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This paper develops a model of repeated innovation with knowledge spillovers. The model’s
novel feature is that firms compete on two dimensions: (1) product quality, where one firm’s
innovation ultimately spills over to other firms; and (2) distribution costs, where there are no
spillovers across firms and where learning-by-doing on the part of incumbent firms gives them a
competitive advantage over would-be entrants. Such firm-specific learning-by-doing has two impor-
tant consequences: (1) it can in some circumstances dramatically reduce the long-run average level
of innovation; (2) it leads to endogeneous bunching, or waves, in innovative activity.

1. INTRODUCTION

Recent work in the literature on innovation and growth has emphasized the process that
Schumpeter (1942) labeled ‘“‘creative destruction.” In the models of Aghion and Howitt
(1992), Grossman and Helpman (1991a, b), Segerstrom (1991), Segerstrom, Anant and
Dinopoulos (1990), and Caballero and Jaffee (1993), new, higher-quality products are
introduced by new firms, thereby displacing incumbent firms. The introduction of these
new products in turn sets the stage for yet another round of innovation, entry, and
displacement, because of the existence of knowledge spillovers—once a new product is
introduced, future generations of innovators can learn from it and improve upon it.

The image that comes through in these papers is of a very fluid corporate sector, with
new companies continually pushing aside existing ones. Indeed, this fluidity is seen as an
essential element in the growth process: it is only through the destruction of existing firms’
market shares and profits that new, better products—and the embedded knowledge that
accompanies them—come into being. Yet casual empiricism suggests that the corporate
landscape may be much less fluid than these models envisage. Many companies maintain
their market shares in given product areas for a long time. Often they manage to do so
even as the technological environment in which they operate changes dramatically.

These are two broad reasons why established firms might be expected to survive in a
rapidly changing environment. First, and most simply, established firms may just have a
comparative advantage in innovation. This would imply that established firms naturally
tend to stay “on the cutting edge” of new products and new technology, since they actually
pioneer the majority of improvements. If this is the case, the survival of such firms would
be no surprise—they survive because they are either the highest quality, or most efficient
producers at any point in time.'

1. The literature has identified a number of factors that may help to foster innovation inside already-

established firms. Gilbert and Newbery (1982) argue that incumbents are likely to have a greater strategic
incentive to invest in innovative activity than potential entrants when the innovations in question are incremental
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A second possibility is that established firms are not always on the cutting edge of
new products and technology, but rather, they have a number of other competitive weapons
at their disposal that allow them to fend off more innovative newcomers and to thereby
forestall the process of creative destruction. For example, long-established firms are likely
to have a base of loyal customers and well-developed distribution networks that allow
them to market whatever products they do have more effectively. This latter explanation
of corporate survival in the face of outside product innovation fits well with the literature
on competitive strategy (e.g., Porter (1980)). Work in this area repeatedly emphasizes that
innovative, high-quality products are but one route to ‘“‘competitive advantage”, and that
loyal customers and a strong distribution network can also be crucial links in the “value
chain”. The customer base story also seems to coincide with how some managers of
established firms described their own competitive strengths. For example, Frank Perna,
CEO of Magna Tek, a $1.3 billion manufacturer of electrical equipment, argues that: “I
think the core competence of our company is really its distribution channels—far more so
than its products.” (emphasis added)?

In general terms, what is significant about customer bases in this context is that they
represent the accumulation of learning-by-doing that is both firm- and product-specific.
The firm-specificity implies that potential entrants cannot take advantage of the knowledge
about customers that has been created by established firms. And conversely, the product-
specificity implies that established firms cannot simply knock off or acquire any new
products developed by potential entrants, and sell them at lower cost through their existing
distribution channels. Thus both established firms and innovative newcomers have their
own distinct, non-transferable sources of advantage, which allows a meaningful tension
to arise. Although I will use the euphemism “customer bases” as shorthand throughout,
it should be clear that what I have in mind is this broader notion of firm- and product-
specific learning-by-doing.

This paper takes the existence of such learning-by-doing as a starting point, and
investigates its implications for the dynamics of innovation. I adopt an entrepreneurial
slant, taking it as given that many good ideas for new, higher-quality products are naturally
generated outside the established firm sector.’ I then ask: if established firms have a
countervailing advantage over newcomers in the form of an existing customer base, how
is innovative activity by these newcomers affected?

More precisely, I construct a dynamic model with the following features: (1) incumb-
ent firms’ accumulated learning-by-doing gives them a firm- and product-specific *“distribu-
tion cost” advantage over potential entrants, an advantage which gets more pronounced
the longer the incumbents are able to survive; (2) potential entrants on the other hand,
may have access to a technology for a superior new product; and (3) technological innova-
tions have spillovers—once an entrant develops a new technology and introduces its pro-
duct to the marketplace, future generations of innovators can learn from it, and improve

in nature. Moreover, large established firms may have certain organizational advantages in doing incremental
innovation, as stressed by Schumpeter (1942)—e.g., preferential access to information or trained scientific per-
sonnel. Combining these strategic and organizational arguments, Henderson (1993) concludes that: “established
firms are likely to dominate incremental innovation, while entrants are likely to dominate radical innovation”
(p. 252). Thus if most innovation proceeds at an incremental pace, one might expect that established firms would
naturally be able to stay on the cutting edge.

2. This quote is taken from “Continental Bank Roundtable on Global Competition in the *90’s”, Journal
of Applied Corporate Finance, Spring 1993 (p. 40).

3. As the references in footnote 1 suggest, this entrepreneurial premise may be most relevant when the
ideas in question represent radical, rather than incremental innovations. The premise is endogenized to some
extent in Section 3.2 below, where I examine the different incentives that entrants and established firms have to
engage in the sort of research that generates ideas for new products.
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upon it.* The model has implications for how customer bases affect both the long-run
average level of innovative activity, as well as for the temporal pattern of innovation.

In its focus on the long-run average level of innovation, the model is similar in spirit
to the recent work in the growth literature that also analyses repeated innovations with
intertemporal knowledge spillovers.” A common theme of this work is that, due to the
spillovers, the resources devoted to innovation, and hence the rate of growth of the econ-
omy, can in some circumstances be less than socially optimal. That basic under-innovation
effect is at work in this model too, although it can be dramatically amplified by the presence
of customer bases. Loosely speaking, in my model firms compete on two dimensions: a
“high-spillover” dimension—i.e., product quality—where one firm’s innovation is ulti-
mately passed on to other firms; and a “zero-spillover”” dimension—distribution costs—
where an incumbent’s advantage never spills over to other firms. In some circumstances,
an incumbent can survive a very long time (or even forever) by being strong in the zero-
spillover dimension. While this is privately optimal for the incumbent, it can be very costly
for society, as generation after generation of potentially high-spillover innovators are
warded off.

Where the model departs more sharply from the papers mentioned above is in its
emphasis on the timing of innovation. Most of these other works have the feature that
innovation proceeds at a steady rate.® To take just one example, in Aghion and Howitt
(1992)—which apart from the customer bases resembles this model quite closely—there
always exists a steady-state equilibrium in which innovative activity is constant over time.
In contrast, a central feature of the model in this paper is that when a new firm successfully
displaces an incumbent in any given period, this has a positive externality on future
generations of potential entrants—it makes it easier for them to gain access to the market.
This externality, which I call the “shakeup” externality, arises because when a new firm
succeeds, it breaks the incumbent’s stranglehold on the customer base. Thus the market
is now “up for grabs”, which tilts the playing field more toward technologically strong
newcomers, and away from established firms.

The consequence of this shakeup externality is that even if the underlying research
and development technology is stable over time, innovations will tend to occur in waves.
That is, if there is an innovation today, the odds of another innovation tomorrow may
be substantially higher. Thus on the one hand, there may be long periods of stagnation,
in which no newcomers enter the market. But these periods of stagnation can give way to
rapid bursts of innovative activity. This wave-like aspect of innovation was also stressed
by Schumpeter (1936):

“. . .new combinations are not, as one would expect according to general principles of
probability, evenly distributed through time . . . but appear, if at all, discontinuously in
groups or swarms.... Why do entrepreneurs appear, not continuously, that is

4. This description of the model makes it sound superficially like that of Young (1993), who also studies
the interaction of invention and bounded product-specific learning-by-doing. However, in Young (1993), as in
much of the growth literature, the learning-by-doing is not firm-specific; rather, it spills over across sectors. Thus
learning-by-doing does not create entry barriers, and the sorts of issues I am interested in do not arise.

5. In addition to the papers cited above, see also Romer (1990).

6. See, however, Shleifer (1986) for a model where innovations are implemented in bunches. The mech-
anism in Shleifer’s model is quite different from that emphasized here—bunching is driven by aggregate demand
spillovers that lead firms to coordinate their implementation in periods when demand is high. In contrast,
demand plays no role in my model; everything is driven by the relative competitive strengths of the rival firms.
Also somewhat related is Jovanovic and MacDonald (19944). Although there is no endogenous bunching of
innovation in their model, large innovations increase the incentives for laggard firms to engage in costly imitation.
This gives rise to what they term “waves of change and improvement” (p. 26).
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singly in every appropriately chosen interval, but in clusters? Exclusively because the
appearance of one or a few entrepreneurs facilitates the appearance of other, and
these the appearance of more, in ever-increasing numbers.” (pp. 223, 228)

As this passage indicates, Schumpeter also believed that the entry of any one entrepr-
eneur imparted a positive externality to future would-be entrepreneurs, and that this was
the source of waves, or swarms, in innovative activity. However, he was somewhat less
clear as to exactly what the sources of this externality were. One major contribution of
this paper lies in delineating more precisely the mechanisms that give rise to this positive
externality.

The remainder of the paper is organized as follows. The basic model is developed in
Section 2. For the purposes of this section, it is just assumed that inventions arrive exogen-
ously to potential entrants, who must then decide whether or not to spend the money to
further develop these inventions and enter into product market competition against
incumbent firms. In Section 3, I extend the model to allow both entrants and incumbents
to choose an optimal level of research activity. This then endogenizes the probability that
the entrant will have sole access to a new invention. As will be seen, this extension of the
model in many cases further strengthens the positive “‘shakeup” externality effect, and
leads to an even more pronounced bunching of innovative activity. Section 4 concludes.

2. THE MODEL
2.1. Types of firms

The model is an infinite horizon one. In each period ¢, there is a single “incumbent” firm,
defined as the firm that was active in period ¢—1. With probability p, there is also a
“potential entrant” firm, that has sole access to the technology for a new product, and
that may choose to further develop the technology and challenge the incumbent for the
market in period ¢. For the time being, p is taken as exogenous; later it will be made an
endogenous function of the resources devoted to research by both the entrant and the
incumbent.

If the potential entrant is successful in its challenge, it will become the new incumbent
in period ¢+1. Only one firm is ever active in any given period—an incumbent always
has 100% market share. As will be seen, this feature emerges from the assumptions that
are made below about firms’ cost structures and the nature of product market competition.

In addition to incumbents and potential entrants, there is a third class of firms,
called ““copycats”. As will be seen below, copycats are always strictly less efficient than
incumbents. Thus in equilibrium, they never capture any market share. Nonetheless, they
play an important role: their costs serve to tie down market prices in periods when the
incumbent firm is not challenged by a potential entrant, and otherwise would be an
uncontested monopolist.

2.1. A Incumbents’ cost structures

The incumbent, the potential entrant and the copycats all have different cost structures;
I begin by describing that of the incumbent. The incumbent has no fixed costs. Its marginal
costs are of two kinds: costs of “production” and costs of ““distribution””. The marginal
cost of production for an incumbent at time ¢ is denoted by C;. For any given incumbent,
production costs do not change over time. That is, if the same firm is the incumbent in

i

periods t—1 and ¢, and it produces the same product, then Ci=C'_,.
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The marginal cost of distribution for an incumbent at time ¢ is denoted by D;. The
costs of distribution are assumed to take the following form:

Di=dCip* for Ai<A;
=dCip* for Ai> 4 1)

where B<1 and 4; is the “age” of the incumbent at time r—that is, 4} represents the
number of consecutive periods (prior to f) over which the incumbent has been actively
selling the same product.

There are two things to note about the form of the incumbent’s distribution costs in
(1). The first is that they are proportional to the incumbent’s production costs. This
assumption is not really critical for the basic point to be made. However, it makes it
possible to couch the analysis in a steady-state equilibrium framework. Indeed, in order
to facilitate the steady-state approach, all costs incurred by any firm in the model will be
proportional to that firm’s contemporaneous production costs. As will become clear
shortly, this simplification allows one to derive a set of time-invariant decision rules for
firms—rules that do not depend on, for example, a firm’s current ratio of production costs
to distribution costs.

The second, more important assumption embedded in (1) is that an incumbent firm’s
distribution costs are a decreasing function of the length of time it has been selling the
same product. In particular, distribution costs decline geometrically over the first 4 periods
of incumbency and then remain flat after that. While the specific functional form is not
critical, it is crucial that these costs do decline over some range. It is not enough simply
to assume—as would be implied by a switching cost model—that an incumbent has lower
distribution costs than an entrant, but that all incumbents have the same costs regardless
of age. It must be the case that the longer an incumbent has been around, the stronger
their competitive advantage along this dimension.

How should this assumption— that distribution costs decline with an incumbent firm’s
age—be interpreted? One possibility is to think of falling distribution costs as reflecting the
accumulated knowledge about customers that is a by-product of an ongoing firm-customer
relationship.” For example, the better a computer manufacturer knows its corporate custo-
mers, the more efficiently it can market to them, customize the computers it sells them,
provide continuing service that meets their specific needs, etc.

As stressed in the Introduction, what is important about the distribution costs is that
they represent a competitive attribute where there is effectively the equivalent of learning-
by-doing at the firm level, but no spillovers across firms. As will become clear, it is this
lack of spillovers across firms that differentiates distribution costs from production costs
in the model. When a new production technology is pioneered by one firm, other firms
are eventually able to learn from it and improve upon it. In contrast, firms are unable to
inherit the distribution cost advantages created by their predecessors—if a new firm enters
the market, it must effectively start from scratch in building an efficient distribution system.

In addition to being firm-specific, the learning-by-doing is also product-specific. This
is reflected in the assumption that 4} is a measure of the number of periods the incumbent
has been producing a single particular product. If the incumbent tries to switch products—
i.e., if it tries to knock off an innovation coming from an entrant—its A} reverts back to

7. In this sense, the value of long-term relationships is similar to that which has been emphasized in the
literature on banking. Bank relationships are valuable, this literature argues, because of the accumulated know-
ledge about borrowers that they generate. See, e.g., Fama (1985), Sharpe (1990), Rajan (1992), and Petersen
and Rajan (1994), among others.
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zero. Continuing with the computer example, if an established mainframe manufacturer
suddenly starts trying to sell PC’s to its customers, its experience in selling mainframes
does not give it an advantage over a new entrant to the PC market.?

2.1.B. Potential entrants’ cost structures

It is assumed that the potential entrant has invented a new technology, which if “devel-
oped”, will allow it to produce at a lower quality-adjusted cost than the incumbent.
Henceforth, I will be a bit loose and refer to the new product as simply having lower
“production costs” than the existing one. However, it is important for the logic of the
model that one thinks of of the new product as being distinct from the existing one—
although it serves the same function and hence is a substitute for the existing one from
the perspective of consumers, it is not literally the same item made more cheaply.” Again,
the computer example is helpful here: one can think of the innovation of PC’s as allowing
certain kinds of computing services to be delivered more efficiently than with mainframes,
but PC’s and mainframes are distinct products. This is the “quality ladder” interpretation
of innovation adopted by Aghion and Howitt (1992), Grossman and Helpman (1991a, b)
and others.

The potential entrant’s post-development production costs in period ¢, C;, are given
by:

Ci=AC; (2)

where 4, <1 represents the magnitude of the innovation. 4, is a random variable distributed
according to the time-invariant cumulative density function G(1)—the smaller is the reali-
zation of A,, the more significant is the period-¢ innovation.

A critical feature of the production cost innovations is that they exhibit spillovers
across firms. In particular, if the potential entrant does indeed develop its innovation—
i.e., it decides to go ahead with production in period ¢ and takes over the market—others
can learn about the new technology, beginning in period ¢+1. This will allow future
generations of innovators to stand on the shoulders of the entrant, so that their innovations
will further reduce production costs from a new base level of C7.

Note that this assumption is already built into the notation: if a potential entrant
decides to go ahead with production in period ¢, it will become the incumbent at time
t+ 1. Therefore C:. = C¢ if there is entry in period ¢. If another innovator enters in period
t+1, that second innovator will improve on the costs of the period ¢+ 1 incumbent, so
that C¢41=24,41C'+1=A,41A,C}. Thus if there are two consecutive rounds of innovation
followed by development, production costs will fall by a factor of 4,.,4,. More generally,
if there are n rounds of innovation and development in any given interval, production
costs will fall by a factor equal to the product of all the A’s that were developed.

While the potential entrant has an edge over the incumbent in terms of production
costs, it is at a disadvantage in terms of distribution costs. The potential entrant’s distribu-
tion costs, denoted by D7, satisfy:

Di=dC; ' 3)

8. As will become clear, this also prevents incumbent firms from simply acquiring firms with innovative
new products so as to sell these new products through their existing distribution channels.

9. Again, this is because I want to be able to maintain the assumption of product-specific learning-by-
doing.



STEIN WAVES OF CREATIVE DESTRUCTION 271

The form of (3) is similar to that of (1)—distribution costs are proportional to
production costs for both incumbents and entrants—but the ratio of distribution costs to
production costs is higher for entrants. Essentially, an entrant has the same distribution
costs that would be associated with an “age zero” incumbent with the same production
technology. Clearly, if A4,=1, and the new entrant does not have any production-cost
advantage, it will be strictly less efficient overall than the incumbent.

In addition to the marginal production and distribution costs, an entrant must pay
a one-time fixed development cost to begin production with the new technology. This
development cost can be thought of as the amount that must be spent to turn the research
discovery into a commerically viable technology. It is denoted K7, and satisfies:

Ki=kC; (C))

Like the distribution costs, the development cost is proportional to the firm’s current
production costs. As noted above, this is done to allow for a steady-state analysis of the
model.

2.1.C. Copycats’ cost structures

In any period ¢, there is also a competitive fringe of copycat firms that can mimic the
production technology of the current incumbent. That is, a copycat’s cost of production,
denoted by C7, is given by:

Ci=C; 6))

However, since the copycats have no existing customer base, their distribution cost,
¢, is given by:

Di=dC; (6)

Since they use only existing technology, copycat firms do not have to pay any fixed
development costs. Simply put, a copycat is like an incumbent, but without the distribution
cost advantage.'® Thus its overall marginal costs are always strictly higher than those of
the current incumbent.

2.2. Product market competition

I now turn to the competition in the product market that determines both: (1) who will
control the market in any period ¢: and (2) the associated profits. To keep things simple,
the demand side of the market is modelled in such a way as to be essentially irrelevant.
This is accomplished by assuming that there are N consumers, each of whom wishes to
purchase exactly 1/N units of the good, up to a reservation price of U,. U, is sufficiently
large that it always exceeds the copycats’ marginal costs, C7+ Df. This implies that prices
and profits in the model will be determined solely by the relative cost structures of the
competing firms.

There are two cases to distinguish. In the first case, which occurs with probability
(1—p), there is no new invention in period ¢, and hence no potential entrant. In this case,

10. The underlying assumption here is that the production technology does not have patent protection,
and hence can be costlessly imitated after a one-period lag. Although this assumption simplifies the analysis
somewhat, it is of no significant consequence. Similar results would follow if one were to grant incumbents
patent protection and use another device to tie down prices in those periods in which an incumbent is not
challenged by a new entrant.
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the incumbent competes against just the fringe of copycat firms. This implies that the
incumbent, by virtue of its lower marginal cost, captures the entire market, at a price
equal to the copycats’ marginal cost, C;+ D;. Thus the incumbent’s profits in this case
are given by (C¢+ DY) —(Ci+ Di)=dCi(1— B*); where A} is defined as min (4}, A).

In the second case, which occurs with probability p, there is a potential entrant in
period ¢. This case is a bit more complicated, and the timing of events is as follows. First,
the potential entrant must decide whether or not to sink the development cost K7. If it
does not, then the incumbent is left alone with the copycats, and the outcome is exactly
the same as described just above. If, on the other hand, the entrant does sink the develop-
ment cost, then the entrant and the incumbent compete & la Bertrand. the copycats will
be irrelevant to_the outcome of this Bertrand competition, as their costs are now strictly
higher than those of the other two types of firms.

To simplify the nature of the Bertrand competition between the incumbent and the
potential entrant, I make the following assumption:

C¢+ D¢ < Ci+ D) for any A4} and all ¢; or equivalently,

) (7)
A <(1+dB*)/(1+d) for all ¢.

In words, (7) says that once development costs are sunk, the entrant’s innovation is
sufficiently valuable that it always has lower overall marginal costs than an incumbent of
any age. The value of this assumption is established in the following lemma.

Lemma 1. If (7) holds, then conditional on development, the Bertrand equilibrium
always involves the potential entrant immediately gaining 100% market share in period t and
charging a price in that period equal to the combined production and distribution costs of
the incumbent firm, Ci+ D:.

Proof. See the appendix. ||

Without the assumption that (7) holds, things might be much more complicated,
although I do not think any of the basic conclusions below would be altered. To see why,
suppose that 4=35, and there is a three-period-old incumbent who is currently at a cost
disadvantage relative to the entrant—i.e., A,<(1+dB>)/(1—d). However, suppose also
that (7) is violated, such that A,> (1+dB*)/(1 +d). In this situation, the incumbent might
be willing to price below marginal cost today, in an effort to hang on to its customer base.
While next period the potential entrant will still be around—it has already sunk the
development cost—the incumbent will be in a stronger relative position, because its distri-
bution costs will have fallen. Indeed, if the incumbent can hang on until the next period,
it will have lower overall costs than the entrant and may hope to earn a profit.

The upshot is that without (7), one cannot rule out the possibility that the incumbent
might engage in a complex intertemporal pricing strategy, trading off current profits in
an effort to maintain its customer base. This in turn would imply that even if the entrant
does take over the market in equilibrium, the price at which it does so would be lower
than C:+ D!, and would in general depend on the nature of the incumbent’s intertemporal
problem.

In contrast, if (7) holds, these issues do not arise. No matter how long the incumbent
holds off the potential entrant, it will never have the lower costs. Thus there is no gain to
the incumbent from pricing below current cost, and it will never do so. As a result, (7)
ensures that, once the development cost K¢ is sunk, the entrant will always take over the
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market completely. However, it does not guarantee that the entrant will find it worthwhile
to spend the K7 in the first place. For that to happen, it must be that expected profits net
of the development cost—denoted by n;—exceed zero.

These profits can be broken into two components. First, there is the net profit (after
development cost) earned by the entrant in the period it enters—i.e., in period ¢. This can
be calculated directly from the results of the lemma as: C'+D:—C°—D:!—K¢=
Cil((1+dB™) /) —1—d—k]

In addition to these immediate profits, a firm that enters in period ¢ can also earn
profits in later periods if there is no subsequent entry by later innovators, because then it
only has to contend with the weaker copycat firms.'' Of course, if subsequent entry by an
innovating firm does occur in some future period ¢+, the period-f entrant earns nothing
from ¢+j onward.

We have already calculated the profits that a period-f entrant will earn in period ¢ +1,
conditional on no entry by a new innovator at this time. This profit is simply that earned
by a l-period old firm competing only with copycats, or dC7(1 — ). Similarly, the profits
that a period-¢ entrant will earn in period ¢+ 2, conditional on no entry by an innovator
by this time, are given by dC:(1— B°).

Thus overall, the expected present value of net profits to a potential entrant in period
t is given by:

75 = CH{((1 +dB™)/A) — 1 —d— k] + F} ®)
where F° is a measure of the expected future profits. F° in turn can be written as:
i (1-B) w (=Y }
Fe=diy XY L X 9
{Zz=1 (l_l__r)l Z:=A+l (1+r)1 ( )

where r is the per-period interest rate and where X; is defined as the probability that the
entrant will not be displaced within i periods by a future innovator. (I will show how
X{ is explicitly calculated momentarily.)

2.3. Steady-state equilibrium development rules

The appropriate equilibrium concept for this model is a set of equilibrium development
rules. In particular, for any given age of the incumbent firm A, we want to calculate a
“threshold” 1*(4) such that a potential entrant will choose to develop its invention if and
only if A,<A*(4}). Intuitively, in this equilibrium, a potential entrant will weigh both the
magnitude of its own innovation, and the age of the current incumbent, in making the
development decision. At the same time, it will take as given the set of equilibrium develop-
ment rules when it attempts to assess the likelihood of entry by future generations of
innovators—i.e., when it calculates the values of X7§.

For example, if the potential entrant does decide to go forward in period ¢, the
probability that there will be another round of innovation and entry in period ¢+ 1 is given
by: pG(A*(1)). Similarly, the probability of another round of innovation and entry in
period t+2 (conditional on there being no entry in period ¢+1) is pG(A*(2)). Thus we

11. Note that once an entrant has eliminated an incumbent in period ¢, it does not have to worry about
this ex-incumbent imitating the new technology and using its existing customer base to launch a comeback in
some period ¢+j. This is because of the assumption that the learning-by-doing underlying the customer base is
product-specific. Once a new technology has been adopted, an ex-incumbent is no better off than a copycat firm
that has never acquired any learning-by-doing experience.
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have the following expressions for X; :
Xi=II_, 1-pG*(j))) fori<4
= {[TZ (1 - pGQ* ()} (1 —pGA* (D)™ fori> A

The important observation that follows from (10) is that F* depends on the equilib-
rium rules A*(1), . . ., A*(A), but is independent of the period- data, A, and 4;. Moreover,
it is easy to show that F° is a monotonically decreasing function of each of the A*’s. This
makes intuitive sense: the greater is any A*, the greater is the probability that a future
innovator will decide to enter, and hence the lower are the expected profits associated
with entry today. This is similar to the “creative destruction” effect noted by Aghion and
Howitt (1992) and others.

The A*’s are determined by setting the appropriate variants of (8) equal to zero. For
example, A*(1) satisfies: \

(10)

[((1+dB)/A*(1))—1—d—k]+F°=0 (11)
Analogously, A*(2) satisfies:
[((1+dBH/A*(2))—1—d—k]+F*=0 (12)

Given that F° is independent of A, and Al we can use equations like (11) and (12)
to derive the following recursive relationship among the 1*’s:

A*(A)/A*()=(1+dB")/(1+dB); forall A<A (13)

In order to solve explicitly for the individual 1*’s, we need to pin down a “boundary
condition”—i.e., we need to establish the value of, say A*(1). While this is difficult to do
in closed form, it is easy to establish the existence and uniqueness of a solution, and to
do some simple comparative statistics. From (11), A*(1) is determined by the following
equality:

1+d+k—(1+dB)/2*(1)=F° (11%)

We have already seen that the term on the right-hand side of (11'), F* is a decreasing
function of A*(1). It is also easy to see that the term on the left-hand side of (11') is an
increasing function of A*(1). Thus the unique equilibrium value of *(1) will be determined
as in Figure 1. In the figure, the increasing function 1+d+k—(1+dB)/A*(1) is denoted
by “Current”, since this function represents the net current (i.e., period ¢) losses associated
with entry when A,= A*(1). The decreasing function F° is denoted by “Future”. Thus the
equilibrium point has the simple interpretation of being that value of A, where the current
costs of entry are just equal to the expected future profits.

Example 1. In this example, the parameter values are chosen as follows: p=1; d=
1;k=5; p=0-8; A=10; and r=0-10. In addition, the distribution G(A) is assumed to be
uniform over the interval (0, 0-5). It is easily checked that this distribution satisfies the
condition in (7).

These parameters lead to a value of A*(1)=0-268."> From (13), if follows that the
A*’s then decline monotonically to a value of 0-165 for 1*(10). The probability of a

12. As in all the examples that follow, A*(1) is computed using an iterative algorithm. I begin with a trial
value. This trial value can be used to calculate all the other A*’s from (13), and then F* from (9) and (10). I
then substitute the resulting F¢ into equation (11), and generate a second-round value of A*(1). The entire
procedure is then repeated until convergence.
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Costs and benefits of entering market

developed innovation when the incumbent is only one period old is 0.268/0-5=0-536.
However, when the incumbent is ten or more periods old, this probability falls to
0-165/0-5=0-330. It is also possible to calculate the unconditional, steady-state probability
of a developed innovation, which in this example is equal to 0-491.

2.4. Implications for the pace of innovation

One result that emerges immediately from Figure 1 has to do with the effect of development
costs on the pace of innovation:

Proposition 1. An increase in the ratio k of development costs to production costs
reduces the threshold \*’s, thereby deterring the development of new innovations.

Proof. This follows from differentiating (11), and observing that dF°¢/dA*(1) <0. ||

Although the impact of increased development costs on innovation is unambiguous
in sign, its magnitude is dampened somewhat because there are two competing effects at
work. On the one hand, an increase in k has a direct negative impact on the profits earned
by an entrant in the period these costs are paid—i.e., in the period that entry occurs. This
is manifested as an inward shift of the upwards-sloping Current curve in the figure. On
the other hand, an increase in development costs raises the expected profits that an entrant
will earn in the periods after entry, because it lowers the probability of further rounds of
entry by subsequent innovators. This is reflected in the fact that the Current curve shifts
along the downwards-sloping Future curve, rather than along a horizontal line.

Example 2. Maintain all the same parameter values as in Example 1, but double &,
from 5 to 10. A*(1) falls from its previous value of 0-268 to 0-161. Thus the probability
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of a developed innovation when the incumbent is one period old falls from 0-536 to 0-322.
The unconditional probability of a developed innovation falls from 0-491 to 0-269.

More central to this paper are the effects of customer bases on innovative activity. A
first natural question to ask is: as customer bases become relatively more important in
inter-firm competition, does the pace of innovation tend to accelerate or slow down? That
is, does the unconditional probability of a developed innovation rise or fall?

There are two ways to parametrize the importance of customer bases: either an
increase in d or a decrease in 8 can be thought of as raising the competitive advantage of
incumbent firms along this dimension. (In the extreme cases where either d=0 or f=1,
incumbents never have any advantage.) Whichever measure is used, the following result
obtains:

Proposition 2.  The effect of customer bases on the unconditional probability of innova-
tion is in general ambiguous. In some cases, an increase in the importance of customer bases
(i.e., an increase in d, or a reduction in B) can dramatically stifle innovation. However, there
are other cases in which an increase in the importance of customer bases can actually promote
the development of innovative new technologies.

The proposition can be established with a couple of examples. Before turning to the
examples, it is useful to demonstrate heuristically the sources of the ambiguity. This can
be done by reference to Figure 1. For concreteness, consider the impact of a decrease in
B. On the one hand, this reduces the current-period appeal of entry, thereby leading to
an inward shift of the Current curve. At the same time, once entry has occurred, a lower
value of f makes future profits higher in each period in which the new entrant remains
in control of the market and faces only the copycat firms. This causes an outward shift
of the Future curve. The net effect of these two shifts on 1*(1) cannot in general be signed.
However, the latter effect is more significant when p is low, because then new inventions
arise infrequently and it is more likely that the higher post-entry profits can be sustained
for a longer period of time. This suggests that customer bases are relatively more favourable
to innovation when p is close to zero.

Example 3. The potential for customer bases to have a negative impact on innovation
can be illustrated most starkly by considering a case where: (1) (1+d)/(1+d+k)>21*(4)
(this can always be accomplished by making d and A large enough); (2) the distribution
G (A)is such that A, always satisfies A*(4) <A, <(1+d)/(1+d+k); and (3) p is strictly
less than one. In this case, the economy eventually must get “stuck” in a situation where
the incumbent firm is at least 4 periods old, and where there are never any more new
innovations developed. All it takes to get an incumbent to be this old is a run of 4
consecutive periods with no new inventions; with p <1, such a run will occur in finite time
with probability one. And once the incumbent reaches this age, there is no innovation
that is of sufficient magnitude to displace it, since it is always the case that A*(4) <2,.

In contrast, if we maintained the same G (A1), but set f=1, so that customer bases
did not matter, the economy could never get stuck in this way. Rather, every innovation
that arose would always be developed. This is guaranteed by the assumption that
A<(1+d)/(1+d+k), which makes entry immediately profitable against an incumbent
with no distribution cost advantage. The net result is a new developed innovation in a
fraction p of the periods.
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Example 4. To see how customer bases can actually selp foster innovation when p
is low, consider a case where the parameter values are all the same as in Example 1, except
that p=0-10 instead of 1. In this case, the unconditional probability of a developed
innovation is 0-064. If, however, we take these same parameters but set =1 (keeping
p=0-10) the unconditional probability falls somewhat, to 0-057. Thus there is actually
more innovation when customer bases matter than when they do not.

Although the examples are useful in highlighting the effects that go in either direction,
it would be nice if one could derive explicit necessary and sufficient conditions for, e.g.,
an increase in customer bases to have a positive effect on the probability of innovation.
Unfortunately, this is difficult to do in general—deriving the necessary and sufficient
conditions as a function only of exogenous parameters is effectively tantamount to solving
the model in closed form. However, in one important limiting case, it is possible to make
a simple and intuitive statement:

Proposition 3. In the limiting case where p approaches zero, a sufficient condition for
an increase in customer bases (i.e., an increase in d, or a reduction in B) to increase the
unconditional probability of innovation is:

i (1=p)
Zi=l (l+r)l

w (A=pH_
+Zi=z+1—’—_(1+r)i>(l B (1+k)). (14)

Proof. See the appendix. ||

Since the sufficient condition in (14) is very likely to be satisfied—indeed, the only
way that it can be violated is by making the interest rate r extremely high—Proposition
3 confirms the basic intuition suggested by Example 4; namely that customer bases are
likely to be favourable to innovation when p is low. It is worth emphasizing that this
outcome stands in contrast to most static models of entry prevention in the industrial
organization literature. (see Tirole (1988, Chapter 8) for a detailed overview and refer-
ences.) In standard one-shot models, the ability of incumbents to accumulate specific
learning-by-doing serves to unambiguously deter entry. What is different here is the
dynamic nature of the model: today’s potential entrant recognizes that if it does indeed
enter, it will become tomorrow’s incumbent, in which case it will actually derive future
benefits from the existence of learning-by-doing entry barriers.

To this point, the examples and propositions have focused on the effect that customer
bases have on the long-run average level of innovation. But perhaps the most novel aspect
of the model has to do with its implications for the timing of innovations:

Proposition 4. Customer bases lead to an endogenous “bunching” of innovative activ-
ity. In particular, whenever there is an invention of sufficient merit to be developed in period
t, this raises the likelihood of further development in future periods.

This result follows immediately from the recursive formula for the *’s in equation
(13), which states that, the older is the current incumbent firm, the less attractive it is for
a potential entrant to develop a given invention. This observation in turn implies that
when a potential entrant does go forward in period ¢, this has a positive externality on
future generations of potential entrants—it raises their proposective returns to development,
since they will be facing a younger incumbent, on average. This positive externality might
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be termed a “shakeup” externality, since its essence is that entry in period ¢ breaks an
existing incumbent’s hold on customers, thereby shaking up the market and facilitating
the entry of young firms whose competitive advantage lies more in technological prowess
and less in having an established customer base.

Example 5. Maintain all the same parameter values as in Example 1. Suppose there
is an incumbent firm in period ¢ that is over 4 periods old, and that a potential entrant
is deciding whether or not to proceed with development. Let us ask what effect the potential
entrant’s decision has on the probability of development in future periods, ¢+ 1, t+2, etc.

If the potential entrant does not develop its invention in period ¢, the new potential
entrant in period ¢+1 will still be facing an incumbent over 4 period old. Thus the
probability of a developed innovation in period ¢+ 1 is pG(2*(4))=0-330. In contrast,
if the potential entrant does proceed with development in period ¢, the new potential
entrant in period ¢+ 1 will have an easier task, since it will be facing an incumbent only
1 period old. Thus the probability of development in period ¢+ 1 rises to pG(1*(1)) =
0-536.

The potential entrant’s decision in period ¢ exerts a similar, though less pronounced
influence on the conditional probabilities for period ¢+2. If there is no development in
period f, the probability of development in period ¢+2 is given by:
(1=pG(A*(A4)))(pG (A*(A))) + (pG(A*(4)))(pG (A*(1))) =0-398. If, on the other hand,
there is development in period ¢, the probability of development in period ¢+ 2 rises to:
(1-pG*(1))(pG (2*(2))) + (pG(A*(1)))*=0-514.

More generally, given that there is development in period ¢, the conditional probabilit-
ies of development in further-out periods decay slowly back to the unconditional value of
0-491. For example, the conditional probability at 1+ 3 is 0-504; at +4 it is 0-499, etc.
Figure 2 illustrates this time path of conditional probabilities.

0540 T T T T T T T T v T T T T T
0-530 | J
2
= 0520 i
e}
<
o 5 ]
2
A
0-510F 1
0-500 - g
0-490 L L L 1 L 1 s I L 1 s 1 L 1
0 2 4 6 8 10 12 14 16
k
FIGURE 2

Probability of innovation at time ¢t +k
Conditional on innovation at time ¢



STEIN WAVES OF CREATIVE DESTRUCTION 279

3. ENDOGENOUS RESEARCH EXPENDITURES

Thus far, the probability p of an invention arriving in any given period has been taken as
exogenous. Additionally, it has been assumed that only potential entrants ever generate
inventions; incumbents never do. More realistically, the probability that either a potential
entrant or an incumbent has access to a new technology will be a function of the resources
that each devotes to research activities. These resources will in turn depend on their
respective incentives to engage in research. In light of this motivation, I now extend the
model to incorporate endogenous research expenditures by both entrants and incumbents.
I do this in two steps. First, I consider the simpler case where only entrants do research.
Next I add incumbent research into the mix. To preview the results a bit, it turns out that
endogenous research can—though this need not be so under all circumstances—greatly
amplify the tendency for innovations to come in waves. The intuition is simple: a shakeup
of the market in period ¢ now not only makes it more attractive for a potential entrant
to develop an existing invention in period ¢+ 1, it also will encourage more research by
potential entrants in period ¢+ 1, and hence raise the likelihood of there being an invention
in the first place.

3.1. Only potential entrants do research

Assume as before, that there is just one potential entrant in each period. The potential
entrant now begins the period by deciding how much effort to expend on research. The
probability that the research will be successful and yield an invention in period ¢ is then
given by p(e,), where e, is the level of research effort, and p( ) is an increasing, concave
function. For some purposes, it will be useful to recognize that even with infinite effort,
p(e,) is bounded strictly away from one—i.e., it asymptotes to p™* <1. This captures the
idea that no matter how hard one tries, research is an inherently uncertain proposition.

Research effort is costly to the potential entrant; in particular, the cost of an effort
level e, is given by R;, which satisfies:

Ri=e,C; (15)

As with all the other costs in the model, research costs are proportional to contempor-
aneous production costs. The only slight twist is that the potential entrant’s research
costs are proportional to the incumbent’s current production costs. This simplifies the
interpretation, since one can think of the incumbent’s production costs as already known
at the time that the potential entrant begins research."

In this extended version of the model, an equilibrium will consist of two sets of decision
rules. First, as before, there will be the threshold A*’s that tell us when development is
optimal as a function of the incumbent’s age. Second, there will be a set of optimal research
levels, denoted by e*(1), ..., e*(4), which tell us how much research will be done as a
function of the incumbent’s age.

In order to begin thinking about the properties of this equilibrium, let us first focus
on equilibrium at the development stage. That is, take the research rules—the e*’s—as
given, and solve for the 1*’s. To do so, note that equations (8)—(10), which describes an
entrant’s profits from development, are still valid. The only difference is that X7, and
hence F*, are now more complicated functions since they depend also on the e*’s. It

13. In contrast, it is a little more awkward to assume that the entrant’s research costs are proportional to
its own production costs, since these will not be known until the research is completed. Nonetheless, using this
alternative assumption would have no effect on the results below.
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follows immediately that the recursive equation (13) for the A*’s is exactly the same as
before. In other words, once we pin down A*(1), the ratios of the A*’s will be the same
as they were earlier.

The computation of A*(1) itself is slightly more complicated, but the logic seen earlier
still applies exactly. That is, for any given set of e*’s, one can still show that there is a
unique equilibrium value of A*(1) as in Figure 1. The only change is that the Future curve
in this figure, while still downwards sloping, may have a slightly different shape, due to
its more complicated functional form.

Having solved for the equilibrium development rules, one can now fold backwards
and solve for the equilibrium research levels. Expected profits at the research stage, denoted

by n7, satisfy:
. (AL, A)g(A)dAr
”:=C:{P(et)|:f %]_et}‘ (16)
A<A*(4Y) C:
Here n¢(4., A,) is the profit at the development stage for a given value of 4 and A,.
It is calculated using equations (8)-(10).

From equation (16), one can immediately derive the first order conditions that must
be satisfied by each of the e*’s:

4, DgWydr "
p'(e*(A))=U ZAA e ]
A<A*(A) t

=H (1+dp*—A(1+d+ k)+lF")g(A)dl:| (17)
A<A*(A4)

=1/E(A)

Equation (17) makes it clear that, in any equilibrium, ¢*(4) must be a decreasing
function of A.'* This follows from the fact that both the integrand in (17), as well as the
limit of integration, A*(A4), are decreasing functions of A. Intuitively, the older the incumb-
ent, the lower is the marginal productivity of investment in research by a potential entrant.
This is true for two related reasons. First, development of any given invention is less
profitable with an older incumbent. Second, fewer inventions are worth developing at all
with an older incumbent. The bottom line is that less research is done when the incumbent
is older. This observation leads to the following result:

Proposition 5. When the potential entrant’s research level is made endogenous, and the
incumbent continues to do no research, the bunching of innovations becomes more pronounced.
That is, the positive effect of an innovation in period t on the conditional probability of
innovation in period t+ 1 is stronger when the potential entrant’s research is endogenous.

The reasoning for this result is straightforward. The probability of a developed innova-
tion in period t+1 is p(e*(A4i+1))G(A*(4i+1)). When there is an innovation in period t,

14. Moreover, it can be shown that there exists a unique equilibrium. To see heuristically why this is so,
think of drawing the following two curves on a graph whose axes are 2*(1) and e*(1). The first curve represents
those combinations of A*(1) and e*(1) that are consistent with equilibrium in the development stage. It is easy
to see that this curve must be downward sloping—i.e., entry today is less attractive if future generations of
entrants do more research. The second curve represents those combinations that are consistent with equilibrium
in the research stage. This curve is upward sloping. This is because the only way to elicit more research today
is if the appeal of entry is greater, which would imply a higher value of A*(1). The intersection of the two curves
pins down the unique values of A*(1) and e*(1).



STEIN WAVES OF CREATIVE DESTRUCTION 281

this has the effect of setting Ai.1=1. With endogenous research, this reduction in the age
of the incumbent has two distinct beneficial effects: it increases both the probability of an
invention, and the likelihood that the invention will subsequently be developed. In contrast,
in the simpler model of Section 2, only the latter effect was at work.

Example 6. Maintain all the same parameter values as Example 1, except: the prob-
ability p of an invention can be either 1 or 0-5, depending on the level of research effort.
In any period ¢, it costs an amount equal to 0-25C; to set p=1; it is costless to set p=
0-5.

It can be shown that these parameters lead to A*(1)=0-28. Moreover, when Ai=1,
the expected profits conditional on obtaining an invention in period ¢ are equal to
0-505C!. Thus it is (just barely) worth it to spend the money on research to raise the
probability of an invention from 0-5 to 1. In contrast, when A’ exceeds 1, it is never worth
it to invest in research.

We can now revisit the question asked in Example 5, namely how does development
in period ¢ affect the conditional probability of development in period ¢+ 1? If we begin
period ¢ with an age-10 or older incumbent and there is no development, the conditional
probability for ¢+1 is only 0-5G(1*(10))=0-17. In contrast, if there is development in
period ¢, the conditional probability for ¢+ 1 rises to G (1*(1))=0-56.

3.2. Both entrants and incumbents do research

Now assume that both the potential entrant and the incumbent have access to the same
research technology p(- ), and denote their respective levels of research effort in period ¢
by €7 and e'. Assume further that whether or not the entrant’s research is successful is
independent of whether the incumbent’s is, and vice versa. Thus there are three scenarios
to consider in which there is at least one invention.

First, with probability p(e?)(1 —p(e})), only the potential entrant succeeds in generat-
ing an invention. This is the same case as has been analyzed throughout, and the entrant’s
decision of whether or not to proceed with development continues to hinge on exactly the
same considerations as before.

Second, with probability p(ef)(1+p(ef)), only the incumbent succeeds in generating
an invention. Conditional on having sole access to an invention, the incumbent’s incentive
to proceed with development is much less than the entrant’s. This is a consequence of the
so-called “replacement effect”. (See, e.g., Tirole (1988, Chapter 10).) If the incumbent
develops the invention, it cannibalizes all the profits flowing from its current product and
the associated product-specific customer base.

To simplify the analysis of this case, I assume that A,> (1+dp)/(1+d+k). This just
says that no innovation is so good that is completely covers its fixed costs of development
in the period in which it is introduced—a fairly mild restriction. But this weak assumption
ensures that an incumbent will never proceed with development when it alone has an
inventions. This is because switching to a new product always reduces- the incumbent’s
profits in all future periods after innovation, by diminishing its advantage over the copycat
firms.

Finally, with probability p(e{)p(ef), both the entrant and the incumbent generate
inventions simultaneously. In this case, I assume that they both discover literally the same
invention—i.e., A, is the same for both. I also assume that if either one sinks the fixed
development cost, the other can immediately and costlessly imitate, without a one-period
lag. In other words, the advantage to having actually invented a new technology at the
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same time as another firm is that—unlike a copycat—one already has much of the know-
how in place, and can thus produce the developed version of it more quickly.

These assumptions make analysis of the simultaneous-invention case very simple.
Clearly, neither firm will ever proceed with development. For if one firm did spend the
fixed development cost, its rival would immediately imitate it. They would then play
Bertrand with equal costs, driving profits to zero. Thus the firm doing the development
would never be able to recoup its fixed cost, and would always lose money.

This logic implies that a potential entrant can never benefit from an invention if it
occurs at the same time as an incumbent invention. The converse is not true, however.
Even though an incumbent never actually develops a simultaneous invention, such an
invention does have value to the incumbent. To see why, note that when /l,</l*(A,) a
potential entrant with sole access to the invention would proceed with development, enter
and destroy the incumbent’s profits from its existing product. By simultaneously inventing,
the incumbent deters the potential entrant from going ahead with development, and
thereby safeguards the profits coming from the incumbent’s existing product. In other
words, simultaneous invention by the incumbent can serve a valuable defensive purpose.'

Analogous to previous notation, we can express the profits thus protected by the
incumbent in the form C:I(A4}). The function /() has a complicated structure, because it
is recursive in nature—the value to an age-4 incumbent of staying in the market in period
t is that it gets the flow of period-¢ profits, plus the opportunity to try (as an age-4 +1
incumbent) to optimally defend itself and stay in the market in period ¢+ 1, etc. In spite
of this complexity, the appendix shows that the function I(-) is increasing with 4. That
is, the older is the incumbent, the larger are the expected profits from its existing product,
and hence the greater is the value of safeguarding this product.

We are now ready to write down the first-order conditions for both the entrant’s
and the incumbent’s optimal research effort decisions. The entrant’s optimal effort levels
satisfy:

P(e7(4)=1/E(A)(1—p(e"(4))) (18)

where E(A) is a decreasing function defined as in (17) above.'® Thus the entrant’s first-
order condition is basically the same as before, except that it has been adjusted by a factor
1/(1- p(e"*(A ))). That is, to the extent that the incumbent does research in equilibrium,
and hence has a non-zero probability of obtaining an invention, the entrant’s incentives
to do research are reduced. This makes intuitive sense, as the entrant only proceeds with
development in those cases in which the incumbent does not simultaneously obtain an
invention.
The incumbent’s optimal effort levels satisfy:

P (4))=1/I(A)p(e” (4))G(A*(4)). (19)

15. In light of this observation, I need to make one more assumption to keep the analysis manageable. I
must assume that inventions are of the ““use-it-or-lose-it” variety—i.e., if an invention is not developed immedi-
ately, the incumbent cannot stockpile it and retain the option to deve]op it at some latér date. Without this
assumption, the number of state variables in the problem would blow up—in order to determine an incumbent’s
incentive to engage in research, one would have to know not just its age, but also how many previous inventions
it had already stockpiled for defensive purposes. While the assumption is admittedly unpalatable, I have no
reason to believe that it changes the basic nature of the conclusions offered below.

16. The E(A) function is actually a bit more complicated than in (17), because now F* depends on the
incumbent’s optimal research rules. However, unlike with 7(4), E(4) does not have a complex recursive
structure. This is because if the entrant does in fact enter, the current incumbent’s age 4 is no longer relevant
in future periods. Thus in computing E(4), 4 only matters to the extent it affects current-period profits and
decisions, not future ones.
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The striking difference between the incumbent and the entrant is that the incumbent
does more research, all else equal, when the entrant does more. More precisely, the incum-
bent’s incentive to do research is directly related to the probability that the entrant will
obtain an invention worth developing, i.e., p(e"*(A ))G (A*(A)). Again, this is because the
incumbent’s only motivation for undertaking research is a defensive one.

Several observations follow from these first-order conditions. First, note that as p™
approaches zero, the incumbent will, according to (19), put forth a vanishingly small
research effort. Equation (18) says that this in turn will encourage the potential entrant
to spend more heavily on research. In this limiting case, the potential entrant’s research
effort is determined as in the no-incumbent-research scenario of equation (17). Thus one
way to rationalize the simpler formulation of most of the paper—where only the potential
entrant ever generates inventions—is to say that it represents an endogenous outcome in
those situations where research is inherently a long-odds bet. In such a long-odds environ-
ment, the incumbent reasons that if it ever does come up with an invention, it will almost
certainly be the sole inventor. Consequently, its decision making is dominated by the
replacement effect, and it optimally chooses to forego research activity.

Second, even if we back away from this limiting case, it is still possible to derive a
couple of more general—albeit somewhat weaker—results about innovation-bunching:

Proposition 6. With endogenous research by both the incumbent and the potential
entrant, it is still the case that the proba{;ility that the potential entrant will generate an
invention worth developing—given by p(e° (4))G (A*(A))—is decreasing in the incumbent’s
age A.

Proof. A complete proof is in the appendix Here I give a heuristic version of the
argument, based on the assumption that 7(A) is increasing in A4. (Th1s is verified in the
proof in the appendix). Suppose the proposition is not true, so that p(e° (A))G(l*(A)) is
(weakly) increasing in A. Then, since I(A4) is also increasing in 4, (19) tells us that the
incumbent’s research 1nten81ty and hence probablllty of success p(e’ (A)) must also be
increasing in 4. But if this is true, then since E(A4) is decreasing in A4, (18) tells us that
the potential entrant’s research 1nten51ty and hence probability of success p(e® (A )) must
certainly be decreasmg in A. And if p(ef (A )) is decreasing in A, then p(e® (4))G (A*(4))
must be too, since from (13) G(1*(A4)) is decreasing in A. This establishes a contradiction
and thereby proves the proposition. ||

Unfortunately, Proposition 6 is somewhat less definitive than it might at first appear,
because with defensive research by the incumbent, the net probability of a new product
actually making it to market is not p(e° (A )G (A*(A4)), but rather (1—p(é (A )
p(e" (4))G (A*(A)). Tt is harder to make completely general statements about how this
latter quantity moves with A4, since in principle, €' *(A) can either increase or decrease with
A."” However, one can make the following statement:

Proposition 7. The net probability of a new invention coming to market—given
by (1—p(e (4)))p(e° (4))G(A*(A))—will always be decreasing in the incumbent’s age

17. There are two effects at work: on the one hand, as the incumbent ages, 1(A4) goes up, so it has a
greater stake in doing defensive research to protect the profits from its existing product. On the other hand, we
have just seen that as the incumbent ages, the potential entrant is less likely to come up with an invention worth
developing, so the need to do defensive research may decline.
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A4 as long as tfte following  sufficient condition is satisfied: (1—p(e" (4)))>
~[p'(¢" (AN /p"(e"(4)).

Proof. See the appendix. |

As long as e"‘(A) is relatively small, the sufficient condition will be satisfied for a
wide range of concave p(e) functions. To take a couple of examples, the condition always
holds near e=0 for the family of power functions p(e) =¢” with a <1, as well as for those
of the form p(e)=e/(ae+b), with a>1. Thus as long as the incumbent’s equilibrium
reseach effort is not too large, one can argue that the innovation-bunching effect of Proposi-
tion 6 will dominate any potential ambiguities, so that the probability of a new product
making it to market unambiguously declines with the age of the incumbent firm.

The bottom line of this subsection is therefore a simple one. As long as the incumbent
does not do “too much” research in equilibrium, the previous results about waves of
innovation basically carry over to the case where both incumbents and potential entrants
do research. Indeed, in the limiting case where p™® approaches zero, the strong results of
Section 3.1 apply exactly. And in the more general case where p(e"*(A )) is significantly
different from zero, but still “small” in the sense of Proposition 7, the essential flavour of
the results still comes through.

4. CONCLUSIONS

The premise of this paper is a simple one: even in industries in which innovation and
knowledge spillovers are critically important, firms are unlikely to compete solely on the
basis of such innovation-driven variables as product quality. Rather, they will also compete
in part of the basis of variables such as the strength of their respective customer bases.
With customer bases there is learning-by-doing at the product level, but there are no
spillovers across firms.

Introducing customer bases into a dynamic model of repeated innovation significantly
alters the model’s predictions. First, customer bases can in some circumstances—though
this need not always be true—dramatically reduce the long-run average level of innovation.
Or stated somewhat more generally, the potential for firm- and product-specific learning-
by-doing can, ironically, be quite harmful to long-run growth.

Second, customer bases tend to generate endogenous waves in innovative activity of
the sort described by Schumpeter (1936). The key to these waves is what I have termed a
shakeup externality. When a new firm successfully enters the market, it breaks the incum-
bent’s stranglehold on the customer base. This in turn makes it more attractive for the
next generation of innovators to enter.

The model developed above is extremely stripped-down and stylized. This was done
so as to illustrate the important consequences of customer bases in the simplest possible
way. Unfortunately, this simplicity also makes the model less empirically realistic, and
hence less appropriate for directly confronting the data. Given that some of the most
interesting evidence regarding innovative industries (e.g., Gort and Klepper (1982),
Klepper and Graddy (1990)) centres on the number of firms present at any point in time,
perhaps the most glaring deficiency of the model is the very artificial industry structure in
which only one firm at a time is ever active. )

In principle, it should be possible to remedy this deficiency without losing either the
central economic intuition of the shakeup externality or the resulting conclusion that
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innovations tend to come in waves. For example, the model might be extended to incorpor-
ate the idea that new entrants face increasing costs in adjusting the scale of their operations.
That is, while new entrants bring with them an improved technology, they initially have
limited capacity and cannot immediately start producing with this new technology on the
same scale as incumbents. This would imply that incumbents are displaced only gradually
by new entrants.

One appeal of extending the model in this direction is that it would link entry in any
period ¢ with an increase in the number of firms active in the market. Consequently, one
should be able to generate the prediction that a major innovation that shakes up an
industry would typically be followed not just by a flurry of increased innovation and entry
per se, but also by a period of supra-normal growth in the number of firms in the industry.
This sert of prediction could then be compared to the stylized facts on industry evolution
that emerge from the work of Gort and Klepper (1982) and Klepper and Graddy (1990).
For example, the shakeup externality and the accompanying waves of innovation might
be helpful in explaining what Gort and Klepper (1982) call the “take-off” phase of an
industry—i.e., the period during which an industry makes dramatic improvements in
productivity at the same time that the number of producers is growing rapidly.'® This
would seem to be a promising avenue for future research.

APPENDIX

Proof of Lemma 1. First, I establish that the entrant immediately gains 100% of the market share in
period t. To see why, suppose not, so that the incumbent has non-zero market share. For this to be an optimal
strategy for the incumbent, it must make a non-zero profit in at least some period after #— 1. This implies that
the price must exceed Ci(1 +dB”) in at least one period. But if this is the case, then by (7), the entrant can do
strictly better by cutting its price in that period so that it is not an equilibrium for the incumbent to have any
market share.

Second, it must be shown that the entrant charges a price of C;+ Dj in period ¢. This follows immediately
once it has been observed that the incumbent can never hope to earn any profits after 7. This implies that the
incumbent will never cut its price below marginal cost in period ¢ and thus we have the standard one-shot
Bertrand outcome. ||

Proof of Proposition 3. 1 will prove the proposition for the case where an increase in customer bases is parame-
trized by an increase in d. The logic for the case where it is parameterized by a decrease in B is essentially the
same. A sufficient condition for an increase in d to increase the unconditional probability of innovation is that
dA*(A)/dd>0 for all A<A. Differentiating (13) with respect to d, we have

* * +dB* A4 _
di*(4) _dA (l)[(l dp )]H*(l)[ B ﬁz] A1)
dd dd | (1+dp) (1+dp)
Thus a sufficient condition for dA*(A4)/dd>0 is:
* _ pA17*
(1) (BB A2)
dd  (1+dB)(1+dp7)
By differentiating equation (11) in the text with respect to d, we can establish that:
oF° B
dA*(1) =% 70
= (A3)

dd  oF° _(1+dp)
oaxr(1) (P

18. Other recent papers have presented different theories to rationalize the ““take-off” phase of an industry’s
evolution. For example, in Hopenhayn (1993), growth in the number of firms is driven by exogenous growth
in demand. And in Jovanovic and MacDonald (1994b) there is an exogenous change in the technological
environment that makes it suddenly possible for firms to pursue innovative activitity.



286 REVIEW OF ECONOMIC STUDIES

Now consider the limiting case where p—0. In this case it can be shown that:

e 4[4 (-8 ))

F d(z' ! (l+r) RRYS (+ry (A4
oF° F*
riadl (A.5)
oF¢
5/1*—(1)_’0 (A.6)

Using (A.3)-(A.6) and substituting in the formula (11) for A*(1), the sufficient condition (A.2) can, after much
simplification, be reduced to the one given in Proposition 3. ||

Proof of Proposition 6. One can write the incumbent’s problem in recursive form as:

J(A)=max {—ei(,/i) +[1—(1=p(e(A))) W(A)] [(d—dﬂj) +%]} (A7)

where, for shorthand, I have defined W(4)= p(e"'(A))G (A*(A)). The first-order condition for this problem is:

P ()= '

(A8)

i J(fﬁ)]
W(A)[(d B+

Now let us consider the specific versions of these two equations for the cases where A=4—1 and A=4,
respectively :

J(A)=max {—e'(A)+ [1= (1= p((A)) W(A)] [(d dp*y+ (Jl (f)])]} (A9)
= i T ir T 7 A-1 J(/?)
J(A—l)=max{—e(A—])+[l—(l—(e(A—])))W(A—])][(d—dﬁ )+m]} (A.10)
P (A)= l 0 (A.11)
W(A)[(d—dﬂ )+(1 +r)]
P (A-1)= ! (A.12)

w(A- 1)[(d—dﬂj")+M]
(1+r)

The first thing to prove is that W(4) < W(A —1). To see why, suppose not so that W(4) 2 W(4—1). By (A.11)

and (A.12), this would imply that ¢'"(4)> e (4—1). But then from the entrant’s first-order condition (18) in

the text, this would imply ¢ (4) <e(A—1), and we would have a contradiction, along the same lines argued

in the heuristic proof in the text. So W(A4)<W(4—1).

Now take this fact and apply it to (A.9) and (A.10). It follows immediately that J(A4)>J(4—1). Knowing
this, we can repeat the entire argument, now comparing the case where 4= A—1 to that where 4=4—2. Using
exactly the same logic, it can now be established that W(A—-1)<W(A—-2), and that therefore
J(A—1)>J(A—2). This can be repeated for all values of A<, leading to the conclusion in Proposition 6,
namely that W (A) is a decreasing function of 4.

Note also that the function 7(A) in the text is given by I (A) (d—adp* )+J (A +1)/(1+7). So in establishing
that J(4) is an increasing function of 4, we have also established the same for 1(4). ||
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Proof of Proposition 7. 'We want to see under what conditions the function Z(4)= (1 —p(e’ '(A)) W(A) will be
decreasing with A. Differentiating, we have:

d _ aw de' (A)
=(1-p(e (A))) W(A)p (e (4) —— (A.13)
o __L de'" (4)
(1-p(e"(4))) A 1A dA -

The first term in (A.13) is negative as desired, thanks to Proposition 6. But the second term is ambiguous in
sign. The second term can be attacked by differentiating the incumbent’s first-order condition (19), to obtain:

p"(e".‘(A)) de"(4) _
[P (7 (A)) da

Substituting into (A.13), we have:

[ (A) +W(A)—] (A.14)

[p'(e"‘(A))F]gz
P ()

NG (A))] [W(A) ﬂ]
@@y LT aal

The last term in (A.15) will always be negative, since dI/dA >0, as demonstrated in the course of proving
Proposition 6. This implies that a sufficient condition for dZ/dA <0 is that the term multiplying dW/dA in
(A.15) be positive. This is just the sufficient condition given in Proposition 7. ||

=[(1 —p(e”(4)) +

(A.15)
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