweighted lost 6.18% on this one day.' In a post-mortem, Lehman noted
the “sharp contrast to past rebalances,” concluding that “perhaps the dynamics
of index rebalancing have changed.”

Interestingly, however, things were reversed on the second effective date, May
31, 2002. On this day, Lehman Brothers (2002) reports that the conventional
arbitrage strategy paid off handsomely, generating a 6.30% positive return:
“The May MSCI reconstitution trade behaved as expected. The portfolios of
stocks that were an expected net buy. .. by passive managers went up, and the
expected sells went down.”

Taken together, these two events highlight the central economic intuition
of the model. On the one hand, the average return to the arbitrage strat-
egy across the two MSCI effective dates was almost exactly zero, consistent
with this being a well-publicized and heavily traded opportunity. On the other
hand, it is questionable whether this zero-profit state of affairs could be said
to reflect the workings of a textbook efficient market: There was a great

9 By contrast, if the representative arbitrageur takes an active view as to the post-effective date
value, and formulates his demand based on the spread between this estimate and the current price,
there can be no overcrowding—if an unexpectedly large number of arbs shows up, the perceived
spread narrows, and everybody’s demand can be adjusted accordingly.

10 More specifically, the Lehman Brothers strategy involved taking a long position in stocks with
more than 10 days of “buying pressure” (that is, predicted demand from indexers in excess of 10
days worth of normal trading volume) and a short position in stocks with more than 10 days of
“selling pressure.”
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deal of nonfundamental volatility in upweighted and downweighted stocks on
the two effective dates, due in large part to the trading of the arbitrageurs
themselves.

E. Dynamics: Learning about the Degree of Crowding

In an effort to keep things simple, the model focuses on a static situation
where the distribution of arbitrage capacity n is exogenously specified. A po-
tentially interesting extension might be to introduce a dynamic element, with
n evolving stochastically and with arbs trying to learn about n by observing the
past returns of their trading strategies. Such an approach might shed light on a
number of issues, including the extent to which fluctuations in the profitability
of a given strategy can be expected to persist over time.

The learning problem facing arbitrageurs in this setting is likely to be quite
challenging. Suppose a strategy—say, buying low-accrual stocks—yields ab-
normally high returns over an interval from time ¢ to ¢ + k. How should this
observation change one’s estimate of the degree of crowding in the strategy?
On the one hand, the high returns might suggest that there were relatively few
arbs active at time ¢, so low-accrual stocks were cheap at this point. Alterna-
tively, the high returns could reflect a spike of entry into the strategy between t
and ¢t + k, which pushed up the price of low-issuance stocks. So, without putting
any further structure on the problem, it is not even clear whether one’s esti-
mate of n should be revised up or down based on the recent performance of the
strategy.

F. Related Themes

The above model can be thought of as a particular rebuttal to Friedman’s
(1953) famous claim that rational arbitrage necessarily brings prices closer
to fundamentals. In this sense, it is related to previous work by Hart and
Kreps (1986), Stein (1987), DeLong et al. (1990b), and Hong and Stein (1999),
among others. The connection to the latter paper is probably the closest, in that
Hong and Stein also show how an “unanchored” arbitrage strategy—trading
on momentum—can exploit a tendency for the market to underreact to news,
while at the same time widening the average gap between prices and funda-
mentals. However, the mechanism here, having to do with uncertainty about
aggregate arbitrage capacity, is fundamentally different from that in Hong and
Stein, and potentially applies to a much wider range of real-world trading
strategies.

The model also shares with Abreu and Brunnermeier (2002, 2003) an em-
phasis on coordination problems in arbitrage, with the common theme being
that each individual arbitrageur’s life is complicated by the fact that he cannot
perfectly predict the actions of his peers. In Abreu and Brunnermeier, each arb
is uncertain as to when the others will act; here, each is uncertain about Aow
many others will act.
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II. The Determinants of Arbitrageur Leverage
A. Overview

Both real-world events as well as a growing academic literature have shown
that leveraged arbitrageurs can sometimes have a destabilizing impact on mar-
kets. The mechanism is now a familiar one: If an arbitrageur takes a highly
leveraged position in a given trade, even a small adverse movement in prices
can wipe out a large fraction of his capital. If borrowing capacity is limited by
available capital (i.e., there is effectively a downpayment constraint), this re-
duction in capital will force the arbitrageur to liquidate some of his holdings,
thereby further pushing down prices. To the extent that other arbitrageurs
have taken on similar leveraged positions, their capital is also depleted, and
they too are forced to liquidate. The end result can be a fire sale: correlated
selling pressure and a contagious downward spiral in prices. This framework
has been helpful in thinking about both dramatic market events, such as the
collapse of LTCM in 1998 and the quant crisis of August 2007, as well as more
subtle but pervasive phenomena, such as patterns of conditional skewness in
currency returns.!!

What this story leaves unanswered is why, given the dangers, arbitrageurs
would choose to be highly levered in the first place. In a fire-sale scenario,
there is a clear advantage to any arbitrageur who remains unlevered—he is
not forced to sell at a temporarily depressed price. Indeed, if the arbitrageur is
sufficiently conservative, and keeps some financial slack available in this state
of the world, he can profit by buying more of the distressed asset. Thus, lurking
in the background of the fire-sales story is a classic capital structure question:
What is the optimal mix of borrowing and permanent capital for an arbitrageur
who has unlimited access to both forms of financing? And given this optimal
mix, will there still be fire sales in equilibrium?

Existing treatments have tended to set aside this capital structure question
by simply assuming that arbitrage capital is small relative to the scale of avail-
able trading opportunities, meaning that arbs have no choice but to lever up.
For example, Gromb and Vayanos (2002) write: “... by fixing the [capital] of
the arbitrageurs, we do not allow for entry into the arbitrage industry, which
seems a realistic assumption for understanding short-run market behavior.”
(p. 368) By contrast, I am interested in a longer-run question: Whether, over
time, the inflow of new capital into the industry will tend to drive down arbi-
trageur leverage, and hence mitigate the associated problems. This long-run
question brings the capital structure issue front-and-center.

To address this question, I proceed as follows. I assume that each arbitrageur
can either raise permanent equity capital at a per-unit cost of ¢, or can borrow
on a short-term basis at a zero interest rate. Thus, ¢ represents the incremental

11 See, for example, Brunnermeier, Nagel, and Pedersen (2008). They show that high-interest
rate currencies tend to have more negatively skewed returns than low-interest rate currencies,
and argue that this conditional skewness is a consequence of arbitrageur leverage, given that arbs
have a general propensity to invest in “carry trades” that are long high-interest rate currencies,
and short low-interest rate currencies.
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cost of long-term equity finance, which could arise because equity investors—
who are less protected than short-term lenders—need to expend resources on
monitoring fund management. The leverage ratio is capped, in that an arbi-
trageur with one dollar of equity capital can take a total position of no more
than L dollars, thereby borrowing at most (L — 1) dollars.!2

Given the wedge between the costs of debt and equity, there is the following
basic trade-off. On the one hand, to the extent that prices are expected to con-
verge smoothly to fundamentals (the “good” state), it is optimal for arbitrageurs
to lever to the maximum to take advantage of cheap debt. On the other hand,
if there is a nonzero probability of an adverse price move prior to convergence
(the “bad” state), this may favor a more conservative capital structure. This is
analogous to the standard corporate finance logic that debt is less attractive
when there is a higher probability of financial distress.

What makes things more complicated in this setting, however, is that the
terms of the trade-off depend critically on equilibrium prices in the two states,
and these prices are in turn a function of ¢ and of arbitrageur capital structure.
Consider first the limiting case in which ¢ = 0. If arbs choose to be unlevered,
the infinite supply of costless equity capital implies that prices must be driven
all the way to fundamental values—that is, the initial spread on any trade must
be zero. But then it can never be profitable for any one arbitrageur to deviate to
a higher-leverage strategy: With zero returns in the good state, there is nothing
to lever up, and hence no point in choosing a riskier capital structure. Thus,
when equity is literally costless, the long-run equilibrium involves all-equity
financed arbitrageurs and there are never any fire sales. Similar logic applies
when c is arbitrarily small but nonzero.

However, things change dramatically if the cost of equity ¢ rises further. Now,
if the arbs remain unlevered, returns in the good state must be sufficiently
positive for them to recoup their cost of equity. Moreover, given that everybody
is unlevered, adverse price movements in the bad state of the world are small.
Taken together, these two factors can destroy the unlevered equilibrium: Any
one arbitrageur may prefer to deviate to a policy of maximum leverage because
this allows him to better exploit the small positive returns in the good state
without paying too much of a price in the bad state (on the conjecture that
everybody else remains unlevered). The bottom line is that for larger values of
¢, the only Nash equilibrium in the capital structure game is for all arbitrageurs
to be maximally levered, even though this leads to large price crashes in the
bad state.

B. Market Structure

I build on the same market structure as in Shleifer and Vishny (1997). There
is an asset that will pay a final dividend of V at time 3. At time 1, there is

2 The model of Acharya and Viswanathan (2008) can be thought of as endogenizing the max-
imum leverage ratio for an arbitrageur, based on moral hazard effects. See also Fostel and
Geanakoplos (2008). A key difference relative to these papers is that I allow arbitrageurs in the
aggregate to raise an arbitrarily large amount of equity financing—that is, external finance need
not take the form of short-term debt.
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a noise shock of §;, and arbitrageurs enter and try to offset this shock. If the
total dollar value of the arbitrage position at time 1 is given by a1, then the
price is P; =V — 8; +a1.'3 At time 2, there is a probability p of a bad state
in which the noise shock deepens to 83 > §;. In this case, the price becomes
Poy =V — 83 + ag, where aq is the total dollar value of the arbitrage position
taken at time 2. Alternatively, there is a probability (1 — p) of a good state in
which all noise disappears by time 2, and the asset’s price converges early to
its fundamental value: Py, = V. The good state is taken to be the more likely
“normal” state of affairs, implying that p is small; this will be made more precise
shortly.

There is a large pool of risk-neutral arbitrageurs. Each arb can raise
one dollar of permanent equity capital, which requires the payment of an up-
front cost of ¢ at time 1. The notion that capital is permanent means that equity
providers cannot withdraw their funds early, at time 2.14 In addition, arbs can
choose to lever this equity, by borrowing at time 1 from lenders who are also risk-
neutral, and who demand a zero expected return. As noted above, the time-1
leverage ratio is bounded, so that an arb with one dollar of equity can borrow
up to a maximum of (L — 1) dollars. Importantly, all borrowing is short term:
It must be repaid at time 2. This implies that in the bad state of the world,
when the noise shock deepens, the arbs must settle their debts and can only
invest out of any equity that remains.!® There is also no scope for any further
equity-raising at time 2.

C. Possible Arbitrage Strategies

For each dollar of equity capital, an arbitrageur can borrow anywhere be-
tween zero and (L — 1) dollars. Hence, his investment at time 1, denoted by I,
must satisfy 0 <1 < L. A first step in the analysis is to characterize the set of
strategies that can be individually optimal for an arbitrageur. This is done in the
following lemma. (The Appendix contains proofs of any lemmas or propositions
not established in the text.)

LEmMMA 1: Only three types of strategies can be optimal for an individual ar-
bitrageur: (i) a “max-leverage” strategy in which I = L, and in which the ar-
bitrageur’s wealth may be totally wiped out if the bad state occurs at time 2;
(it) a “cautious” strategy in which 0 < I < L, and in which leverage is sufficiently
modest that, given equilibrium prices, the arbitrageur’s time-2 wealth is strictly

13 As in Shleifer and Vishny (1997), this reduced-form pricing rule can be thought of as reflecting
the demands of an unmodelled third group of fundamental-based traders.

14 This is in contrast to Shleifer and Vishny (1997), who focus on the performance-flow relation-
ship and who therefore allow equity to flow out at time 2 in response to poor performance.

15 An alternative approach that might seem more realistic is to allow arbitrageurs to roll over
their borrowing at time 2, so long as they continue to satisfy the leverage ratio constraint. This
yields results similar to those I derive below. This is because, in any equilibrium where arbitrageurs
lever to the max at time 1, they end up losing all of their equity in the bad state at time 2. With no
equity, and a finite leverage ratio constraint, their investment in this state is therefore zero either
way.
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positive in the bad state; and (iii) a “waiting” strategy in which I = 0, that is,
the arb holds all of his equity back for time 2.

The intuition for the lemma is that with risk neutrality, the arbitrageur’s
problem is a linear one, so he can be driven to corner solutions. If good-state
returns are attractive enough, he will invest as much as possible at time 1; this
is the max-leverage strategy. Conversely, if the fire-sale discount in the bad
state is deep enough, he will hold back all of his resources so he can be a buyer
in that state; this is the waiting strategy. It is only when these two effects are
just in balance that the interior cautious strategy becomes optimal, with the
arb investing some at time 1 and some (in expectation) at time 2.

More precisely, let A; = (V — P1)/P; represent the percentage return to in-
vestment at time 1, and let Ag = (V — Pyy)/Psog represent the return to invest-
ment at time 2, if the bad state occurs and the noise shock deepens. If an arb
invests at time 1 and holds the position until convergence, he earns a return of
A1. If he has nonzero wealth to invest at time 2, he earns a return of A, with
probability p on that wealth. This implies

LEMMA 2: A necessary condition for the cautious strategy to be optimal is that
equilibrium prices satisfy A1 = pAs. A necessary condition for the waiting strat-
egy to be optimal is that equilibrium prices satisfy A1 < pAag.

Lemma 1 describes the strategies that can potentially be optimal for an in-
dividual arbitrageur. However, if we want to focus on symmetric equilibria, in
which all arbs pursue the same strategies, we can narrow things down further.

LeEMMA 3: Assume that §1/(V — 81) > pda/(V — 82). There can never be a symmet-
ric equilibrium in which all arbs play the waiting strategy.

The condition in Lemma 3 is easily satisfied for small values of p, and I
assume that it holds in everything that follows. The idea behind the lemma is
that if all arbs play the waiting strategy, there is no corrective force at time
1, so prices deviate significantly from fundamentals. But if this is the case, it
cannot make sense to pass up the time-1 trading opportunity, especially if the
likelihood of a time-2 opportunity ever arising is small (that is, if p is low).

The upshot of the analysis to this point is that if we want to focus on sym-
metric equilibria, we can restrict attention to two candidates: an equilibrium
in which all arbs play the max-leverage strategy, and one in which they all play
the cautious strategy. The waiting strategy is only observed in a mixed equilib-
rium in which some arbs play this strategy while at the same time others play
the max-leverage strategy. I discuss this mixed equilibrium later, after first
establishing the conditions under which either of the two symmetric equilibria
can exist.1®

6 The waiting strategy also plays a role in an off-equilibrium-path sense, since the potential
for individual arbs to deviate to this strategy can upset the max-leverage equilibrium for some
parameter values. This will be seen explicitly below.
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D. The Max-Leverage Equilibrium

Suppose that n arbitrageurs enter the market, and all play the max-leverage
strategy. In this case, the time-1 price is given by P; =V — §; + nL. If the bad
state hits at time 2, the equity position of each arb is wg = 1 + L(P3q/P1 — 1).
This expression incorporates the fact that an arb must pay back his loan at time
2. Note that as calculated, equity can be negative, which should be interpreted
as a situation where the arb is wiped out (his equity is actually zero) and unable
to fully repay his debts.

It follows that a maximally leveraged arbitrageur is wiped out if L >
Py /(P1 — Pyy). Clearly, it is easier to satisfy this condition if the upper bound
L on leverage is relatively high. As it turns out, the analysis is considerably
simplified—with no real loss of insight—if we focus attention on the (high-L)
subset of the parameter space where this wipe-out condition is satisfied. I there-
fore proceed on the premise that it is in fact satisfied, and then, after having
solved for the endogenous variables Py; and P, will come back and rewrite the
condition in terms of the primitive parameters of the model.

If all arbitrageurs are fully wiped out in the bad state at time 2, there is no
offset at all to the noise shock, so the price is given by

Pog =V — 6. (10)

To pin down the time-1 price, we need to analyze the entry decisions of the
arbitrageurs. What matters here are the returns to the arbitrageur-lender coali-
tion. In other words, the equilibrium entry condition is that the expected total
dollar return to a leveraged position just equals the upfront cost of equity c.
This allows each active arbitrageur to pay off his debts in expectation, while
also covering the cost of equity.!”

Not including the equity cost ¢, the expected return to a position of size L is
given by (1 — p)LA1 + pL(Pyg — P1)/P1. This reflects the fact that a leveraged
position earns the return A; in the good state when there is no deepening of
the noise shock, but has to be fully liquidated at a price of Py; in the bad state,
when there is such a deepening. It follows that the equilibrium entry condition
is given by (1 — p)LA1 + pL(Pyg — P1)/P1 = c. Using the expression for Py; in
(10), this can be manipulated to yield

_ 1% —p52
" (14¢/L)

Thus, in the postulated max-leverage equilibrium, prices are given by (10)
and (11).!® With these prices in hand, the above wipe-out condition that

Py (11)

" Implicit in all of this is that a lender has to charge a nonzero default premium so that lending
profits in the good state offset defaults in the bad state. However, there is no need to compute this
premium explicitly—all that we need to impose for the current purposes is that each arbitrageur
and his lenders jointly break even in expectation.

181f one is interested in an explicit formula for n, the number of arbs who are active in equilib-
rium, this is obtained by setting the right-hand side of (11) equal to V - §; + nL.
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L > P;1/(P1 — Pyy) can be re-expressed in terms of primitive parameters as

V(A +c¢)—8(p+c)
82(1 — p)

This condition is easily satisfied for reasonable values of L. For example, with
V =100, 83 = 20, p = 0.05, and ¢ = 0.1, the condition is satisfied so long as L >
5.63.

It should be stressed that (10) and (11) describe a candidate equilibrium, on
the assumption that all arbitrageurs play the max-leverage strategy. However,
in order for the equilibrium to actually be sustainable, it must be the case that
no arbitrageur prefers to deviate to an alternative strategy.

That such deviations are relevant when ¢ is low can be seen by consider-
ing the limit when ¢ goes to zero. In this case, we have that P =V — pds and
Pyy =V — 85. Thus, in spite of the fact that there is costless entry into arbi-
trage, the candidate max-leverage equilibrium involves prices diverging from
fundamentals at both time 1 and 2. With these prices, levered arbs just break
even, making a small return in the high-probability good state and being forced
to liquidate at a large loss in the bad state.

If arbitrageurs were restricted to using max-leverage strategies, this would be
a stable situation. But if arbs are free to choose alternative strategies, it cannot
be. Given a zero cost of equity and a large discount in the time-2 bad state, it is
obviously profitable to deviate to the waiting strategy, since one dollar invested
in that strategy earns a strictly positive expected return of pds/(V — 83).

More generally, for any ¢ > 0, this deviation to the waiting strategy remains
an option for an individual arbitrageur. In order for the deviation to be unprof-
itable, it must be the case that the expected return to the waiting strategy is
less than c. Thus, we have

L > (12)

ProposiTioN 2: In order to sustain a symmetric equilibrium in which all
arbitrageurs play the max-leverage strategy, it is necessary that ¢ >ct =
pd2/(V — 33).

The intuition behind the proposition is that if equity capital is very cheap,
and everybody else is levered, it will make sense for somebody to deviate by
building a war chest and waiting for a fire-sale buying opportunity—even if
the probability of this opportunity arising is low. However, once the cost of
equity rises a bit, waiting for a rare opportunity is no longer viable and the
max-leverage equilibrium can be sustained.

E. The Cautious Equilibrium

In the cautious equilibrium, n arbitrageurs enter the market, and each in-
vests an amount I < L. Moreover, I is sufficiently small that time-2 wealth in
the bad state is strictly positive, that is, wg = 1 + I(Pyy/P1 — 1) > 0, or alter-
natively, I < P1/(P1 — Pgg). It follows that prices are given by P =V — §; +nl
and Py =V — 89 + nws.
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To solve for these prices in terms of exogenous parameters, we can use two
conditions.!® The first is Lemma 2, which says that in order for it to be optimal
for arbs to play the cautious strategy, it must be that A; = pAs. The second is
an entry condition: The expected returns to the strategy must just equal the
upfront cost of equity, implying that A; = pAg = c¢. Straightforward calculation
based on these conditions yields

Py =V/1+ec), (13)

Py =V /1 +c/p). (14)

Note that in the limit when c goes to zero, we now have P; = Py; = V. In other
words, with an infinite supply of costless capital, cautious arbs drive prices to
fundamentals in both periods. This is in contrast to the case with maximally
levered arbs, where the zero-profit condition involves small positive returns
in the good state and large fire-sale losses in the bad state. In this sense, the
cautious strategy can be said to be more conducive to market efficiency.

Again, however, we must check whether the candidate equilibrium prices in
(13) and (14) actually represent a stable equilibrium that is robust to poten-
tial deviations. Here the relevant deviation to be considered is that an arbi-
trageur might switch to playing the max-leverage strategy. If he does so, he
earns a return (for the coalition of himself and his lenders) of (1 — p)LA; +
pL(Pyg — P1)/P1. In order to sustain an equilibrium with cautious investors,
this deviation has to be unprofitable, that is, the return must be less than the
upfront equity cost c. Thus, we require (1 — p)LA1 + pL(Pyy — P1)/P1 < c.

Plugging in the expressions for prices from (13) and (14), this requirement
can be re-arranged to yield the following.

ProposiTION 3: In order to sustain a symmetric equilibrium in which all arbi-
trageurs play the cautious strategy, it is necessary thatc < ¢~ = p/(1 —p)L — 1).

Proposition 3 highlights the three forces that can undo the cautious equilib-
rium. First, as c¢ rises above zero, the time-1 price falls below fundamentals
and A; becomes positive—that is, a positive spread opens up. As the spread
widens, so does the appeal of taking a highly leveraged position. This appeal is
stronger when L is high, meaning that leverage can be used more aggressively,
and when the probability p of being forced to unwind a leveraged position in
distress is smaller.

The cautious strategy admits two distinct sub-cases. In the first, which might
be termed a “modest-leverage strategy,” I > 1. That is, arbitrageurs borrow, but
not so much that they are ever in danger of being completely wiped out. In
the second, which might be termed a “dry-powder strategy,” I < 1. In this case,
arbs remain completely unlevered and hold some of their equity capital back for

19 As before, once one has solved for prices in terms of exogenous parameters, it is straightforward
to go back and calculate what this implies for the equilibrium values of n and I.
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time 2. It can be shown that the dry-powder strategy obtains when c is suffi-
ciently small.

ProrosiTioN 4: In a cautious equilibrium, arbitrageurs play a dry-powder strat-
egy with I < 1if ¢ <c% =p(8s — 81)/(V — 82) — p(V — 7).

Thus, when the cost of equity c is small enough, arbitrageurs optimally choose
to be very conservative. They rely entirely on equity finance, and keep a cash
buffer on hand in case a fire-sale opportunity arises at time 2. This makes
it clear why, in the limit when ¢ goes to zero, it must be the case that P =
Pyy; = V: There is always enough spare arbitrage capacity held back at time 2
to completely offset any deepening of the noise shock.

F. A Mixed Equilibrium

It is straightforward to verify that if the wipe-out condition in (12) holds (that
is, L is sufficiently high), then ¢~ < ¢*. Thus, the max-leverage and the cautious
equilibrium regions never overlap. Instead, there is an intermediate region, for
values of ¢ such that ¢~ < ¢ < ¢*, where neither of these symmetric equilibria
are viable. In this region, the only equilibrium that can be sustained is a mixed
equilibrium in which two different arbitrage strategies co-exist.

In the mixed equilibrium, n;, arbitrageurs play the max-leverage strategy
and ny play the waiting strategy. It follows that prices are given by P; =V —
81+ Lny and Pog = V — 89 + nw.20 As before, the key to expressing these prices
in terms of exogenous parameters is to make use of zero-profit conditions. For
the arbs who play the waiting strategy, and who therefore have a probability p
of being able to earn the return Ay, the breakeven condition is that pAg =c. It
follows that the time-2 price is still given by equation (14) above, that is, it is
the same as in the cautious equilibrium.

For the max-levered arbs, the breakeven condition continues to be that
(1 — p)LA{ + pL(Pyg — P1)/P1 = c. The only difference is that the time-2 price
is now given by (14), instead of by (10) as in the max-leverage equilibrium.
Making this substitution, we have

P V(A —cp/(c+ p))
YT (A +e/D)

By construction, both the waiting strategy and the max-leverage strategy
earn zero profits (net of the upfront cost of ¢) in the mixed equilibrium, so there is
no temptation for an arb playing either strategy to deviate to the other. It is also
straightforward to check that given prices in the mixed equilibrium, we have
that A; < pAg, solong as ¢ > ¢~. From Lemma 2, this implies that the waiting
strategy dominates the cautious strategy. Hence, there are no deviations that
overturn the mixed equilibrium within the region of interest.

(15)

20 The expression for P,; presumes that max-levered arbitrageurs are wiped out in the bad state
at time 2 and hence contribute nothing to the price. This condition can be shown to hold whenever
c>c .
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Figure 1. Equilibria of the leverage model. The figure illustrates the division of the parameter
space into the different equilibrium regions, setting V = 100, §; = 15, §; = 20, and p = 0.05, and
allowing the equity cost ¢ to vary between zero and 0.02, while the maximum leverage L varies
between 6 and 20.

The following proposition summarizes the analysis to this point.

ProposiTioN 5: Assume that (12) holds. If ¢ <c¢~ =p/(1 —p)L — 1), the cau-
tious equilibrium obtains, with P1 =V /(1 +c¢) and Pyg =V /(1 + ¢/p). Within
the cautious region, arbs play a dry-powder strategy if ¢ <c® = p(sy —81)/
((V = 83) — p(V — 81)) and a modest-leverage strategy otherwise. If ¢ > ¢t = pda/
(V — 83), the max-leverage equilibrium obtains, with P; = (V — pds)/(1 +c¢/L)
and Pog =V — 8. If ¢~ <c <c', the mixed equilibrium obtains, with P, =
(VA —cp/lc+p))/(1+c/L) and Pyg =V /(1 +c/p). Both P; and Pyg are con-
tinuous functions over the entire parameter space, including the boundaries
defining the different regions.

Figure 1 illustrates the division of the parameter space into the different
regions, setting V = 100, §; = 15, §3 = 20, and p = 0.05, and allowing ¢ to vary
between zero and 0.02, while L varies between 6 and 20.
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G. Pros and Cons of Leverage Limits

One way to gain further insight into the model’s implications is to con-
sider the consequences of a regulation that constrains arbitrageur leverage.
In particular, suppose the private market allows arbs to lever themselves
up, but that a regulator imposes a complete ban on borrowing, thereby effec-
tively setting L = 1. How do prices compare in the regulated and unregulated
cases?

A first observation is that regulation is nonbinding if ¢ < ¢, since in this
case arbitrageurs optimally choose to forgo leverage, even if they are allowed to
use it. So prices in the regulated and unregulated cases coincide and continue
to be given by the cautious-equilibrium values in (13) and (14). By contrast,
when ¢ > ¢%, the regulation binds. This implies that regulated arbs invest as
much as they can at time 1, that is, that I = 1. It is straightforward to show (see
Appendix) that in this case, the time-1 price is again given by (13), but that the
time-2 price is modified to

V(V —§9)

A +ce)V —61) (16)

Py, (regulated) =

Figure 2 plots prices as a function of ¢ in both the regulated and unregulated
cases, for an example in which, as above, V = 100, §; = 15, §3 = 20, and p =
0.05, and in which L = 10 when there is no regulation. For these parameter
values, ¢ = 0.0033, ¢~ = 0.0059, and ¢t = 0.0125. The figure points to three
general conclusions. First, as just noted, regulation is irrelevant for the lowest
values of ¢, namely, when ¢ < ¢%.

Second, regulation looks attractive for intermediate values of ¢. Time-2 prices
in the bad state are substantially higher under regulation because crashes
are avoided. And as long as ¢ is not too large, time-1 prices are very close in
the regulated and unregulated cases; indeed, they are identical if ¢ < ¢~. To
be specific, consider what happens when ¢ = 0.0125, so that we are just inside
the max-leverage region. Time-1 prices are 98.88 and 98.77 in the unregulated
and regulated cases, respectively—almost the same. However, time-2 prices in
the bad state are 80.00 and 92.96—that is, much higher in the regulated case.
Thus, regulation effectively gets rid of leverage-induced crashes, at almost no
cost in terms of distorting time-1 prices.

Third, for higher values of ¢, regulation is more of a double-edged sword.
It still has the beneficial effect of preventing crashes at time 2, but now it
meaningfully impedes arbitrage at time 1. For example, with ¢ = 0.050, time-1
prices are 98.51 and 95.24 in the unregulated and regulated cases, respectively.
Intuitively, when equity financing becomes very expensive, a ban on leverage
can significantly reduce total arbitrage activity at time 1, leading to a wider
spread between prices and fundamentals.

Of course, the model is too stylized to yield decisive conclusions about the mer-
its of imposing leverage limits on arbitrageurs. Nevertheless, it does highlight
a key point: When there are fire-sale externalities associated with leverage
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Figure 2. Prices as a function of ¢, with and without a ban on leverage. The figure plots the
time-1 price P; and the bad state time-2 price Pyy against the equity cost ¢, in both the unregulated
case (where maximum leverage L = 10) and the regulated case (where L = 1). The other parameters
of the model are set as follows: V = 100, §; = 15, §; = 20, and p = 0.05.

choice, there is no general presumption that individually rational decisions on
the part of arbs will lead to the most efficient configuration of prices.?! This
point emerges most starkly in the intermediate ¢ case: Prices are much closer
to fundamentals when leverage is constrained by regulation than when arbs
are allowed to choose leverage freely.

21 Stein (2005) makes a related point about arbitrageurs’ choice of whether to operate in an open-
end versus closed-end form: Individually rational arbs may choose to be open-ended, even though
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H. Broader Implications for Financial Regulation

At a more general level, the model developed above suggests a few basic mes-
sages for financial regulation. First, it offers a nontraditional way of thinking
about capital requirements. The usual rationale for capital requirements, which
is focused on the banking industry, begins with the observation that govern-
ment deposit insurance gives banks an incentive to take undue levels of risk.
Mandated capital levels are meant to temper such risk-shifting incentives, and
to protect the deposit insurer from any resulting losses. By contrast, in the cur-
rent model there is no insurance and private lenders do a fine job of looking
out for their own interests—they break even in expectation. Thus, the goal of
any capital requirements regime would not be to protect senior claimants per
se, but rather to mitigate fire-sale spillovers across institutions.

This difference in perspective leads to different implications for how capital
requirements should be designed. For example, in the Basel-II framework, the
capital requirement for a bank that holds a particular asset depends on the risk
attributes of that asset taken in isolation. However, if the focus is on reducing
fire-sale spillovers, one would ideally want the capital requirement to depend
on: (i) the likelihood that the asset would be sold in a distress situation and
(i1) the extent to which other highly leveraged entities are holding the same
asset.??

A second message is that in some cases capital regulation can be quite dis-
tortionary itself. In the model, this occurs when c is relatively high and a cap
on leverage significantly reduces aggregate arbitrage activity. In such cases,
an important question to ask is whether some form of ex post intervention in
extreme states can be more efficient than trying to solve everything with very
stringent ex ante capital requirements. Such ex post intervention might include
the government acting as a market-maker of last resort, buying up assets that
are subject to overwhelming systemic fire-selling—as in the first incarnation of
the Treasury’s Troubled Assets Relief Program (TARP). Or it might involve the
government making financing available on favorable terms to private liquidity
providers who provide a similar function.

A final message is that policymakers might want to think more about ways
to narrow the wedge between the perceived costs of short-term debt and equity
finance.?? As the model makes clear, the leverage choices of individual arbi-
trageurs are highly sensitive to ¢ in equilibrium, and when ¢ is low enough,
arbs voluntarily choose to finance themselves in such a conservative way that

the market as a whole might be more efficient if it were populated with closed-end funds. Caballero
and Krishnamurthy (2003) note that, in emerging markets, private firms’ decisions about which
currency to borrow in may also not be socially optimal—there is a tendency toward excessively
risky dollar-denominated debt.

22 Adrian and Brunnermeier (2008) develop a methodology aimed at measuring such spillover
risks.

23 This point is emphasized by Kashyap, Rajan, and Stein (2008). Diamond and Rajan (2001) and
Diamond (2004) argue that short-term debt is particularly attractive to financial firms because of
its role in containing agency problems.
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no regulation is needed. Getting a better handle on the underlying frictions
that determine c¢ in financial firms, and on how these frictions might be re-
duced, seems like an important task for ongoing research.

ITI. Conclusions

It is undeniable that sophisticated professional investors play a more domi-
nant role in financial markets than they used to. A more difficult question is
whether this form of progress will ultimately help to make markets more effi-
cient. The analysis of this paper suggests an ambiguous answer: Because of the
externalities associated with crowding and leverage, there is no clear theoreti-
cal presumption that—absent any policy intervention—the rise of sophisticated
investors should necessarily be beneficial to market efficiency, even over a very
long horizon. It will be interesting to see what the future brings.

Appendix
A. The Crowded-Trade Problem

Proof of Proposition 1: A generalization of the Law of Total Variance implies
that 0 = cov[R1, R2] = cov[E[R | F1, E[Rs | F1] + E[cov[R1, R | F1], or

(1 —8)8 —00*) 1-35 5 — 0d*

7 I I ) E
0=8 | S | = F e [ e
1-8 68§—00*
1-0d* 1 —0d*

+ Cov |: (A1)

Because (1 — §)/(1 — §®*) is increasing in 6 and (§ — 0®*)/(1 — 6 ®*) is decreas-
ing in 6, we have that

ElcovlR1, Ro | F1] = cov[(1 — §)/(1 — 6D*),(§ —0D*)/(1 — 6d*)] < 0.

To see the intuition, note that once we condition on F, returns reflect random
variation in the number of arbs. Conditional on F > 0, high (low) entry gen-
erates high (low) returns at time 1 and low (high) returns at time 2, and vice
versa for F' < 0. This implies that

cov[E[R1|F ], E[R|F1]l = E[(1 - 8)/(1 — 60*)]
x E[(8§ —0®*)/(1 —6d*)] > 0. (A2)

Next, note that the total price reaction at times 1 and 2, scaled by F, must sum
to one for all realizations of 6. That is, (1 — §)/(1 — 6®*) + (§ — 0d*)/(1 — 6D*) =
1. Taking expectations of this identity and substituting the result into (A2), we
obtain

E[P,/F]1 - E[P;/F]) = E[(1-8)/(1 —06d%)]
x(1—-E[1-68)/1-60%]) >0, (A3)
which implies that 0 < E[P;/F] <1. Q.E.D.
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Computations Underlying Table I: If one specifies the distribution of the ran-
dom variable 6, as well as a value of §, equation (9) can be solved for the equilib-
rium trading intensity ®*. If 9;, > 0, it is clear that there is at least one solution
to (9) on (0, §/6;,). Although (9) may have more than one root, the relevant so-
lution must satisfy ®* < 1/6, which ensures that P;/F > 0 for all realizations
of 6.

1. Symmetric Binomial: Assume that 9 = (1 — h) or 6 = (1 + h), each with
probability % In this case, ®* is the smallest positive root of a cubic
equation

0=h%—-1)0°+(5+sh% — 2h% + 2)d% — (1 + 25)d + 6. (A4)

It can be shown that (A4) has a root satisfying ®* < 1/(1+h).
2. Uniform: Assume that 0 is uniformly distributedon[1 — 2,1+ h]. Here,
®* satisfies

0= (A5)

1-35 N 1 In (1-h)d-1
h2-1)P24+20 -1 2hd 1+hd-1]

As above, one can verify that (A5) has a solution satisfying ®* < 1/(1 4+ h)
3. Skewed Binomial: Assume that 6 = 1/p with probability p, and 6 =

0 with probability (1 — p) . In this case, ®* is the root of a quadratic
polynomial, and the relevant solution, satisfying ®* < p, is given by

2
= —r Y O 1

B. The Determinants of Arbitrageur Leverage

I first lay out the arb’s payoff function in some detail. This payoff functions
turns out to depend crucially on whether or not the arb is wiped out in the bad
state at time 2. Consider the payoff to an arb who makes a time-1 investment,
I, satisfying 0 < I < L. After repaying his loan, the time-2 wealth of the arb
is we(Py) = 1 + I(P3 /Py — 1). Therefore, the arb is wiped out in the bad state if
wa(Pog) < 0, or

I > Iy = P1/(P1 — Pog). (BD)
The payoff function of the arbitrageur-lender coalition then takes the form
0 =1{1 > Iy} - Ow(I) + {1 < Iw} - Nyw(), (B2)
where

Nw() =1I[(1 - p)Ar+ p(Peq/P1 — D] —c (B3)
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is the profit function if the arb is wiped out in the bad state at time 2 and
Oyw(l) =[IA;+p(1—1)Az]—c (B4)

is the profit function if the arb is not wiped out. Thus, I[1(I) is a piecewise linear
function of I with a kink at Iy.

To understand (B3), suppose the arb is wiped out in the bad state. With
probability p, the bad state obtains, the portfolio is liquidated, and the return
to the coalition is I(Py3/P; — 1). With probability (1 — p), the good state obtains
and the return to the coalition is IA;. Thus, if I > Iy, the expected return to
the coalition net of the equity cost is given by Ty ().

To understand (B4), suppose the arb is not wiped out in the bad state. Now
when the bad state obtains, investors have wo(Psg) > 0 to be re-invested at time
2. In this case, the coalition earns (V/Pog)ws(Pog) — 1 = IA1 + (1 — I)As. Thus,
when I < Iy, the net expected return to the coalition is given by Iyw ().

Proof of Lemmas 1 and 2: First, suppose prices are such that Iy > L, so arbs
cannot be wiped out for any I € [0, L]. If A; > pAjy, we are at a corner where
I* = L and arbs play a max-leverage strategy. If A; = pAq, arbs are indifferent
between any I € [0, L]. This corresponds to the cautious strategy described in
the text, given that Iy > L and arbs cannot be wiped out. Finally, if A; < pAg,
I* = 0 and we are at the other corner, with arbs playing a waiting strategy.

Next, suppose prices are such that 0 < Iy < L, so that it is possible for arbs
to be wiped out if they invest enough at time 1. Let 7yw = A1 — pAg denote the
slope of T1() for I < Iy and nw = [(1 — p)A1 + p(P2q/P1 — 1)] denote the slope
for I > Iy. Since Pyy < P, we have that nyw < mw. It follows that the only
possible outcomes are I* = 0 (which requires myw < 0) or I* = L. To see that no
other value of I can be optimal in this region, consider what happens for the
following permutations of myw and my:

TNW Tw Outcome

(1) >0 >0 I*"=1L

(2) >0 =0 This case is ruled out because nyw < 7w.

3) >0 <0 This case is ruled out because nyw < 7w.

4) =0 >0 I*=1L

5) = = This case is ruled out because nyw < 7w.

(6) =0 <0 This case is ruled out because nyw < 7w.

(7) <0 >0 I*=0if T1(0) > TI(L), and I* = L if T1(0) < II(L).
(8) <0 =0 I*=0

9 <0 <0 I*=0

Therefore, if 0 < Iy < L arbs play either a max-leverage strategy or a waiting
strategy. The cautious strategy can never be optimal in this region. Q.E.D.
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Proof of Lemma 3: Suppose that n > 0 arbitrageurs enter, all choosing I =
0. In this case, we have P; =V — §; and Pyy =V — §3 + n, which implies that
A1 =81/(V —81) and Ag = (83 — n)/(V +n — §2). By Lemma 1, I* = 0 can only
be optimal if A1 < pAg, or §1/(V —81) < p(6a — n)/(V +n — §3). However, if as
assumed in the statement of Lemma 3, we have 6, /(V — §1) > pds/(V — 83), this
cannot be satisfied. Thus, there cannot be a symmetric equilibrium where all
arbs play the waiting strategy. Q.E.D.

Proof of Proposition 4: Given that arbs are not wiped out in the cautious
case, we can write P =V — 81 +nl and Pyy = V — 89 + nwa(Pog). We have also
seen that equilibrium prices must satisfy P, = V/(1 +¢) and Pog = V /(1 +¢/p),
as in equations (13) and (14) in the text. Together, these facts allow us to solve
for the equilibrium values of n and I. In particular, we have that

* 81 —cV/(1+c)

I = . B
[(A+eXV —=61)/A+c/p)—(V =8)]+ 81 —cV /(1 +c¢) (B5)

This corresponds to a dry-powder strategy when I* < 1. Using the above for-
mula, it follows that I* < 1 when

(V —89) — p(V —61)

c<c

(B6)

Q.E.D.

Prices with Leverage Limits: Suppose a regulator fixes L = 1. For ¢ < ¢%,
unregulated arbs would play a dry-powder strategy, so the constraint does
not bind and prices are given by P; = V/(1+¢) and Pyy =V /(1 +c¢/p). For
¢ > ¢, the constraint binds and n arbs enter, each setting I = 1. It follows
that P; =V — 8; + n and that Pyg = P1[(V — 82)/(V — §1)]. The zero-profit con-
dition is 0 = [yw(1) = A; — ¢, which implies P;(regulated) = V/(1+¢) and
Pyi(regulated) = [V /(1 4 c)I(V — 82)/(V — §1)]. These expressions assume that
¢ < 81/(V — §81): When leverage is not permitted, no arbs will enter if the upfront
cost of equity is sufficiently high (that is, if ¢ > 81/(V — §1)).
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