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We develop a theory of market crashes based on differences of opinion among investors.
Because of short-sales constraints, bearish investors do not initially participate in the mar-
ket and their information is not revealed in prices. However, if other previously bullish
investors bail out of the market, the originally bearish group may become the marginal
“support buyers,” and more will be learned about their signals. Thus accumulated hidden
information comes out during market declines. The model explains a variety of stylized
facts about crashes and also makes a distinctive new prediction—that returns will be
more negatively skewed conditional on high trading volume.

In this article we address the question of why stock markets may be vulner-
able to crashes. To get started we need to articulate precisely what we mean
by the word “crash.” Our definition of a crash encompasses three distinct
elements: 1) A crash is an unusually large movement in stock prices that
occurs without a correspondingly large public news event; 2) moreover, this
large price change is negative; and 3) a crash is a “contagious” marketwide
phenomenon—that is, it involves not just an abrupt decline in the price of
a single stock, but rather a highly correlated drop in the prices of an entire
class of stocks.

Each of these three elements of our definition can be grounded in a set
of robust empirical facts. First, with respect to large price movements in the
absence of public news, Cutler, Poterba, and Summers (1989) document that
many of the biggest postwar movements in the S&P 500 index—most notably
the stock-market break of October 1987—have not been accompanied by any
particularly dramatic news events. Similarly Roll (1984, 1988) and French
and Roll (1986) demonstrate in various ways that it is hard to explain asset
price movements with tangible public information.
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The second element of our definition is motivated by a striking empirical
asymmetry—the fact that big price changes are more likely to be decreases
rather than increases. In other words, stock markets melt down, but they
don’t melt up. This asymmetry can be measured in a couple of ways. One
approach is to look directly at historical stock return data; in this vein it
can be noted that of the ten biggest one-day movements in the S&P 500
since 1947, nine were declines.! More generally, a large literature documents
that stock returns exhibit negative skewness, or, equivalently, “asymmetric
volatility”—a tendency for volatility to go up with negative returns.

Alternatively, since gauging the probabilities of extreme moves with his-
torical data is inevitably plagued by “peso problems,” one can look to options
prices for more information on return distributions. Consider, for example,
the pricing of three-month S&P 500 options on January 27, 1999, when
Black and Scholes (1973) implied volatility was (i) 39.8% for out-of-the-
money puts (strike = 80% of current price); (ii) 27.5% for at-the-money
options; and (iii) 17.5% for out-of-the-money calls (strike = 120% of the
current price). These prices are obviously at odds with the lognormal dis-
tribution assumed in the Black—Scholes model, and can only be rationalized
with an implied distribution that is strongly negatively skewed. As shown
by Bates (2001), Bakshi, Cao, and Chen (1997), and Dumas, Fleming, and
Whaley (1998), this pronounced pattern (often termed a “smirk™) in index-
option implied volatilities has been the norm since the stock-market crash of
October 1987.

The third and final element of our definition of crashes is that they are
marketwide phenomena. That is, crashes involve a degree of cross-stock
contagion. This notion of contagion corresponds to the empirical observa-
tion that the correlation of individual stock returns increases sharply in a
falling market [see, e.g., Duffee (1995a)]. Again, the results from historical
data are corroborated by options prices. For example, Kelly (1994) writes
that “US equity index options exhibit a steep volatility (smirk) while single
stock options do not have as steep a (smirk). One explanation. . . is that the
market anticipates an increase in correlation during a market correction.”

In our effort to develop a theory that can come to grips with all three of
these empirical regularities, we focus on the consequences of differences of

! Moreover, the one increase—of 9.10% on October 21, 1987—was right on the heels of the 20.47% decline on
October 19, and arguably represented a working out of the microstructural distortions created on that chaotic
day (jammed phone lines, overwhelmed market makers, unexecuted orders, etc.) rather than an independent,
autonomous price change.

2 Work on skewness and asymmetric volatility includes Pindyck (1984), French, Schwert, and Stambaugh
(1987), Nelson (1991), Campbell and Hentschel (1992), Engle and Ng (1993), Glosten, Jagannathan and
Runkle (1993), Braun, Nelson and Sunier (1995), Duffee (1995b), Bekaert and Wu (2000), and Wu (2001).

3 These and other recent articles on options pricing find that one can better fit the index-options data by modeling
volatility as a diffusion process that is negatively correlated with the process for stock returns. However, they
do not address the question of what economic mechanism might be responsible for the negative correlation.
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opinion among investors.* We model differences of opinion very simply, by
assuming that there are two investors, A and B, each of whom gets a private
signal about a stock’s terminal payoff. As a matter of objective reality, each
investor’s signal contains some useful information. However, A only pays
attention to his own signal, even if that of B is revealed to him in prices, and
vice versa. Thus, even without any exogenous noise trading, A and B will
typically have different valuations for the asset.

In addition to investors A and B, our model also incorporates a class of
fully rational, risk-neutral arbitrageurs. These arbitrageurs recognize that the
best estimate of the stock’s true value is obtained by averaging the signals
of A and B. However, the arbitrageurs may not always get to see both of
these signals. This is because we assume—and all our results hinge crucially
on this assumption—that investors A and B face short-sales constraints, and
therefore can only take long positions in the stock.

To get a feel for the logic behind our model, imagine that at some time 1,
investor B gets a pessimistic signal, so that his valuation for the stock at this
time lies well below A’s. Because of the short-sales constraint, investor B will
simply sit out of the market, and the only trade will be between investor A
and the arbitrageurs. The arbitrageurs are rational enough to deduce that B’s
signal is below A’s, but they cannot know exactly by how much. Thus the
market price at time 1 impounds A’s prior information but does not fully
reflect B’s time 1 signal.

Next, suppose that at time 2, investor A gets a new positive signal. Since
A continues to be the more optimistic of the two, his new time 2 signal
is incorporated into the price, while B’s preexisting time 1 signal remains
hidden.

Now contrast this with the situation where investor A gets a bad signal
at time 2. Here things are more complicated, and it is possible that some of
B’s previously hidden time 1 signal may be revealed at time 2. Intuitively,
as A bails out of the market at time 2, arbitrageurs will learn something by
observing if and at what price B steps in and starts being willing to buy.
For example, it may be that B starts buying after the price drops by only
5% from its time 1 value. In this case, the arbitrageurs learn that B’s time 1
signal was not all that bad. But if B doesn’t step in even after the price drops
by 20%, then the arbitrageurs must conclude that B’s time 1 signal was more
negative than they had previously thought. In other words, the failure of B
to offer “buying support” in the face of A’s selling is additional bad news
for the arbitrageurs above and beyond the direct bad news that is inherent in
A’s desire to sell.

* Harris and Raviv (1993), Kandel and Pearson (1995), and Odean (1998) are among the recent articles that
emphasize the importance of differences of opinion. However, the focus in these articles is primarily on
understanding trading volume, not large price movements. See also Harrison and Kreps (1978) and Varian
(1989) for related work.
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It is easy to see from this discussion how the model captures the first two
elements in our definition of a crash. First, note that the price movement at
time 2 may be totally out of proportion to the news arrival (i.e., the signal
to A) that occurs at this time, since it may also reflect the impact of B’s
previously hidden signal. In this sense we are quite close in spirit to Romer
(1993), who makes the very insightful point that the trading process can cause
the endogenous revelation of pent-up private information, and can therefore
lead to large price changes based on only small observable contemporaneous
news events.’

Second—and here we differ sharply from Romer, whose model is inher-
ently symmetric—there is a fundamental asymmetry at work in our frame-
work. When A gets a good signal at time 2, it is revealed in the price, but
nothing else is. However, when A gets a bad signal at time 2, not only is
this signal revealed, but B’s prior hidden information may come out as well.
Thus more total information comes out when the market is falling (i.e., when
A has a bad signal), which is another way of saying that the biggest observed
price movements will be declines.

The one feature of our model that is not readily apparent from the brief
discussion above is the one having to do with contagion, or increased correla-
tion among stocks in a downturn. To get at this we have to augment the story
so that there are multiple stocks. This opens the possibility that a sell-off in
one stock i causes the release of pent-up information that is not only relevant
for pricing that stock i, but also for pricing another stock j. Consequently,
bad news tends to heighten the correlation among stocks. And of interest is
that the price of stock j may now move significantly at a time when there is
absolutely no contemporaneous news about its own fundamentals.

In addition to fitting these existing stylized facts, the theory makes further
distinctive predictions which allow for “out-of-sample” tests. These predic-
tions have to do with the conditional nature of return asymmetries—that
is, the circumstances under which negative skewness in returns will the
strongest. When the differences of opinion that set the stage for negative
asymmetries are most pronounced, there tends to be abnormally high trad-
ing volume. Therefore elevated trading volume should be associated with
increased negative skewness, both in the time series and in the cross section.

In empirical work that was initiated after the first draft of this article was
completed [Chen, Hong, and Stein (2001)], we develop evidence consistent
with these predictions about the conditional nature of skewness. At the same
time, however, we also document a fact that, on the face of it, is harder to
square with our model: the unconditional average skewness of daily returns
for individual stocks is positive, in contrast to the significant negative skew-
ness in the returns of the market portfolio. Indeed, one might argue that this

> See also Caplin and Leahy (1994) for another model in which previously hidden information can be endoge-
nously revealed in large clumps.
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fact is particularly at odds with our theory to the extent that individual stocks
are harder to short than the market as a whole. As we discuss in detail below,
the positive average skewness of individual stocks most likely reflects factors
that are left out of the model, such as a tendency for managers to release
negative firm-specific information in a gradual piecemeal fashion.

Our theory of crashes can be thought of as “behavioral,” in that it relies
on less-than-fully rational behavior on the part of investors A and B. Indeed,
the differences of opinion that we model can be interpreted as a form of
overconfidence, whereby each investor (incorrectly) thinks his own private
signal is more precise than the other’s. Or, alternatively, as in Hong and
Stein (1999), the differences of opinion can be thought of as reflecting a
type of bounded rationality in which investors are simply unable to make
inferences from prices. Of course, the usual critique that is applied to these
sorts of models is “what happens when one allows for rational arbitrage?”
And, in fact, in most models in the behavioral genre, sufficiently risk-tolerant
rational arbitrage tends to blunt or even eliminate the impact of the less-
rational agents.

In contrast, our results go through even with rational risk-neutral arbi-
trageurs who can take infinitely long or short positions. This is because the
interplay between the arbitrageurs and the less-rational investors is different
than in, say, the noise-trader framework of DeLong et al. (1990). In their set-
ting, the less-rational traders have no information about fundamentals, and so
the job of the arbitrageurs is just to absorb the additional risk that these noise
traders create. In our model, the job of the arbitrageurs is more complicated,
because while investors A and B are not fully rational, they do have access
to legitimate private information that the arbitrageurs need. Thus infinite risk
tolerance on the part of the rational arbitrageurs is not sufficient to make the
model equivalent to one in which everybody behaves fully rationally.®

Of course, by making our arbitrageurs risk neutral, we lose the ability
to say anything about expected returns—all expected returns in our model
are zero, and our implications are only for the higher-order moments of the
return distribution. So unlike much of the behavioral finance literature, we
do not attempt to speak to the large body of empirical evidence on return
predictability. But it is interesting to note that while behavioral models have
been used extensively to address the facts on predictability, as well as to
explain trading volume, there has been very little serious effort (of which
we are aware) to explain market crashes based on behavioral considerations.
Ironically, all the best existing models of large price movements are, like
Romer (1993), rational models.” It is not much of an exaggeration to say

© The idea that arbitrageurs interact with a class of investors who have valuable information but who overweight
this information is also central to Hong and Stein (1999).

7 We discuss this “rational crash” literature in detail below.
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that a state-of-the-art behavioral explanation of a market crash is something
along the lines of “there was an abrupt change in investor sentiment.”

The remainder of the article is organized as follows. In Section 1 we lay
out the assumptions of our model. For simplicity, we consider the case where
there is a single traded asset, which can be interpreted either as an individual
stock or as the market portfolio. In Section 2 we solve the model and flesh
out its implications for the distribution of returns at different horizons. In
Section 3 we briefly examine a couple of multiple-asset extensions, which
allow us to address issues such as the potential for increased cross-stock
correlations in a falling market. In Section 4 we examine the model’s empir-
ical content. In Section 5 we discuss the link between our work and previous
research on large price movements and/or return asymmetries. Section 6 con-
cludes.

The Model

1.1 Timing and information structure

Our model has four dates, which we label times O, 1, 2, and 3. Initially we
consider the case where there is one “stock” that will pay a terminal dividend
of D at time 3; it should be stressed that this “stock™ can equally well be
thought of as the market portfolio. There are three potential traders in the
stock: investors A and B, and a group of competitive, risk-neutral rational
arbitrageurs. Investors A and B are subject to short-sales constraints, but the
arbitrageurs are not.® One can interpret the short-sales constraints literally,
but they might also be thought of as reflecting institutional restrictions—for
example, A and B might be mutual fund managers who, by virtue of their
charters or regulation, are deterred from taking short positions.’

Investors A and B take turns getting informative signals about the terminal
dividend. In particular, at time 1, investor B observes Sg, and next, at time 2,
investor A observes S,. From an objective rational perspective (that of the
arbitrageurs), each of these signals is equally informative, as the terminal
dividend is given by

D= (S,+5,)/2+¢, (1)

8 Of importance is that the model does not rest on the assumption that all or even most players are subject
to the short-sales constraints. Indeed, the unconstrained risk-neutral arbitrageurs can be seen as representing
the vast majority of buying power in the market. All that we really require is that some investors who have
significant information be constrained.

° A relevant fact in this regard comes from Almazan et al. (2001). They document that roughly 70% of mutual
funds explicitly state (in Form N-SAR that they file with the SEC) that they are not permitted to sell short.
This is obviously a lower bound on the fraction of funds that never take short positions. Moreover, Koski
and Pontiff (1999) find in a study of 679 equity mutual funds that more than 79% of the funds make no use
whatsoever of derivatives (either futures or options). Given that derivatives are likely to be the most efficient
means for implementing a short position, it would not appear that our approach is founded on an empirically
unrealistic premise.
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where € is a normally distributed shock with mean zero and variance nor-
malized to one.

As discussed in the introduction, investors A and B each incorrectly believe
that only their own signals are informative. This behavioral bias, which can
be thought of as a form of overconfidence, induces a difference of opinion
among the various agents in the model as to the value of the stock. So, for
example, when investor A observes S, at time 2, he believes that the terminal
dividend has an expected value of S,, irrespective of anything he might be
able to infer about S5."° Assuming for simplicity that investor A has CARA
utility with a risk aversion coefficient of one, if he is offered the stock at
time 2 at a price of p,, his demand will, in light of the short-sales constraint,
be given by

04(p,) = max[S, — p,, O]. ()

Here we are using the lowercase notation p, to indicate that we are talking
about a “trial” price that may be off the equilibrium path.!! We will reserve
the uppercase notation P, and P, to refer to the equilibrium prices that are
realized at time 1 and time 2, respectively; the significance of this distinction
will become apparent shortly. Similarly investor B’s demand for the stock at
time ¢ (= 1,2), if he is offered the stock at a price of p,, will be'?

03(p,) = max[S; —p,, 0]. ®)

Prior to being realized at time 1, S; is uniformly distributed on the inter-
val [0, 2V]. Thus the rational expectation of S, as of time 0 is E,[Sz] = V.
Prior to being realized at time 2, S, is uniformly and independently dis-
tributed on [H, 2V + H], so that E,[S,] = E,[S4] =V + H. Note that V can
be interpreted as a measure of the variance of the news that is received by
the investors, while H can be thought of as an ex ante measure of the hetero-
geneity of their opinions. In what follows, we assume that 0 < H <2V. This
implies that investor B—who moves first—is on average more bearish than
investor A. This assumption is not crucial to our results. Indeed, we discuss
in Section 2.4.1 below how the results generalize when we reformulate the
model so that the bearish investor B moves first with probability one-half,
while the bullish investor A also moves first with probability one-half. The
reason that we begin by restricting ourselves to the case where B always

10 The degree of overconfidence need not be as extreme as we are assuming here. All that we really need is
that A does not adjust his valuation all the way to the rational level given in Equation (1) upon learning B’s
signal, and vice versa.

"' We are treating A and B as price takers. So it may be more accurate to think of each of them as corresponding
to a group of competitive investors who all get the same signal.

12 For simplicity, we are assuming that investor B’s demand for the stock at time 1 depends only on his
expectation of the terminal dividend, and not on the price that he expects to prevail at time 2. This assumption
is not at all critical for our results.
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moves first is that, as will become clear shortly, this case allows us to high-
light the central intuition of the model, while greatly reducing the complexity
of the analysis.

1.2 The price-setting mechanism

We now turn to the determination of prices at the various dates. Note that
because of the risk neutrality of the arbitrageurs, we can without loss of
generality set the supply of the stock to zero. It is also easy to see that the
price at time O is given by

Py=V+H/2. (4)

This is just the arbitrageurs’ ex ante expectation of the terminal dividend
before either A or B have received their signals. But once these signals
begin to be realized, at times 1 and 2, the issue of price setting becomes a
bit more complicated, and we have to be clear about the mechanism that is
used.

We assume the following setup at times 1 and 2. Investors A and B, along
with the arbitrageurs, are all together in a room with an auctioneer. Any time
the auctioneer announces a trial price p,, the participants respond by calling
out their demands. Because of the short-sales constraints, investors A and
B only call out something if their demands are positive; otherwise they are
silent. The arbitrageurs, who face no short-sales constraint, are free to call
out either positive or negative demands. It is important that the arbitrageurs
are able to observe any demands called out by investors A and B.

The auctioneer follows a simple mechanical rule, which could be carried
out by a computer. He starts by announcing a “high” trial price, say 2V + H,
which is known to be higher than anybody’s highest possible valuation. At
this high price, the net excess demand for the stock is certain to be negative.
The auctioneer then gradually begins to adjust the price. His adjustment rule
is that as long as the excess demand remains negative, he lowers the price.
Conversely, if he ever reaches a point where the excess demand is positive,
he raises the price. This process continues until the market clears—that is,
until the auctioneer finds a price such that the excess demand for the stock
is zero.

As will become clear below, this auction mechanism provides us with a
simple way to determine a unique equilibrium price at each date. Moreover,
the equilbrium will have the intuitive property that whichever investor (A or
B) has the more positive signal at a given date will be long the stock, and his
signal will be fully revealed. In contrast, the investor with the less positive
signal will not own any shares in equilibrium, and his signal may or may
not be revealed in the course of the auction. Although it is obviously some-
thing of a modeling contrivance, we do not think that our auction scheme
is too unrealistic. In fact, it resembles quite closely the opening procedures
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used in several major stock markets, including the Paris Bourse, the Toronto
Exchange, and the New York Stock Exchange."

1.3 The rational expectations benchmark

Before solving the model with differences of opinion, we digress briefly and
consider the benchmark case where all the players in the model are fully
rational. In this benchmark case, investors A and B, like the arbitrageurs,
recognize that the best estimate of the terminal dividend (conditional on
knowing S, and Sj) is given by (S, 4+ Sz)/2 rather than just by their own
private signals. This results in the following outcome:

Proposition 1. When investors A and B are fully rational, the short-sales
constraint does not bind. Prices fully reflect all information as soon as it
becomes available to investors:

P=(V+H+Sy)/2; (52)
P,=(S,+S3)/2. (5b)

Consequently, returns are symmetrically distributed at time 1 and time 2.
Returns are also homoscedastic—that is, they have the same variance at
time 1 as at time 2.

To see the logic of the proof, consider time 1, and suppose that investor
B’s information has not yet come out during the auction process. This implies
that investor B’s estimate of the terminal dividend is lower than any trial price
p, that has been announced. At the same time, any market-clearing price P,
must equal the risk-neutral arbitrageurs’ estimate of the terminal dividend.
And the arbitrageurs recognize that investor B is rational and strictly better
informed than they are at time 1. Thus as long as Sy has not been revealed,
the arbitrageurs know that the trial price p, is too high, and the market
cannot clear. Similar reasoning establishes that the market cannot clear at
time 2 unless S, has been revealed.

Proposition 1 is significant because it highlights the key role that dif-
ferences of opinion play in our model. The results on return asymmetries
and heteroscedasticity that we obtain below are not driven solely by the
short-sales constraint; rather the short-sales constraint must interact with the
differences of opinion to generate anything interesting.'*

° The Paris Bourse would seem to be especially close to what we have in mind: during a preopening period, trial

clearing prices are transmitted to some traders along with information on excess demand at those prices, and
the traders can revise their orders multiple times before a market clearing price is established. See Domowitz
and Madhavan (1998) for details.

* This feature distinguishes our model from that of Diamond and Verrecchia (1987), where short-sales con-

straints matter even in a setting where everybody is rational. Loosely speaking, the difference arises because
our price-setting mechanism allows for more information sharing among traders at a given point in time than
theirs, which in turn gives the rationality assumption more bite.
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. Solving the Model with Differences of Opinion

2.1 Time 1: the potential for hidden information

We now turn back to the situation where there are differences of opinion.
Now it is possible that an investor’s signal may not be revealed in equilib-
rium, if he is sufficiently pessimistic. Let us first examine what happens at
time 1, when the only private information is held by investor B. We can
distinguish two possible cases:

Case 1. Investor B’s information is revealed, in which case
P, =(V+H+S)/2. (6)
Case 2. Investor B’s information remains hidden, in which case
P, =(V+H)/2+E|[S3|NR]/2, (7

where E\[Sz|NR] is the time 1 conditional expectation of Sy, given that Sy
has not been revealed.

When can Case 2 occur? Given our auction mechanism, a necessary condi-
tion for Sy to remain hidden is that S; < P,. In words, investor B’s valuation
must not exceed the market-clearing price, or otherwise he would have called
out a nonzero demand during the auction, thereby tipping his signal to the
arbitrageurs. Holding the arbitrageurs’ conjectures fixed, the necessary con-
dition becomes harder to satisfy the higher is Sz. This suggests that there
will be a cutoff value of S;—which we denote by S;—such that if S, lies
above S}, the equilibrium must involve revelation of Sj.

It is easy to establish what the value of S} must be. If there is revelation
for all values of S; > Sj, then the expected value of S; conditional on no
revelation, E,[Sz|NR], must equal S} /2. This implies that the price in Case 2
is given by

P =(V+H)/2+S3/4. (8)

But we can only be in Case 2 if Sz < P,. So one solves for the cutoff S} by
setting it equal to P,, which gives us:

Lemma 1. Let the cutoff value for Sy be
Sy=2(V+H)/3. 9)

Then for all values of Sy > S}, there must be revelation of Sz—that is, we
must be in Case 1.

It is worthwhile to map out specifically how the auction mechanism works
in Case 1, when S > S}, and hence S is revealed. There are two qualita-
tively distinct scenarios. In the first, Sy is “very high;” in particular
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Sg > (V 4+ H), which means that investor B’s valuation is higher even than
the ex ante expectation of A’s valuation. (Note that this can only occur if
we make the assumption that H < V.) As the auctioneer starts to work the
trial price down, initially all he hears are sell orders from the arbitrageurs, as
the trial price is above everybody’s valuation. When the auctioneer gets to a
trial price p, = Sj, investor B calls out, revealing his signal. At this point,
the arbitrageurs become fully informed. They recognize that the true value
of the stock is (V + H +S3)/2, so at p; = S}, they continue to want to sell.
Thus the price keeps dropping until it hits (V + H + S;)/2, at which point
the market clears. Observe that in this scenario, the bullish investor B is long
the stock in equilibrium.

In the second scenario of Case 1, Sy is only “moderately high;” that is,
S3 < Sg < (V+ H). Now the auctioneer’s trial price can drop further with
investor B staying silent. For any trial price p, in this silent region, and
below 2V, the arbitrageurs’ conditional estimate of the terminal payoff is
just (V4+H)/2+E[Sg|Ss <p1]/2=(V+H)/2+ p,/4. This implies that the
longer investor B stays quiet in the face of dropping trial prices, the lower
the arbitrageurs’ estimate drops. Moreover, as long as this estimate remains
below the trial price of p,, the risk-neutral arbitrageurs have infinite negative
demand. This in turn causes the auctioneer to move p, down further. When
p, hits Sg, investor B calls out, thereby revealing his signal. This is good
news for the arbitrageurs—they learn that they are in Case 1 rather than
Case 2—so their estimate of the value jumps discretely, to (V + H + S3)/2.
As a result, there is now positive excess demand, and the auctioneer has to
raise the price back up to meet the arbitrageurs’ new estimate, at which point
the market finally clears.

A subtle point about this second scenario is that S is revealed through
the auction process even though, in equilibrium, investor B ends up holding
no shares. This is because in this scenario, the trial price at some point
necessarily falls below the ultimate equilibrium price, causing investor B to
call out a demand and reveal his signal.

If Sz <S5, however, S; can remain concealed. More precisely, given our
auction mechanism, we can show:

Lemma 2. For all values of Sy < S}, the unique equilibrium involves the
“pooling” outcome of Case 2, where Sy remains hidden, and where

P, =(V+H)/2+5:/4=2(V +H)/3. (10)

The ex ante probability of winding up in this pooling equilibrium is
(V+ H)/3V. That is, pooling is more likely when there is more ex ante
heterogeneity in opinions, as measured by the parameter H.

In this case, the auction proceeds as follows. The auctioneer works the
trial price p, down, as before. But this time, before p, falls to S, and hence
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before investor B calls out, the trial price hits S;. At p; = S}, the arbitrageurs’
estimate of value, (V + H)/2+ p,/4, equals the prevailing trial price. So the
market clears before investor B ever gets in.

It should be pointed out that the uniqueness of the pooling equilibrium
for Sz < §} is a consequence of our assumptions about the adjustment rule
followed by the auctioneer. To see why, suppose the auctioneer was not
restricted to adjusting prices gradually, but instead could discontinuously
announce a trial price of zero. At this point, investor B would always call
out a demand, for any value of S,. That is, S; would always be revealed,
no matter how low. Thus our auction mechanism, while it is arguably rea-
sonable, is also critical to establishing the central feature of our model—that
some information may remain hidden at time 1.5

2.2 Time 2: previously hidden information may be revealed

The bottom line from our analysis of time 1 is that if S; is low enough,
it may not be immediately revealed. Now we move to time 2. The primary
goal here is to show that a low draw of investor A’s signal, S,, may cause
further information on Sy to come out. So naturally, much of our focus will
be on that branch of the time 1 tree where we were in Case 2, and Sg
was hidden. However, because we ultimately want to be able to provide a
complete description of the distribution of returns at both time 1 and time 2,
we also need to fill in what happens along the less interesting branch of the
tree where there was no hidden information at time 1—that is, where we
were previously in Case 1. This is where we begin.

2.2.1 Case 1: B’s signal was revealed at time 1. If S; has already been
revealed, the analysis at time 2 is very similar to that at time 1. If the signal of
investor A, S,, is relatively high, it will also be revealed at time 2. However,
if it is sufficiently low, it may remain hidden. In particular we can show

Lemma 3. Assume that Sy has been revealed at time 1. Let the cutoff value
for S, be

Sy=02S;+H)/3. (11)
For all values of S, > S}, S, is also revealed at time 2, and
P2=(SA+SB)/2- (12)

We call this Case 1.A.

'> Though we discuss an alternative modeling approach that also results in hidden information below, in Section
24.2.
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Lemma 4. Assume that Sy has been revealed at time 1. If S, < S}, equi-
librium at time 2 involves a pooling outcome where S, remains hidden, and
where

P,=S;/2+(H+S})/4=(2Sz+H)/3. (13)

We call this Case 1.B.

2.2.2 Case 2: B’s signal was hidden at time 1. If S; has not yet been
revealed, the analysis at time 2 is more interesting; this is where the heart of
our model lies. The results in this case can be characterized by four lemmas.
These four lemmas, which are proven in the appendix, collectively provide a
complete characterization of the possible time 2 outcomes for all parameter
values.

First, if investor A gets good news at time 2—that is, if S, turns out to be
above its ex ante expectation—no further information on S; comes out. That
is,

Lemma 5. Assume that S, was hidden at time 1. If S, > (V+ H), then S,
is revealed, and Sy continues to pool below the old time 1 cutoff of S}. The
price in this case is given by

P,=S8,/2+5:/4=S5,/2+(V+H)/6. (14)

We call this Case 2.A.

This makes intuitive sense; given that investor B was too pessimistic relative
to the prior on S, to get into the market and tip his signal at time 1, he
certainly won’t get in at time 2 if A becomes even more optimistic and the
gap between A’s and B’s valuations widens.

Second, if investor A gets a bad signal at time 2, some further information
on Sy will come out. Of importance, however, is that this need not imply
that Sp is fully revealed. Instead, it is possible that S, will still pool, but
inside a lower portion of its support. That is, it may be learned that S; < S},
where S3* is a new cutoff level that is below Sj. This clearly represents a
sharpening of the market’s information on Sg, but it is not total revelation.
Moreover, in this setting, one can meaningfully talk about “how much more”
information on S; has come out—the lower the new cutoff S3*, the more has
been learned. More precisely, we have

Lemma 6. Assume that Sz was hidden at time 1, and also that S, <
(V+H). Let the new cutoff

St =28,/3. (15)
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If Sy < Sy, then S, is revealed, and Sy pools below the new cutoff of S;*.
The price in this case is given by

P,=S8,/2+55/4=25,/3. (16)

We call this Case 2.B.

Thus, if Sy is small enough relative to S,, it may still remain partially
hidden at time 2. On the other hand, if S; exceeds the new cutoff S3*, it will
be fully revealed. In fact, there are two distinct scenarios in which Sy is fully
revealed. First, Sz may be fully revealed, while S, is hidden below a cutoff
value of S3:

Lemma 7. Assume that Sy was hidden at time 1, and also that S, <
(V+H). As in Lemma 3, let the cutoff on S, be

St =(28,+H)/3. (17)

If S, <S5, and simultaneously Sy > H, then S, pools below S%, while Sy is
fully revealed. The price in this case is given by

P,=S;/2+(H+S})/4=(2Sz+H)/3. (18)

We call this Case 2.C
Alternatively, both S; and S, can be revealed.

Lemma 8. Assume that Sg was hidden at time 1. For any parameter values
not already covered in Lemmas 5-1, both S, and Sy are fully revealed at
time 2. The price in this case is given by

P,=(S,+S5)/2. (19)

We call this Case 2.D

The key point that emerges from the analysis is that, holding fixed the
actual realization of S, more information on S; comes out the lower is S,.
This shows up in two ways. First, for a lower S,, S; is more likely to be
fully revealed. Second, even if it is not fully revealed, a lower value of S,
implies that S will remain hidden in a smaller portion of the lower support
of its distribution.

We think that this feature of the model—the time 2 link between the
realization of S, and the amount of new information that comes out on S;—
best embodies the central economic intuition that we are trying to capture.
Essentially our story is one in which a change of heart on the part of a previ-
ously optimistic investor (A) tests the resolve of another previously sidelined
investor (B). The extent to which B is willing to step in and offer buying
support as A bails out of the market is important data to the arbitrageurs.
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And the more completely A bails, the more informative is the experiment
conducted on the ostensible support buyers.

Figure 1 provides a compact illustration of all of our results to this point.
It shows how the entire parameter space can be partitioned into six regions,
corresponding to our Cases 1.A, 1.B, 2.A, 2.B, 2.C, and 2.D. Having done
this partitioning—and knowing the equilibrium prices P, and P, that arise in
each region—we can now make a variety of statements about the distribu-
tional properties of returns. For example, as we will demonstrate shortly, it is
a straightforward task to compute the skewness of returns at various horizons,
simply by taking the appropriate integrals over the different regions.

2.3 Implications for return asymmetries at different horizons
2.3.1 Asymmetries in ‘“big moves.” One simple, nonparametric way of
thinking about asymmetries in the distribution of extreme returns is to calculate

2V
Case |.B: A’ssignd hidden at t=2,
B’ssignal revealed at t=1.
Case |.A: A’ssignal revealed at
t=2, B’ssignd reveadled at t=1.
I
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)
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2(V+H)/3 —
Casell. C:A'S/ ae 11.D: Both
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enéaez att=2. Casell.A: A'ssignal revealed
rev at t=2, B’s signal hidden always,
below 2(V+H)/3.
H
Casell.B: A’ssignal revealed
2H13 at t=2, B's signal hidden below
2/3 of A’ssignal.
0
H V+H 2V+H
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Figure 1

Partition of equilibrium outcomes depending on A’s and B’s signals, S, and Sy, respectively
Graphical classification of Cases 1.A, 1.B, 2.A, 2.B, 2.C, and 2.D characterized in Lemmas 3-8.
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the largest possible moves—either up or down—that can occur at times 1 and
2. Consider time 1 first, and define the time 1 return

R, =P, —P, (20)

Given our earlier results, it is easy to show that the biggest possible up-move
at time 1, which we denote by BIGY(R,), equals V /2. This occurs when
Sy attains its highest value, and is fully revealed at time 1. In contrast, the
biggest possible down-move (in absolute value terms), BIG?(R,), is given by
V /3 — H /6, which is strictly smaller than BIGY(R,). Down-moves are less
extreme at time 1 because if Sy is very low, it is not fully revealed. Thus the
asymmetry at time 1 is the opposite of what we are looking for—it suggests
that the largest price movements will be increases, not decreases. Again, this
is a direct consequence of the fact that bad news is hidden at time 1.
Next, consider returns at time 2,

R,=P,—P,. 1)

As before, the biggest possible up-move, now denoted BIGY(R,), equals
V' /2. This reflects the highest possible realization of S,, and the observation
that when S, embodies good news, no further information on S comes
out. But now the biggest possible down-move, BIGP(R,), is given by 2V /3,
which is strictly larger than BIGY(R,). The reason the down-move can be
more extreme is that it represents not only the full revelation of the lowest
possible S,, but also further news about S, a piece of information which
had been hidden from the market before time 2.

Thus while returns at time 1 are suggestive of a positive asymmetry in
the distribution, returns at time 2 are suggestive of a negative asymmetry.
Moreover, the effect at time 2 is in a sense stronger, because the variance of
returns at this time is greater. One way to express this is as follows:

Proposition 2. Taking into account both R, and R,, the overall largest pos-
sible one-period return occurs on a down-move.

So in an unconditional sense, it is indeed accurate to say that the distribu-
tion of extreme returns is characterized by a negative asymmetry—the biggest
movements in the stock price will be decreases. This property of the model
corresponds closely to the historical facts discussed in the introduction.

2.3.2 Skewness. An alternative way to measure asymmetries in the return
distribution is to calculate the skewness, or third moment, of the distribution.
As mentioned earlier, these skewness calculations are conceptually straight-
forward, though they involve fairly laborious integration. With the help of the
computer program Mathematica, we are able to solve everything in closed
form, and the results that we report below are based on the properties of
these closed-form solutions. All details are in the appendix.
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Again, we begin by considering the properties of the time 1 return, R,.
Analogous to our result with big moves, this return is positively skewed:

Lemma 9. For all values of H and 'V, E[R?] > 0.

Moving to the time 2 return, R,, we find that things are a little more subtle.
Conditional on S, having been hidden at time 1, R, is indeed negatively
skewed; this is where the intuiton from our big moves analysis carries over
directly. But it turns out that conditional on S, having been revealed at time 1,
R, is actually slightly positively skewed, for exactly the same reasons that
R, is positively skewed—there may be some hiding of bad news, in this
case bad news about S,. (This positive skewness effect at time 2 comes from
Case 1.B.) Putting it all together, it turns out that, from an unconditional
perspective, R, will be negatively skewed for all but the smallest values of
H. More precisely, we have

Lemma 10. Conditional on being in Case 2, E[R3|Case2] < 0. Conditional
on being in Case 1, E[R}|Case 1] > 0. Unconditionally, E[R3] is monotoni-
cally decreasing in the ratio H/V, and is negative for values of H/V > .38.

Of course, from an empirical perspective, it is more helpful to be able to
make statements that do not depend on whether we take the perspective of
time 1 or time 2.'® In this spirit, we have

Proposition 3. Define the overall unconditional skewness of short-horizon
returns to be

E[R{]+E[R}]

e = FRI

(22)

Our model has the property that E[R?] < 0 for values of H/V > 1.69.

Thus one of our central results is that short-horizon returns will, in an
unconditional sense, be negatively skewed as long as there is enough ex ante
heterogeneity in investors’ opinions—that is, as long as H is large enough
relative to V. Figure 2 illustrates the results of Lemmas 9 and 10, along with
those of Proposition 3, showing how our various conditional and uncondi-
tional measures of short-horizon skewness vary with the ratio H/V.

To see intuitively why a high value of H/V necessarily leads to negative
skewness, consider the limiting situation where H = 2V. As we saw earlier
(Lemma 2), in this situation Case 1 disappears, and we are always in Case 2,

We are ignoring R;, the return from time 2 to time 3, in our skewness calculations. Given our assumption
of uniform distributions, this is of no consequence—R; will always be symmetrically distributed and hence
contribute nothing to overall skewness. This is because any remaining information that comes out at time 3
is just a draw from a truncated uniform distribution, which is itself still uniform, and hence symmetric. This
feature no longer holds with alternative distributions, as we discuss in Section 2.4.3 below.
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Skewness and differences of opinion
Plot of various skewness measures against a measure of differences of opinion, H/V.

where S is hidden at time 1. Consequently prices do not move at all at time
1, so the positive skewness in time 1 returns from Lemma 9 drops out of the
picture. All we are left with is the negative Case 2 skewness at time 2 from
Lemma 10.

It is useful to pause and ask why these results for skewness appear to be
less decisive than those for big moves. Recall that with regard to big moves,
we have the sharp conclusion that the largest possible move is always a
decline, irrespective of the value of H. In contrast, with skewness, it seems
that we need to put some restrictions on H/V to get a clear-cut negative
asymmetry.

This divergence reflects the fact that our model embodies two competing
effects: a hiding-of-bad-news effect at time 1 that gives rise to a positive
asymmetry, and a revelation-of-news effect at time 2 that generates a negative
asymmetry. The latter effect always dominates when the metric is big moves,
but not necessarily when the metric is skewness, since skewness is influenced
in part by returns that are not as far out in the tails of the distribution. To put
it another way: we could in principle calculate higher-order odd moments of
the return distribution—for example, the fifth moment, the seventh moment,
etc. These higher-order moments would be more heavily influenced by the
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action far out in the tails, and we conjecture that they would be more likely
to be unconditionally negative at short horizons, for a wider range of values
of H/V. Nevertheless, the concept of skewness is still an attractive one to
focus on, since it is intuitive, easy to calculate (in our model), and allows us
to map our findings into the large body of existing evidence that is based on
this parametric measure.

In this spirit, another empirically relevant thought experiment is to ask
how skewness varies with the return horizon. We begin by defining a scaled
measure of medium-horizon returns:

R, = (R, +R,)/V2. (23)

The measure is scaled so that, in the rational expectations benchmark, medium-
horizon returns have the same variance as short-horizon returns; this sort
of adjustment is necessary if we are to make meaningful comparisons of
skewness across horizons.!” With the definition in hand, we can establish the
following:

Proposition 4. For values of H/V > 1.84, E[R} | > E[R?]. That is, medium-
horizon skewness is less negative than short-horizon skewness when there are
sufficiently large differences of opinion.

This result is driven by the following simple logic. As we lengthen the
horizon over which returns are calculated, the potential for prices to move
very sharply downward in a short interval (between time 1 and time 2) carries
less weight, and therefore contributes less to negative skewness. Proposition 4
also squares nicely with the available evidence. For example, Bakshi, Cao,
and Chen (1997) and Derman (1999) find that the magnitude of the “smirk”
in S&P 500 index option implied volatilities—the extent to which implied
volatilities for out-of-the-money puts exceed those for out-of-the-money
calls—is a decreasing function of the maturity of the options. Thus the
options market is suggesting that negative return skewness in the S&P 500
index diminishes with the horizon over which returns are measured.

2.3.3 Trading volume and conditional skewness. Although we have not
emphasized it to this point, our model—like any model incorporating dif-
ferences of opinion—has straightforward implications for trading volume.'®
Simply put, when the heterogeneity parameter H is larger, there will tend
to be more turnover. But since the heterogeneity parameter also governs the
degree of skewness, we have a novel prediction about conditional skewness:
that higher trading volume is associated with more negative skewness.

7 Without the scaling, there would be a strong tendency for longer-horizon returns, due to their greater variance,
to have higher raw third moments.

"% See, for example, Harris and Raviv (1993), Kandel and Pearson (1995), and Odean (1998) for other models
where differences of opinion drive trading volume.
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To show more clearly why this is so, we consider a situation where
H > V. We continue to assume that, as of time 0, investors A and B have
no initial endowment of the stock. Now let us ask what cumulative trading
volume is at times 1 and 2.

First, observe that the only potential buyer at time 1 is B, since A has
not yet received his signal. But the assumption that H > V implies that
Sz < Py, so B never buys in equilibrium at time 1. Hence the only trade is
at time 2. At this time, if A has the higher valuation, trading volume will be
proportional to (S, — P,). Conversely, if B has the higher valuation, trading
volume will be proportional to (S; — P,). This logic can be used to show that
overall expected trading volume will be proportional to the expected value
of |S, — Sy|/2 (see the proof of Lemma 11 in the appendix). This is very
intuitive—trading volume arises to the extent that A’s and B’s signals differ
from one another.

In the appendix, we use this observation to prove

Lemma 11. For H >V, all trades take place at time 2, and expected trad-
ing volume is given by kE[|S, — Sg|/2] = kH /4, where k is a positive con-
stant.

The implications for conditional skewness follow immediately from the
lemma, since, as can be seen in Figure 2, E[R?] is monotonically decreasing
in H for H > V. Hence we have established

Proposition 5. For H >V, the degree of negative skewness in short-horizon
returns is increasing in trading volume.

Proposition 5 can in principle be tested quite directly, using either time-
series data on the aggregate market or data on individual stocks. Moreover, it
would appear to be particularly useful in constructing a sharp, out-of-sample
test of our theory. For while there are other models that can deliver negative
asymmetries in returns, we are not aware of any that link these negative
asymmetries to trading volume. We return to these issues in more detail
below.

2.4 Robustness issues

2.4.1 Investors A and B have equal probability of moving first. The
analysis thus far has assumed that the more bearish investor B moves first,
at time 1, while the more bullish investor A does not move until time 2. This
assumption is a natural way to highlight the intuition of our model, since
the model relies on information being hidden at time 1, and B’s information

This parametric restriction simplifies the analysis but is not strictly necessary for the results that follow.

Implicitly, we are assuming that A and B are not active in the market at time O and that prices at this time
are set (without any trading volume) by the arbitrageurs, who all agree on what the stock is worth ex ante.
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is more likely to be hidden, given that his valuations are on average lower
than A’s.

Nevertheless, it is important to make it clear that this asymmetric ordering
is not responsible for our main results. We have redone everything with an
alternative formulation of the model in which B moves first with probability
one-half and A moves first with probability one-half. Although we do not
present this analysis in detail here because it is very lengthy—it effectively
involves reworking every one of the preceding lemmas and propositions for
the case where A moves first—the bottom line is that none of our key con-
clusions is materially changed. (Details are available from the authors upon
request.) For example, Proposition 2 about big moves continues to go through
exactly as stated. And Proposition 3 is actually strengthened slightly: the con-
clusion is now that E[R?] < 0 for values of H/V > 1.30, whereas before, we
required H/V > 1.69 to generate negative skewness.

2.4.2 Alternative auction mechanisms. One concern about our model is
that the results seem to depend crucially on the form of the auction mech-
anism, which allows low signals to remain hidden. Although this particular
mechanism is attractive as a modeling device because of its simplicity and
tractability, there are alternative ways to generate the key feature of hidden
information at time 1.

For example, suppose that it is costly for investors to show up at the
auction in the first place. In this case, they will not want to show up if there
is no chance that they will wind up buying any stock. Now consider the
decision facing a B investor at time 1 who has drawn a relatively low signal
Sg. Given his priors on the distribution of §,, and his understanding of the
model, he may be able to anticipate that any market-clearing price P, would
certainly lie above Sy, regardless of what auction mechanism is used, and
regardless of how much of S is revealed in the process. Thus it will not be
worth it for him to attend the auction, and S, cannot possibly be revealed in
equilibrium, no matter how the auction is conducted.

2.4.3 Distributions other than the uniform. Clearly the assumption that
signals are uniformly distributed greatly simplifies the analysis. But to what
extent does it color our conclusions? Although we have not been able to
fully redo the model with alternative distributions, we offer the following
conjectures.

First, the nonparametric results for big moves summarized in Proposition 2
would seem to be robust and insensitive to the specific signal distribution
that is assumed. These results only rely on the most basic intuition from the
model—that more previously hidden information is revealed when bad news
comes out at time 2. As we have shown, these results already hold without
regard to the value of H.
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Second, the precise parametric results for skewness seen in, for example,
Proposition 3, are no doubt more likely to be influenced by distributional
assumptions—a clue to this is the sensitivity of skewness to the parameter
H. But our intuition suggests that many alternative distributions may actually
lead to more pronounced negative skewness. To see why, note that with
a uniform signal distribution, the only way to generate negative skewness
is through our endogenous information revelation effect—previously hidden
information has to be forced out by the arrival of other bad news. In contrast,
if previously hidden information simply comes out through, say, an earnings
announcement, there will be no skewness, because a truncated uniform is
still uniform and hence symmetric.?!

If signals were instead normally distributed, it seems that there would be
more potential for negative skewness. In particular, consider what would hap-
pen if S were hidden at time 1, and did not come out at time 2, because there
was a high draw of §,. Now returns at time 3 would be negatively skewed
because the conditional distribution of Sy—given that it is a normal trun-
cated from above—is left-skewed. Although obviously far from a complete
treatment, this discussion suggests that, by assuming uniformly distributed
signals, our model is actually conservative, in the sense that it has a harder
time generating negative skewness than it otherwise might.

. Multiple Stocks and Contagion

As discussed in the introduction, there is evidence that individual stocks
become more highly correlated with one another during market declines.
This effect might be seen as indicative of a form of “contagion.” We now
discuss two variations on our model which illustrate how such an effect might
arise.

3.1 Differences of opinion about the market factor

One very easy way to generate increased cross-stock correlations in a market
downturn is simply to argue that the returns on the market portfolio itself
are, for some reason, negatively skewed. To be more precise, suppose that
there are a large number of stocks and that the return on any given stock i
obeys a one-factor structure:

Ri=Ry+7Z, (24)

where R; is the return on stock i, R,, is the mean-zero return on the market
factor, and Z, is a mean-zero idiosyncratic component that is independently
and identically distributed across all stocks and independent of R,,.

This is why the distribution of the third-period return R; is always symmetric in our model. This feature
distinguishes our model from Diamond and Verrecchia (1987), where returns around earnings announcements
can be negatively skewed.
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For a given realization of R, we define ;; to be the average value (across
all pairs of stocks) of the sample estimator of the covariance between the
returns on any two stocks i and j:

&, = E[RR,|R,]. (25)

Similarly we define p;; as the average value of the sample estimator of the
correlation between the returns on any two stocks i and j,

5 FIRRIR] 6

T JEIRIREIR R, ]

Note that both 6;; and p;; are random variables that depend on the realization
of R,,.
In the appendix, we show that

Proposition 6. If the return on the market factor is negatively skewed,
E[R};] <O, then (i) cov(G;, Ry) <0, and (ii) cov(p;, Ry) < 0.

The logic is straightforward. Conditional on a large movement in the mar-
ket factor, individual stock returns are highly correlated—this is true even
if the market factor is symmetrically distributed. But if the market factor is
negatively skewed, then a large movement in it is more likely to occur on a
decline. So on average, declines in the market factor correspond to increased
values of &; and p;;.

Therefore, if one assumes that the market factor is itself a traded asset,
and that our model can be applied directly to it, the result about increased
cross-stock correlations in a downturn will follow (at short horizons) so long
as there are sufficient differences of opinion about the market factor that the
conditions of Proposition 3 apply. In other words, if for the market factor, we
have that H/V > 1.69, then the market factor will exhibit negative skewness
at short horizons, and cross-stock correlations will covary negatively with
market returns.

3.2 Idiosyncratic shocks to stock i spill over to stock j

In the preceding setup, “contagion” arises through shocks to the market fac-
tor. That is, when there is a large drop in the market factor, all stocks tend
to fall together. Although this approach is adequate for fitting the empirical
facts about increased correlations in downturns, it may not quite capture the
economic intuition that many people have about contagion. In this regard,
perhaps a sharper definition of contagion is the idea that when there is bad
firm-specific news about one stock i at some time ¢, this causes a decline
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in the price of another stock j, even though the time 7 news has absolutely
nothing to do with stock j’s own fundamentals.?

To capture this idea, we consider an extension of our model where there
are two stocks. Each stock has its own groups of investors, A; and B; for
stock i, and analogously for stock j. Each stock also has its own group of
arbitrageurs. To keep things simple we focus on the polar case where for
both stocks H =2V.

The information structure is as follows. At time 1, investor B; observes
Sp.;» and at time 2, investor A; observes S, ; (and analogously for stock j).
The terminal dividends on the stocks are given by

D, = (SA,i +SB,i)/2+€i7 (27)
Dj:(SA,j+SB,j)/2+€j, (28)

where cov(Sy ;, Sp ;) =cov(S, ;» S4 ;) > 0. Thus the signals of the B investors
are correlated with one another, as are the signals of the A investors. This
can be thought of as reflecting the existence of common components across
stocks i and j.?

The pricing of the two stocks proceeds as follows. First, note that because
we have assumed that H =2V, by Lemma 2, no information at all comes
out for either stock at time 1—both Sy ; and Sy ; remain completely hidden
at this time. Next, at time 2, we assume that the markets for the two stocks
are momentarily segmented. That is, the auction mechanisms for the two are
run separately. Thus the auction for stock i at time 2 only involves investors
A; and B;. This implies that prices at time 2 are given exactly as in Lemmas
5-8, with the appropriate i and j subscripts.

However, right after the individual markets clear in segmented fashion at
time 2, we insert another date, which we call time 2+, at which point we
allow the arbitrageurs to look at prices in both markets simultaneously, in
order to update their estimates. Thus for example, if Sj ; is fully revealed in
the stock i auction at time 2, it does not appear in the price of stock j at
time 2, but it does immediately afterward, at time 2+.%*

It should now be apparent how there can be contagion in this framework.
Suppose that at time 2, there is no news about stock j—that is, S, ; stays
just at its prior value of (V 4+ H)—but there is bad firm-specific news about

2 This sharper definition appears in many accounts of emerging markets crises, where the puzzle posed often
goes something like this: Why is it that bad news that would seem to be specifically about the Russian
economy not only devastates the Russian stock market but somehow leads to a drop in the Brazilian market
as well? See, for example, Kodres and Pritsker (2002) for a recent treatment and references to related work.

» As will become clear, only the asumption that cov(Sp, ;> Sp, ;) > 0 is needed for our results. The value of
cov(Sy4,;» Sa, ;) is not relevant; we just set it equal to cov(Sg ;, Sp ;) for symmetry.

?* The momentary segmentation of the two markets before we allow full information sharing at time 2+ is just
a modeling trick. We do it so as to keep the auctions for the two stocks separate, which greatly simplifies the
analysis of equilibrium in terms of cutoff levels, etc. Indeed, it allows us to use all our earlier results from
Lemmas 5-8 without any modification.
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stock i, in the form of a low realization of S, ;. Initially, in the segmented
time 2 auctions, the price of stock j is unchanged. However, the price of
stock i falls, and previously hidden information about Sy ; is revealed, for
exactly the same reasons as in the one-stock case. When we allow for infor-
mation sharing at time 2+, this new information on Sy ; causes investors in
stock j to revise their estimates of Sy ;, given that cov(Sy ;, Sy ;) > 0. So,
remarkably, the price of stock j moves even though there is absolutely no
contemporaneous news about its own fundamentals. This in turn induces a
correlation between the two stocks at a time when stock i is falling.

As a consequence, this setup also delivers increased comovements during
market declines. To be specific, we define the price of stock i at time 2+ as

P, ,,, and the corresponding two-period returns:*

R; = (Pi,2+ - Pi,O)? (29)
Ry = (R, +R;)/2. (30)

Here R,, is the return on a “market portfolio” that is an equal-weighted
combination of stocks i and j. In addition, we define 6,-J- to be the sample
estimator of the covariance between the returns on stocks i and j:

&, =RR,. 31)

Note that now &;; is a random variable that depends on the realizations of
both R; and R;.
We prove in the appendix that

Proposition 7. The covariance estimator for stocks i and j covaries nega-

tively with the return on the market portfolio: cov(d;;, Ry) < 0.

. Empirical Implications

Throughout the article we have attempted to argue that our model does a par-
simonious job of fitting a range of existing empirical facts about asymmetries
in return distributions, large price movements, etc. But of course, any theory
is more attractive if it also offers some novel, as-yet-untested predictions,
and thereby puts itself at risk of being rejected in the data.

We believe that Proposition 5—which says that high trading volume should
be associated with more negative skewness—may be particularly useful in
this regard. Indeed, in work that was initiated after the first draft of this article
was completed [Chen, Hong, and Stein (2001)], we conduct a series of cross-
sectional tests that are motivated by Proposition 5. We begin by constructing

* Note that it is no longer meaningful to distinguish between one- and two-period returns, since given our
simplifying assumption that H = 2V, prices do not change at time 1.
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for individual firms a measure of the realized skewness of their daily returns,
using six months of data at a time. We then try to forecast this skewness
variable, using only prior information. For example, we would try to forecast
the realized daily skewness for a given firm over the period January 1, 1999 to
June 30, 1999, using information about that firm available prior to January 1.
One of the variables that we use to do this forecast is the firm’s detrended
turnover from the previous six months (July 1, 1998-December 31, 1998,
in this example). As it turns out, when turnover is high relative to trend,
our estimates suggest that subsequent skewness is in fact more negative.
Moreover, across a variety of specifications, the coefficients on turnover are
strongly statistically significant, as well as economically meaningful.?

While the cross-sectional results in Chen, Hong, and Stein (2001) are sup-
portive of the theory, we also document other pieces of evidence that, on
the face of it, appear harder to reconcile with our model. Most notably, the
average skewness of daily returns for individual stocks is positive, in marked
contrast to the significant negative skewness in the returns of the market
portfolio. Although our model admits both positive and negative values of
skewness (depending on the heterogeneity parameter H), it would be a bit
of a stretch to claim that it can explain why individual stocks are positively
skewed, since there is no clear basis for assuming that there is less het-
erogeneity of opinion about individual stocks than about the market as a
whole.”’

In Chen, Hong, and Stein (2001), we appeal to factors outside of the cur-
rent model to explain the positive skewness in individual stocks. In particular,
we develop a “discretionary disclosure” hypothesis in which a manager sit-
ting on a large chunk of good news releases it to the public immediately,
but a manager sitting on bad news only allows this bad news to dribble out
slowly. Such a pattern of information revelation will tend to impart a degree
of positive skewness to individual stock returns, but will—if the managed
news is idiosyncratic—have no effect on the skewness of the market port-
folio. In support of this hypothesis, we show that positive skewness is most
pronounced in small stocks, and, controlling for size, in stocks with low
analyst coverage. To the extent that it is easier for the managers of small,
low-coverage firms to conceal information from the market, this is exactly
what one would predict based on the premise of discretionary disclosure.

Overall, this discussion suggests the following conclusions. On the one
hand, the model in this article seems to do a good job of fitting the stylized

% A recent article by Dennis and Mayhew (2002), though it has a quite different motivation, also produces
evidence that bears on our hypothesis. Dennis and Mayhew develop, for individual stocks, a measure of
implied skewness based on options prices. They then regress this implied skewness measure against a variety
of firm-level characteristics. One finding is that, controlling for size, options-implied negative skewness is
more pronounced for high-turnover firms.

" Moreover, one might argue that our model predicts more negative skewness for individual stocks than for the
market, to the extent that the former are harder to short, either due to direct transactions costs of shorting or
to institutional restrictions.
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facts about the aggregate market sketched in the introduction. It also seems
to be helpful in explaining the cross section of skewness in individual stocks.
On the other hand, the model, as it currently stands, does not provide a good
story for the average level of skewness in individual stocks. If it is to do so,
it will likely have to be extended, perhaps along the lines of our informal
discretionary disclosure hypothesis.

. Related Work

In this section we discuss the link between our theory and previous work
that also focuses on either large price movements or return asymmetries. We
divide this other work into three broad categories: (1) rational models with
incomplete information aggregation; (2) volatility feedback models; and (3)
behavioral stories.

5.1 Rational models with incomplete information aggregation

One important class of theories shows how there can be large movements in
asset prices in the absence of external news about fundamentals, even when
all market participants are fully rational. Notable articles include Grossman
(1988), Gennotte and Leland (1990), Jacklin, Kleidon, and Pfleiderer (1992),
and Romer (1993).% All these articles share a common theme: investors are
initially imperfectly informed about some important variable, which is not
revealed to them in prices. However, the process of trading may eventually
cause this information to come out, at which time prices can change sharply,
even if no external news has arrived.

Although our model incorporates some less than fully rational agents, it
clearly draws heavily on the basic insights from this earlier work, particu-
larly Romer (1993). Romer’s model has the feature that traders start out not
knowing the precision of each others’ information. As shocks arrive, they
update their estimates of this precision, which can be given the interpretation
that each trader is learning about the elasticity of demand of other traders.
This is broadly analogous to our idea of the arbitrageurs learning about the
extent of “buying support” from investor B as investor A bails out of the
market.

In spite of the similarities, however, there is one crucial distinction between
our model and these others: ours is fundamentally asymmetric, producing
larger downward price movements than upward ones. In contrast, all the
logic in Romer (1993) is totally symmetric, so large up and down moves

% See Kleidon (1995) for a detailed review of this branch of the literature and further references.
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are equally likely.”” Somewhat more subtly, while the models of Gross-
man (1988), Gennotte and Leland (1990), and Jacklin, Kleidon, and Pflei-
derer (1992) have been used specifically to explain the stock market crash
of October 1987, this argument entails the additional assumption that market
participants systematically underestimated the extent of portfolio insurance
that was in place prior to the crash. While such a “one-bad-draw” type of
assumption may be a perfectly reasonable way to rationalize a single given
event, it is hard to use these sorts of models if the goal is to explain a perva-
sive tendency of markets to melt down, rather than melt up. In other words,
if one runs these models over repeatedly, on average traders should be just as
likely to overestimate as to underestimate the extent of portfolio insurance,
so the long-run distribution should show just as many big up moves as big
down moves.*

5.2 Volatility feedback models

Unlike the incomplete information aggregation theories, the volatility feed-
back literature, which includes Pindyck (1984), French, Schwert, and Stam-
baugh (1987), and Campbell and Hentschel (1992), is all about asymmetries
in returns. The basic idea is a simple one. When a large piece of news arrives,
this signals that market volatility has gone up. Assuming that market volatil-
ity commands a risk premium, the positive effect of a large piece of good
news is damped, as the increased risk premium effect partially offsets the
direct good news effect. Conversely the negative effect of a large piece of
bad news is amplified. The result is that even if the process driving news is
symmetric, returns—particularly the returns on the market portfolio—will be
negatively skewed.

One important difference between our approach and the volatility feedback
models is that they are set in a representative agent framework, and hence
are completely silent on trading volume, while our focus on differences of
opinion leads very naturally to a linkage between volume and the conditional
intensity of negative skewness. Moreover, from the perspective of our interest
in crashes, a weakness of the volatility feedback class of models is that, like
any rational model with perfect information, they require very large doses of
external public news if they are to generate very large price movements.’!

¥ A recent article that extends Romer (1993) is Cao, Coval, and Hirshleifer (2002). Their model can produce
certain conditional patterns in skewness—that is, negative skewness after price increases, and positive skew-
ness after price declines. However, it appears that, like in Romer’s model, there is no unconditional skewness,
and hence no prediction that large down moves are ex ante more likely than large up moves.

% A similar observation can be made about other, more microstructure-oriented accounts of the October 1987
crash, including those in the Brady Report (1988) or Greenwald and Stein (1991). These accounts emphasize
how unusually large selling volume overwhelmed market-making capacity, thereby exacerbating the decline
in prices. But their inherently symmetric logic would seem to suggest that if there were ever comparable
buying volume, one should get an equal-sized increase in prices.

3! The same can be said of the “leverage effects” analyzed by Black (1976), Christie (1982), and Schwert
(1989): they can clearly create asymmetries, but they cannot deliver price changes that are out of proportion
to contemporaneous public news.
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Thus these models may be more helpful in thinking about skewness in “typ-
ical” stock returns, as opposed to rare tail events; certainly this has been
the focus of the empirical literature that has adopted the volatility feeback
approach.*?

So to give an oversimplified summary, the incomplete information aggre-
gation models and the volatility feedback models each get at some of the
elements of our definition of a crash. But none get at all the elements
simultaneously. The incomplete information aggregation models are good
for producing big price movements without big news, but not for delivering
asymmetries. Conversely, the volatility feedback models generate asymme-
tries, but they do not leave open a role for trading volume. Nor is it clear that
they are helpful for thinking about really dramatic price changes, particularly
if these price changes occur in the absence of equally dramatic news.

5.3 Behavioral stories

It is often argued informally that stock market crashes should be thought
of as evidence against traditional, fully rational models of asset pricing. For
example, Shleifer and Summers (1990:19) write: “the stock in the efficient
markets hypothesis. . . crashed along with the rest of the market on October
19, 1987.” While this sentiment may well be on target, it strikes us as some-
what ironic that the behavioral finance literature has not really made much
progress in understanding crashes; indeed, in our view, not nearly as much
as the above-discussed line of work on incomplete information aggregation.

A standard behavioral interpretation of a market crash is that it represents a
sudden, radical shift in investor sentiment; in the words of Shiller (1989:1), a
crash is a time when “the investing public en masse capriciously changes its
mind.” But, as with the more rational theories, this explanation again leaves
unanswered the question of asymmetries: why is it that the biggest capricious
changes in sentiment are negative, rather than positive changes? Perhaps one
might argue that fear and panic are more powerful emotions than optimism
and euphoria, but this strikes us as an unsatisfying rationalization.*

In contrast, one of the key selling points of our theory is that one can start
with a symmetric driving process for investors’ beliefs and still—with the
help of the short-sales constraint—generate asymmetries in returns. Certainly
one can, in the spirit of Shiller, think of the signals in our model as containing
an element of capricious investor sentiment. But now we can say that even if
investor A is as likely to become overoptimistic as overpessimistic at time 2,
the market is more likely to melt down than to melt up at this time.

2 A related point, due to Poterba and Summers (1986), is that the quantitative significance of the volatility

feedback effect is likely to be small, since shocks to market volatility are not very persistent.

° As an alternative to investor sentiment stories, there are also rational bubble models of the sort described by

Blanchard and Watson (1982). The popping of a stochastic bubble can be interpreted as a market crash, and
it satisfies our criteria in terms of being both a big move in the absence of news, as well as an inherently
asymmetric phenomenon. However, bubble models have not fared well empirically [West (1988), Flood and
Hodrick (1990)]. Moreover, they have the unattractive feature that the crash, when it occurs, is based on the
realization of an extrinsic “sunspot,” and hence cannot be explained within the context of the model.
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6. Conclusion

The model in this article is meant to capture a simple—and we believe
important—piece of intuition about the effect of short-sales constraints on
stock prices: the private information of those relatively bearish investors who
are initially sidelined by the short-sales constraint is more likely to be flushed
out through the trading process when the market is falling, as opposed to ris-
ing. As we have argued, this mechanism can help shed light on a variety of
stylized facts, including: (1) large movements in prices that are not accompa-
nied by significant contemporaneous news about fundamentals; (2) negative
skewness in the distribution of market returns; and (3) increased correlation
among stocks in a falling market.

In addition to rationalizing these existing pieces of evidence, the model
also makes a distinctive new out-of-sample prediction, that negative skewness
will be most pronounced conditional on high trading volume. Recent work
reported in Chen, Hong, and Stein (2001) lends support to this prediction. At
the same time, this empirical work also makes it clear that the current version
of the model cannot easily come to grips with all of the relevant facts about
asymmetries in returns: while the model seems to do a good job of explaining
cross-sectional variation in skewness at the firm level (skewness is more
negative in firms that have recently experienced increases in trading volume)
it has a hard time with the fact that on average, skewness in individual-
firm returns is positive. In order to square with this last fact, the model will
most likely have to be extended, possibly by incorporating the notion that
managers have some control over the rate at which information is disclosed
to the market, and that they are less inclined to let bad news get out promptly.

This article can be seen as part of a recent resurgence of theoretical and
empirical interest in the general topic of how short-sales constraints shape
stock prices. A prominent theme in much of this new work is the interplay
of short-sales constraints, less than fully rational investors, and more ratio-
nal arbitrageurs.*® This work is also beginning to suggest that short-sales
constraints may play a bigger role than one might have guessed based on
just the direct transactions costs associated with shorting. Although these
direct transactions costs can be substantial in a minority of cases [D’Avolio
(2002), Geczy, Musto, and Reed (2002), Lamont and Jones (2002)], short-
ing is also meaningfully constrained by other factors, including institutional
restrictions (as in the case of many mutual funds), and possibly some less-
well-understood behavioral biases. Unfortunately our understanding of these
nonstandard constraints is still very sketchy. There remains much to be done,
both in terms of developing a fuller understanding of why so many investors
behave as if they were facing prohibitive shorting costs, and of exploring the
consequences of such behavior for stock prices.

** See, for example, Chen, Hong, and Stein (2002), D’ Avolio (2002), Geczy, Musto, and Reed (2002), Lamont
and Jones (2002), Ofek and Richardson (2003), and Diether, Malloy, and Scherbina (2002).
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Appendix A: Proofs of Lemmas

Proof of Lemma 1.  Since S, is uniform on [0, 2V], the risk-neutral arbitrageurs’ forecast of
S given that investor B has not submitted an order at trial price p, is given by
E[SplSs < pil=p1/2 (A1)
hence the risk-neutral arbitrageurs’ estimate of the terminal value of the asset is
E[D|Ss = pl=(V+H)/2+p, /4 (A2)
For any p, > S}, it is easy to show that E[D|S,; < p,]—p, <0 and so the auctioneer lowers p,
as long as investor B does not submit an order. But since S; > S}, then it follows that S, will
be revealed for a low enough p,. Hence,
P =(V+H)/2+S;/2 (A3)
will be the equilibrium price.
Proof of Lemma 2.  Suppose S; < S;. Then for all trial prices p,, where p, > Sj, it follows
that S; — p, <0 and investor B never reveals his information. At p, = S}, the arbitrageurs’
expectation of the stock’s terminal value,
E[D|p, = $3]=(V+H)/2+S;/4, (A4)
equals the prevailing trial price and so the market clears at

P =(V+H)/2+S5/4=2(V+H)/3, (A.5)

before investor B ever gets into the market. The ex ante probability of winding up in the pooling
equilibrium is just

$3/2V)=(V+H)/(3V), (A.6)

the probability that S, < Sj.

Proof of Lemma 3. Since S, is uniform on [H, 2V + H], the risk-neutral arbitrageurs’ forecast
of S, given that investor A has not submitted an order at trial price p, is

E[$4184 = p2] = (H+p,)/2; (A7)
hence the risk-neutral arbitrageurs’ estimate of the terminal value of the asset is
E[DIS, < pa] = (H + py) /4+S,y/2. (A8)
For any p, > %, it is easy to show that E[D|S, < p,] — p, <0 and so the auctioneer lowers p,
as long as investor A does not submit an order. But since S, > S, then it follows that S, will
be revealed for a low enough p,. Hence,

P, =S,/245,/2 (A.9)

will be the equilibrium price.
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Proof of Lemma 4. Suppose S, < 7. Then for all trial prices p,, where p, > S}, it follows
that S, —p, <0 and investor A never reveals his information. At p, = S%, the arbitrageurs’
expectation of the stock’s terminal value,

E[D|p, =S| = (H+5})/4+5,/2, (A.10)
equals the prevailing trial price and so the market clears at
P,=(H+S3)/4+S;/2=2S;+H)/3 (A.11)

before investor A ever gets into the market.

Proof of Lemma 5. 'We know that no new information regarding investor B’s valuation arrives
at t+ =2 and (from Lemma 2) S was hidden at equilibrium price

P, =(V+H)/2+5;/4. (A.12)

If S, > (V+H), then it follows that S, — p, > 0 for some p, > P, and hence S, will be revealed
for some p, > P,. So,

P,=S,/2+8;/4=S,/2+(V+H)/6 (A.13)

will be the equilibrium price, and the market clears before any new information on S, can be
revealed.

Proof of Lemma 6. Since S; < S3*, where S3* =25,/3, it follows that S, will be revealed
before S; during the auction. Given that S, has been revealed, the risk-neutral arbitrageurs’
estimate of the terminal value of the asset at trial price p, is

E[D|Sp < p,] = 84/2+ p2/4- (A.14)

Since S, < S}, then for all trial prices p,, where p, > S}, it follows that S; —p, <0 and

investor B never reveals his information. At p, = S}*, the arbitrageurs’ expectation of the stock’s
terminal value,

E[D|p, =S5"1=S,/2+ S5 /4, (A.15)
equals the prevailing trial price and so the market clears at
P,=S,/2+S8;/4=25,/3 (A.16)

before investor B ever gets into the market.

Proof of Lemma 7. 1t is easy to verify that if S, < S% and S; > H (given that S, < S}), then
S, < Sp. Hence S;; will be revealed before S,. Given that S, has been revealed, the risk-neutral
arbitrageurs’ estimate of the terminal value of the asset at trial price p, is

E[DI|S, < py]=(H +p,) /44 S5/2. (A.17)
Since S, < S}, then for all trial prices p,, where p, > S%, it follows that S, —p, <0 and
investor A never reveals his information. At p, = S, the arbitrageurs’ expectation of the stock’s

terminal value,

E[DIp, = $3]=(H +S},)/4+55/2, (A.18)
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equals the prevailing trial price and so the market clears at
P,=(H+S53)/4+S;/2=(2S;+H)/3 (A.19)

before investor A ever gets into the market.

Proof of Lemma 8. It is easy to verify from Figure 1 that the only parameter region that
remains is the case where 2(V + H)/3 > S; > 2H /3 and for a fixed realization of Sg, S, €
(2S5 +H)/3, 355/2). In this parameter region, S, and S, are not too far apart and S, is not
too small, so both values are revealed in the auction process. More precisely, the conditions
required for either one to remain hidden—as established in the previous lemmas—cannot be
established. So,

Py =8,/2+85/2 (A.20)

is the equilibrium price.

Proof of Lemma 9. Let Py=V + H/2. Then
E[R)] = E[R}|Sy > S;]Pr(Sy > S3) + E[R}|S; < S3]Pr(S, < Sp). (A21)
Then from the fact that S, is uniform on [0, 2V],

1| 2 (V+H+y } Sk 3
371 _ *__
EIR)) = 5 [ /Sg <72 P0> dy+ fﬂ (S3—P) dy|. (A22)

It can be shown that

(H=2V)(H+V)?

E[R}] =
(Ri] 648V

(A23)

Since H <2V, it follows that VH and V, E[R}] > 0.

Proof of Lemma 10.  First, we calculate E[R3] conditional on being in Case 1, in which Sy is
revealed at t = 1, that is, S; > Sj. For convenience, let x = S, and y = §;. Under Case 1, the
price is simply P, = (V+H)/2+y/2. Then

1 1
(2V—=S;) 2V

v [ 2 3 VAH 3
y+H x+y
X/S [/H ( . —Pl> dx + 2yiﬂ( 5 7P1> dx |dy. (A24)

E[R} | Case 1] =

/]
Since S, and S, are independent and uniformly distributed, we have that

(H —2V)*(121H +208V)
262440V ‘

E[R} | Case 1] = (A.25)
Here, since H <2V, it follows that E[R3|Case 1] > 0.

Now, we calculate E[R3] conditional on being in Case 2, in which Sy is hidden at ¢ = 1, that
is, Sy < 8. Under Case 2, the price is simply P, = S;. We will calculate

L i E (A.26)

E[R} | Case 2] = —
[R; | Case 2] 5; 2V 2
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where E! is given by

3 WVHH (x Dx/3 3 WH (x V4 H
E'= - —P | d —+———P ) dx|dy; A27
/0 [/H <2+ : 1) o+ (2+ ; ) x} v (A27)

E? is given by

H 7> V+H 2x/3 3
e=[1f (Hy—P]) dx+ <f+ ull —Pl) dx
213 H 2 2 4
WiH [y V4 H 3
+ / (§+T—Pl) dxi| dy; (A.28)
VAH
and E? is given by
siT 281 o0y 3 3
532/”[/ : (” —Pl) e+ [ (x+y—P1) dx
H | 3 i 2

VHH (x 2x/3 3 WiH (y V4 H 3
= —-P | d —+———P, | dx|dy. A29
+ 3 <2+ 1 ,) X+ . <2+ 6 ) x [dy. ( )

Since S, and Sy are independent and uniformly distributed, we have that

—70H*V —935H3V? +5515H*V? +9065HV* +2935V?

E[R] | Case 2] = — A.30
[R, | Case 2] 1049760V (H + V) (A.30)
Without loss of generality, let H = aV, where a € [0, 2], that is, « = H/V. Let
E[R}|C 2
fle)= ElR; | Case 2] (A31)

V3
Note that f(0) = —587/209952 and f(2) = —143/1296, where f(0) < f(2). Furthermore,

5 6130+ 11030 + 271002 — 21500° — 1750 +280°
Fla)=— . : (A32)
1049760(1 + a)

It is easy to show that Va, f'(a) < 0. Note also that max f'(a) = —41/19440 and
argmax f'(a) = 2. Hence, V H € [0, 2V], E[R; | Case 2] < 0; moreover, E[R} | Case 2] decreases
monotonically with H/V.

Since the probability of being in Case 1 is (2V —S};)/2V and the probability of being in
Case 2 is S;/2V, it follows that

(2V S)

S*
E[R}] = E[R] | Case 1]-———=—2 +E[R] | Case 2]%. (A.33)

Simplifying, we have

53H° —330H*V +655H°V? — 115H?V?® —3105HV* 4+ 1153V?

E[R}] =
(R.] 349920V2

(A.34)
Let

g(@) = E[R]/V°. (A35)
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Note that g(0) = 1153/349920 and g(2) = —143/12960. Furthermore,

_ —3105-230a + 196502 — 13200 +265a*

g(@) 349920

(A.36)

It is easy to show that V e, g’(«) < 0 since max g'(a) = —5/864 and argmax g’'(a) = 2. Moreover,
E[R3] =0 for H/V ~ .3756. Hence, E[R3] monotonically decreases with H/V and is negative
for H/V > .3756.

Proof of Lemma 11. We have already observed that for H > V, there is no trade at time 1.
Thus total trading volume will be equivalent to the long position of whichever investor (A or B)
has the higher valuation at time 2, that is, volume will be proportional to (S, — P,) if S, > S,
and to (S; — P,) if Sz > S,.

Next, observe that when S, > S, we can rewrite P, = S, /2+§B /2, where 3‘;/2 is the
arbitrageurs’ estimate of S (whether it is fully revealed or not). Thus when S, > S, volume is
proportional to (S, /273\3 /2). Conversely, when S, > S,, volume is proportional to (S,/2 —
S,/2).

Applying the law of iterated expectations, when S, > S, ex ante expected volume is propor-
tional to E[SA/2—§B/2] = E[S,/2—S;/2]. Similarly, when S > S, ex ante expected volume
is proportional to E[S;/2 — §A/2] = E[S;/2—S,/2]. Combining terms, we can write overall
ex ante expected volume as E[|S,/2 — S/2|] as in the text.

Now it is straightforward to evaluate E[|S,/2 — S,/2|] by integrating over the distributions
of S, and S,. Performing this integration, we find that E[|S,/2 — S;/2|] = H/4. So ex ante
expected trading volume equals kH /4, as stated in the lemma.

Appendix B: Proofs of Propositions

Proof of Proposition 1. Since Sy and S, are symmetrically distributed (with the same variance)
and are fully revealed at time 1 and 2, respectively, the fact that prices are efficient means that
returns are symmetrically distributed and homoscedastic.

Proof of Proposition 2. This follows easily from the calculations provided in Section 2.3.1 of
the text.

Proof of Proposition 3. From Equations (A.23) and (A.34), we have that

_ 2233V° —405HV* +1505H*V? + 115HV? —870H*V + 53H?

E[R} A.37
[R] 699840V2 (A-37)
Then let
E[R]]
h(a) = v (A.38)

Note that /(0) =223/699840, h(2) = —143/25920, and h(1.691) = 0. Using similar arguments
to those in Lemma 10, it is not hard to show that for H/V > 1.691, E[R?] < 0.

Proof of Proposition 4.  'We now calculate the medium-horizon skewness E[R?]. Using the
same arguments as in Lemmas 9 and 10, we have

—8V5 4+ 145HV* —30H2V? + 40H3V? — 50H*V + H®
51840+/2 '

E[R)] = (A39)
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From Equations (A.37) and (A.39), we can define the difference between the short-horizon and
the medium-horizon skewness as

_ E[R]-E[R})]

A Vs

. (A.40)
It is not hard to show that Va > 1.834, A < 0. So for sufficiently large values of H/V, there is
less negative skewness in medium-horizon returns than in short-horizon returns.

Proof of Proposition 6. 'We will present the proof for j,;; the proof for &;; is a simpler variation
on the same argument. Recall our definition of g;:

E|R,R;|R
5o EIRRIR (a41)
VEIR IR, JEIR R, ]
Since R; = R, + Z,, it follows that
R
I —" A42
b= R ol (A.42)
where o7} is the variance of the Z,;’s. Then observe that
1 R?
——=—-X_1 (A.43)
pi;—1 0z
So we have
1 R} E[R;
E[%RM]:E[——’;’—RM]:— [ZM] >0, (A44)
py—1 oz 0z
since E[R3,] <0 by assumption. It follows then that
E[p;Ry] <0, (A45)
since
9 1
f( = > <0. (A.46)
apij Pij — 1
Proof of Proposition 7. We first define some simplifying notations. Let
Spi= Ez+[ss,k] (AA4T)

be the conditional expectation of Sy, at time ¢ = 2+ for k =i, j. Then define the operator 4,
applied to a random variable X, as

86X = X — E,[X]. (A.48)
We can then rewrite
1 ~
R, = E(SSAJ + SSB,i)’
1 ~
R, = 5(5SA,,'+8SB,1‘)» (A.49)

1 ~ _~
Ry = Z(SSA,I-—O-SSM +688p;+08S; ).
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Using the expressions for R;, R;, and R, given in Equation (A.49), we can expand E[R;R;R,,].
Dropping terms that are equal to zero, we have

1 - A
E[RR;Ry] = EE[SSAJ(SSBJ)-+8SA,1’(SSB./)2
428,85, 08, ,+25S, 88, 85, ] (A.50)

We already know from the one-asset version of our model that E[BSA',((SS\BV,()Z] <O0fork=i,j.
Given the further assumptions that cov(Sy ;, S ;) > 0, and that the S,’s and S,’s are independent,
it must be that

5§B,i = kas‘\&j +m; (A51)

(and vice versa), where k > 0 and 7, is independent of S, ; and S, ;. It then follows that the
expectation of each of the terms of Equation (A.50) is negative, so E[R,R;R] <O0.
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