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The Fed, the Bond Market, and Gradualism
in Monetary Policy

JEREMY C. STEIN and ADI SUNDERAM∗

ABSTRACT

We develop a model of monetary policy with two key features: the central bank has
private information about its long-run target rate and is averse to bond market volatil-
ity. In this setting, the central bank gradually impounds changes in its target into
the policy rate. Such gradualism represents an attempt to not spook the bond mar-
ket. However, this effort is partially undone in equilibrium, as markets rationally
react more to a given move when the central bank moves more gradually. This time-
consistency problem means that society would be better off if the central bank cared
less about the bond market.

FED WATCHING IS SERIOUS BUSINESS for bond market investors and for the finan-
cial market press that serves these investors. Speeches and policy statements
by Federal Reserve officials are dissected word by word for clues they might
yield about the future direction of policy. Moreover, the interplay between the
central bank and the market goes in two directions: not only is the market
keenly interested in making inferences about the Fed’s reaction function, the
Fed also takes active steps to learn what market participants think the Fed is
thinking. In particular, before every Federal Open Market Committee (FOMC)
meeting, the Federal Reserve Bank of New York performs a detailed survey
of primary dealers, asking such questions as “Of the possible outcomes below,
provide the percent chance you attach to the timing of the first increase in the
federal funds target rate or range. Also, provide your estimate for the most
likely meeting for the first increase.”1

In this paper, we build a model that aims to capture the main elements
of this two-way interaction between the Fed and the bond market. The two
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distinguishing features of the model are that (i) the Fed has private information
about its preferred value of the target rate and (ii) the Fed is averse to bond
market volatility. These assumptions yield a number of positive and normative
implications for the term structure of interest rates and the conduct of monetary
policy. For the sake of concreteness, and to highlight the model’s empirical
content, we focus most of our attention on the well-known phenomenon of
gradualism in monetary policy.

As described by Bernanke (2004), gradualism is the idea that “the Federal
Reserve tends to adjust interest rates incrementally, in a series of small or
moderate steps in the same direction.” This behavior can be represented em-
pirically by an inertial Taylor rule, with the current level of the federal funds
rate modeled as a weighted average of a target rate—which itself is a function
of inflation and the output gap as in, for example, Taylor (1993)—and the lagged
value of the funds rate. In this specification, the coefficient on the lagged funds
rate captures the degree of inertia in policy. In recent U.S. samples, estimates
of the degree of inertia are strikingly high, on the order of 0.85 in quarterly
data.2

Several authors have proposed theories of this kind of gradualism on the part
of the central bank. One influential line of thinking, due originally to Brainard
(1967) and refined by Sack (1998), is that moving gradually makes sense when
there is uncertainty about how the economy will respond to a change in the
stance of policy. An alternative rationale, proposed by Woodford (2003), argues
that committing to move gradually gives the central bank more leverage over
long-term rates for a given change in the short rate, a property that is desirable
in the context of his model.

In what follows, we offer a different take on gradualism. In our model, the
observed degree of policy inertia is not optimal from an ex ante perspective,
but rather reflects a time-consistency problem. This time-consistency problem
arises from our two key assumptions. First, we assume the Fed has private
information about its preferred value of the target rate. In other words, the
Fed knows something about its reaction function that the market does not.
Although this assumption is not standard in the literature on monetary policy,
it is necessary to explain the basic observation that financial markets respond
to monetary policy announcements, and that market participants devote con-
siderable time and energy to Fed watching.3 Notably, our basic results depend
only on the Fed having a small amount of private information. The majority of
the variation in the Fed’s target can come from changes in publicly observed
variables such as unemployment and inflation. All that we require is that some
variation also reflects innovations to the Fed’s private information.

2 Coibion and Gorodnichenko (2012) provide a comprehensive recent empirical treatment; see
also Rudebusch (2002, 2006). Campbell, Pflueger, and Viceira (2015) argue that the degree of
inertia in Federal Reserve rate-setting became more pronounced after about 2000.

3 Put differently, if the Fed mechanically followed a policy rule that was a function of only
publicly observable variables (e.g., the current values of the inflation rate and the unemployment
rate), then the market would react to news releases about movements in these variables but not
to Fed policy statements.
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Second, we assume that the Fed behaves as if it is averse to bond market
volatility. We model this concern in reduced form by simply putting the volatil-
ity of long-term rates into the Fed’s objective function. However, a preference
of this sort can be rooted in an effort to deliver on the Fed’s traditional dual
mandate. For example, a bout of bond market volatility may be undesirable
not in its own right, but rather because it is damaging to the financial system
and hence to real economic activity and employment.

Nevertheless, in a world of private information and discretionary meeting-
by-meeting decision making, an attempt by the Fed to moderate bond market
volatility can be welfare-reducing. The logic is similar to that in signal-jamming
models (Stein (1989), Holmstrom (1999)). Suppose the Fed observes a private
signal that its long-run target for the funds rate has permanently increased by
100 basis points (bps). If it adjusts fully in response to this signal, raising the
funds rate by 100 bps, long-term rates will move by a similar amount. If it is
averse to such a large movement in long-term rates, the Fed will be tempted
to announce a smaller change in the funds rate, trying to fool the market into
thinking that its private signal was less dramatic. Hence, it will underadjust
to its signal, raising the funds rate by perhaps only 25 bps.

However, if bond market investors understand this dynamic, the Fed’s efforts
to reduce volatility will be partially frustrated in equilibrium. The market will
see the 25- basis point increase in the funds rate and understand that it is likely
to be the first in a series of similar moves, so long-term rates will react more
than one-for-one to the change in the short rate. Still, if it acts on a discretionary
basis, the Fed will always try to fool the market. This is because when it decides
how much to adjust the policy rate, it takes as given the market’s conjecture
about the degree of inertia in its rate-setting behavior. As a result, the Fed’s
behavior is inefficient from an ex ante perspective: Because in equilibrium
the market understands the Fed’s incentives, moving gradually has limited
effectiveness in reducing bond market volatility, but causes the policy rate to
be further from its long-run target than it otherwise would be.

This inefficiency reflects a commitment problem. In particular, the Fed can-
not commit to not trying to smooth the private information that it commu-
nicates to the market via its changes in the policy rate.4 One institutional
solution to this problem, in the spirit of Rogoff (1985), would be to appoint a
central banker who cares less about bond market volatility than the represen-
tative member of society. More broadly, appointing such a market-insensitive
central banker can be thought of as a metaphor for building an institutional
culture and set of norms inside the central bank such that high-frequency bond
market movements are not given as much weight in policy deliberations.

4 The literature on monetary policy has long recognized a different commitment problem, namely
that, under discretion, the central bank will be tempted to create surprise inflation so as to lower
the unemployment rate. See, for example, Kydland and Prescott (1977) and Barro and Gordon
(1983). More recently, Farhi and Tirole (2012) have pointed to the time-consistency problem that
arises from the central bank’s ex post desire to ease monetary policy when the financial sector is
in distress; their focus on the central bank’s concern with financial stability is somewhat closer in
spirit to ours.
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We begin with a simple static model that is designed to capture the above
intuition in as parsimonious a way as possible. The main result here is that in
any rational expectations equilibrium, there is always underadjustment of the
policy rate compared to the first-best outcome. Moreover, for some parameter
values, there can be Pareto-ranked multiple equilibria with different degrees
of underadjustment. The intuition for these multiple equilibria is that there
is two-way feedback between the market’s expectations about the degree of
gradualism on the one hand and the Fed’s optimal choice of gradualism on
the other.5 Specifically, if the market conjectures that the Fed is behaving in
a highly inertial fashion, it will react more strongly to an observed change in
the policy rate. In an inertial world, the market knows that there are further
changes to come. But this strong sensitivity of long-term rates to changes in
the policy rate makes the Fed all the more reluctant to move the policy rate,
validating the initial conjecture of extreme inertia.

As noted above, our results in the static model generalize to the case in which,
in addition to private information, there is public information about changes in
the Fed’s target. Strikingly, the Fed moves just as gradually with respect to this
public information as it does with respect to private information. This is true
independent of the relative contributions of public and private information to
the total variance of the target. The logic is as follows. When public information
arrives suggesting that the target has risen—for example, inflation increases—
the Fed is tempted to act as if it has received dovish private information at the
same time to mitigate the overall impact on the bond market. This means
that it raises the funds rate by less than it otherwise would in response to
the publicly observed increase in inflation. Thus, our model shows that even a
small amount of private information can lead the Fed to move gradually with
respect to all information.

We next enrich the model by adding publicly observed term-premium shocks
as an additional source of variation in long-term rates. We show that, similar
to the case of public information about its target, the Fed’s desire to moderate
bond market volatility leads it to try to offset term-premium shocks, cutting
the policy rate when term premiums rise. Again, this tactic is partially undone
by the market in equilibrium. Thus, the presence of term-premium shocks
exacerbates the Fed’s time-consistency problem.

Finally, we extend the model to an explicitly dynamic setting, which allows
us to more fully characterize how a given innovation to the Fed’s target works
its way into the funds rate over time. These dynamic results enable us to draw
a closer link between the mechanism in our model and the empirical evidence
on the degree of inertia in the funds rate.

Overall, this paper carries two distinct messages, one positive and one norma-
tive. On the positive front, we argue that the Fed’s private information can help
explain the well-documented phenomenon of gradualism in monetary policy. To
be clear, we do not claim that our private-information story by itself provides a
complete quantitative explanation for the degree of gradualism observed in the

5 For an informal description of this two-way feedback dynamic, see Stein (2014).
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data. Other motives, such as Brainard’s (1967) instrument-uncertainty mech-
anism, are likely to play a role as well. Nevertheless, our model shows that
private information amplifies the extent of gradualism and can therefore help
make sense of the empirical magnitudes. In addition, the model provides a uni-
fied explanation for both gradualism and the Fed’s reaction to term-premium
shocks.

On the normative front, we show that in the presence of private informa-
tion, a concern on the part of the Fed about bond market volatility can lead to
welfare losses in the discretionary outcome as compared to the solution with
commitment—in other words, there is a time-consistency problem. This nor-
mative implication of the model is more unique and suggests that it can be
socially valuable to foster a central-banking culture that leads high-frequency
bond market movements to be given less attention in policy deliberations.

The remainder of the paper is organized as follows. Section I discusses mo-
tivating evidence based on readings of FOMC transcripts. Section II presents
the static version of the model and summarizes our basic results on underad-
justment of the policy rate, multiple equilibria, and term premiums. Section
III develops a dynamic extension of the model. Section IV discusses a variety
of other implications of our framework. Section V concludes.

I. Motivating Evidence from FOMC Transcripts

In their study of monetary policy inertia, Coibion and Gorodnichenko (2012)
use FOMC transcripts to document two key points. First, FOMC members
sometimes speak in a way that suggests a gradual adjustment model—that
is, they articulate a target for the policy rate and then put forward reasons to
adjust only slowly toward that target. Second, one rationale for such gradualism
appears to be a desire not to create financial market instability. Coibion and
Gorodnichenko (2012, p. 150) highlight the following quote from Chairman
Alan Greenspan at the March 1994 FOMC meeting:

My own view is that eventually we have to be at 4 to 4½%. The question is
not whether but when. If we are to move 50 basis points, I think we would
create far more instability than we realize, largely because a half-point
is not enough to remove the question of where we are ultimately going. I
think there is a certain advantage in doing 25 basis points . . .

In a similar spirit, at the August 2004 meeting, after the Fed had begun to
raise the funds rate from the low value of 1% that had prevailed since mid-2003,
Chairman Greenspan remarked:

Consequently, the sooner we can get back to neutral, the better positioned
we will be. We were required to ease very aggressively to offset the events
of 2000 and 2001, and we took the funds rate down to extraordinarily low
levels with the thought in the back of our minds, and often said around this
table, that we could always reverse our actions. Well, reversing is not all
that easy . . . We’ve often discussed that ideally we’d like to be in a position
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where, when we move as we did on June 30 and I hope today, the markets
respond with a shrug. What that means is that the adjustment process
is gradual and does not create discontinuous problems with respect to
balance sheets and asset values.

These sorts of quotes help motivate our basic modeling approach, in which
gradualism reflects the Fed’s desire to keep bond market volatility in check—
in Greenspan’s words, to “not create discontinuous problems with respect to
balance sheets and asset values.” This same approach may also be helpful in
thinking about changes in gradualism over time. Campbell, Pflueger, and Vi-
ceira (2015) show that inertia in Fed rate-setting behavior became significantly
more pronounced after 2000. Given the logic of our model, this heightened iner-
tia could be driven by an increase in the Fed’s concern about financial markets
over time.

In a crude attempt to speak to this question, we examine all 216 FOMC
transcripts over the 27-year period from 1985 to 2011 and simply measure
the frequency of words related to financial markets.6 Specifically, we count the
number of times the terms “financial market,” “equity market,” “bond market,”
“credit market,” “fixed income,” and “volatility” are mentioned.7 For each year,
we aggregate this count and divide by the total number of words in that year’s
transcripts.

Figure 1 displays the results from this exercise. As can be seen, there is a
strong upward trend in the data. While there is also a good deal of volatility
around the trend, a simple linear time trend captures almost 52% of the vari-
ation in the time series, with a t-statistic of 4.6.8 Moreover, the fitted value
of the series based on this time trend goes up about fourfold over the 27-year
sample period. While extremely simplistic, this analysis does suggest an in-
creasing emphasis over time by the FOMC on financial market considerations.
If there was such a change in FOMC thinking, the model we develop below is
well suited to drawing out its implications, both for the dynamics of the policy
rate and for longer-term yields.

II. Static Model

We begin by presenting what is effectively a static version of the model, in
which the Fed adjusts the funds rate only partially in response to a one-time
innovation in its desired target rate. In Section IV, we extend the model to a
fully dynamic setting in which we can be more explicit about how an innovation
to the Fed’s target rate gradually makes its way into the funds rate over time.

6 Given the five-year lag in making transcripts public, 2011 is the last available year. Cieslak
and Vissing-Jorgenson (2017) perform a similar but more sophisticated exercise to understand why
the Fed responds to the stock market.

7 We obtain similar results if we use different subsets of these terms. For instance, the results
are similar if we only count the frequency of the term “financial market.”

8 Restricting the sample to the precrisis period from 1985 to 2006, we obtain an R2 of 49% and
a t-statistic of 4.4. So the trend in the data is not driven primarily by the post-2006 period.
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Figure 1. Frequency of terms related to financial markets in FOMC transcripts, 1985–
2011. The figure plots the moving average of the frequency of terms related to financial markets
over the last eight FOMC meetings. (Color figure can be viewed at wileyonlinelibrary.com)

Though it is stylized, the static model highlights the main intuition for why a
desire to limit bond market volatility creates a time-consistency problem for
the Fed.

A. Model Setup

We begin by assuming that, at any time t, the Fed has a target rate based
on its traditional dual-mandate objectives. This target rate is the Fed’s best
estimate of the value of the federal funds rate that keeps inflation and unem-
ployment as close as possible to their desired levels. For tractability, we assume
that the target rate, denoted by i∗

t , follows a random walk, so that

i∗
t = i∗

t−1 + εt, (1)

where εt ∼ N(0, σ 2
ε ≡ 1

τε
) is normally distributed. Our key assumption is that i∗

t
is private information of the Fed and is unknown to market participants before
the Fed acts at time t. One can think of the private information embodied in
i∗
t as arising from the Fed’s attempts to follow something akin to a Taylor rule,

where it has private information about the appropriate coefficients to use in
the rule (i.e., its reaction function) or about its own forecasts of future inflation
or unemployment. As noted above, an assumption of private information along
these lines is necessary if one wants to understand why asset prices respond
to Fed policy announcements.
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Once it knows the value of i∗
t , the Fed acts to incorporate some of its new

private information εt into the federal funds rate it, which is observable to the
market. We assume that the Fed picks it on a discretionary period-by-period
basis to minimize the loss function Lt, given by

Lt = (
i∗
t − it

)2 + θ
(
�i∞

t

)2
, (2)

where i∞
t is the infinite-horizon forward rate. Thus, the Fed has the usual

concerns about inflation and unemployment, as captured in reduced form by a
desire to keep i∗

t close to it. However, when θ > 0, the Fed also cares about the
volatility of long-term bond yields, as measured by the squared change in the
infinite-horizon forward rate.

For simplicity, we start by assuming that the expectations hypothesis holds,
so there is no time-variation in the term premium. This implies that the infinite-
horizon forward rate is equal to the expected value of the funds rate that will
prevail in the distant future. Because the target rate i∗

t follows a random walk,
the infinite-horizon forward rate is then given by the market’s best estimate of
the current target i∗

t at time t. Thus, we have i∞
t = Et[i∗

t ] so long as we are in an
equilibrium where rates eventually adjust toward the target, no matter how
slowly. In Section III.E.2, we relax the assumption that the expectations hy-
pothesis holds so that we can also consider the Fed’s reaction to term-premium
shocks.

Several features of the Fed’s loss function are worth discussing. First, in our
simple formulation, θ reflects the degree to which the Fed is concerned about
bond market volatility, over and above its desire to keep it close to i∗

t . To be clear,
this loss function need not imply that the Fed cares about asset prices for their
own sake. An alternative interpretation is that volatility in financial market
conditions can affect the real economy and hence the Fed’s ability to satisfy its
traditional dual mandate. This linkage is not modeled explicitly here, but as
one example of what we have in mind, the Fed might believe that a spike in
bond market volatility could damage highly levered financial intermediaries
and interfere with the credit supply process. With this stipulation in mind, we
take as given that θ reflects the socially “correct” objective function—in other
words, it is exactly the value that a well-intentioned social planner would
choose. We then ask whether there is a time-consistency problem when the
Fed tries to optimize this objective function period by period, in the absence of
a commitment technology.

Second, note that the Fed’s target in the first term of equation (2) is the
short-term policy rate, whereas the bond market volatility that it is con-
cerned about in the second term of equation (2) refers to the variance of long-
term market-determined rates. This short versus long divergence is crucial
for our results on time-consistency. To see why, consider two alternative loss
functions:

Lt = (
i∗
t − ii

)2 + θ (�ii)2, (2′)
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Lt = (
i∞∗
t − i∞

t

)2 + θ
(
�i∞

t

)2
. (2′′)

In equation (2′), the Fed cares about the volatility of the funds rate, rather
than the volatility of the long-term rate. This objective function mechanically
produces gradual adjustment of the funds rate, but because there is no forward-
looking long rate, there is no issue of the Fed trying to manipulate market
expectations and hence no time-consistency problem. Thus, in positive terms, a
model of this sort delivers gradualism, but in normative terms this gradualism
is entirely optimal from the Fed’s perspective. However, by emphasizing only
short-rate volatility, this formulation arguably fails to capture the financial
stability goal articulated by Greenspan, namely, to “not create discontinuous
problems with respect to balance sheets and asset values.” We believe that
putting the volatility of the long-term rate directly in the objective function, as
in equation (2), does a better job in this regard.

In equation (2′′), the Fed pursues its dual-mandate objective not by having
a target for the funds rate, but instead by explicitly targeting the long rate
of i∞∗

t . In this case, given that the same rate i∞
t appears in both parts of the

objective function, there is again no time-consistency problem.9 Moreover, one
might think that the first term in equation (2′′) is a reasonable reduced-form
way to model the Fed’s efforts to achieve its mandate. In particular, in standard
New Keynesian models, it is long-term real rates, not short rates, that matter
for inflation and output stabilization.

Nevertheless, our formulation of the Fed’s objective function in equation (2)
can be motivated in a couple of ways. First, equation (2) is arguably more
realistic than equation (2′′) as a description of how the Fed actually behaves,
and—importantly for our purposes—communicates about its future intentions.
For example, in recent statements, the Fed has argued that one motive for
adjusting policy gradually is the fact that r*, defined as the equilibrium (or
neutral) value of the short rate, is itself slow-moving.10 But the concept of a
slow-moving r* can only make logical sense if the short rate matters directly
for real outcomes. If instead real outcomes were entirely a function of long
rates, the near-term speed of adjustment of the short rate would be irrelevant,
holding fixed the total expected adjustment.

Second, in many other models of the monetary transmission mechanism
outside of the New Keynesian genre, the short rate does have an important
independent effect on economic activity. For instance, the literature on the
bank lending channel, including Bernanke and Blinder (1992), Kashyap and
Stein (2000), and Drechsler, Savov, and Schnabl (2017), finds that bank loan

9 We are grateful to Mike Woodford for emphasizing this point to us and for providing a simple
proof.

10 In Chair Janet Yellen’s press conference of December 16, 2015, she said: “This expecta-
tion (of gradual rate increases) is consistent with the view that the neutral nominal federal
funds rate—defined as the value of the federal funds rate that would be neither expansionary
nor contractionary if the economy were operating near potential—is currently low by histori-
cal standards and is likely to rise only gradually over time.” See http://www.federalreserve.gov/
mediacenter/files/FOMCpresconf20151216.pdf.

http://www.federalreserve.gov/mediacenter/files/FOMCpresconf20151216.pdf
http://www.federalreserve.gov/mediacenter/files/FOMCpresconf20151216.pdf
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supply is directly influenced by changes in the short rate because the short
rate effectively governs the availability of low-cost deposit funding. Similarly,
recent papers on “reaching for yield,” including Gertler and Karadi (2015),
Jimenez et al. (2014), and Dell’Ariccia, Laeven, and Suarez (2013), argue that
risk premiums and ultimately real activity respond to the level of the short
rate. Both of these channels help explain why it can make sense for the Fed to
target the short rate per se.

The assumption that the Fed cares about the volatility of the infinite-horizon
forward rate i∞

t , along with the fact that the target rate i∗
t follows a random

walk, makes for a convenient simplification. Because i∗
t follows a random walk,

all of the new private information εt will, in expectation, eventually be incorpo-
rated into the future short rate. Focusing on the reaction of the infinite-horizon
forward rate reflects this revision in expectations and allows us to abstract
from the exact dynamic path that the Fed follows in ultimately incorporating
its new information into the funds rate. In contrast, revisions in finite-horizon
rates depend on the exact path of the short rate. For example, suppose i∗

t were
public information and changed from 1% to 2%. The infinite-horizon forward
rate would immediately jump to 2%, while the two-year forward rate would
move less if the market expected a slow tightening. However, for our key con-
clusions, it is not necessary that the Fed care about the volatility of the infinite-
horizon forward rate; as we demonstrate below, a time-consistency problem still
emerges if the Fed cares instead about the volatility of a finite-horizon rate that
is effectively a weighted average of short-term and infinite-horizon rates.11

Finally, our formulation in equation (2) assumes that the Fed optimizes a
myopic period-by-period objective function, so that when it acts at time t, it
cares only about the consequences for bond market volatility at t, and not
about volatility in future periods. However, in Sections III.D.1 and IV.A, we
show that we obtain very similar results when the Fed has a forward-looking
objective function that incorporates a concern about both future as well as
current volatility.

B. Equilibrium

With the Fed’s objective function in place, we are now ready to describe the
nature of equilibrium in the static model. Once it observes i∗

t , we assume that
the Fed sets the federal funds rate it by following a partial adjustment rule of
the form

it = it−1 + k
(
i∗
t − it−1

)+ ut, (3)

where ut ∼ N(0, σ 2
u ≡ 1

τu
) is normally distributed noise that is overlaid onto the

rate-setting process. The noise ut is a modeling device the usefulness of which

11 The time-consistency problem arises because of the forward-looking nature of longer term
rates, and the resulting incentives that the Fed has to manipulate market expectations. As long
as the Fed seeks to moderate the volatility of a finite-horizon rate that has some forward-looking
component, an element of the time-consistency problem will remain.
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will become clear shortly. Loosely speaking, this noise, which can be thought
of as a “tremble” in the Fed’s otherwise optimally chosen value of it, ensures
that the Fed’s actions cannot be perfectly inverted to fully recover its private
information i∗

t . As will be seen, this imperfect inversion feature helps avoid
some degenerate equilibrium outcomes. For a concrete interpretation, one can
think of ut as coming from the Fed’s use of round numbers (typically in 25 bps
increments) for the funds rate settings that it communicates to the market,
while its underlying private information about i∗

t is presumably continuous.
The market tries to infer the Fed’s private information i∗

t based on its obser-
vation of the funds rate it. To do so, it conjectures that the Fed follows a rule
given by

it = it−1 + κ
(
i∗
t − it−1

)+ ut. (4)

Thus, the market correctly conjectures the form of the Fed’s smoothing
rule but, crucially, does not directly observe the Fed’s smoothing parameter
k; rather, it has to make a guess κ as to the value of this parameter. In a ratio-
nal expectations equilibrium, this guess will turn out to be correct, and we will
have κ = k. However, the key piece of intuition is that when the Fed chooses
k, it takes the market’s conjecture κ as a fixed parameter and does not impose
κ = k. The equilibrium concept is thus of the signal-jamming type introduced
by Holmstrom (1999): The Fed, taking the market’s estimate of κ as fixed, tries
to fool the market into thinking that i∗

t has moved by less than it actually
has, in an effort to reduce the volatility of long-term rates. In equilibrium, the
market will rationally unwind the Fed’s actions and not be misled, but the Fed
cannot resist the temptation to try.12

Suppose that the economy was previously in steady state at time t − 1, with
it−1 = i∗

t−1. Given the Fed’s adjustment rule, the funds rate at time t satisfies

it = it−1 + k
(
i∗
t − it−1

)+ ut = it−1 + kεt + ut. (5)

Based on its conjecture about the Fed’s adjustment rule in equation (4), the
market tries to back out i∗

t from its observation of it. Because both shocks εt
and ut are normally distributed, the market’s expectation is given by

E
[
i∗
t |it

] = it−1 + κτu

τε + κ2τu
(it − it−1) = it−1 + χ (it − it−1) , (6)

where χ = κτu
τε+κ2τu

.

The less noise there is in the Fed’s adjustment rule, the higher is τu and the
more the market reacts to the change in the rate it.

12 There is a close analogy to models in which corporate managers with private information
pump up their reported earnings in an effort to impress the stock market. See, for example, Stein
(1989).
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In light of equations (5) and (6) and the random-walk property that i∞
t =

Et[i∗
t ],the Fed’s loss function, taking expectations over the realization of the

noise, can be written as

Lt = Eut

[(
i∗
t − it

)2 + θ
(
�i∞

t

)2
]

= (1 − k)2ε2
t + σ 2

u + θχ2 (k2ε2
t + σ 2

u

)
. (7)

The Fed then minimizes this loss function by picking the optimal value of k.
Again, we emphasize that, in doing so, it takes the market’s conjectures about
its behavior, and hence the parameter χ, as fixed. The first-order condition
with respect to k then yields

k = 1
1 + θχ2 . (8)

In rational expectations equilibrium, the market’s conjecture turns out to be
correct, so we have κ = k. Imposing this condition, we have that, in equilibrium,
the Fed’s adjustment rule satisfies

k =
(
τε + k2τu

)2(
τε + k2τu

)2 + θ (kτu)2
. (9)

It follows immediately from equation (9) that the Fed follows a partial ad-
justment rule in any rational expectations equilibrium.

PROPOSITION 1: In any rational expectations equilibrium, the Fed’s adjustment
to a change in its target rate is partial: we have k < 1 so long as θ > 0.

B.1. Equilibrium with No Noise in the Rate-Setting Process

To build some intuition for the Fed’s behavior, let us begin by consider-
ing the simple limiting case in which there is no noise in the rate-setting
process: σ 2

u = 0 (i.e., τu → ∞). In this case, the market’s inference of i∗
t is

simply

E
[
i∗
t |it

] = it−1 + (it − it−1)
κ

= it−1 + k
κ

εt, (10)

and the Fed’s loss function is

Lt = (
i∗
t − it

)2 + θ
(
�i∞

t

)2 = ((1 − k) εt)2 + θ

(
k
κ

εt

)2

. (11)

When the Fed considers lowering k, it trades off being further away from the
optimal i∗

t against the fact that it believes it can reduce bond market volatility
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by moving more slowly. In rational expectations equilibrium, the optimal k now
satisfies:13

k = k2

k2 + θ
. (12)

First note that when θ = 0, the only solution to equation (12) is given by
k = 1. When the Fed does not care about bond market volatility, it fully adjusts
to its new private information εt. By contrast, when θ > 0, there may be more
than one solution to equation (12), but in any equilibrium it must be the case
that k < 1, and the Fed only partially adjusts.

Moreover, when θ > 0, it is always the case that k = 0 satisfies equation
(12). Thus, there is a degenerate solution in which the Fed does not adjust
the funds rate at all. This somewhat unnatural outcome is a function of the
extreme feedback that arises between the Fed’s adjustment rule and the mar-
ket’s conjecture when there is no noise in the rate-setting process. Specifically,
when the market conjectures that the Fed never moves the funds rate at all
(i.e., that κ = 0), then even a tiny out-of-equilibrium move by the Fed leads to
an infinitely large change in the infinite-horizon forward rate. Thus, the Fed
validates the market’s conjecture by not moving at all, that is, by choosing
k = 0.

However, as soon as there is even an infinitesimal amount of noise ut in
the rate-setting process, this extreme k = 0 equilibrium is ruled out, as small
changes in the funds rate now lead to bounded market reactions. This explains
our motivation for keeping rate-setting noise in the more general model.

In addition to k = 0, for 0 < θ < 0.25, there are two other solutions to equation
(12), given by

k = 1 ± √
(1 − 4θ )
2

. (13)

Of these, the larger of the two values also represents a stable equilibrium
outcome. Thus, as long as θ is not too big, the model also admits a nondegenerate
equilibrium, with½< k < 1, even with σ 2

u = 0. Within this region, higher values
of θ lead to lower values of k. In other words, the more intense the Fed’s concern
about bond market volatility, the more gradually it adjusts the funds rate.

B.2. Equilibrium Outcomes across the Parameter Space

Now we return to the general case in which σ 2
u > 0 and explore the range of

outcomes produced by the model for different parameter values. In each panel
of Figure 2, we plot the Fed’s best response k as a function of the market’s
conjecture κ. Any rational expectations equilibrium must lie on the 45° line
where k = κ.

13 Equation (12) can be derived from equation (9) by taking the limit as τu goes to infinity and
applying L’Hopital’s Rule.
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Figure 2. Equilibria of the static model for different parameter values. θ indexes the
Fed’s aversion to volatility, τ ε is the precision of innovations to the target rate, τu is the precision
of rate-setting noise, κ is the market’s conjecture about the Fed’s degree of adjustment, k is the
Fed’s best response degree of adjustment. Panel A: θ = 0.2, τ ε = 1, and τu = 10. Panel B: θ = 1.0,
τ ε = 1, and τu = 10. Panel C: θ = 1.0, τ ε = 1, and τu = 250. Panel D: θ = 0.2, τ ε = 1, and τu = 250.
(Color figure can be viewed at wileyonlinelibrary.com)

In Panel A of the figure, we begin with a relatively low value of θ , namely,
0.2, and set σ 2

ε /σ 2
u = 10, so that the variance of rate-setting noise is one-tenth

the variance of innovations to the target rate. As can be seen, this leads to a
unique equilibrium with a high value of k of 0.81. When the Fed cares only a
bit about bond market volatility, it adjusts rates fairly aggressively because it
does not want to deviate too far from its target rate i∗

t .
In Panel B, we raise θ to 1.0, while keeping σ 2

ε /σ 2
u = 10 as in Panel A. In

this high-θ case, the unique equilibrium involves a lower value of k of 0.29.
Thus, when the Fed cares a lot about bond market volatility, the funds rate
significantly underadjusts to new information.

In Panel C, we keep θ = 1.0 but decrease the rate-setting noise, so that
σ 2

ε /σ 2
u = 250. Now the equilibrium involves an extremely low value of k of just
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0.03. The difference between Panels B and C is the degree of rate-setting noise.
The greater amount of noise in Panel B allows the Fed to hide the information
content of its actions, so that it can be more responsive to changes in its target
without changing the market’s inference about its private information by as
much.14

Finally, in Panel D, we set θ = 0.2 and σ 2
ε /σ 2

u = 250. Here, we have multiple
equilibria: the Fed’s best response crosses the 45° line in three places. Of these
three crossing points, the two outer ones (at k = 0.08 and 0.73) correspond to
stable equilibria, in the sense that if the market’s initial conjecture κ takes an
out-of-equilibrium value, the Fed’s best response to that conjecture will tend to
drive the outcome toward one of these two extreme crossing points.

The existence of multiple equilibria highlights an essential feature of the
model: the potential for market beliefs about Fed behavior to become self-
validating. If the market conjectures that the Fed adjusts rates only very grad-
ually, then even small changes are heavily freighted with informational content
about the Fed’s reaction function. Given this strong market sensitivity and its
desire not to create too much volatility, the Fed may then choose to move very
carefully, even at the cost of accepting a funds rate that is quite far from its
target. Conversely, if the market conjectures that the Fed is more aggressive in
its adjustment of rates, it reacts less to any given movement, which frees the
Fed up to track the target rate more closely.

When there are multiple equilibria, the one with the higher value of k typ-
ically leads to a better outcome from the perspective of the Fed’s objective
function: With a higher k, it is closer to i∗

t , but in equilibrium, bond market
volatility is not much greater. Thus, if we are in a range of the parameter space
where multiple equilibria are possible, it is important for the Fed to avoid
doing anything in its communications that tends to lead the market to con-
jecture too low a value of κ. Even keeping its own preferences fixed, fostering
an impression of strong gradualism among market participants can lead to an
undesirable outcome in which the Fed gets stuck in the low-k equilibrium.

C. The Time-Consistency Problem

A central property of our model is that there is a time-consistency problem:
The Fed would do better in terms of optimizing its own objective function if it
were able to commit to behaving as if it had a lower value of θ than it actually
does. This is because while the Fed is always tempted to move the funds rate
gradually so as to reduce bond market volatility, this desire is partially undone
in equilibrium: The more gradually the Fed acts, the more the market responds
to any change in rates, and yet the Fed is still left with a funds rate that is
further from target on average.

This point is most transparent if we consider the limiting case in which there
is no noise in the Fed’s rate-setting process. In this case, once we impose the

14 This is similar to the intuition in Kyle (1985). When there are more noise traders, the insider
can trade more aggressively on his private information without as much market impact.
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rational expectations assumption that κ = k,the Fed’s attempts at smoothing
have no effect on bond market volatility in equilibrium:

(
�i∞

t

)2 =
(

k
κ

εt

)2

= ε2
t . (14)

Thus, the value of the Fed’s loss function is

Lt = (
i∗
t − it

)2 + θ
(
�i∞

t

)2 = ((1 − k) εt)2 + θε2
t , (15)

which is decreasing in k for k < 1.
To the extent that the target rate i∗

t is nonverifiable private information, it
is hard to think of a contracting technology that can readily implement the
first-best outcome under commitment: How does one write an enforceable rule
that says that the Fed must always react fully to its private information? Thus,
discretionary monetary policy will inevitably be associated with some degree of
inefficiency. However, even in the absence of a binding commitment technology,
there may still be scope for improving on the fully discretionary outcome. One
possible approach follows in the spirit of Rogoff (1985), who argues that society
should appoint a central banker who is more hawkish on inflation than is
society itself. The analogy in the current context is that society should appoint
a central banker who cares less about financial market volatility (i.e., has a
lower value of θ ) than society as a whole. Put differently, society—and the
central bank itself—should foster an institutional culture and set of norms
that discourage the monetary policy committee from being overly attentive to
short-term market volatility considerations.

To see this, consider the problem of a social planner choosing a central banker
whose concern about financial market volatility is given by θc. This central
banker will implement the rational expectations adjustment rule k(θc), where
k is given by equation (9), replacing θ with θc. In the rational expectations
equilibrium, this will result in bond market volatility

Var [χ (k (θc) εt + ut)] = k(θc)2τu

τε

(
τε + k(θc)2τu

) . (16)

In contrast to the no-noise case, here bond market volatility is not invariant to
the choice of k. Thus, the planner’s ex ante problem is to pick θc to minimize its
ex ante loss, recognizing that its own concern about financial market volatility
is given by θ :

Eεt

[(
i∗
t − it

)2 + θ
(
�i∞

t

)2
]

= E
[
((1 − k (θc)) εt + ut)2 + θ (χ (k (θc) εt + ut))2

]
. (17)

The following proposition characterizes the optimal θ c.

PROPOSITION 2: In the presence of rate-setting noise, it is ex ante optimal to
appoint a central banker with θc < θ . In the absence of rate-setting noise, it is ex
ante optimal to appoint a central banker with θc = 0, so that k(θc) = 1.
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Table I
Characterization of the Static Model with Noise

This table characterizes the equilibrium in the static model with noise for different parameter
values. θ indexes the Fed’s aversion to volatility, τu/τ ε is the ratio of the variance of innovations
to the target rate to the variance of rate-setting noise, k is the equilibrium degree of adjustment
without commitment, θ c is the volatility aversion of the optimal central banker under commitment,
L is the expected value of the Fed’s loss function without commitment, and Lc is the value of the
loss function under commitment.

	 τu/ τ ε k θ c (L − Lc)/L

0.2 10 0.81 0.02 0.09
1.0 10 0.29 0.13 0.07
1.0 250 0.03 0.004 0.11

When there is no rate-setting noise, the Fed’s attempts to fool the market are
completely frustrated in equilibrium. Therefore, it is optimal to set θc = 0 and
appoint a central banker who does not care about bond market volatility at all.
When there is rate-setting noise, it is no longer true that the Fed would like to
commit to behaving as if θ were exactly equal to zero. However, it would still
like to commit to behaving as if θ were considerably smaller than its actual
value.

Table I illustrates characterizing the optimal θc and the magnitude of the
time-consistency problem for the same sets of parameter values as in the first
three panels of Figure 1. In the first row, we set θ = 0.20 and σ 2

ε /σ 2
u = 10.

In this case, the optimally chosen central banker has θc = 0.02, and there is
a 9% improvement in the Fed’s loss function by appointing such a banker.
The second row shows that, with θ = 1.0 and σ 2

ε /σ 2
u = 10,the optimally cho-

sen central banker has θc = 0.13 and brings a 7% improvement in the loss
function. In the third row, where we keep θ = 1.0 but set σ 2

ε /σ 2
u = 250, θc

declines to 0.004. Intuitively, with very little rate-setting noise in this last
case, a time-inconsistent Fed would be tempted to behave in an extremely
gradualist fashion, so there is more value in appointing a central banker who
cares almost not at all about the bond market.15 Overall, the table shows that
for our parameter values it is optimal to set θc much lower than θ , often by
an order of magnitude or more, and that this can achieve significant welfare
gains.

D. Changing the Fed’s Objective Function

We next consider two variations on the Fed’s objective function and show
that the general properties of the model—namely, gradual adjustment and the
existence of a time-consistency problem—are qualitatively unchanged.

15 We omit the fourth set of parameters that we used in Figure 1 because they generate multiple
equilibria, which are not central to the rest of the discussion.
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D.1. Forward-Looking Objective: A Concern with Future Volatility

We first consider what happens when the Fed has a forward-looking objec-
tive rather than a myopic period-by-period one. Note that in the loss function
specified in equation (2), when the Fed acts at time t, it worries about its impact
on bond market volatility at t but does not take into account the consequences
of its decision for volatility in future periods. One might suspect that if it did,
its temptation to act gradually would be reduced, since by doing so it simply
defers any adjustment of prices to the future.

To address this issue, suppose that there is a single realization of private
information εt at time t and no further shocks after that. For simplicity, suppose
further that the Fed follows the partial adjustment rule in equation (3) at
time t and then fully impounds εt into the funds rate at time t + 1. That is,
it+1 = i∗

t+1 = i∗
t−1 + εt. Finally, assume that the Fed is forward-looking and takes

time t + 1 into account when it picks its partial adjustment speed at time t.
Specifically, it has the following loss function:

Lt = (
i∗
t − it

)2 + θ
(
�i∞

t

)2 + (
i∗
t+1 − it+1

)2 + θ
(
�i∞

t+1

)2
. (18)

In the Appendix, we prove the following proposition, which states that both
gradualism and the time-consistency problem remain in this setting.

PROPOSITION 3: With a forward-looking objective function in the static model
with noise, both partial adjustment and the time-consistency problem remain:
k < 1 so long as θ > 0, and it is ex ante optimal to appoint a central banker with
θc = 0.

The intuition for the proposition is as follows. On the one hand, taking the
market’s conjectures about its behavior as given, when the Fed tries to reduce
the size of a move in bond prices at time t by adjusting the funds rate gradually,
it recognizes that, if it is successful, this will lead to a larger move at time
t + 1—because eventually its private information must come out. On the other
hand, because its loss function is convex in the size of price moves in each
period, distributing the price change over time is still attractive. A motive to
act gradually therefore remains.16

An interesting feature of this variation is that the time-consistency problem
is starker, in the sense that, even with nonzero rate-setting noise, it is now
always optimal to appoint a central banker who does not care at all about
the bond market, that is, who has θc = 0. With a myopic loss function, a Fed
that acts gradually in the presence of rate-setting noise partially succeeds in
reducing the size of this period’s move in the infinite-horizon forward rate.

16 In a more fully dynamic setup, the Fed might act as if private information suppressed at
time t would not come out all at once at t+1, but would make its way into prices more slowly over
several subsequent periods. This case actually behaves more like the baseline one with the myopic
objective function, again due to the convex nature of the loss function—the more future periods the
remainder of a shock can be spread over, the less the volatility incurred in future periods matters
to the Fed. So arguably, the objective functions in equations (2) and (18) span the full range of
possibilities.
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Table II
Characterization of the Static Model with Noise When the Fed Has

a Forward-Looking Objective
This table characterizes the equilibrium in the static model with noise when the Fed has a forward-
looking objective for different parameter values. θ indexes the Fed’s aversion to volatility, τu/τ ε

is the ratio of the variance of innovations to the target rate to the variance of rate-setting noise,
kforward is the equilibrium degree of adjustment without commitment, θc is the volatility aversion
of the optimal central banker under commitment, L is the expected value of the Fed’s loss function
without commitment, and Lc is the value of the loss function under commitment.

θ τu/ τ ε kforward θ c (L − Lc)/L

0.2 10 0.84 0 0.08
1.0 10 0.46 0 0.21
1.0 250 0.07 0 0.46

Given this partial success, a social planner does not want to totally eliminate
the gradualism motive, and hence leaves θc slightly positive. By contrast, with
a forward-looking objective function, the same rate-setting noise that tempers
the time-t price move means that there is more left to be revealed at time t + 1.
So when one takes both periods into account, efforts at gradualism once again
look totally fruitless, as they do in the no-noise case with a myopic objective
function. Therefore, it is now optimal to set θc = 0, independent of the level of
rate-setting noise.

Table II describes outcomes in this version of the model for the same param-
eter values used in Table I. As expected, the Fed moves less gradually with
a forward-looking objective than it does with a myopic one, though the dif-
ferences in speed of adjustment are generally quite modest. Moreover, for the
reasons described just above, the gains from appointing a central banker with
the optimal θc (which is now always zero) can be larger with a forward-looking
objective. For instance, when θ = 1.0 and σ 2

ε /σ 2
u = 250, the gain from com-

mitment is 11% with the myopic objective and 46% with the forward-looking
objective.

D.2. The Fed Cares about the Volatility of Finite-Horizon Rates

The time-consistency problem is especially pronounced in our baseline set-
ting because the Fed is assumed to care about the volatility of the infinite-
horizon rate. In this case, the only reason for the Fed to adjust partially to
new private information is to manipulate the market’s inference about that
information. To the extent that the market undoes that manipulation in the
rational expectations equilibrium, the Fed’s efforts are unsuccessful—hence
the time-consistency problem.

By contrast, if we instead assume that the Fed cares about the volatility of
a finite-horizon rate (e.g., the 10-year rate), there is still a time-consistency
problem, but it is attenuated. If the expectations hypothesis holds, then the
finite-horizon rate is given by the expected path of the funds rate over that
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finite horizon. The finite-horizon rate therefore responds to both information
about the Fed’s ultimate destination and the particular path that the Fed
chooses to get there. By moving gradually, the Fed can succeed in reducing
the volatility of the realized path. However, its attempts to manipulate the
market’s inference about its ultimate destination will still be partially undone
in equilibrium, leaving some element of time-inconsistency.

To develop this intuition, we observe that, in our one-factor model of the term
structure, any finite-horizon rate can be approximated by a weighted average
of the current funds rate it and the infinite-horizon forward rate i∞

t , as long
as we pick the weights correctly. Using this approximation, we establish the
following proposition, which is proven in the Appendix.

PROPOSITION 4: Suppose that θ > 0 and that the Fed cares about the volatil-
ity of a finite-horizon rate, approximated as a weighted average of the short
rate and the infinite-horizon rate. Then it is ex ante optimal to appoint a cen-
tral banker with θc being an increasing function of the weight on the short
rate.

Under discretion, the Fed has two motives when it moves gradually. First,
it aims to reduce the volatility of the component of the finite-horizon rate
that is related to the current short rate it. Second, it hopes to reduce the
volatility of the component of the finite-horizon rate that is related to the
infinite-horizon forward rate i∞

t by fooling the market about its private
information εt. The first goal can be successfully attained in rational expecta-
tions equilibrium, but the second will be partially undone, as in the baseline
model.

Under commitment, the second motive is weakened, and thus it is less ap-
pealing to move gradually than it would be under discretion. Thus, if society
is appointing a central banker whose concern about financial market volatil-
ity is given by θc, it would like to appoint one with θc < θ . In other words,
there is still a time-consistency problem. However, it is not as extreme as the
case in which the social planner cares about the volatility of the infinite-horizon
forward rate.

Table III demonstrates this intuition numerically. The table replicates
Table I, but now considers different finite-horizon rates, which put weight
α on the funds rate and weight (1 – α) on the infinite-horizon rate. In Panel A of
Table III we set α = 0.15, and in Panel B we set α = 0.30. The table shows that
as α increases, it is optimal to appoint a central banker with a higher value
of θc. Still, there are significant improvements in the Fed’s loss function under
commitment.

We have also tried combining the assumption that the Fed cares about a
finite-horizon rate with the assumption that is has a forward-looking objective
function, as in Table II. The results (not tabulated) are as one would expect
based on the two mechanisms operating in isolation. That is, there are no
particularly surprising interaction effects. Relative to Table III, making the
objective function forward-looking leads to somewhat less gradualism, but also
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Table III
Characterization of the Static Model with Noise When the Fed Cares

About a Finite-Horizon Rate
This table characterizes the equilibrium in the static model with noise when the Fed cares about
a finite-horizon rate for different parameter values. θ indexes the Fed’s aversion to volatility, τu/τ ε

is the ratio of the variance of innovations to the target rate to the variance of rate-setting noise, α

is the weight put on the short rate and (1 − α) is the weight on the infinite-horizon rate, k is the
equilibrium degree of adjustment without commitment, θc is the volatility aversion of the optimal
central banker under commitment, L is the expected value of the Fed’s loss function without
commitment, and Lc is the value of the loss function under commitment.

Panel A: α = 0.15

θ τu/ τ ε k θ c (L − Lc)/L

0.2 10 0.82 0.05 0.06
1.0 10 0.31 0.30 0.03
1.0 250 0.03 0.14 0.11

Panel B: α = 0.30

θ τu/ τ ε k θ c (L − Lc)/L

0.2 10 0.82 0.08 0.04
1.0 10 0.34 0.46 0.03
1.0 250 0.04 0.24 0.14

tends to increase the welfare gains from commitment, particularly when rate-
setting noise is relatively low.

E. Additional Shocks

Next, we enrich the model by adding additional shocks beyond innovations
to the Fed’s private information about its target rate. For simplicity, we work
with the model without rate-setting noise.

E.1. Public Information about the Fed’s Target

Thus far, we have assumed that the Fed’s target value of the short rate is
entirely private information. A more empirically realistic assumption is that
the target depends on both public and private information, where the former
might include current values of inflation, the unemployment rate, and other
macroeconomic variables. It turns out that our basic results carry over to this
setting. That is, the Fed adjusts gradually to both publicly and privately ob-
served innovations to its target.17 To see this, suppose that the target rate
follows the process

i∗
t = i∗

t−1 + εt + νt. (19)

17 We thank David Romer for pointing out this generalization of the model to us.
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As before, εt is the Fed’s private information. However, νt is publicly observed
by both the Fed and the bond market.18 Given the more complicated nature of
the setting, the Fed’s optimal choice regarding how much to adjust the short
rate no longer depends only on its private information εt. It also depends on
the public information νt. To allow for a general treatment, we posit that this
adjustment can be described by a potentially nonlinear function of the two
variables and that there is no noise in the Fed’s adjustment rule (σ 2

u = 0):

it = it−1 + f (εt; νt) . (20)

Moreover, we assume that the market conjectures that the Fed is following
a potentially nonlinear rule:

it = it−1 + φ (εt; νt) . (21)

In the Appendix, we use a calculus-of-variations type of argument to establish
that, in a rational expectations equilibrium in which f (·; ·) = φ(·; ·), the Fed’s
adjustment rule is given by

it = it−1 + kεεt + kννt, (22)

where

kν = kε and kε = k2
ε + θ. (23)

The following proposition summarizes the key properties of the equilibrium.

PROPOSITION 5: The Fed responds as gradually to public information about
changes in the target rate as it does to private information. This is true re-
gardless of the relative contributions of public and private information to the
total variance of the target. As the Fed’s concern about bond market volatility θ

increases, both kε and kν fall.

Proposition 5 is striking and may at first glance seem counterintuitive. Given
our previous results, one might think that there is no reason for the Fed to move
gradually with respect to public information. However, while this is correct in
the limit case where there is no private information whatsoever, it turns out
to be wrong as soon as we introduce a small amount of private information.
The logic is as follows. Suppose there is a piece of public information that
suggests that the funds rate should rise by 100 bps, for example, there is a
sharp increase in the inflation rate. This news, if released on its own, would
tend to also create a spike in long-term bond yields. In an effort to mitigate this
spike, the Fed is tempted to show a more dovish hand than it had previously,

18 We assume that the Fed is equally averse to volatility in the infinite-horizon rate induced by
either εt or νt. For example, suppose that the Fed’s aversion to volatility is rooted in the recognition
that (i) sharp bond market movements can affect the solvency of financial institutions and (ii)
distressed financial institutions can adversely affect the real economy. If this is the case, the Fed
will want to spread volatility out over time, regardless of its source.
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that is, to act as if it has simultaneously received a negative innovation to the
privately observed component of its target. To do so, it raises the funds rate by
less than it otherwise would. In an out-of-equilibrium sense, this is an attempt
to convey that it has offsetting private information.

As before in the no-noise case, this effort to fool the market is not successful
in equilibrium, but the Fed cannot resist the temptation to try. And as long
as there is just a small amount of private information, the temptation always
exists because, at the margin, the existence of private information leads the Fed
to act as if it can manipulate market beliefs. Hence, even if private information
does not represent a large fraction of the total variance of the target, the degree
of underadjustment predicted by the model is the same as in an all-private-
information setting.

E.2. Term-Premium Shocks

We next enrich the model in another direction, to consider how the Fed
behaves when financial market conditions are not purely a function of the
expected path of interest rates. Here we relax the assumption that the expec-
tations hypothesis holds and instead assume that the infinite-horizon forward
rate consists of both the expected future short rate and an exogenous term-
premium component rt:

i∞
t = Et

[
i∗
t

]+ rt. (24)

The term premium is assumed to be public information, observed simultane-
ously by market participants and the Fed. We allow the term premium to follow
an arbitrary process and let ηt denote the innovation in the term premium:

ηt = rt − Et−1 [rt] . (25)

The solution method is similar to that in the preceding section. Specifically,
we assume that there is only private information about the Fed’s target, there is
no noise in the Fed’s rate-setting rule (σ 2

u = 0), and the rule can be an arbitrary
nonlinear function of both the new private information εt that the Fed learns
at time t as well as the term-premium shock ηt, which is publicly observable.

In the Appendix, we show that in equilibrium, the Fed’s adjustment rule is
given by

it = it−1 + kεεt + kηηt, (26)

where

kε = k2
ε + θ and

kη = − θ
kε

.
(27)

The following proposition summarizes the key properties of the equilibrium.

PROPOSITION 6: The Fed acts to offset publicly observable term-premium shocks,
lowering the funds rate when the term-premium shock is positive and raising
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it when the term-premium shock is negative. As the Fed’s concern with bond
market volatility θ increases, kε falls and kη increases in absolute magnitude.
Thus, when it cares more about the bond market, the Fed reacts more gradually
to changes in its private information about its target rate, but more aggressively
to changes in term premiums.

The intuition here is similar to that for why the Fed underreacts to public
information about its target. When the term premium spikes up, the Fed is
unhappy about the prospective increase in the volatility of long rates. So even
if its private information about i∗

t has not changed, it would like the market to
think it has become more dovish. It therefore cuts the short rate to create this
impression. Again, in a no-noise equilibrium, this attempt to fool the market
is not successful, but taking the market’s conjectures at any point in time as
fixed, the Fed is always tempted to try.

To see why the equilibrium must involve the Fed reacting to term-premium
shocks, think about what happens if we try to sustain an equilibrium in which
it does not. That is, consider what happens if we try to sustain an equilibrium
in which kη = 0. In such a hypothetical equilibrium, when the market sees any
movement in the funds rate, it attributes that movement entirely to changes in
the Fed’s private information εt about its target rate. But if this is the case, then
the Fed can indeed offset movements in term premiums by changing the short
rate, thereby contradicting the assumption that kη = 0. Hence, kη = 0 cannot
be an equilibrium.

A noteworthy feature of the equilibrium is that the absolute magnitude of
kη increases as θ rises and as kε decreases: When it cares more about bond
market volatility, the Fed’s responsiveness to term-premium shocks becomes
more aggressive even as its adjustment to new information about its target
becomes more gradual. In particular, because we are restricting ourselves to
the region of the parameter space over which the simple no-noise model yields a
nondegenerate equilibrium for kε, this means that we must have 0 < θ< ¼ from
equation (13) above. As θ moves from the lower to the upper end of this range,
kε declines monotonically from 1 to ½, and kη increases in absolute magnitude
from 0 to –½.

This property yields a sharp testable empirical implication. As noted earlier,
Campbell, Pflueger, and Viceira (2015) show that the Fed’s behavior has become
significantly more inertial in recent years. We might be tempted to use the logic
of the model to claim that this is a result of the Fed placing increasing weight
over time on the bond market, that is, having a higher value of θ than it used
to. While the evidence on financial market mentions in the FOMC transcripts
that we plot in Figure 1 is loosely consistent with this hypothesis, it is obviously
far from being a decisive test. However, with Proposition 6 in hand, if we want
to attribute a decline in kε to an increase in θ , then we also have to confront
the additional prediction that we should observe the Fed responding more
forcefully over time to term-premium shocks. That is, the absolute value of kη

must have gone up. If this is not the case, it would represent a rejection of the
hypothesis.
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III. Dynamic Model

In the static model considered thus far, the phenomenon of gradualism is
really nothing more than underreaction of the policy rate to a one-time shock
to the Fed’s target. This leaves open the important question of dynamic adjust-
ment: If a private-information shock of εt is only partially incorporated into
the funds rate at time t, how long before it is fully impounded? As we show
below, in the absence of any rate-setting noise (σ 2

u = 0), the adjustment process
is trivially fast —εt is fully reflected in the funds rate one period later, by time
t + 1. In this case, one might question whether the model captures economically
meaningful effects, given that the FOMC meets twice per quarter.

Things become more interesting in the case with nonzero rate-setting noise
(σ 2

u > 0). Here, the dynamic adjustment process is more protracted, and the
positive and normative implications of the model correspondingly more sub-
stantial. However, this case is technically challenging to analyze in its full
generality because, in the presence of noise, the fully rational solution to the
market’s inference problem becomes extremely complex. Loosely speaking, at
each point in time t, in order to estimate the current Fed target i∗

t , the market
needs to have a separate running estimate of each of the past innovations in the
Fed’s private information, εt− j , each of which it then updates using a separate
filtering process over all of the past realizations of the funds rate.

To attack this difficult problem, we proceed in two steps. We first solve a fully
rational three-period version of the model. Here, the filtering problem is easy
enough to handle, and we can use this setup to show that when there is nonzero
rate-setting noise, the dynamic adjustment process is no longer trivial. That is,
a private-information shock εt can remain substantially underreflected in the
funds rate not only at time t, but at time t + 1 as well. This suggests, albeit only
qualitatively, that the positive and normative implications of the model may be
more economically interesting, even when Fed meetings are spaced relatively
closely together.

We next turn to an approximate but fully dynamic version of the model with
an infinite horizon. This allows us to compare our model’s quantitative pre-
dictions more directly with the existing empirical evidence on gradualism. To
make things tractable, we model the market’s inferences about the Fed’s target
rate using a heuristic, near-rational approximation of the optimal Bayesian fil-
tering process. As can be seen by comparison to the fully rational three-period
model, our heuristic arguably allows us to capture the broad spirit of how up-
dating about i∗

t works when there is rate-setting noise, but greatly simplifies
the analytics.

A. Three-Period Model

We begin with a fully rational, three-period model with rate-setting noise.
Suppose we start at time 0 in steady state with i0 = i∗

0 . At time 1, the Fed
receives new private information ε1, and there are no further innovations to the
target rate afterward, so i∗

1 = i∗
2 = i∗

0 + ε1. The Fed follows partial adjustment
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rules with noise at both times 1 and 2, and then fully incorporates its private
information into the funds rate at time 3. Thus, we have

i1 = i0 + k1ε1 + u1
i2 = i0 + k2ε1 + u2
i3 = i0 + ε1.

(28)

We assume that the noise shocks at times 1 and 2 are independent, and that
both u1 and u2 have variance σ 2

u . The market conjectures that the Fed follows
the adjustment rules

i1 = i0 + κ1ε1 + u1
i2 = i0 + κ2ε1 + u2
i3 = i0 + ε1.

(29)

Finally, the Fed’s loss function is given by(
i1 − i∗

1

)2 + θ
(
�i1

∞)2 + (
i2 − i∗

2

)2 + θ
(
�i2

∞)2 + (
i3 − i∗

3

)2 + θ
(
�i3

∞)2
. (30)

The Fed picks the optimal k1 and k2 with this forward-looking objective, but
without the ability to commit to moving at a particular speed. In other words,
k2 is set on a discretionary basis at time 2 and cannot be locked in at time 1.
In the Appendix, we show that the rational expectations equilibrium in this
version of the model has the following properties.

PROPOSITION 7: In the three-period model with noise, there is partial adjustment
at both times 1 and 2 : k1 < 1 and E[k2] < 1 if and only if σ 2

u > 0. In addition,
the time-consistency problem remains, and it is ex ante optimal to appoint a
central banker with θc = 0.

As before, we have partial adjustment at time 1. If there is no rate-setting
noise, then the underadjustment is short-lived: In the next period, the Fed fully
impounds what was left of the time-t innovation into the rate. In other words,
k2 = 1 if σ 2

u = 0. Intuitively, with no noise, investors have already figured out
all of the Fed’s time-1 private information by time 2. Given that the Fed can no
longer fool investors about this old information, there is no remaining motive
for it to continue to incorporate it into rates slowly.19

However, if there is noise in the rate-setting process so that σ 2
u > 0,then

the market still has some residual uncertainty about the Fed’s time-1 private
information ε1 at time 2. By moving gradually once again at time 2, the Fed
hopes to keep this information from hitting the market all at once in the next
go-round.20 As in the static model with noise, this hope is partially frustrated in

19 Why is it that the Fed underreacts to public news about the target νt in Proposition 5 but does
not continue to underreact to what is now (by time 2) public information about ε1 in Proposition 7?
The key difference is timing. In Proposition 5, we have two simultaneous innovations to the target
rate, so the Fed can try to offset the public news by pretending it has offsetting private news. In
Proposition 7, the bond market volatility due to ε1 has already been realized at time 1. So being
more dovish at time 2 does not help reduce volatility at time 2.

20 The actual value of k2 depends on the realizations of ε1 and u1. For this reason, Proposition 7
characterizes E[k2].
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Table IV
Characterization of the Three-Period Model with Noise

This table characterizes the equilibrium in the three-period model with noise for different parame-
ter values. θ indexes the Fed’s aversion to volatility, τu/τ ε is the ratio of the variance of innovations
to the target rate to the variance of rate-setting noise, k1 and k2 are the equilibrium degrees of
adjustment without commitment at times 1 and 2, respectively, θc is the volatility aversion of
the optimal central banker under commitment, L is the expected value of the Fed’s loss function
without commitment, and Lc is the value of the loss function under commitment.

θ τu/ τ ε k1 k2 θ c (L − Lc)/L

0.20 10 0.83 0.99 0 0.07
1.0 10 0.40 0.85 0 0.24
1.0 250 0.05 0.11 0 0.63

rational expectations equilibrium, and the time-consistency problem persists.
Indeed, given the forward-looking nature of the objective function, a general-
ization of Proposition 3 applies, and we can show that it is ex ante optimal to
appoint a central banker with θc = 0.

Table IV illustrates the outcomes in the three-period model for different
parameter values. The first row shows that when θ = 0.20 and σ 2

ε /σ 2
u = 10, there

is partial adjustment at time 1 but near-full adjustment by time 2. Nonetheless,
committing to a central banker with θc = 0 results in a 7% improvement in
the Fed’s loss function. The second row shows that as we increase the Fed’s
concern about bond market volatility (θ = 1.0), we get slower adjustment at
both times 1 and 2, and there is significant underincorporation of the Fed’s
private information into the funds rate even as of time 2, with k2 = 0.85. Here,
committing to a central banker with θc = 0 would result in a 23% improvement
in the Fed’s loss function. Finally, the third row shows that, with θ = 1.0 and
relatively little rate-setting noise (σ 2

ε /σ 2
u = 250), the Fed can get stuck in a

very gradual equilibrium at both times 1 and 2. In this case, k2 falls all the
way to 0.11, so that most of the time-1 private information still has not been
impounded into the funds rate as of time 2. With so little noise, the Fed has
almost no cover to adjust the funds rate at either date if it does not want to
change the market’s inference much. Here, committing to a central banker
with θc = 0 would result in a 63% improvement in the Fed’s loss function, so
the time-consistency problem is quite severe.

Overall, the results of the three-period model suggest that the key implica-
tions of our model survive in a dynamic setting. Partial adjustment can persist
over multiple periods, amplifying the welfare impact of the time-consistency
problem.

B. Near-Rational Dynamic Model

To more satisfactorily explore the positive properties of the model, we need
a more fully articulated dynamic framework. Moreover, if we want to directly
compare the model to empirical evidence, we need to consider the case in which
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there are both public- and private-information shocks to the Fed’s target rate.
Accordingly, we assume that

i∗
t = i∗

t−1 + εt + νt, (31)

where εt is the Fed’s private information and the νt is public information—for
example, news about inflation or unemployment.

Suppose that we enter period t with a preexisting gap between the time
t − 1 target rate and the time t − 1 federal funds rate of

i∗
t−1 − it−1 ≡ Xt−1 + Yt−1, (32)

where Xt−1 is the private-information component of the gap and Yt−1 is the
public-information component. Even in the presence of rate-setting noise, Yt−1
is known by the market with certainty. In contrast, the market must infer Xt−1
from the Fed’s previous actions, and with rate-setting noise may still have an
imperfect estimate as of time t. As mentioned above, modeling the fully rational
Bayesian filtering problem for estimating Xt−1 is extremely complicated in this
setting. Therefore, to maintain tractability, we adopt a simpler “near-rational”
representation of the effects of rate-setting noise and assume that just after
time t − 1, but before time t, investors observe a noisy signal of Xt−1:

st−1 = Xt−1 + zt−1, (33)

where zt ∼ N(0, σ 2
z ).

The market’s expectation of Xt−1 given st−1 is therefore impounded into the
infinite-horizon forward rate before the Fed sets the funds rate at time t. Thus,
the change in the infinite-horizon forward rate at time t is the revision in the
market’s expectations about the target rate given the change in the federal
funds rate:

�i∞
t = E

[
i∗
t |st−1, Yt−1,�it, νt

]− E
[
i∗
t−1|st−1, Yt−1

]
= E

[
Xt−1 + Yt−1 + εt + νt|st−1, Yt−1,�it, νt

]− E
[
Xt−1 + Yt−1|st−1, Yt−1

]
.

(34)

We assume that the Fed follows the most general possible rule, according
to which it can adjust to each of the four components of the target, Xt−1, Yt−1,

εt, and vt, at different speeds. We further assume that the Fed conditions on
Xt−1 but not on the market’s signal st−1, which it cannot directly observe.21

21 If there are no term-premium shocks, the Fed could in principle infer st−1 by looking at the
long rate. However, if we were to add term-premium shocks that are not directly observable, these
would complicate the inference problem and make it impossible to uniquely invert st−1 from the
long-term rate. Recall that, in Section III.E.2, we assumed that term-premium shocks are publicly
observed. However, in the setting of that section, it would have been equivalent to assume that
term-premium shocks cannot be seen directly but rather are perfectly inferred from observation of
the long rate, given knowledge of the expected future short rate. In other words, there need be no
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Table V
Characterization of the Near-Rational Dynamic Model with Noise

This table characterizes the equilibrium in the near-rational dynamic model with noise for different
parameter values. θ indexes the Fed’s aversion to volatility, τ z/τ ε is the ratio of the variance of
private-information innovations to the target rate to the variance of rate-setting noise, τ v/τ ε is the
ratio of the variance of private-information innovations to the target rate to the variance of public-
information innovations, kε = kv is the equilibrium degree of adjustment to new information, both
public and private, kX is the degree of adjustment to the existing private-information gap, and kY
is the degree of the adjustment to the existing public-information gap. bi and bV are coefficients
from the quarterly regression it = a + biit−1 + bV Vt + et,where Vt = ∑

νt is the “public information
target rate”—the sum of all of the public-information innovations to the Fed’s target up to time
t. ρ(�it, �i t-1) and ρ(�it, �i t-2) are the first and second autocorrelations of quarterly changes in
the fed funds rate. The regressions and autocorrelations are calculated in simulated data, where
each simulation is 100 quarters with two FOMC meetings per quarter. We run 500 simulations
and report the average results across simulations.

θ τ z/ τ ε τ v/ τ ε kε = kv kX kY bi bV ρ(�it, �i t−1) ρ(�it, �i t−2)

0.2 10 1 0.73 0.83 1 0.85 0.21 0.12 −0.01
0.2 10 10 0.73 0.83 1 0.94 0.14 0.14 0.01
1.0 10 1 0.04 0.41 1 0.87 0.18 0.15 0.04
1.0 10 10 0.04 0.41 1 0.96 0.11 0.39 0.12

With these assumptions in place, we are able to establish the following
proposition.22

PROPOSITION 8: In the near-rational dynamic model with noise, the Fed par-
tially impounds Xt−1, εt, and vt into the funds rate at time t. By contrast, it fully
impounds Yt−1 at time t.

The proposition essentially combines the intuitions from several of our pre-
vious results. As in Proposition 5, the Fed moves gradually with respect to
contemporaneous public- and private-information innovations to its target, εt
and vt. As in Proposition 7, the Fed also moves gradually with respect to lagged
private information where, thanks to the rate-setting noise, the market still
retains some uncertainty (Xt−1). However, it fully impounds lagged public in-
formation that the market observes perfectly (Yt−1).

Table V illustrates the behavior of the near-rational dynamic model for differ-
ent parameter values. Each row of the table displays the speed of adjustment
to new information, both public and private, as well as to the existing private-
information gap Xt−1 and the existing public-information gap Yt−1. In addition,
the table characterizes the dynamic properties of the funds rate in simulated
data. To conduct the simulations, we assume that there are two FOMC meet-
ings per quarter. Then, for each FOMC meeting, we draw random realizations

logical tension between our approach in Section III.E.2 and our approach here of taking st−1 to be
unobservable by the Fed.

22 As we discuss further in the Appendix, to simplify the problem, we also assume that at any
time t, the Fed picks its adjustment rule taking Xt−1 and Yt−1 as given, but before knowing the
realizations of εt and vt. This timing convention is purely a technical trick that makes the problem
more tractable without changing anything of economic substance.
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of εt and vt and compute the resulting funds rate path using all of the speed-of-
adjustment coefficients generated by the model.

We next use the simulated data to conduct two exercises. First, we estimate
an inertial Taylor rule. Specifically, we run the following quarterly regression
on the simulated data:

it = a + biit−1 + bV Vt + et, (35)

where Vt = ∑
νt is the “public information target rate,” that is, the sum of all

of the public information innovations to the Fed’s target up to time t. We think
of this variable as the analog of the target rate that is used in the empirical
literature, which is typically based on the output gap and inflation. In this
literature, a typical finding in quarterly data is that it = 0.85 × it−1 + 0.15 × Vt
(Coibion and Gorodnichenko (2012)). Second, we estimate the first and second
quarterly autocorrelations of changes in the funds rate in the simulated data,
ρ(�it, �i t-1) and ρ(�it, �i t-2). In our data, we find that the first and second
quarterly autocorrelations are both around 0.30. Each simulation covers 100
quarters with two FOMC meetings per quarter. In other words, each simulation
has 200 periods. For each set of parameter values in the table, we run 500
simulations and report the average moments across these simulations.

In the first row of Table V, the Fed cares modestly about bond market volatil-
ity (θ = 0.20), and public and private shocks to its target have equal variance
(σ 2

ε /σ 2
ν = 1). There is partial adjustment to new public and private information

(kε = kv = 0.73), slightly more adjustment to the existing private-information
gap Xt−1 (kX = 0.83), and full adjustment to the public-information gap Yt−1
(kY = 1). The table also shows that we do well in terms of replicating the in-
ertial Taylor rule regression, with an inertia coefficient bi of 0.85, very close to
that reported by Coibion and Gorodnichenko (2012). This is true despite the
fact that there is full adjustment to the existing public information gap Yt−1
(kY = 1). The reason is that both the lagged funds rate and the public data Vt
are informative about the public-information part of the Fed’s target, but only
the lagged funds rate is informative about the private-information part. Thus,
if there is any private information, the only way the regression can load on it
is by loading on the lagged funds rate. And given that the lagged funds rate is
also informative about the public-information part of the Fed’s target, there is
little reason for the regression to incrementally load on Vt.

The first row of Table V also shows that we generate a positive first autocor-
relation of 0.12 for quarterly changes in the funds rate with these parameter
values, but essentially a zero second autocorrelation. Because there is partial
adjustment to both public- and private-information shocks, both contribute to
the first autocorrelation. The parts of εt and vt that are not impounded into the
funds rate at time t will continue to be impounded at time t + 1. However, only
private information contributes to the second autocorrelation, since kY = 1 and
therefore the public shock vt is fully incorporated after time t + 1. In contrast,
because kX < 1, the private shock εt continues to contribute to changes in the
fed funds rate at times t+2 and beyond. In this case, however, the contribution
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is relatively small, and therefore the second autocorrelation is low. There are
two reasons for this. First, there is a lot of public information, which contributes
to the variance but not to the second autocorrelation. Second, the relatively low
value of θ means that even private information is impounded into the funds
rate fairly quickly.

The remaining rows of Table V show that we need both a lot of private
information relative to public information and a high value of θ to meaningfully
increase the second autocorrelation of the funds rate in our simulated data. In
the second row, we increase the variance of private information relative to
public information (σ 2

ε /σ 2
ν = 10) but maintain θ = 0.20. In the third row, we

instead keep equal the variance of public and private information (σ 2
ε /σ 2

ν = 1)
but set θ = 1.0. As with the first set of parameters above, in these rows we do
relatively well in terms of replicating the inertial Taylor rule, but we do not
obtain significant second autocorrelations. By contrast, the final row of the table
shows that when we combine the assumptions that θ = 1.0 and σ 2

ε /σ 2
ν = 10, we

do well on both dimensions. The inertial Taylor rule regressions put a lot of
weight on the lagged funds rate, with bi = 0.96, and both the first and second
autocorrelations of changes in the funds rate are noticeably higher, at 0.39 and
0.12, respectively.

In sum, our limited experimentation with the near-rational dynamic model
suggests that it can help explain an economically meaningful portion of the
inertia in the funds rate that is observed in the data. At the same time, we
reemphasize a point made earlier: We do not mean to suggest that all of
the gradualism that we see in the data is driven by the mechanisms in our
model. Some of it is almost certainly a product of other considerations, such
as Brainard’s (1967) instrument-uncertainty principle. Thus, even if we could
mimic all of the moments of the data by choosing the right set of parameter
values for our simulations, we do not think that this would be a particularly
informative exercise.

IV. Discussion

Although we have focused most of our attention on the model’s implications
for gradualism, our basic framework can be used to think about a number
of related issues in monetary policy communication. Here we give two brief
examples. The first makes the point that private information, combined with
an aversion to bond market volatility, can lead to other distortions besides
gradualism. In particular, the Fed can find itself led by the market to be overly
reactive to recent news releases. The second example explores an approach to
setting expectations about the path of policy that might be helpful in addressing
such distortions.

A. Excess Sensitivity to Recent Data

The Fed often stresses that its policy decisions are “data-dependent.” While
this is certainly a desirable principle in the abstract, one might wonder whether
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in practice there is a risk that policy may become too sensitive to the most
salient recent data releases, especially when these releases on their own have
relatively little incremental information content.

Consider the following hypothetical example. There is an upcoming FOMC
meeting, and the Fed faces an important binary decision, for instance, whether
to taper the pace of its asset purchases for the first time. The Friday before
the meeting, the monthly payroll report will be released. Market participants
anticipate that the policy decision will be data-dependent, and they naturally
focus attention on the payroll report, even though it is common knowledge
that this report only contains a small amount of new information about the
underlying state of the economy. Suppose that investors develop an initially
arbitrary conjecture that the Fed will taper if and only if the payroll number
exceeds 200,000 new jobs. There is a sense in which this conjecture can be
partially self-validating.

To see why, imagine that the payroll number turns out to be only 160,000.
Given their conjecture, investors sharply revise downward their assessment
of the likelihood of the Fed tapering. This means that if the Fed was indeed
to follow through with the taper, it would be seen as a hawkish surprise. The
market would infer that the innovation in the Fed’s private information about
its target was unusually high, and bond yields would spike upward accordingly.
Given an aversion to such volatility, the Fed might decide to sit tight, thereby
validating the market’s initial conjecture. This could happen even if the Fed
fully recognizes that there is little meaningful difference between a payroll
number of 200,000 and 160,000.

As a rough sketch of how one might capture this intuition more formally,
assume that the Fed can either taper (Y) or not taper (N). The Fed has private
information ε about its long-run target for the funds rate, and this private
information is distributed symmetrically on some interval [−H, H]. Initially,
before the arrival of the news release, the optimal decision if the Fed ignored
bond market volatility is to taper if ε > 0. Thus, the prior probability of a Y
decision is ½. If the market holds such priors, then no matter how concerned
the Fed is with bond market volatility, it will follow through with the taper
if and only if ε > 0. This is because a Y decision and an N decision are seen
as equally likely ex ante, and so the amount of information about ε that is
conveyed is the same either way. The Fed cannot affect market volatility by
choosing one option or the other.

Now suppose instead that there is a small bit of bad public news right before
the meeting, for example, a disappointing payroll number. Further suppose
that the market interprets this news as being both quite informative and pes-
simistic, so the market now believes that the Fed will only taper ifε > X for
some positive X. In other words, the market thinks the likelihood of a Y deci-
sion has declined. Given this revision in market beliefs, a concern with bond
market volatility will now make the Fed less inclined to taper, even if it be-
lieves that the news release was totally uninformative. The reason is that if
the market thinks that a Y decision implies ε > X, then a Y decision conveys
more information about the Fed’s long-run target, and hence creates more
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movement in long-term rates, than does an N decision. Hence, the market’s be-
lief that the news release influences Fed behavior is at least partially fulfilled
in equilibrium.23

B. The Usefulness of Default Presumptions

The fundamental tension in our model arises because the Fed’s decisions
convey its private information and, all else equal, the Fed would prefer that
the market not update as strongly about this private information. So it is
natural to think about ways to coarsen the mapping from the Fed’s private
information to its actions. For example, taking the model literally, if one could
somehow exogenously increase the rate-setting noise σ 2

u , this would reduce the
equilibrium degree of gradualism, as can be seen from a comparison of Panels
B and C of Figure 2, and might improve overall efficiency. The intuition is that
when there is more rate-setting noise, observed changes in the funds rate are
less informative about changes in the Fed’s long-run target, and hence have
less impact on long-term rates. Thus, the Fed faces less pressure to smooth the
funds rate.

A real-world example of such a coarsening effect comes from the period sub-
sequent to the Fed’s initial taper of asset purchases in December of 2013. The
first $10 billion reduction in the pace of purchases was viewed as a significant
change in the stance of policy, and the run-up to it was associated with a great
deal of market volatility. Things changed dramatically, however, in the meet-
ings following the first reduction. The Fed continued to cut asset purchases by
$10 billion more at each meeting, and it quickly became the consensus market
view that this mechanically decreasing pattern was the Fed’s default behav-
ior.24 Given this belief on the part of the market, it was easy for the Fed to follow
through with the remaining $10 billion cuts, as the informational content had
been largely stripped from them.

To be a bit more precise, a default in our setting can be thought of like an (S,
s) policy, a range over which the Fed takes the same action independent of local
variation in its private information. As with rate-setting noise, the benefit is a
coarsening of the mapping from private information to actions. A given action
becomes less freighted with informational content, and hence easier for the Fed
to take.

Generalizing from this example, and from the (S, s) intuition, it is unclear
that the Fed should always aim to respond sensitively to small changes in public
or private information. Of course, policy must necessarily be data-dependent

23 We are not claiming that this is a full rational expectations equilibrium, in the sense that the
market’s conjecture X about the revision in the Fed’s threshold is matched exactly one-for-one by
a change in the Fed’s actual threshold. Rather, we are only making the weaker statement that a
change in the former induces a positively correlated change in the latter.

24 This occurred despite the fact that the Fed explicitly vowed to remain data-dependent. Each
FOMC statement during this period contained a line saying that “ . . . asset purchases are not on
a preset course, and the Committee’s decisions about their pace will remain contingent on the
Committee’s outlook for the labor market and inflation . . . .”
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in some global sense—substantial changes in the economic environment must
be met with commensurate changes in the stance of policy. At the same time,
however, it may be better to foster a market expectation that the default policy
path will be followed so long as things do not change too much. For example,
in the midst of a tightening cycle, there may be some virtue to establishing a
default presumption that the funds rate will be mechanically raised by 25 bps
at every other FOMC meeting, so long as the economy continues to perform
broadly as expected. At the margin, a default of this sort sacrifices some fine-
tuning of policy to economic conditions, but has the advantage of making each
move in rates less of an incremental informational event.

Admittedly, setting defaults in this manner may be complicated in prac-
tice. In the model, changes in the funds rate are the only thing that reveals
the Fed’s private information to the market. In reality, FOMC statements,
speeches, and testimony also transmit such information. One might hypothe-
size that something of a substitution effect could come into play—to the extent
that the Fed makes changes in the funds rate less informative, market partic-
ipants may begin to scrutinize other forms of communication more intensely.25

Nevertheless, even if crafting such purely verbal communication remains a
challenge, it might have less consequence for economic efficiency. Attempting
to manage bond market volatility with words is not the same thing as manag-
ing it by distorting the short rate away from the ideal target level. Analyzing
a richer version of the model in which both the Fed’s words and its actions
convey some of its private information is an interesting avenue for future
work.

V. Conclusion

This paper examines the complicated strategic interplay between the Fed
and the bond market that arises when the Fed has some private information
about its long-run target for the policy rate and is averse to bond market
volatility. From a positive-economics perspective, we argue that a model with
these ingredients can help explain the phenomenon of gradualism in monetary
policy, and can also shed light on how the Fed responds to other shocks, such as
changes in market risk premiums and salient data releases. From a normative
perspective, we emphasize that, in our setting, it can be valuable for a central
bank to develop an institutional culture such that a concern with bond market
volatility does not play an outsized role in policy deliberations. In other words,
it can be useful for policy makers to build a reputation for not caring too much
about the bond market.

We close by highlighting an important caveat with respect to this reputa-
tional argument. As we have framed it, our key point rests on a comparison

25 Casual observation suggests that in the period when policy was stuck at the zero lower bound,
so there was nothing to be learned from rate changes, there was enormous focus on the wording
of FOMC statements, with small adjustments to the statement often met with strong market
reactions.
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of equilibrium outcomes with different values of the parameter θc, which mea-
sures the appointed central banker’s concern about financial market volatility.
But crucially, an implicit assumption in making this comparison is that, in any
given equilibrium, the market has come to fully know the true value of θc. We
have not addressed the more difficult question of out-of-equilibrium dynamics,
that is of how the market learns about θc, from the central bank’s observed
behavior and other forms of communication.

For this reason, our model offers no guidance on the best way to make the
transition to a less bond market sensitive equilibrium, in which there is less
inertia in the policy rate and the market eventually comes to understand that
θc has declined. At any point in time, taking market conjectures as fixed, a “cold
turkey” approach that involves an unexpectedly sharp adjustment in the path
of the policy rate, relative to prevailing expectations of gradualism, is likely
to cause significant market volatility and perhaps some collateral costs for the
real economy. Nothing in our analysis should be taken as advocating such an
approach. To the extent that an institution-building effort of the sort we have
in mind is at all useful, it may be something that is better undertaken over
a longer horizon, such that market expectations regarding Fed behavior are
given more of a chance to adjust.
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Appendix: Proofs of Propositions

A. Appendix Proof of Proposition 2

Society’s ex ante problem is to choose a central banker with concern about
market volatility θc. In the absence of noise, this central banker will implement
the rational expectations equilibrium k (θc) given by equation (12) replacing θ

with θc, in which case society’s ex ante loss function is given by(
(1 − k (θc))2 + θ

)
σ 2

ε ,

which is minimized by setting θc = 0 so that k (θc) = 1.
In the presence of noise, society’s ex ante loss function is given by

L = E
[(

(1 − k)εt + ut
)2 + θ (χ (kεt + ut))2

]
= (1 − k)2σ 2

ε + σ 2
u + θχ2 (k2σ 2

ε + σ 2
u

)
.

Differentiating with respect to θc and recognizing that χ and k depend on θc
yields

∂L
∂θc

= 2
[(−1 + k

(
1 + θχ2)) σ 2

ε

∂k
∂θc

+ θχ
∂χ

∂k
∂k
∂θc

(
k2σ 2

ε + σ 2
u

)]
.
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Evaluating this expression at θc = θ , the first term is zero by the definition of
k(θ ). Thus, we have

∂L
∂θc

|θc=θ = 2θχ
(
k2σ 2

ε + σ 2
u

) ∂χ

∂k
∂k
∂θc

.

Further, we have

∂χ

∂k
= −τu

(
k2τu − τε

)(
τε + k2τu

)2

and

∂k
∂θc

= −

⎛⎜⎝1 − 2θckτ 2
u

(
τε + k2τu

) (
k2τu − τε

)((
τε + k2τu

)2 + θc (kτu)2
)2

⎞⎟⎠
−1 (

τε + k2τu
)2

(kτu)2((
τε + k2τu

)2 + θc (kτu)2
)2 .

Finally, note that when we write k as a function of κ in equation 8, this func-
tion is minimized at κ = √

τε/τu. This means that the upper stable equilibrium
in any rational expectations equilibrium will have k >

√
τε/τu . This implies

that k2τu − τε > 0 so that ∂χ

∂k < 0, ∂k
∂θc

< 0, and ∂L
∂θc

|θc=θ > 0.

B. Appendix Proof of Proposition 3

As before, the market’s inference about the Fed’s private information at time
t is

ε̃t = χ (kεt + ut) ,

where

χ = κτu

τε + κ2τu
.

Now, however, the Fed understands that there will be a time t + 1 surprise

εt+1 − ε̃t = (1 − kχ )εt − χut.

Plugging this into the Fed’s objective function, we have

E
[(

(1 − k)εt + ut
)2 + θ (χ (kεt + ut))2 + 0 + θ

(
(1 − kχ )εt − χut

)2
]

= (1 − k)2ε2
t + σ 2

u + θχ2k2ε2
t + θχ2σ 2

u + θ (1 − kχ )2ε2
t + θχ2σ 2

u .

The first-order condition with respect to k is

k = 1 + θχ

1 + 2θχ2 .

Thus, we have k < 1 whenever θ > 0 since χ > 0.
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Society’s ex ante loss function is given by

L = (1 − k)2σ 2
ε + σ 2

u + θχ2k2σ 2
ε + θχ2σ 2

u + θ (1 − kχ )2σ 2
ε + θχ2σ 2

u .

Differentiating with respect to θc and recognizing that χ and k depend on θc,
we have

dL
dθc

= 2
[(

−1 + k + 2θχ
dχ

dk
k2 + 2θχ2k − θk

dχ

dk
− θχ

)
σ 2

ε + 2θχ
dχ

dk
σ 2

u

]
dk
dθc

.

Evaluating this at θc = 0, which implies k = 1, χ = τu/(τε + τu), and dχ/dk =
(τε − τu)τu/(τε + τu)2, yields zero. The second-order condition is positive at θc = 0,
ensuring that this is a minimum.

C. Appendix Proof of Proposition 4

Suppose there is rate-setting noise and the Fed cares about the volatility of
a finite-horizon rate given by

�i f inite
t = α�it + (1 − α)�i∞

t .

The Fed continues to have adjustment rule

it = it−1 + kεt + ut,

and the market conjectures the adjustment rule is

it = it−1 + κεt + ut.

As in the case with noise in the paper, the market’s inference is that

ε̃t = χ�it = χ (kεt + ut) ,

where

χ = κτu

τε + κ2τu
.

Thus, the change in the finite-horizon yield is

�ifinite
t = α�it + (1 − α)ε̃t

= (
α + (1 − α)χ1

)
�it.

The Fed picks k to minimize the loss function

Eut

[(
i∗
t − it

)2 + θ
(
�i f inite

t

)2
]

= Eut

[(
(1 − k)εt + ut

)2 + θ
((

α + (1 − α)χ
)

(kεt + ut)
)2
]

= (1 − k)2ε2
t + σ 2

u + θ
(
α + (1 − α)χ

)2 k2ε2
t

+ θ
(
α + (1 − α)χ

)2
σ 2

u .
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Differentiating with respect to k yields

k = 1

1 + θ
(
α + (1 − α)χ

)2 .

Again, we have k < 1 so long as θ > 0.
The Fed’s ex ante loss function is given by

Et

[(
i∗
t − it

)2 + θ
(
�ifinite

t

)2
]

= (1 − k)2σ 2
ε + σ 2

u + θ (α + (1 − α) χ )2 k2σ 2
ε

+ θ
(
α + (1 − α)χ

)2
σ 2

u .

Differentiating with respect to θc and recognizing that χ and k depend on θc
yields

dL
dθc

= 2
[(

−(1 − k) + θk
(
α + (1 − α)χ

)2
)

σ 2
ε

∂k
∂θc

+ θ
(
α + (1 − α)χ

) (
k2σ 2

ε + σ 2
u

) ∂χ

∂k
∂k
∂θc

]
.

Evaluating this expression at θc = θ , the first term is zero by the definition of k.
Thus, we have

dL
dθc

|θc=θ = 2θ
(
α + (1 − α)χ

) (
k2σ 2

ε + σ 2
u

) ∂χ

∂k
∂k
∂θc

.

As before, since ∂χ

∂k < 0 and ∂k
∂θc

< 0, we have dL
dθc

|θc=θ > 0. Note that d2 L
dθcdα

|θc=θ is
proportional to 1 − χ , which is negative. Thus, θc is increasing in α.

D. Appendix Proof of Proposition 5

Given its conjecture about the rule the Fed is following, φ(εt; νt), the market’s
conjecture about εt is

ε̃t = φ−1 ( f (εt; νt) ; νt)

and the Fed’s loss function is

(εt + νt − f (εt; νt))2 + θ
(
φ−1 ( f (εt; νt) ; νt) + νt

)2
.

Consider the effect on the value of the loss function of a small perturbation in
the value of f (εt; νt), df . The effect of this perturbation is zero at the optimal
f (·; ·), so we have

− (εt + νt − f (εt; νt)) + θ
(
φ−1 ( f (εt; νt) ; νt) + νt

) ∂φ−1

∂i
|i= f (εt;νt) = 0. (A1)

Since φ(φ−1(x)) = x, we have

∂φ−1

∂i
|i= f (εt ;νt) = 1

∂φ

∂i |ε=φ−1( f (εt;νt);νt)

.
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Substituting into (A1) gives

− (εt + νt − f (εt; νt)) + θ
(
φ−1 ( f (εt; νt) ; νt) + νt

) 1
∂φ

∂i |ε=φ−1( f (εt;νt);νt)

= 0.

Imposing rational expectations, we have φ = f , so that this reduces to the
differential equation

∂ f
∂ε

|ε=εt (εt + νt − f (εt; νt)) = θ (εt + νt) ,

which the optimal f (·; ·) must satisfy.
Now conjecture that f = kεεt + c. In this case the differential equation re-

duces to

kε (εt + νt − kεεt − c) = θ (εt + νt) ,

or

kε(1 − kε)εt + kε(νt − c) = θεt + θνt.

Matching coefficients yields

kε(1 − kε) = θ and

c = νt

(
1 − θ

kε

)
.

Thus, we can write the optimal f (·; ·) as

f = kεεt + kννt,

where kε(1 − kε) = θ and kν = 1 − θ/kε. From the definition of kε, we have

kν = 1 − θ

kε

= 1 − (1 − kε) = kε.

E. Appendix Proof of Proposition 6

Given its conjecture about the rule the Fed is following, φ(εt; ηt), the market’s
conjecture about εt is

ε̃t = φ−1 ( f (εt; ηt) ; ηt)

and the Fed’s loss function is

(εt − f (εt; ηt))2 + θ
(
φ−1 ( f (εt; ηt) ; ηt) + ηt

)2
.
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Consider the effect on the value of the loss function of a small perturbation in
the value of f (εt; ηt), df . The effect of this perturbation is zero at the optimal
f (·; ·), so we have

− (εt − f (εt; ηt)) + θ
(
φ−1 ( f (εt; ηt) ; ηt) + ηt

) ∂φ−1

∂i
|i= f (εt ;ηt) = 0. (A2)

Since φ(φ−1(x)) = x, we have

∂φ−1

∂i
|i= f (εt;ηt) = 1

∂φ

∂i |ε=φ−1( f (εt ;ηt);ηt)

.

Substituting into (A2) gives

− (εt − f (εt; ηt)) + θ
(
φ−1 ( f (εt; ηt) ; ηt) + ηt

) 1
∂φ

∂i |ε=φ−1( f (εt ;ηt);ηt)

= 0.

Imposing rational expectations, we have φ = f , so that this reduces to the
differential equation

∂ f
∂ε

|ε=εt (εt − f (εt; ηt)) = θ (εt + ηt) ,

which the optimal f (·; ·) must satisfy.
Now conjecture that f = kεεt + c. In this case the differential equation re-

duces to

kε (εt − kεεt − c) = θ (εt + ηt) ,

or

kε(1 − kε)εt − kεc = θεt + θηt.

Matching coefficients yields

kε(1 − kε) = θ and

c = − θ

kε

ηt.

Thus, we can write the optimal f (·; ·) as

f = kεεt + kηηt,

where kε(1 − kε) = θ and kη = −θ/kε.

F. Appendix Proof of Proposition 7

We start at time 2 and work backwards. Assume that the market’s conjecture
about ε1 entering the period is given by

�y1 = ε̃1,1 = χ11 (i1 − i0) = χ11k1ε1 + χ11u1,
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where

χ11 = τuκ1

τε + τuκ
2
1

.

After observing i2, the market will believe that ε1 is given by

ε̃2,1 = χ21(i1 − i0) + χ22(i2 − i0)

= χ21 (k1ε1 + u1) + χ22 (k2ε1 + u2) ,

where

χ21 = τuκ1

τε + τu
(
κ2

1 + κ2
2

)
χ22 = τuκ2

τε + τu
(
κ2

1 + κ2
2

) .
Thus, the change in the forward rate at time 2 will be

�y2 = ε̃2,1 − ε̃1,1 = (χ21 − χ11) (k1ε1 + u1) + χ22 (k2ε1 + u2) ,

and the change in the forward rate at time 3 will be

�y3 = ε1 − ε̃2,1 = (1 − χ21k1 − χ22k2) ε1 − χ21u1 − χ22u2.

The Fed’s objective at time 2 is

E
[(

i2 − i∗
2

)2 + θ (�y2)2 + (
i3 − i∗

3

)2 + θ (�y3)2
]

= (1 − k2)2ε2
1 + σ 2

u

+ θ

(
((χ21 − χ11) k1 + χ22k2)2 ε2

1 + (χ21 − χ11)2 u2
1 + χ2

22σ
2
u

+2 ((χ21 − χ11) k1 + χ22k2) (χ21 − χ11) ε1u1

)

+ θ

(
(1 − χ21k1 − χ22k2)2 ε2

1 + χ2
21u2

1 + χ2
22σ

2
u

−2 (1 − χ21k1 − χ22k2) χ21ε1u1

)
.

The first-order condition with respect to k2 is

k2 = 1 + θχ22

1 + 2θχ2
22

+ θχ22 (χ11 − 2χ21)
1 + 2θχ2

22

k1 + θχ22 (χ11 − 2χ21)
1 + 2θχ2

22

u1

ε1
.

Since χ21 < χ11 and k1 < 1, we have E[k2] < 1 when σ 2
u > 0 and θ > 0.

We next fold this back to time 1. For simplicity assume that the Fed acts as
though k2 takes its expected value:

E[k2] = 1 + θχ22 (1 + (χ11 − 2χ21) k1)
1 + 2θχ2

22

.

Let

δ = dk2

dk1
= θχ22 (χ11 − 2χ21)

1 + 2θχ2
22

.



1056 The Journal of Finance R©

Folding back to time 1, we have the Fed’s objective at time 1:

E
[(

i1 − i∗
1

)2 + θ (�y1)2 + (
i2 − i∗

2

)2 + θ (�y2)2 + (
i3 − i∗

3

)2 + θ (�y3)2
]

= (1 − k1)2ε2
1 + σ 2

u + θχ2
11k2

1ε2
1 + θχ2

11σ
2
u + (1 − k12)2ε2

1 + σ 2
u

+ θ ((χ21 − χ11) k1 + χ22k12)2 ε2
1 + θ (χ21 − χ11)2 σ 2

u + θχ2
22σ

2
u

+ θ (1 − χ21k1 − χ22k2)2 ε2
1 + θχ2

21σ
2
u + θχ2

22σ
2
u .

The first-order condition with respect to k1 is

k1 = 1 + δ + θ (χ21 + χ22δ)
1 + θχ11 (2χ11 − χ21) + θ (2χ21 − χ11) (χ21 + χ22δ)

− δ + θχ22 (2 (χ21 + χ22δ) − χ11)
1 + θχ11 (2χ11 − χ21) + θ (2χ21 − χ11) (χ21 + χ22δ)

k12.

The Fed’s ex ante loss function is

L = E

⎡⎢⎣
(
(1 − k1)ε1 + u1

)2 + θ (χ11k1ε1 + χ11u1)2 + (
(1 − k2)ε1 + u1

)2

+θ (((χ21 − χ11) k1 + χ22k2) ε1 + (χ21 − χ11) u1 + χ22u2)2 + 0

+θ ((1 − χ21k1 − χ22k2) ε1 − χ21u1 − χ22u2)2

⎤⎥⎦
= (1 − k1)2σ 2

ε + σ 2
u + θχ2

11k2
1σ 2

ε + θχ2
11σ

2
u + (1 − k2)2σ 2

ε + σ 2
u

+ θ ((χ21 − χ11) k1 + χ22k2)2 σ 2
ε + θ (χ21 − χ11)2 σ 2

u + θχ2
22σ

2
u

+ θ (1 − χ21k1 − χ22k2)2 σ 2
ε + θχ2

21σ
2
u + θχ2

22σ
2
u .

Differentiating with respect to θc and recognizing that k1, k2, χ11, χ21, and χ22
all depend on θc we have

dL
dθc

= −2(1 − k1)
dk1

dθc
σ 2

ε + 2θχ2
11k1

dk1

dθc
σ 2

ε + 2θχ11k2
1

dχ11

dk1

dk1

dθc
σ 2

ε

+ 2θχ11
dχ11

dk1

dk1

dθc
σ 2

u − 2(1 − k2)
dk2

dθc
σ 2

ε + 2θ ((χ21 − χ11) k1 + χ22k2)

×
⎛⎝ (

dχ21
dk1

dk1
dθc

+ dχ21
dk2

dk2
dθc

− dχ11
dk1

dk1
dθc

)
k1

+ (χ21 − χ11) dk1
dθc

+
(

dχ22
dk1

dk1
dθc

+ dχ22
dk2

dk2
dθc

)
k2 + χ22

dk2
dθc

⎞⎠ σ 2
ε

+ 2θ (χ21 − χ11)
(

dχ21

dk1

dk1

dθc
+ dχ21

dk2

dk2

dθc
− dχ11

dk1

dk1

dθc

)
σ 2

u

+ 2θχ22

(
dχ22

dk1

dk1

dθc
+ dχ22

dk2

dk2

dθc

)
σ 2

u − 2θ (1 − χ21k1 − χ22k2)

×
((

dχ21

dk1

dk1

dθc
+ dχ21

dk2

dk2

dθc

)
k1 + χ21

dk1

dθc
+
(

dχ22

dk1

dk1

dθc
+ dχ22

dk2

dk2

dθc

)
k2 + χ22

dk2

dθc

)
σ 2

ε

+ 2θχ21

(
dχ21

dk1

dk1

dθc
+ dχ21

dk2

dk2

dθc

)
σ 2

u + 2θχ22

(
dχ22

dk1

dk1

dθc
+ dχ22

dk2

dk2

dθc

)
σ 2

u .
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At θc = 0 we have k1 = k2 = 1. In addition, we have χ11 = τu
τε+τu

, χ21 = χ22 =
τu

τε+2τu
, dχ11

dk1
= τu(τε−τu)

(τε+τu)2 ,
dχ21
dk1

= dχ22
dk2

= τετu
(τε+2τu)2 , and dχ21

dk2
= dχ22

dk1
= −2τ 2

u
(τε+2τu)2 . Recogniz-

ing this, the derivative simplifies to

dL
dθc

= τuτε

σ 2
u τu − 1

(τu + τε)3

dk1

dθc
= 0.

G. Appendix Proof of Proposition 8

Assume we enter period t with a preexisting gap between the time t − 1
target and the time t − 1 rate of

i∗
t−1 − it−1 = Xt−1 + Yt−1,

where Xt−1 is the private-information part of the gap and Yt−1 is the public-
information part. The innovation in the target rate has both public and private
components

i∗
t = i∗

t−1 + εt + νt,

where εt is new private information and νt is new public information. Assume
that the Fed follows an adjustment rule of the form

it = it−1 + kXXt−1 + kY Yt−1 + f (εt; νt) ,

and the market conjectures that the Fed is following a rule of the form

it = it−1 + κXXt−1 + κY Yt−1 + φ (εt; νt) .

We assume the following timing convention. The Fed picks kX, kY , and f (·; ·)
knowing Xt−1 and Yt−1, but not knowing the realizations of εt and vt. This timing
convention is purely a technical trick that makes the problem more tractable
without really changing anything of economic substance. Without it, the Fed’s
adjustment rule would turn out to depend on the realization of cross-products
like Xt−1εt. With the timing trick, what matters instead is the expectation
of the product, which is zero. In addition, when choosing f (·; ·), the Fed still
understands it will know εt and νt at the same time— this is important to get
partial adjustment to νt. We should emphasize that, even with this somewhat
strained intra meeting timing, the Fed still behaves on a discretionary basis
from one meeting to the next. Thus, while it agrees to values of kX, kY , and
f (·; ·) in the first part of the time-t meeting, it has no ability to bind itself to
those values across meetings. Hence, the basic commitment problem remains.

We assume that the market gets a noisy signal of Xt−1

st−1 = Xt−1 + zt−1,
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where zt˜ N(0, σ 2
z ). The change in the infinite horizon forward rate is then given

by

�i∞
t = E

[
i∗
t |st−1,�it, Yt−1, vt

]− E
[
i∗
t−1|st−1, Yt−1

]
= E

[
Xt−1 + Yt−1 + εt + νt|st−1,�it, Yt−1, vt

]− E
[
Xt−1 + Yt−1|st−1, Yt−1

]
.

For the second term, we have

E
[
Xt−1 + Yt−1, |st−1, Yt−1

] = Yt−1 + σ 2
X

σ 2
X + σ 2

z
st−1.

For the first term, we have

E
[
Xt−1 + Yt−1 + εt + νt|st−1,�it, Yt−1, vt

] = E
[
Xt−1 + εt|st−1,�it, Yt−1, vt

]
+ Yt−1 + νt.

Using Stein’s Lemma, we have

E
[
Xt−1 + εt|st−1,�it, Yt−1, vt

] = 1
E [φ′]2 σ 2

ε

(
σ 2

X + σ 2
z

)+ κ2
Xσ 2

Xσ 2
z

×
((

E
[
φ′] σ 2

ε

(
σ 2

X + σ 2
z

)+ κXσ 2
Xσ 2

z

)
(�it − κY Yt−1)

+E
[
φ′] (E [

φ′]− κX
)
σ 2

ε σ 2
Xst

)
.

Thus, we have

�i∞
t = χi�it − χiκY Yt−1 + vt − χsst−1,

where

χi = E
[
φ′] σ 2

ε

(
σ 2

X + σ 2
z

)+ κXσ 2
Xσ 2

z

E [φ′]2 σ 2
ε

(
σ 2

X + σ 2
z

)+ κ2
Xσ 2

Xσ 2
z

and

χs = E
[
φ′] (κX − E

[
φ′]) σ 2

ε σ 2
X

E [φ′]2 σ 2
ε

(
σ 2

X + σ 2
z

)+ κ2
Xσ 2

Xσ 2
z

+ σ 2
X

σ 2
X + σ 2

z
.

The Fed’s objective function is then

Et

[(
i∗
t − it

)2 + θ
(
�i∞

t

)2
]

= Et

[ (
i∗
t−1 + εt + νt − it−1 − kXXt−1 − kY Yt−1 − f (εt; νt)

)2

+θ (χi�it − χiκY Yt−1 − χsst−1 + vt)2

]
= (1 − kX)2 X2

t−1 + (1 − kY )2 Y 2
t−1 + 2 (1 − kX) (1 − kY ) Xt−1Yt−1

+ (εt + νt − f (εt; νt))2

+ θ

(
(χikX − χs)2 X2

t−1 + χ2
i (kY − κY )2 Y 2

t−1 + (χi f (εt; νt))2 + χ2
s σ 2

z + σ 2
ν

+2 (χikX − χs) χi (kY − κY ) Xt−1Yt−1

)
.
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Differentiating with respect to kY we have

−2(1 − kY )Y 2
t−1 − 2(1 − kX)Xt−1Yt−1 + 2θχ2

i (kY − κY )Y 2
t−1

+ 2θ (χikX − χs) χi Xt−1Yt−1 = 0.

Differentiating with respect to kX we have

−2(1 − kX)X2
t−1 − 2(1 − kY )Xt−1Yt−1 + 2θ (χikX − χs) χi X2

t−1

+ 2θχ2
i (kY − κY )Xt−1Yt−1 = 0.

If we have kY = κY = 1 in a rational expectations equilibrium, these two equa-
tions reduce to

−(1 − kX) + θ (χikX − χs) χi = 0

and

−(1 − kX) + θ (χikX − χs) χi = 0,

or

kX = 1 + θχiχs

1 + θχ2
i

.

Now consider a perturbation of f around the optimum. The corresponding
first-order condition is

f (εt; νt) = 1
1 + θχ2

i

εt + 1
1 + θχ2

i

νt.

Finally, to close the loop, we note that Xt = (1 − kX)Xt−1 + (1 − kε)εt implies

σ 2
X = (1 − kε)2

1 − (1 − kX)2 σ 2
ε .
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