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1 Introduction

This paper is inspired by four themes that run through Clive Granger’s extra-
ordinary body of research on time series analysis and economic forecasting.
First, it is plausible that the complicated forces that drive economic events
introduce nonlinear dynamics into aggregate time series variables, so an im-
portant research program is modeling and exploiting these nonlinearities for
forecasting (Granger, 1993; Granger and Ter#svirta, 1993; Granger, Teriisvirta,
and Anderson, 1993; Granger and Lin, 1994; Terésvirta et al. 1994). Second,
a dominant feature of economic time series data is the considerable persis-
tence, or long-range dependence, of those series (Granger, 1966), and the
correct modeling of this persistence is a critical step in constructing reliable
forecasts over medium- and long-term forecasting horizons (Granger and
Newbold, 1977). Third, because time series models are simplifications of com-
plicated processes that are imperfectly understood, combinations of forecasts
from different models using different information might well outperform the
forecasts produced by any particular model (Bates and Granger, 1969; Granger
and Ramanathan, 1984). Fourth, time series models and forecasting methods,
however appealing from a theoretical point of view, ultimately must be judged
by their performance in real economic forecasting applications.

Inspired by these themes, we tackle five specific questions in the context
of forecasting US macroeconomic time series. First, do nonlinear time series
models produce forecasts that improve upon linear models in real time? Second,
if there are benefits to using nonlinear models, are the benefits greatest for
relatively tightly parameterized models or for more nonparametric approaches?
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Third, can forecasts at the six month or one year horizon be improved by
using preliminary evidence on the persistence of the time series to select the
forecasting model? Fourth, do combination forecasts outperform forecasts
based on a single method across a range of time series, and, if so, how heavily
should these combination forecasts weight the currently best performing fore-
casting methods? Finally, are the gains from using these advanced methods
over simple autoregressive forecasts large enough to justify their use?

We conduct an experiment designed to answer these questions. In this
experiment, various forecasts are compared at the one, six and twelve month
horizons for 215 monthly US economic time series. The experiment simulates
real-time implementation of these methods, that is, all forecasts (including all
parameter estimates, all model selection rules, all pretests, all forecast com-
bining weights, etc.) are based exclusively on data through the date of each
forecast. The parameter estimates, model selection statistics, pretests, and
forecast combining weights for all models are updated each month, and these
updated statistics are used to make that month’s simulated out of sample
forecasts.

The forecasts studied here are produced by 49 forecasting methods. We refer
to these as methods because many of these forecasts are based not on a single
estimated model but on results from multiple models that are subject to model
selection criteria or pretests. We shall refer to the underlying individual models
used by these forecasting methods as primitive models, of which there are a
total of 105. For example, one of our forecasting methods is an autoregression
in levels with a constant term and lag order selection based on the Akaike
Information Criterion (AIC), with lag length ranging from zero to twelve; in
our terminology this forecasting method selects among thirteen primitive
models. The primitive models fall into four classes: autoregressions (AR),
exponential smoothing (EX), artificial neural networks (ANN), and logistic
smooth transition autoregressions (LSTAR). As an additional benchmark, a
“no change” forecast was also considered.

We also consider various procedures to combine information from these
49 forecasting methods. We refer to these as forecast pooling procedures.
Bates and Granger (1969), Granger and Newbold (1977), and Granger and
Ramanathan (1984) demonstrated that averaging forecasts from different
models can improve forecast performance when all the models are approxima-
tions. The pooling procedures considered here differ by the amount of weight
placed on the model with the currently best performance, including weighting
all the forecasts equally, weighting the forecasts in inverse proportion to their
current mean squared error (MSE), using median forecasts, and placing all
weight on the forecasting method that currently has the lowest simulated real-
time MSE; this final pooling procedure is simulated real-time model selection
by predictive least squares (PLS).

The forecasting methods used in this study have been chosen in part to
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facilitate comparison with other large-scale “horse races” among time series
models. Makridakis et al. (1982) studied performance of univariate methods
in many series, some of which were economic time series, and concluded that
exponential smoothing was often successful. Meese and Geweke (1984) com-
pared various linear models using 150 macroeconomic time series and found
that AR models with lag lengths selected by the AIC generally worked well.
Interestingly, they also found that linear combination forecasts did not ap-
preciably improve forecast quality. More recently, in a model comparison
exercise conducted under the auspices of the Santa Fe Institute, Weigend and
Gershenfeld (1994) compared linear models with a large number of nonlinear
models; although they detected nonlinear dynamics in several non-economic
time series, the nonlinear forecasting models fared relatively poorly for the
economic time series they considered (exchange rates). Swanson and White
(1995, 1997) compared multivariate ANN models to linear vector autoregres-
sions, and found that the vector autoregressions generally had lower MSEs
than the ANN models in simulated real time (their models are all multivariate
however so their study does not compare directly to the exercise here).1 Relat-
ive to this literature, the contributions of our study include the use of a large
number of macroeconomic time series, the use of a large number of nonlinear
models, the investigation of unit root pretest methods, and an extensive in-
vestigation of forecast pooling procedures.

The remainder of this paper is organized as follows. The experimental design
and forecasting models are given in Section 2. The data are described briefly
in Section 3 and in more detail in the Appendix. The results are presented
and discussed in Section 4, and conclusions are summarized in Section 5.

2 Forecasting Methods and Experimental Design

2.1 General Considerations

Forecasting models. All the models investigated in this experiment are of the
form:

Yern = i(Zy30) + wyyy,, (2.1)

where y, is the series being forecast, h is the forecast horizon, i indexes the
forecasting model (¢ = 1, ..., 105), 6,, is a vector of unknown parameters, u;
is an error term, and Z, is a vector of predictor variables. In general, Z, =
(Yps - Y pp AYps o, Ay, 1, 1), where p is the maximal lag lengths. Typically,
individual forecasting models use only a subset of the elements of Z,.

All forecasts are made fully recursively, that is, forecasts of y,,, are made
using information in time periods 1, 2, ..., &. For the forecast of y,, ,, the
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parameter vector 8, is estimated using the data (v, s, ..., ;). In all models,
the parameter vector is estimated by minimizing the sum of squared residuals
of the h-step ahead forecast, that is, the estimate of 6,, at time period t, ,,,,
solves, ming 30, [y,,, — fi(Z; 0,)]?, where #; denotes the first observation
used for estimation for that model.

Note that in general each forecasting method, applied to a particular series,
has different parameter values at different horizons (that is, the h-period ahead
forecast is not computed by iterating forward for h periods the one-period
ahead forecasting model). This has costs and benefits. If the errors are Gaussian
and the one-period ahead forecasting model is correctly specified, then
estimating it at the one-period horizon and iterating forward is more efficient
than estimating the h-period ahead model directly. On the other hand, to the
extent that the models are mis-specified, estimating the h-period ahead model
directly permits the method to mitigate the effects of the mis-specification at
the horizon at hand. From a practical perspective, forecasting the h-period
ahead model directly requires more computer time for parameter estimation,
but it simplifies the computation of multistep forecasts from the nonlinear
models.

The h-step ahead forecast and the forecast error are:

Yithjt,in = f(Z;0) (2.2)
Cotnjin = Yirh — Yegnjtin (2.3)

Forecast trimming. For our main results, all forecasts were automatically
trimmed so that a forecasted change that exceeded in absolute value any change
previously observed for that series was replaced by a no-change forecast. This
adjustment was adopted to simulate the involvement of a human forecaster,
who would be present in actual applications but is absent from our computer-
ized experiment. Because the forecasts in this experiment are made automatic-
ally, some models could (and do) make extreme forecasts. Possible sources of
these extreme forecasts include parameter breaks, errors arising from incorrect
inclusion of deterministic trends, and difficulties arising from multiple local
optima for the nonlinear models. In true real time, such “crazy” forecasts would
be noticed and adjusted by human intervention. Accordingly, our forecast
trimming algorithm can be thought of as a rule of thumb that a human
forecaster might use in real time to detect and address such problems. Although
we focus primarily on the trimmed forecasts, some results for the untrimmed
forecasts are also presented for the purpose of comparison.

Startup and forecast periods. For each series, there are three separate periods:
a startup period over which initial estimates of the model are produced; an
intermediate period over which forecasts are produced by the 105 primitive
models and 49 forecasting methods, but not by the pooling procedures; and
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the simulated real-time forecast period over which recursive forecasts are pro-
duced by all models, methods, and pooling procedures. Let T}, be the date of
the first observation used in this study. Then the startup estimation period
is Ty, + 14 to T, where T}, = T}, + 134 and the first 13 observations are used
for initial conditions as needed. Thus 120 observations are used for the startup
estimation period. The intermediate period is T, to T, — 1, where T, = T, +
24. The forecast period is T}, to T, where T} is the date of the final observation
(1996:12) minus the forecast horizon h.

All forecast performance results reported in the tables are from the simu-
lated real-time forecast period, T, to T; (inclusive). For most series, the initial
observation date is 1959:1, in which case 7|, = 1959:1, T, = 1971:3, T, =
1973:3, and T5 = 1996:12 — h.

2.2 Forecasting Models and Methods

The forecasting methods are listed in Table 1.

Autoregressive (AR) models. Results are reported for 18 different autoregres-
sive forecasting methods. These differ in their treatment of lag lengths (3
variants); in whether a constant, or a constant and a time trend, were included
(2 variants); and in their treatment of persistence in the form of large auto-
regressive roots (3 variants).

Three alternative treatments of lag lengths were considered: a fixed lag
length of 4; lag length determination by the BIC (0 < p < 12); and lag length
determination by the AIC (0 < p < 12).

The possibility of persistence in the time series was handled by considering
three alternatives. In the first, the autoregression was specified in levels, that
is, Y, was forecast using y,, ..., ¥, 1 With no restrictions on the coefficients.
In the second, a unit root was imposed, so that the dependent variable was
Yren — Yp and the predictors were Ay,, ..., Ay, ..

The third approach was to use a recursive unit root pretest to select between
the levels or first differences specification. Theoretical and Monte Carlo evid-
ence suggests that forecasting performance can be improved by using a unit
root pretest rather than always using levels or always using differences, see
for example Campbell and Perron (1991), Stock (1996), and Diebold and Kilian
(1997). The unit root pretesting approach is widely used in practice, and many
unit root tests statistics are available for this purpose. In a Monte Carlo study
of unit root pretest autoregressive forecasts at moderate to long horizons, Stock
(1996) compared several different pretest methods at various significance
levels, and found that the best forecast performance across different values
of the largest autoregressive root was obtained using the Elliott—
Rothenberg—Stock (1996) DF-GLS test with a small significance level. We
therefore computed the unit root pretest using the DF-GLS* statistic for the
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Table 1. Summary of forecasting methods

Code Description

A. Linear Methods
AR(p, u, d) Autoregressive methods
p = number of lags = 4, A (AIC, 0< p<12),or B (BIC,0< p<12)
u = method of handling possible unit root
= L (levels), D (differences), or P (unit root pretest:
DF-GLS"if d= C,DF-GLS"if d= T)
d = deterministic components included
= (' (constant only) or T (constant and linear time trend)

EX1 Single exponential smoothing
EX2 Double exponential smoothing
EXP DF-GLS* pretest between EX1 and EX2

B. Nonlinear Methods
NN(p, u, n;, ny)  Artificial Neural Net methods
p = number of lags = 3, A (AIC, p =1, 3), or B (BIC, p =1, 3)
(same number of lags in each hidden unit)
u =L (levels), D (differences), or P (DF-GLS" unit root pretest)
n, = number of hidden units in first hidden layer
=2,A (AIC,1<n,;<3),0or B (BIC,1<n,<3)
n, = number of hidden units in second hidden layer
= 0 (only one hidden layer), 1 or 2

LS(p, u, &) LSTAR methods

p = number of lags = 3, A (AIC, p=1, 3, 6),or B (BIC, p=1, 3, 6)

u =L (levels), D (differences), or P (DF-GLS" unit root pretest)

¢ = switching variable

=L (=1y),D (&= Ay), M (either L or D depending on unit

root pretest), D6 (&, = v, — ¥, 6)s A (AIC over & = {y;, Yy o
Y s Yo~ Ypg and y, — y, 1o} if levels specification, or &, = {Ay,,
AYy 9y AY, 5, Yy~ Ypg and y, — y,_ o} if differences specification),
or B (BIC, same set as AIC)

C. No Change
NOCHANGE Yewnjt = Yt

D. Pooling Procedures
C(w, TW, Group) Linear combination forecasts
w = exponent in (2.9) = {0, 1, 5} (0 is equal weighting)
TW = number of observations in rolling window to compute MSEs
= REC (recursive—all past forecasts used), 120, 60
Group = A, B, A-C
Med(Group) Median combination forecasts
Group = A, B, A-C
PLS(TW, Group) Predictive least squares combination forecasts
TW = REC, 120, 60
Group = A, B, A-C, or PM (all Primitive Methods)

E. Pooled Over All Groups
PLS(TW, A-D) Predictive least squares combination forecasts over groups A-D
TW = REC, 120, 60
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selection between models that included a constant term only. For selection
between models that included a linear time trend under the levels alternative,
the DF-GLST statistic was used.?

In all, a total of 52 primitive autoregressive models were estimated (2 speci-
fications of deterministic terms, 13 lag choices, in either levels or differences).
The 18 forecasting methods based on these 52 primitive models include re-
cursive model selection using information criteria and/or recursive unit root
pretests, as detailed in Table 1.

For some of the results, it is useful to normalize the performance of the
models by comparison to a benchmark method. Throughout, we use a simple
autoregression as the benchmark method, specifically, an AR(4) (fixed lag
length) in levels with a constant term.

Ezxponential Smoothing (EX). Two primitive exponential smoothing models
are considered. Single or simple exponential smoothing forecasts are given by:

Yernt = Wephap—1 T (1 —a)y,. (2.4)
Double exponential smoothing forecasts are given by:

f=o(fica +90)+ 1 —ay)y,, (2.5a)
g =g +(1—a)(f, — fi1), (2.5b)

where the forecast is y,,,, = f, + hg, The parameters o in (2.4) and (o, )
in (2.5) are estimated by recursive nonlinear least squares for each horizon
(cf. Tiao and Xu, 1993).

Single exponential smoothing is conventionally intended for use with non-
trending series and double exponential smoothing is conventionally intended
for trending series. We therefore considered a unit root pretest version of these
two, in which the single exponential smoothing forecast was used if the recur-
sive DF-GLS* pretest (described above) rejected the null of a unit root, other-
wise the double exponential smoothing forecast was used. The three forecasting
methods based on these two primitive models therefore include the 1(0) speci-
fication (2.4), the I(1) specification (2.5), and the specification selected by a
recursive unit root pretest.

Artificial neural networks (ANN).3 Neural network models with one and two
hidden layers were considered. The single layer feedforward neural network
models have the form:

Vegn = 006 + Z Y1:9081:C,) + (2.6)
=1

where ¢(z) is the logistic function, g(z) = 1/(1 + €*). When y, is modeled in
levels, v, =y, and ¢ = (1, Y5 Y15 - Yy pr1)- When gy, is modeled in first
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differences, v,,, = y,,;, — y, and ¢, = (1, Ay, Ay, ..., Ay, ,1). The neural
network models with two hidden layers have the form:

ZI:BjSg(ﬁlliCt)

i=1

)
Vi, = BoG + 272]'9
Jj=1

+ gy (27)

Note that all the neural nets are forced to include a linear component. We
will refer to (2.6) as having n, hidden units, and to (2.7) as having n, and n,
hidden units, plus a linear component. Alternatively, (2.6) could be thought
of as having n; 4+ 1 hidden units, with one of the hidden units forced to be
linear.

The variants of (2.6) and (2.7) that are considered include different lag lengths
p; the number of hidden units; and specification in levels and differences. The
choices for single hidden layer ANNs are n, = {1, 2, 3}, p = {1, 3}, and levels/
differences specification, for a total of 12 primitive models. (The restricted lag
length choice of p = {1, 3} was used to reduce computational requirements.)
The choices for ANNs with two hidden layers are n, = 2, n, = {1, 2}, p =
{1, 3}, and levels/differences specification, comprising 8 primitive models. The
15 forecasting methods based on these 20 primitive models include recursive
model selection using information criteria and /or recursive unit root pretests,
as detailed in Table 1.

In all ANN models, coefficients were estimated by recursive nonlinear least
squares. For these models, multiple local minima are an important concern,
so the objective function was minimized by an algorithm developed for this
application. The algorithm uses a combination of random search methods and
local Gauss—Newton optimization. The algorithm and its performance are dis-
cussed in the Appendix.

Logistic smooth transition autoregressions (LSTAR).4 The LSTAR models
have the form:

Vien = O/Ct + dtﬁ'Ct 4 Uyips (2.8)

where v, ;, and (, are defined following (2.7) and d, = 1/(1 + exp[y, + 11&]),
where ¢, is a function of current and past y, and is the variable used to define
the smooth threshold.

The variants of the LSTAR models differ by the variable used to define the
threshold; the specification in levels or differences or unit root pretest; and
the lag length p. For models specified in levels, the following five alternatives
were used for the threshold variable: {, = y,; £, =y, 9§ =Y, 5§ =Y~ Y63
and &, = y, — Y, 1o- For models specified in first differences, the following
five alternatives were used for the threshold variable: &, = Ay,; §, = Ay, 5;
E=A0Ay 586 =y Y. ¢ and § =y, — Y, 1, In each case, lag lengths of p =
{1, 3, 6} were considered, for a total of 30 primitive models (15 in levels, 15
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in differences). The 12 forecasting methods based on these 30 primitive models
include recursive model selection using information criteria and/or recursive
unit root pretests, as detailed in Table 1.

The parameters «, § and y were estimated using the optimizer described in
the Appendix.

No change forecast. The no change forecast is Yernt = Ypr

2.8 Forecast Pooling Procedures

Linear combination forecasts. Pooled forecasts were computed as weighted
averages of the forecasts produced by the 49 forecasting methods. These com-
bination forecasts have the form:

M M
Z"%t?JHh\t,iha where ry, = (1/MSE;,)” / Z(l/ MSEjht ), (2.9)
i=1 j=1

where 7 runs over the M methods and {x,,} are the weights. The weighting
schemes differ in the choice of w, how the MSE is computed, and the sets of
methods that are combined. The simplest scheme places equal weight on all
the forecasts, which corresponds to setting w = 0 (in which case the MSE does
not enter). As w is increased, an increasing amount of emphasis is placed on
those models that have been performing relatively well.

As shown by Bates and Granger (1969), if forecast error variances are finite
then the optimal linear weighting scheme under quadratic loss involves the
entire covariance matrix of forecast errors (see Granger and Newbold, 1977).
With the large number of forecasts at hand, this scheme is impractical and
would be unreliable because of the large number of covariances that would
need to be estimated. Instead, we follow Bates and Granger’s (1969) sugges-
tion and drop the covariance term from our weighting expressions. Accord-
ingly, the weights on the constituent forecasts are inversely proportional to
their out-of-sample MSE, raised to the power w. The weights with w = 1
correspond to Bates and Granger’s (1969) suggestion. We also explore the
possibility that more weight should be placed on the best performing models
than would be indicated by inverse MSE weights, and this is achieved by
considering w > 1. If w = 0 the weights {,,} differ from series to series.

Bates and Granger (1969) also stress that the relative performance of differ-
ent models can change over time. This suggests computing MSEs over rolling
windows. The MSEs were therefore computed in three ways: over 60 and
120 period rolling windows (more precisely, over the past min(¢t— T, + 1, 60)
or min(¢— T, + 1, 120) periods, respectively), and recursively (over the past
t— T, + 1 periods).

The averages were computed over three different sets of forecasts: the linear
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methods (AR and EX); the nonlinear methods (ANN and LSTAR); and all
the methods discussed above (linear, nonlinear, and no change). Note that the
equal-weighted combinations do not depend on the rolling window; these are
denoted as C(0, REC, Group) in Table 1 for the different groups.

Median combination forecasts. If forecast errors are non-Gaussian then linear
combinations are no longer optimal. We therefore consider combination fore-
casts constructed as the median from a group of methods. In practice this
guards against placing weight on forecasts that are badly wrong for method-
specific reasons such as parameter breaks or parameter estimates achieving
local but not global optima. The medians were computed over three different
sets of forecasts: linear (AR and EX); nonlinear (ANN and LSTAR); and all
the methods discussed above (linear, nonlinear, and no change). This median
forecasts can be thought of as a consensus forecasts obtained by a vote of a
panel of experts, where each expert (forecasting method) gets one vote: the
consensus forecast is achieved when half the experts are on each side of the
forecast.

Predictive least squares (PLS) forecasts. An alternative approach to pooling
forecast information is to select the model that has produced the best forecasts
(as measured by the lowest out-of-sample MSE) up to the forecast date. This
constitutes selection across these models by predictive least squares. The PLS
forecasts differ by the period over which the PLS criterion is computed and
the sets of models for which it is computed.

The periods for which the PLS forecast were computed are the same as for
the combination forecasts, specifically, over the past min(¢— 7} + 1, 60) periods;
over the past min(¢— T, + 1, 120) periods; and over the past t— T + 1 periods.

The PLS forecasts were computed for five sets of models: all 49 models listed
in Table 1 under the categories AR, EX, ANN, LSTAR, NOCHANGE; all
linear models listed in Table 1 (AR and EX); all nonlinear models listed in
Table 1 (ANN and LSTAR); all 105 primitive models; and all 49 methods plus
the 36 linear combination, median, and PLS pooling forecasts. The purpose
of examining this final group is to see whether the potential optimality of pooled
forecasts could have been ascertained empirically in (simulated) real time.

3 Data

The data are monthly US macroeconomic time series. The 215 series fall into
the following general categories: production (including personal income), em-
ployment and unemployment, wages (hours and earnings), construction (includ-
ing housing starts), trade (wholesale and retail), inventories, orders, money
and credit, stock returns, stock market dividends and volume, interest rates,
exchange rates, producer price inflation, consumer price inflation, consump-
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tion, and miscellaneous (e.g. consumer confidence). In general, seasonally ad-
justed versions of these data were used for those series that, when unadjusted,
have seasonal patterns. Non-seasonally adjusted data were generally used for
inflation, interest rates, stock market variables, and exchange rates.

Some of these series were subjected to preliminary transformations. The
series in dollars, real quantities and price deflators were transformed to their
logarithms. Most other series (interest rates, the unemployment rate, exchange
rates, etc.) were left in their native units.

In general, the first date used is either the first date for which the series is
available or 1959:1, whichever is later. The exception to this rule is exchange
rates; because exchange rates are essentially flat in the fixed exchange rate
period, following Meese and Rogoff (1983) the first observation used for ex-
change rates is 1973:1.

A complete list of the series, their sources, the initial observation date used,
whether the series were seasonally adjusted at the source, and the transforma-
tion used are given in the Appendix.

4 Results
4.1 Description of Tables

Table 2 contains statistics summarizing the performance of each forecasting
method, relative to the benchmark method (an AR(4) specified with a con-
stant term in levels). For each series, forecast method and horizon, the mean
square of the T; — T, + 1 simulated out-of-sample forecast errors was com-
puted; for forecasting method i, denote this MSE,;,, j=1, ..., 215 and h =1,
6, 12. The relative mean square forecast error of the ith forecasting method
is MSE,; ,/MSE;; ;, where i = 1 corresponds to the benchmark AR(4) forecast.
Table 2 contains the averages and empirical quantiles of the distribution
(across series) of this relative MSE, for each of 49 AR, EX, no change, ANN,
and LSTAR methods listed in Table 1, and for various pooled forecasts. If,
for example, the median of this distribution exceeds one for a candidate fore-
casting model and horizon, then for at least half the series the benchmark
method had a lower simulated out-of-sample MSE at that horizon than the
candidate forecasting model.

Table 3 compares forecasting methods by presenting the fraction of series
for which each forecasting method is either best or among the top five. The
forecasts compared in this table consist of the 49 methods in groups A-C in
Table 1 and the pooling procedures that use the full recursive sample (“REC”).
For example, at horizon h = 12, for 5 percent of the series, the AR(4, L, C)
method (which is the benchmark method used in Table 2) had the lowest
simulated out-of-sample MSE of all the forecasting methods; for 20 percent
of the series, its MSE was among the lowest five.
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Table 2. Mean and percentiles of relative MSEs of various forecasting methods

relative MSE = MSE of method i/MSE of benchmark model
benchmark model = AR(4, L, C) (AR(4) in levels with a constant term)
For each forecast, the first row corresponds to one-step ahead forecasts; the second row,
to 6-step ahead forecasts; the third row, to 12-step ahead forecasts.

Method Mean 2% 10% 25% 50% 75% 90% 98%

AR(4, L, C) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AR(4,L,T) 1.02 0.96 0.99 1.00 1.01 1.03 1.04 1.10
1.10 0.78 0.88 0.99 1.08 1.17 1.27 1.56
1.26 0.44 0.77 1.02 1.19 1.38 1.76 2.55
AR(4, D, C) 1.00 0.90 0.95 0.98 1.00 1.02 1.04 1.08
0.98 0.59 0.77 0.90 0.97 1.05 1.17 1.36
0.99 0.35 0.64 0.81 0.94 1.15 1.36 1.76
AR(4,D, T) 1.01 0.95 0.97 0.99 1.01 1.02 1.04 1.09
1.06 0.74 0.89 0.99 1.03 1.11 1.25 1.46
1.15 0.52 0.83 0.97 1.06 1.18 1.42 1.89
AR(4, P, C) 1.00 0.90 0.95 0.98 1.00 1.01 1.03 1.07
0.98 0.59 0.77 0.91 0.97 1.05 1.15 1.34
0.98 0.35 0.64 0.81 0.94 1.11 1.33 1.76
AR(4,P, T) 1.00 0.90 0.95 0.98 1.00 1.02 1.04 1.07
0.98 0.59 0.77 0.91 0.97 1.06 1.16 1.34
0.99 0.35 0.64 0.81 0.95 1.14 1.36 1.76
AR(A, L, C) 1.02 0.83 0.95 1.00 1.02 1.04 1.07 1.14
1.00 0.61 0.86 0.99 1.01 1.06 1.13 1.24
0.98 0.63 0.87 0.98 1.00 1.02 1.08 1.18
AR(A,L, T) 1.03 0.85 0.96 1.00 1.04 1.06 1.10 1.16
1.12 0.66 0.81 0.96 1.10 1.25 1.37 1.82
1.29 0.45 0.75 0.95 1.20 1.41 1.82 3.13
AR(A, D, C) 1.01 0.77 0.94 0.98 1.02 1.05 1.09 1.15
0.97 0.43 0.72 0.88 0.99 1.09 1.18 1.42
0.98 0.33 0.58 0.83 0.95 1.15 1.36 1.74
AR(A,D, T) 1.03 0.84 0.96 1.00 1.03 1.06 1.10 1.17
1.07 0.60 0.80 0.96 1.06 1.16 1.31 1.53
1.16 0.46 0.72 0.96 1.07 1.23 1.49 1.97
AR(A, P, C) 1.01 0.77 0.94 0.98 1.02 1.05 1.08 1.15
0.97 0.43 0.72 0.89 0.99 1.09 1.15 1.40
0.97 0.33 0.58 0.83 0.95 1.13 1.35 1.74
AR(A, P, T) 1.02 0.77 0.94 0.98 1.02 1.05 1.09 1.15
0.98 0.43 0.72 0.89 0.99 1.09 1.18 1.41
0.98 0.33 0.58 0.83 0.95 1.15 1.35 1.74
AR(B, L, C) 1.01 0.91 0.97 0.99 1.01 1.02 1.04 1.12
0.99 0.68 0.87 0.98 1.01 1.03 1.07 1.20
0.99 0.71 0.93 0.99 1.00 1.02 1.05 1.11
AR(B, L, T) 1.02 0.93 0.97 1.00 1.02 1.05 1.08 1.14
1.11 0.67 0.83 0.96 1.09 1.23 1.36 1.67
1.27 0.48 0.75 0.98 1.20 1.42 1.74 2.99
AR(B, D, O) 1.00 0.83 0.94 0.98 1.01 1.03 1.07 1.13
0.97 0.43 0.73 0.90 0.98 1.07 1.17 1.42
0.99 0.33 0.58 0.83 0.94 1.15 1.37 1.66
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Table 2. (cont.)
Method Mean 2% 10% 25% 50% 5% 90% 98%
AR(B, D, T) 1.02 0.89 0.96 1.00 1.02 1.04 1.08 1.14
1.06 0.64 0.79 0.99 1.05 1.12 1.26 1.57
1.16 0.62 0.76 0.99 1.07 1.19 1.43 1.93
AR(B, P, C) 1.00 0.83 0.94 0.98 1.00 1.03 1.06 1.12
0.96 0.43 0.73 0.90 0.98 1.07 1.16 1.36
0.98 0.33 0.58 0.83 0.94 1.14 1.31 1.66
AR(B, P, T) 1.00 0.83 0.94 0.98 1.01 1.03 1.07 1.13
0.97 0.43 0.73 0.90 0.99 1.08 1.16 1.36
0.99 0.33 0.58 0.83 0.95 1.15 1.36 1.66
EX1 1.73 0.90 0.98 1.01 1.09 1.47 2.82 8.42
2.12 0.81 0.90 0.97 1.20 1.78 4.61 11.47
1.83 0.69 0.81 0.95 1.17 1.87 3.02 9.18
EX2 1.06 0.82 0.94 1.00 1.04 1.10 1.18 1.37
1.16 0.37 0.76 0.94 1.11 1.32 1.64 2.30
1.26 0.30 0.63 0.91 1.15 1.47 2.14 3.02
EX3 1.06 0.82 0.94 1.00 1.04 1.09 1.18 1.37
1.15 0.37 0.76 0.94 1.11 1.30 1.55 2.30
1.23 0.30 0.63 0.91 1.14 1.40 1.92 2.79
NN(3, L, 2, 0) 1.03 0.80 0.91 0.96 1.01 1.08 1.16 1.53
1.29 0.57 0.92 1.00 1.12 1.32 1.84 3.19
1.42 0.51 0.81 1.02 1.20 1.51 2.16 4.19
NN(3,D,2,0) 0.99 0.83 0.89 0.95 1.00 1.03 1.07 1.24
0.99 0.63 0.78 0.89 0.98 1.08 1.20 1.63
1.02 0.35 0.64 0.80 0.95 1.17 1.43 2.35
NN(3,P,2,0) 0.99 0.84 0.90 0.95 0.99 1.02 1.07 1.24
0.99 0.63 0.78 0.89 0.98 1.06 1.18 1.63
1.01 0.35 0.64 0.81 0.95 1.15 1.35 2.35
NN(3,L,2,1) 0.99 0.80 0.89 0.95 1.00 1.03 1.09 1.18
1.07 0.45 0.79 0.95 1.05 1.16 1.34 1.70
1.12 0.30 0.60 0.91 1.09 1.24 1.57 2.54
NN(3,D,2,1)  0.99 0.83 0.91 0.95 0.99 1.03 1.07 1.21
1.00 0.63 0.77 0.89 0.98 1.08 1.22 1.64
1.02 0.35 0.64 0.82 0.95 1.18 1.45 2.31
NN(3,P,2,1)  0.99 0.83 0.91 0.95 0.99 1.03 1.07 1.16
0.99 0.63 0.77 0.89 0.98 1.07 1.19 1.64
1.01 0.35 0.64 0.82 0.95 1.16 1.38 2.31
NN(3,L,2,2)  0.99 0.77 0.88 0.95 1.00 1.04 1.10 1.22
1.09 0.46 0.80 0.96 1.07 1.19 1.38 1.84
1.22 0.33 0.73 0.97 1.15 1.39 1.87 2.56
NN(3,D,2,2) 1.01 0.85 0.91 0.95 1.00 1.04 1.08 1.24
1.00 0.62 0.78 0.88 0.99 1.07 1.23 1.61
1.02 0.35 0.63 0.81 0.97 1.18 1.44 2.31
NN(3, P, 2, 2) 1.01 0.85 0.90 0.95 1.00 1.04 1.08 1.23
0.99 0.62 0.78 0.88 0.99 1.07 1.19 1.61
1.01 0.35 0.63 0.81 0.97 1.16 1.36 2.31
NN(A,L, A, 0) 1.03 0.81 0.92 0.96 1.02 1.08 1.16 1.26
1.32 0.47 0.94 1.02 1.16 1.45 1.91 3.19
1.50 0.59 0.88 1.05 1.30 1.64 2.16 3.59
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Table 2. (cont.)

Method Mean 2% 10% 25% 50% 5% 90% 98%

NN(A, D, A,0) 1.02 0.84 0.91 0.95 1.00 1.05 1.10 1.31
1.00 0.62 0.77 0.89 0.98 1.10 1.24 1.64
1.03 0.37 0.63 0.81 0.96 1.17 1.44 2.32
NN(A,P, A, 0) 1.01 0.82 0.91 0.95 1.00 1.04 1.10 1.24
1.00 0.62 0.77 0.89 0.98 1.08 1.20 1.64
1.02 0.37 0.63 0.83 0.96 1.16 1.37 2.32
NN(B,L,B,0) 1.03 0.83 0.94 0.98 1.02 1.07 1.16 1.24
1.31 0.56 0.95 1.04 1.15 1.45 1.83 2.92
1.49 0.59 0.95 1.06 1.31 1.65 2.15 3.29
NN(B, D, B, 0) 1.02 0.87 0.93 0.96 1.01 1.05 1.10 1.19
1.01 0.64 0.80 0.92 0.98 1.10 1.24 1.56
1.03 0.37 0.65 0.83 0.95 1.18 1.41 2.22
NN(B, P, B, 0) 1.02 0.87 0.93 0.96 1.01 1.05 1.10 1.18
1.00 0.64 0.80 0.92 0.98 1.08 1.18 1.56
1.02 0.37 0.65 0.83 0.96 1.16 1.38 2.22
LS(3,L, L) 1.07 0.91 0.98 1.01 1.05 1.10 1.17 1.31
1.24 0.80 1.00 1.06 1.15 1.34 1.72 2.00
1.34 0.56 0.92 1.07 1.19 1.45 1.95 2.89
LS(3, D, D) 1.06 0.90 0.95 1.00 1.04 1.09 1.16 1.38
1.04 0.69 0.82 0.93 1.02 1.11 1.26 1.60
1.05 0.40 0.67 0.84 0.98 1.20 1.44 2.21
LS(3, P, P) 1.05 0.90 0.96 1.00 1.04 1.08 1.15 1.33
1.03 0.69 0.82 0.93 1.02 1.11 1.22 1.60
1.04 0.40 0.67 0.85 0.98 1.18 1.41 2.21
LS(3, L, D6) 1.04 0.93 0.97 1.00 1.03 1.07 1.12 1.25
1.09 0.75 0.92 1.00 1.06 1.14 1.28 1.52
1.10 0.74 0.92 1.01 1.06 1.16 1.26 1.61
LS(3, D, D6) 1.03 0.85 0.95 0.99 1.02 1.06 1.11 1.27
1.01 0.52 0.72 0.91 1.00 1.12 1.24 1.46
1.04 0.34 0.60 0.83 0.96 1.20 1.45 1.99
LS(3, P, D6) 1.03 0.85 0.95 0.99 1.02 1.06 1.11 1.24
1.00 0.52 0.72 0.91 1.00 1.11 1.22 1.42
1.03 0.34 0.60 0.84 0.96 1.17 1.45 1.99
LS(A,L, A) 1.13 0.92 0.98 1.04 1.08 1.18 1.33 1.68
1.42 0.77 0.96 1.11 1.29 1.57 2.10 2.99
1.47 0.73 0.92 1.12 1.34 1.70 2.13 3.27
LS(A,D, A) 1.11 0.83 0.97 1.01 1.08 1.16 1.29 1.72
1.07 0.47 0.80 0.95 1.06 1.18 1.35 1.61
1.06 0.31 0.60 0.82 1.00 1.25 1.56 2.35
LS(A, P, A) 1.11 0.83 0.97 1.01 1.07 1.16 1.29 1.61
1.07 0.47 0.80 0.96 1.06 1.17 1.33 1.58
1.05 0.31 0.60 0.83 1.00 1.24 1.57 2.36
LS(B, L, B) 1.11 0.89 0.97 1.02 1.07 1.15 1.27 1.70
1.41 0.74 0.96 1.11 1.26 1.59 1.97 3.02
1.46 0.72 0.90 1.11 1.32 1.71 2.09 3.19
LS(B, D, B) 1.07 0.81 0.96 1.00 1.05 1.11 1.19 1.46
1.04 0.47 0.77 0.92 1.03 1.15 1.31 1.61
1.06 0.31 0.60 0.84 0.99 1.20 1.52 2.31
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Table 2. (cont.)

Method Mean 2% 10% 25% 50% 5% 90% 98%
LS(B, P, B) 1.06 0.81 0.96 1.00 1.04 1.11 1.19 1.44
1.03 0.47 0.77 0.92 1.03 1.15 1.29 1.61

1.05 0.31 0.60 0.84 0.99 1.19 1.52 2.31

NOCHANGE 1.76 0.89 0.99 1.04 1.12 1.49 2.82 8.42
2.14 0.81 0.90 1.00 1.22 1.78 4.61 11.47

1.83 0.69 0.82 0.97 1.21 1.77 2.93 9.18

C(0, REC, A-C) 0.95 0.79 0.87 0.93 0.96 0.98 1.00 1.01
0.89 0.42 0.69 0.85 0.92 0.97 1.03 1.12

0.87 0.27 0.56 0.78 0.89 1.00 1.08 1.32

C(0, REC, A) 0.98 0.81 0.91 0.96 0.99 1.01 1.02 1.06
0.92 0.46 0.68 0.88 0.96 1.01 1.08 1.15

0.90 0.37 0.57 0.81 0.93 1.05 1.16 1.33

C(0, REC, B) 0.94 0.79 0.86 0.92 0.95 0.97 1.00 1.05
0.90 0.45 0.72 0.85 0.92 0.99 1.04 1.13

0.88 0.28 0.59 0.79 0.89 1.00 1.08 1.35

C(1, REC, A-C) 0.95 0.76 0.88 0.93 0.96 0.98 1.00 1.01
0.89 0.43 0.69 0.85 0.92 0.98 1.03 1.11

0.87 0.34 0.59 0.78 0.90 1.01 1.08 1.34

C(1, REC, A) 0.98 0.82 0.91 0.97 0.99 1.01 1.02 1.05
0.93 0.48 0.71 0.90 0.96 1.01 1.08 1.15

0.91 0.43 0.57 0.81 0.94 1.07 1.15 1.40

C(1, REC, B) 0.94 0.79 0.86 0.92 0.95 0.97 1.00 1.05
0.89 0.44 0.70 0.85 0.91 0.99 1.04 1.14

0.87 0.32 0.60 0.79 0.89 1.00 1.11 1.38

C(1, 60, A-C) 0.95 0.75 0.88 0.93 0.96 0.98 1.00 1.01
0.89 0.42 0.68 0.85 0.93 0.98 1.03 1.12

0.88 0.31 0.58 0.78 0.91 1.03 1.10 1.34

C(1, 120, A-C)  0.95 0.76 0.88 0.93 0.96 0.98 1.00 1.01
0.89 0.43 0.69 0.85 0.92 0.98 1.03 1.11

0.87 0.34 0.58 0.78 0.90 1.01 1.09 1.34

C(5, 60, A—C) 0.94 0.74 0.88 0.93 0.96 0.98 1.00 1.02
0.91 0.41 0.64 0.85 0.94 1.01 1.07 1.15

0.97 0.28 0.60 0.82 0.98 1.12 1.30 1.49

C(5, 120, A-C)  0.95 0.74 0.88 0.93 0.96 0.98 1.00 1.01
0.89 0.43 0.68 0.85 0.93 0.99 1.04 1.11

0.91 0.35 0.59 0.80 0.92 1.04 1.16 1.41

C(5, REC, A-C) 0.95 0.74 0.88 0.93 0.96 0.98 1.00 1.01
0.90 0.42 0.69 0.85 0.93 0.99 1.04 1.11

0.91 0.35 0.61 0.80 0.92 1.04 1.14 1.40

C(1, 60, A) 0.98 0.82 0.91 0.97 0.99 1.01 1.02 1.05
0.93 0.47 0.71 0.90 0.96 1.01 1.08 1.15

0.92 0.37 0.57 0.81 0.95 1.07 1.17 1.40

C(1, 120, A) 0.98 0.82 0.91 0.97 0.99 1.01 1.02 1.05
0.93 0.48 0.71 0.90 0.96 1.01 1.08 1.15

0.91 0.43 0.57 0.80 0.94 1.05 1.15 1.40

C(5, 60, A) 0.98 0.81 0.92 0.97 0.99 1.01 1.02 1.04
0.94 0.48 0.73 0.90 0.98 1.03 1.08 1.18

0.98 0.40 0.64 0.87 1.01 1.14 1.27 1.50
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Table 2. (cont.)

Method Mean 2% 10% 25% 50% 5% 90% 98%

C(5, 120, A) 0.98 0.82 0.91 0.97 1.00 1.01 1.02 1.04
0.93 0.51 0.72 0.89 0.97 1.01 1.07 1.16
0.93 0.43 0.60 0.82 0.96 1.06 1.14 1.52
C(5, REC, A) 0.98 0.82 0.91 0.97 1.00 1.01 1.02 1.04
0.93 0.52 0.72 0.89 0.97 1.02 1.07 1.16
0.93 0.42 0.61 0.82 0.96 1.06 1.16 1.52
C(1, 60, B) 0.94 0.79 0.86 0.92 0.95 0.97 1.00 1.05
0.89 0.45 0.69 0.85 0.92 0.99 1.04 1.13
0.88 0.31 0.59 0.79 0.91 1.03 1.10 1.38
C(1, 120, B) 0.94 0.79 0.86 0.92 0.95 0.97 1.00 1.05
0.89 0.44 0.69 0.84 0.91 0.99 1.04 1.14
0.87 0.32 0.58 0.79 0.88 1.00 1.10 1.38
C(5, 60, B) 0.94 0.78 0.86 0.92 0.95 0.97 1.00 1.06
0.91 0.45 0.69 0.85 0.94 1.01 1.07 1.26
0.97 0.28 0.60 0.80 0.96 1.13 1.31 1.56
C(5, 120, B) 0.94 0.77 0.86 0.92 0.95 0.97 1.00 1.04
0.90 0.41 0.69 0.86 0.92 0.99 1.05 1.18
0.91 0.32 0.59 0.79 0.91 1.06 1.16 1.50
C(5, REC, B) 0.94 0.77 0.86 0.92 0.95 0.97 1.00 1.04
0.90 0.41 0.72 0.86 0.92 0.99 1.05 1.17
0.92 0.32 0.60 0.78 0.91 1.06 1.17 1.52
PLS(REC, PM) 1.02 0.79 0.92 0.98 1.02 1.07 1.12 1.26
1.05 0.48 0.74 0.95 1.05 1.16 1.35 1.55
1.14 0.38 0.65 0.91 1.09 1.33 1.59 2.32
PLS(REC, A-C) 1.01 0.77 0.90 0.97 1.02 1.05 1.11 1.21
1.03 0.47 0.75 0.93 1.03 1.15 1.27 1.50
1.10 0.35 0.65 0.88 1.07 1.24 1.51 2.15
PLS(REC, A) 1.00 0.81 0.94 0.99 1.01 1.03 1.06 1.12
1.01 0.49 0.75 0.94 1.03 1.10 1.21 1.36
1.05 0.48 0.65 0.92 1.04 1.19 1.38 1.92
PLS(REC, B) 1.01 0.77 0.92 0.97 1.01 1.05 1.11 1.27
1.04 0.50 0.81 0.94 1.04 1.14 1.31 1.61
1.08 0.34 0.64 0.88 1.02 1.22 1.51 2.44
PLS(REC, A-D) 1.00 0.78 0.91 0.95 1.00 1.04 1.10 1.17
1.05 0.42 0.77 0.93 1.06 1.16 1.32 1.62
1.13 0.38 0.63 0.87 1.12 1.33 1.59 2.05
PLS(60, PM) 1.01 0.76 0.90 0.97 1.01 1.07 1.13 1.21
1.11 0.40 0.76 0.96 1.11 1.28 1.43 1.74
1.23 0.37 0.63 0.94 1.23 1.46 1.73 2.29
PLS(120, PM) 1.02 0.77 0.91 0.97 1.02 1.07 1.11 1.26
1.06 0.45 0.75 0.94 1.07 1.19 1.32 1.55
1.17 0.39 0.68 0.93 1.12 1.33 1.59 2.40
PLS(60, A-C) 1.01 0.73 0.91 0.96 1.01 1.06 1.11 1.30
1.08 0.39 0.71 0.95 1.10 1.23 1.40 1.56
1.18 0.33 0.65 0.88 1.16 1.45 1.69 2.19
PLS(120, A-C) 1.01 0.77 0.90 0.96 1.01 1.05 1.10 1.21
1.04 0.42 0.75 0.93 1.05 1.18 1.32 1.47
1.12 0.34 0.65 0.90 1.10 1.27 1.54 2.39
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Table 2. (cont.)

Method Mean 2% 10% 25% 50% 75% 90% 98%

PLS(60, A) 1.01 0.77 0.95 0.99 1.02 1.04 1.07 1.11
1.06 0.47 0.79 0.96 1.07 1.19 1.28 1.48
1.12 0.43 0.65 0.92 1.11 1.34 1.51 1.73
PLS(120, A) 1.00 0.79 0.94 0.99 1.01 1.03 1.06 1.13
1.02 0.50 0.75 0.94 1.03 1.12 1.23 1.36
1.05 0.44 0.64 0.89 1.05 1.19 1.41 1.91
PLS(60, B) 1.01 0.78 0.92 0.96 1.01 1.06 1.12 1.28
1.09 0.41 0.78 0.98 1.08 1.22 1.38 1.68
1.16 0.33 0.70 0.90 1.13 1.38 1.64 2.22
PLS(120, B) 1.01 0.78 0.92 0.96 1.01 1.05 1.10 1.23
1.05 0.47 0.80 0.94 1.05 1.16 1.30 1.58
1.09 0.34 0.64 0.87 1.06 1.22 1.60 2.16
PLS(60, A-D) 1.00 0.75 0.90 0.96 1.00 1.05 1.10 1.31
1.09 0.40 0.78 0.95 1.08 1.23 1.42 1.74
1.21 0.37 0.67 0.90 1.21 1.48 1.71 2.21
PLS(120, A-D)  1.00 0.78 0.91 0.95 1.01 1.05 1.10 1.17
1.05 0.42 0.74 0.94 1.06 1.18 1.32 1.62
1.12 0.38 0.63 0.88 1.12 1.35 1.60 2.02
MED(A-C) 0.96 0.81 0.90 0.94 0.97 0.99 1.00 1.02
0.91 0.44 0.71 0.87 0.94 0.99 1.05 1.15
0.90 0.32 0.58 0.79 0.91 1.05 1.16 1.49
MED(A) 0.99 0.82 0.93 0.97 1.00 1.01 1.03 1.07
0.94 0.44 0.73 0.89 0.97 1.03 1.11 1.19
0.94 0.37 0.59 0.83 0.93 1.11 1.22 1.54
MED(B) 0.95 0.80 0.89 0.93 0.96 0.99 1.01 1.05
0.92 0.46 0.74 0.85 0.93 0.99 1.07 1.26
0.92 0.31 0.58 0.79 0.90 1.05 1.23 1.57

A natural question to ask in this comparison is which forecasting method
is best overall. The answer to this question depends, among other things, on
the attitude towards risk of the forecaster, that is, on the forecaster’s loss
function. Table 4 therefore reports rankings of the different methods for differ-
ent loss functions. The loss functions are all of the form:

Iy

(T =T, +1) Z| Wern = Yenen) /on I, (42)
=T,

Loss,, = (1/215))

series {y}

where 0, is the estimated standard deviation of y, , — v,.5

4.2 Highlights of the Results

Unit root pretests. Among the 215 series, a 5 percent DF-GLS" unit root test
rejects the null in 13.5 percent of the series, and a 5 percent DF-GLS” test
rejects the null in 10.2 percent of the series, using the full sample and six lags.
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Table 3. Summary of rankings of various methods
Entries are fraction of series for which the indicated method performs in the top N

Method 1 step ahead 6 steps ahead 12 steps ahead
N=1 5 N=1 5 N=1 5
AR(4,L, C) 0.00 0.03 0.04 0.10 0.05 0.20
AR(4,L, T) 0.00 0.02 0.00 0.06 0.00 0.07
AR(4, D, C) 0.00 0.03 0.00 0.03 0.00 0.03
AR(4,D, T) 0.00 0.00 0.00 0.01 0.01 0.04
AR(4, P, C) 0.00 0.02 0.00 0.03 0.00 0.03
AR(4,P, T) 0.00 0.03 0.01 0.03 0.00 0.03
AR(A, L, C) 0.01 0.03 0.04 0.11 0.02 0.14
AR(A,L, T) 0.01 0.01 0.04 0.06 0.04 0.07
AR(A, D, C) 0.00 0.04 0.00 0.06 0.01 0.07
AR(A, D, T) 0.01 0.02 0.00 0.02 0.01 0.03
AR(A, P, C) 0.00 0.04 0.01 0.07 0.02 0.07
AR(A, P, T) 0.01 0.05 0.01 0.06 0.01 0.07
AR(B, L, C) 0.00 0.03 0.00 0.11 0.03 0.16
AR(B,L, T) 0.00 0.01 0.01 0.07 0.02 0.07
AR(B, D, O) 0.00 0.03 0.00 0.04 0.00 0.04
AR(B, D, T) 0.00 0.01 0.01 0.02 0.00 0.02
AR(B, P, C) 0.00 0.01 0.00 0.03 0.00 0.03
AR(B, P, T) 0.01 0.03 0.00 0.04 0.00 0.03
EX1 0.03 0.06 0.04 0.12 0.05 0.13
EX2 0.01 0.03 0.00 0.05 0.01 0.06
EX3 0.00 0.03 0.04 0.06 0.03 0.07
NN(3, L, 2, 0) 0.05 0.17 0.01 0.07 0.01 0.08
NN(3, D, 2, 0) 0.02 0.13 0.00 0.06 0.00 0.05
NN(3, P, 2, 0) 0.05 0.13 0.00 0.07 0.00 0.04
NN(3, L, 2, 1) 0.02 0.18 0.07 0.15 0.05 0.12
NN(3,D, 2, 1) 0.02 0.09 0.00 0.05 0.00 0.05
NN(3, P, 2, 1) 0.03 0.13 0.01 0.06 0.01 0.05
NN(3, L, 2, 2) 0.06 0.19 0.04 0.13 0.02 0.08
NN(3, D, 2, 2) 0.00 0.12 0.01 0.08 0.01 0.04
NN(3, P, 2, 2) 0.01 0.12 0.00 0.07 0.00 0.04
NN(A, L, A, 0) 0.06 0.15 0.02 0.06 0.01 0.06
NN(A, D, A, 0) 0.05 0.12 0.04 0.08 0.05 0.09
NN(A, P, A, 0) 0.01 0.10 0.00 0.07 0.00 0.08
NN(B, L, B, 0) 0.00 0.07 0.01 0.05 0.01 0.03
NN(B, D, B, 0) 0.01 0.06 0.00 0.04 0.00 0.02
NN(B, P, B, 0) 0.01 0.06 0.00 0.04 0.00 0.02
LS(3,L,L) 0.00 0.03 0.00 0.03 0.01 0.04
LS(3, D, D) 0.00 0.00 0.00 0.02 0.00 0.02
LS(3, P, P) 0.00 0.01 0.01 0.02 0.00 0.02
LS(3, L, D6) 0.00 0.02 0.02 0.06 0.02 0.08
LS(3, D, D6) 0.01 0.04 0.01 0.05 0.00 0.06
LS(3, P, D6) 0.00 0.04 0.02 0.07 0.01 0.07
LS(A, L, A) 0.00 0.02 0.00 0.02 0.01 0.04
LS(A, D, A) 0.01 0.01 0.00 0.02 0.02 0.06
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Table 3. (cont.)

Method 1 step ahead 6 steps ahead 12 steps ahead
N=1 5 N=1 5 N=1 5
LS(A, P, A) 0.00 0.02 0.00 0.01 0.00 0.06
LS(B, L, B) 0.00 0.02 0.01 0.04 0.01 0.04
LS(B, D, B) 0.00 0.01 0.00 0.04 0.01 0.05
LS(B, P, B) 0.00 0.02 0.00 0.03 0.00 0.06
NOCHANGE 0.00 0.02 0.03 0.09 0.04 0.11
C(0, REC, A-C) 0.04 0.34 0.06 0.33 0.04 0.34
C(0, REC, A) 0.01 0.05 0.03 0.16 0.03 0.11
C(0, REC, B) 0.10 0.51 0.09 0.32 0.13 0.30
C(1, REC, A-C) 0.02 0.27 0.01 0.33 0.00 0.23
C(1, REC, A) 0.00 0.03 0.00 0.07 0.01 0.07
C(1, REC, B) 0.13 0.53 0.05 0.34 0.03 0.33
MED(A-C) 0.01 0.10 0.04 0.17 0.04 0.11
MED(A) 0.01 0.02 0.00 0.05 0.00 0.03
MED(B) 0.08 0.27 0.07 0.23 0.07 0.22
PLS(REC, PM) 0.00 0.04 0.01 0.05 0.01 0.06
PLS(REC, A-C) 0.00 0.06 0.00 0.04 0.00 0.05
PLS(REC, A) 0.00 0.03 0.00 0.06 0.00 0.06
PLS(REC, B) 0.00 0.04 0.01 0.06 0.01 0.04
PLS(REC, A-D) 0.01 0.06 0.00 0.07 0.00 0.03

When the DF-GLS unit root pretest is employed recursively with a critical
value that depends on the sample size (see note 2), it generally improves fore-
cast performance at all horizons as measured by mean or median relative MSEs
in Table 2. The improvement is largest for EX methods. Among AR methods,
this improvement is most pronounced when the levels specification includes
a time trend. The improvement for ANN and LSTAR methods is small at h
= 1 but increases with the forecast horizon. Evidently the AR methods in
levels with time trends and the ANN and LSTAR methods in levels can
produce forecasts which are quite poor, especially at the longer horizons, and
pretesting to identify situations in which a unit root can be imposed reduces
the frequency of extreme errors.

AIC- and BIC-based model selection. The performance of automatic lag length
selection methods depends on the family of models being used, and it does not
seem possible to reach general conclusions. Among autoregressions, on average
automatic order selection yields only marginal improvements over the bench-
mark imposition of 4 lags. Comparison of the relative MSEs in Table 2 for
autoregressive methods using AIC and BIC lag length choice indicates that
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Table 4. Rankings of various methods, combined over all series, for different loss functions: Trimmed forecasts

Cost function = E|e|?, e, = forecast error

12 steps ahead

6 steps ahead

1 step ahead

Rank

3.0 p=10 2.0 3.0 p=1.0 2.0 3.0

2.0

p=10

C(0, REC, A-C)
C(0, REC, B)
C(1, REC, B)

C(0, REC, A-C)
C(1, REC, B)
C(0, REC, B)

C(0, REC, A-C)
C(1, REC, B)

C(0, REC, A-C)
C(1, REC, B)
C(0, REC, B)

C(0, REC, A-C)
C(1, REC, B)

C(0, REC, A-C)
C(1, REC, A-C)
C(1, REC, B)
C(0, REC, B)
MED(A-C)

C(1, REC, B)
C(0, REC, B)

C(1, REC, B)
C(0, REC, B)

C(1, REC, B)
C(0, REC, B)

1
2

James H.

C(1, REC, A-C)

MED(A-C)
C(0, REC, A)

MED(B)

C(1, REC, A-C)
MED(A-C)
C(0, REC, A)

MED(B)

C(1, REC, A-C)
MED(A-C)

C(0, REC, A)
MED(B)

C(1, REC, A-C) C(0, REC, B)

MED(A-C)

MED(B)
C(0, REC, A)

C(1, REC, A)

MED(A)

C(1, REC, A-C)
C(0, REC, B)
MED(A-C)

MED(B)
C(0, REC, A)

C(1, REC, A)
MED(A)

C(0, REC, A)
MED(B)

C(1, REC, A-C)
C(0, REC, A—C)
MED(B)

NN(3, L, 2, 1)

MED(A-C)
NN(3, L, 2, 2)

C(1, REC, A-C)
C(1, REC, A-C) C(0, REC, A-C)
MED(B)
MED(A-C)
C(0, REC, A)
C(1, REC, A)
NN(3,L, 2, 1)
NN(3, P, 2, 0)
MED(A)

C(0, REC, A-C)
MED(B)

C(0, REC, A)
C(1, REC, A)

MED(A-C)
MED(A)

3
4
5
6
7

Stock and Mark W. Watson

idddday

C(1, REC, A)
MED(A)

AR

A

AR

AR

A

A

A (

C(1, REC, A)
MED(A)
AR(A, P, C)
AR(A, D, C)
AR(A, P, T)
AR(B, P, C)
AR(B, D, C)
AR(B, P, T)
AR(4, P, C)
AR(4, D, C)
AR(4, P, T)
LS(3, P, D6)
NN(3, P, 2, 0)
LS(3, D, D6)

C(1, REC, A)
A)
R(B, P, T)
AR(B, D, C)
AR(4, P, C)

MED(

NN(3, P, 2, 0)
D

R(4, P,

NN(3, P, 2, 2)

AR(A, P, C)
AR(A, D, C)
AR(A, P, T)
AR(B, P, C)

AR(B, P, C)
AR(B, P, T)
AR(B, D, C)
AR(4, P, C)
AR(A, P, C)
AR(A, D, C)
AR(A, P, T)
NN(3, P, 2, 1)

R(B, P, T)
AR(B, D, C)

AR(B, P, C)
AR(A, P, C)
AR(A, D, C)
AR(A, P, T)
AR(4, P, C)
NN(3, P, 2, 0)
NN(3, P, 2, 1)

C(1, REC, A)
A)

MED(
AR(B, D, C)

AR(B, P, C)
AR(A, P, C)
AR(B, P, T)
AR(A, D, C)
AR(A, P, T)
AR(4, P, C)
NN(3, P, 2, 0)
LS(3, P, D6)

C(0, REC, A)
C(1, REC, A)
NN(3, P, 2, 0)
NN(3, D, 2, 0)
NN(3, P, 2, 1)
NN(3, D, 2, 1)
AR(4, P, C)

AR(4, D, C)

PLS(REC, A)

MED(A)

PLS(REC, A D)

NN(3, D, 2, 0)
AR(4, L, C)

NN(3, P, 2, 1)
NN(@3, D, 2, 1)
AR(4, P, C)
P
(4,D, C)

NN(@, L, 2, 2)

PLS(REC, A-D)
NN(3, P, 2, 0)
NN(3, P, 2, 1)
NN(3, D, 2, 0)
NN(3, D, 2, 1)
AR(4, P, C)
AR(4, D, C)

4,P

3,P,
NN(3, L, 2, 1)
PLS(REC, A)

8

9
1
11
12
13
14
15
16
17
18
19
20

N(3,P,2,1)

NN(3, D, 2, 0)

NN(3,D,2,0) N

NN(3, D, 2, 1)

NN(3, P, 2, 2)

AR(B, P, C) NN(3, P, 2, 2)
AR(B, L, C) NN(3, D, 2, 0)

PLS(REC, A)

AR(B, P, C)

21

NN(3, D, 2, 0)
NN(3, P, 2, 2)

NN(3, P, 2, 1)

NN(3,L,2,2)  AR(B, P, C)

AR(B, D, C)

22

NN(A, P, A, 0)
LS(3, P, D6)

NN(3, P, 2, 2)
LS(3, P, D6)
AR(B, L, C)

NN(@3, D, 2, 1)
NN(3, D, 2, 2)
LS(3, P, D6)
AR(B, L, C)

AR(B, P, T) LS(3, D, D6)

AR(B, P, T)

23
24

NN(3, P, 2, 1)

R(B, L, C)
PLS(REC, A)

NN(A, L, A, 0)
AR(B, D, C)

AR(B, D, C)

AR(B, P, T)

NN(A, P, A, 0)

N(3,D,2,2)

N
NN(3, D, 2, 1)

AR(B, L, C)

AR(4, L, C)

25

NN(3, D, 2, 1)

NN(3, D, 2, 2)

PLS(REC, A)  NN(A,D,A,0) NN(3,D,2,2)

NN(A, P, A, 0)
LS(3, D, D6)

LS(B, P, B) NN(B, P, B, 0)

NN(A, P, A, 0)

PLS(REC, A-D) AR(A, L, C)
AR(A, L, C)

PLS(REC, B)

PLS(REC, A—C)

28

E{QQGOHOOEQQNmmNNNmNN<
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NN(A, D, A, 0)  AR(4,L, C) NN(B,P,B,0) NN(A,D, A, 0)

NN(A, P, A, 0)

NN(3, P, 2, 2)

NN(A, D, A, 0)

29
30

NN(B, D, B, 0)

LS(3, D, D6) LS(3, D, D6)
LS(B, D, B)

PLS(REC, A)

NN(3, D, 2, 1)

R(B, L, T)
AR(B, D, T)

AR(A, P, C)

AR(B, L, C)

LS(B, P, B)

LS(B, P, B)

NN(A, D, A, 0)

NN(B, P, B, 0)

LS(B, P, B)

AR(4, L, T)

PLS(REC, B)

31



Table 4. (cont.)

12 steps ahead

6 steps ahead

1 step ahead

Rank

2.0 3.0 p=1.0 2.0 3.0 p=1.0 2.0 3.0

1.0

p=

LS(B, D, B)
LS(A, P, A)

LS(A, D, A)

NN(B, D, B, 0)
LS(A, P, A)

NN(B, P, B, 0)
NN(B, D, B, 0)

AR(A, L, C)
NN(B, D, B, 0)

NN(A, D, A, 0)

NN(B, P, B, 0)
LS(B, D, B)

AR(A, P, Q)
NN(B, L, B, 0)

AR(A, D, C)
AR(A, L, O)

NN(B, P, B, 0)
NN(B, D, B, 0)

AR(A, P, C)

32
3

AR(A, L, C) LS(A, D, A)
AR(A, L, C)

AR(4, L, C)
LS(B, P, B)

PLS(REC, A-C)

AR(A, P, T)

34

AR(A, L, O)

PLS(REC, A-C)

NN(A, L, A, 0) NN(3,L,2,00 NN(B,D,B,0)

AR(A, D, C)
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NN(3, L, 2, 0)
LS(B, L, B)

LS(B, D, B) LS(3, L, L) NN(3,L,2,0) NN(B,L,B,0) LS(3,L,L) LS(3, L, L)
NN(A, L, A, 0)

LS(B, D, B)

LS(A, P, A)

57
58

NN(B, L, B, 0)

NN(B, L, B, 0)

NN(A, L, A, 0)

NN(A, L, A, 0)
NN(B, L, B, 0)

LS(B, L, B) LS(B, L, B)
LS(B, L, B)

LS(3, L, L)

NN(B, L, B, 0)

LS(B, L, B)

NN(A, L, A, 0)
LS(B, L, B)

NN(3, L, 2, 0)
LS(B, L, B)

NN(B, L, B, 0)
LS(B, L, B)

LS(A, P, A) LS(A, P, A)

LS(A, D, A)

LS(A, L, A)
NN(A, L, A, 0)

NN(A, L, A, 0)
LS(A, L, A)

LS(A, L, A)

LS(A, L, A)
EX1

LS(A, L, A)
EX1

LS(A, L, A)
EX1

LS(A, L, A)

LS(A, D, A)
EX1

LS(A, L, A)

LS(A, D, A)
EX1

LS(A, L, A)

LS(B, L, B)
EX1

60
61

NOCHANGE
EX1

NOCHANGE

EX1

NOCHANGE
EX1

62
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NOCHANGE NOCHANGE NOCHANGE NOCHANGE NOCHANGE

NOCHANGE

63
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BIC lag choice yields slightly lower average MSE than AIC-based methods.
Among ANNSs, average forecast performance was slightly better using BIC
than AIC, and the worst AIC-based forecasts were worse than the worst BIC-
based forecasts. Among LSTARs, neither the AIC nor the BIC methods have
mean, median, or 10 percent and 90 percent percentile relative MSEs as good
as some of the fixed methods (in particular the LS(3, D, D6) and LS(3, P, D6)
methods).

On average, the MSE improvement over the benchmark method from using
data-based model selection methods are modest. For example, adopting BIC
lag selection and unit root pretesting in an autoregression with a constant
produces a median relative MSE of 1.00 for h = 1, 0.98 for h = 6, and 0.94
for h = 12. However, for some series, large MSE gains are possible, relative to
the benchmark forecast. For example, in 2 percent of series, MSE reductions
of two-thirds were achieved at the 12 month horizon by introducing BIC lag
selection and unit root pretests to the benchmark method. Comparison of the
AR(4,L, C), AR(B, L, C), AR(4, P, C), and AR(B, P, C) results in Table 2
shows that most of these gains are achieved by the unit root pretest rather
than BIC lag selection.

Performance of simple methods. The simplest methods performed poorly rel-
ative to the benchmark AR(4, L, C) method. For example, for approximately
three-fourths of series, the no change forecast was worse than the benchmark
forecast at all three horizons (Table 2). The exponential smoothing method
EX1 went badly wrong for some series, and on average all exponential smooth-
ing methods have relative MSEs exceeding one at all horizons.

ANN methods. Generally speaking, some ANN methods performed well at the
one-month horizon but no ANN methods performed as well as autoregressions
at the six and twelve month horizons. First consider the results for the one
month horizon. Based on the p = 2 results in Table 4, for A~ = 1 the best ANN
model is NN(3, L, 2, 1) and the best AR model is AR(4, P, C). At h=1, ANN
methods are best for 40 percent of the individual series (Table 3). Comparison
of the h = 1 entries in Table 2 for these models reveals that, for the ANN
methods, the relative MSE performance measure has heavier tails than for the
AR methods: the successes and failures across series are more pronounced.
However, these methods have the same median and approximately the same
mean. On average the forecasting gains from using the ANN models over the
AR models at h = 1 are small or negligible from the perspective of mean square
error loss. Thus while it is intriguing that ANN methods rank highly at short
horizons, their edge in performance over autoregressive models is slim.

The relative performance of the ANN methods deteriorates as the forecast
horizon increases. For the twelve month horizon, the worst ANN forecasts are
considerably worse than the worst AR forecasts, with all ANN methods having
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relative MSEs exceeding 2 for at least 2 percent of the series. At these longer
horizons, the ANN methods specified in levels perform particularly poorly.
This generally poor performance of feedforward ANN methods for economic
data, relative to linear models, is consistent with the findings in Swanson and
White (1995, 1997) and Weigend and Gershenfeld (1994).

LSTAR methods. Although the LSTAR methods were rarely best for any
series, in some cases they provided average MSE improvements, relative
to the benchmark method. The best-performing LSTAR methods were the
LS(3, D, D6) and its pretest variant LS(3, P, D6). Although both have mean
relative MSEs of at least one, their median relative MSEs are less than one
at the twelve month horizon (Table 2). The LSTAR methods generally per-
formed worse than the ANN methods.

Forecast pooling. One of the striking features in Tables 2—4 is the strong
performance of various forecast pooling procedures. Simple average forecasts,
forecasts weighted by inverse MSEs, and the median forecasts outperform the
benchmark method. Indeed, based on the loss function comparisons in Table
4, the most attractive forecast at the six and twelve month horizons for p =
1, 2 or 3 is the simple average of the forecasts from all methods, and this is
nearly the best at the one month horizon as well. Among the various weighting
schemes, simple averaging and weighting by inverse MSEs produce similar
performance. Performance, as measured by mean relative MSE, deteriorates
as w increases, especially at long horizons. In fact, performance of the PLS
forecasts, which are the limit as w — oo of the weighted average forecasts, is
worse than all weighted average forecasts and the median forecast for all hori-
zons and all p. As measured by average relative MSEs, the PLS forecasts are
never better than the benchmark forecast. Use of a shortened window (60 or
120 months) seems to have little effect on the combination forecasts based on
inverse MSE weights.

For h = 6 and h = 12, the pooling procedures that combine forecasts from
all 49 methods have a slight edge over these procedures applied to only the
linear, or only the nonlinear, methods. Indeed, for one-third of the series at
all three horizons, the equal-weighted linear combination forecast that aver-
ages the forecasts from all 49 methods produces forecasts that are among the
top five in Table 3 at all horizons. For one-fourth of the series, at all horizons
a linear combination procedure produces the best forecast.

Sensitivity to forecaster attitudes towards risk. Rankings are provided in Table
4 for three loss functions: mean absolute error loss (p = 1), quadratic loss
(p = 2), and cubic absolute error loss (p = 3). Mean absolute error loss charac-
terizes a forecaster who is equally concerned about small and large errors;
cubic loss most heavily penalizes large errors.

The rankings among the various methods are surprisingly insensitive to the
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choice of risk parameter p. Linear combination procedures minimize average
loss for all three loss functions and, given h, the best combination method does
not depend on p. For a given horizon, the identity of the best individual method
usually does not depend on p (the exception is h =1, p = 2).

Table 4 establishes a clear ranking of classes of models and procedures. At
the six and twelve month horizons, combination forecasts are first, followed
by AR forecasts, followed by ANN forecasts, followed by LSTAR forecasts,
followed by EX and no change. At the one month horizon, combination fore-
casts are first, followed (in order) by ANN, AR, LSTAR, EX, and no change.
If pooling procedures are excluded, the best method at the six and twelve month
horizon is an autoregression based on a unit root pretest, a data-dependent
lag length, and a constant. At the one month horizon, an AR(4) with a unit
root pretest is the best linear method, but it is slightly outperformed by several
ANN methods, in particular NN(3, L, 2, 1).

Effect of forecast trimming. All results discussed so far are based on trimmed
forecasts. The results for some methods are very different when the forecasts
are not trimmed. The effects of trimming are most important for the nonlinear
methods, which for some series at some dates produce forecasts that err by
an order of magnitude. The trimming also considerably improves AR forecasts
in levels with a time trend.

For comparison purposes, the rankings for the various forecasting methods
based on the untrimmed forecasts are given in Table 5. The differences between
the rankings based on the trimmed (Table 4) and untrimmed (Table 5) fore-
casts are attributable to the relatively few extremely large forecast errors made
by the nonlinear methods and, to a lesser degree, by the AR methods in levels
with time trends. Because of these outliers, the median pooled forecasts are
optimal for the untrimmed forecasts, and because the large errors are most
frequent in the nonlinear methods, the linear combination forecasts perform
well only when computed over just the linear methods.

The rankings of the individual methods change somewhat for the untrimmed
forecasts. Autoregressive methods are now best at all horizons for all p. Auto-
regressive methods work well if the series is specified in levels with a constant,
in first differences with a constant and/or time trend, or if a pretest is used,
but they work poorly for the levels/time trend specification. Exponential
smoothing and no change methods rank relatively higher because they produce
fewer extreme errors. Among nonlinear methods for p = 2, the best ranking
at any horizon is for NN(3, P, 2, 1), which is fifteenth for h = 6.

Nonlinearities across categories of series. The relative performance of linear
and nonlinear methods for different groups of series is explored in Table
6 for the trimmed forecasts. The first three columns compare the relative
performance of a linear method, AR(B, P, C), to two nonlinear methods,



Table 5. Rankings of various methods, combined over all series, for different loss functions: Untrimmed forecasts

?, e, = forecast error

=

=E

Cost function

12 steps ahead
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3.0

2.0
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MED(B)
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Table 5. (cont.)
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Table 6. Forecasting performance broken down by category of series

Numbers in parentheses are the number of time series in each category
For each forecast, the first row corresponds to one-step ahead forecasts; the second row,
to 6-step ahead forecasts; the third row, to 12-step ahead forecasts.

Category Individual Methods Pooling Procedures

Linear Nonlinear Linear Nonlinear

AR(B,P,C)  NN(B,P,B,0) LS(B,P,B) C(1,REC, A)  C(1, REC, B)

Production 0.54 0.25 0.21 0.08 0.92
(24) 0.38 0.29 0.33 0.21 0.79
0.33 0.21 0.46 0.38 0.63

Employment 0.52 0.21 0.28 0.17 0.83
(29) 0.48 0.48 0.03 0.21 0.79
0.28 0.41 0.31 0.17 0.83

Wages 0.57 0.00 0.43 0.43 0.57
(7 0.71 0.00 0.29 0.29 0.71
0.43 0.00 0.57 0.29 0.71

Construction 0.57 0.29 0.14 0.19 0.81
(21) 0.29 0.38 0.33 0.05 0.95
0.48 0.29 0.24 0.14 0.86

Trade 0.60 0.30 0.10 0.00 1.00
(10) 0.60 0.30 0.10 0.50 0.50
0.90 0.10 0.00 0.40 0.60

Inventories 0.50 0.50 0.00 0.30 0.70
(10) 0.60 0.30 0.10 0.30 0.70
0.50 0.20 0.30 0.40 0.60

Orders 0.64 0.29 0.07 0.07 0.93
(14) 0.57 0.29 0.14 0.29 0.71
0.57 0.36 0.07 0.29 0.71

Money & Credit 0.43 0.48 0.09 0.13 0.87
(21) 0.39 0.30 0.30 0.57 0.43
0.52 0.39 0.09 0.39 0.61

Stock Prices 0.36 0.55 0.09 0.00 1.00
(11) 0.64 0.18 0.18 0.55 0.45
0.55 0.27 0.18 0.82 0.18

Interest Rates 0.18 0.73 0.09 0.00 1.00
(11) 0.18 0.64 0.18 0.00 1.00
0.45 0.45 0.09 0.45 0.55

Exchange Rates 0.17 0.50 0.33 0.33 0.67
(6) 1.00 0.00 0.00 0.33 0.67
0.33 0.50 0.17 0.17 0.83

Producer Prices 0.31 0.44 0.25 0.19 0.81
(16) 0.69 0.25 0.06 0.50 0.50
0.63 0.25 0.13 0.44 0.56

Consumer Prices 0.38 0.50 0.13 0.19 0.81
(16) 0.69 0.00 0.31 0.63 0.38
0.31 0.25 0.44 0.44 0.56

Consumption 0.40 0.40 0.20 0.00 1.00
(5) 0.40 0.40 0.20 0.40 0.60
0.40 0.00 0.60 0.80 0.20

Miscellaneous 0.50 0.21 0.29 0.21 0.79
(14) 0.57 0.29 0.14 0.50 0.50
0.50 0.36 0.14 0.57 0.43

Notes: Comparisons are for trimmed forecasts. For each row, the entries in the first three columns
sum to 1.00, as do the entries in the final two columns, up to rounding error.
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ANN(B, P, B, 0) and LS(B, P, B), by reporting the fraction of times that the
column forecasting method is best among these three methods for the category
of series specified in that row, by horizon. These three methods are automatic
methods and were chosen for comparability: they all entail a recursive unit
root pretest, recursive BIC lag length selection, and, for the nonlinear methods,
recursive BIC-selected nonlinear parameterization. The final two columns
provide a similar comparison, computed for the two linear combination
forecasts respectively based on the linear and nonlinear methods (in both cases,
weights are recursive inverse MSE).

The results suggest that the importance of nonlinearities differs across
horizons and series. At h = 1, the nonlinear methods have the greatest relative
success for interest rates and exchange rates, and have the least success for
trade and orders. Combinations of the nonlinear forecasts are better than
combinations of linear forecasts at h = 1 for most categories, notably so for
stock prices, trade, and consumption. At the twelve month horizon, nonlinear
methods work best for production, employment, exchange rates, and consumer
prices. Exchange rates are interesting because the combination of nonlinear
forecasts outperforms the combination of linear forecasts for five of the six
exchange rates at h = 12. This is in some contrast to previous studies which
have found limited ability of nonlinear methods to forecast exchange rates
(Brooks, 1997). Consistent with the previous findings, the LSTAR methods
generally are not the best (although they are for wages); of the nonlinear
methods, the ANN forecasts are first more often.

5 Discussion and Conclusions

The LSTAR and ANN models must be viewed as these models cum the
optimizers with which they were fit. The optimizers are designed to achieve
local optima and, by random searching, to compare several local optima and
to select the best. However, the evidence presented in the Appendix indicates
that the resulting sequence of recursively estimated local optima are not, in
general, global optima, and moreover different repetitions of the optimizer
using different randomly drawn starting parameter values produce different
sequences of local optima and thus different sequences of forecast errors. At
first blush, this sounds like an important deficiency in this study, but in fact
this is not obvious because improvements in the in-sample objective function
seem not to correspond to better out-of-sample forecasts. In fact, the evidence
in the Appendix suggests that improving the in-sample objective function over
the value obtained using our algorithms on average neither improves nor worsens
out-of-sample forecast performance. Thus, it is not clear that using an optim-
izer that more reliably achieved higher in-sample fits would necessarily improve
the out-of-sample performance. These issues appear to be most pronounced
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for ANN models in levels and least pronounced for LSTAR models in differ-
ences. One interpretation of this is that the highly nonlinear ANN models can
overfit these data at the global optimum, and more reliable out-of-sample
forecasts are produced when “sensible” local optima are used. This makes us
reluctant to endorse ANN models, even for the application in which they per-
form best in this study, one month ahead forecasting.

Another issue is whether our use of seasonally adjusted data might favor
nonlinear methods. It is known that seasonal adjustment procedures are non-
linear filters, and Ghysels, Granger and Siklos (1996) showed that for Census
X-11 these nonlinearities are sufficiently important that they can be detected
with nontrivial power using various tests for nonlinearities. This suggests that
some of the forecast MSE reduction of nonlinear methods is attributable to
seasonal adjustment. It should be borne in mind that, were this the case, its
implications are not self-evident. On the one hand, to the extent that we are
interested in empirical evidence of nonlinear dynamics to guide theoretical
macroeconomic modeling, then it is important to know if these nonlinearities
are spuriously introduced by seasonal adjustment. On the other hand, if our
interest is in forecasting seasonally adjusted series, the source of the nonlinear-
ity is of only academic interest and the relevant question is which forecasting
method best handles this nonlinearity. In any event, because the nonlinear
models performed relatively poorly at the six and twelve month horizon, and
made only slight improvements over linear models at the one month horizon,
spurious nonlinearity from seasonal adjustment seems not to be an important
practical consideration for forecasting, at least on average over these series.

Some additional caveats are also in order. Although a large number of methods
have been considered, we have only considered two classes of nonlinear meth-
ods, and within artificial neural networks we have only considered feedforward
neural nets. It is possible that other nonlinear methods, for example feed-
forward neural nets with more lags or recurrent neural nets, could perform
better than those considered here. Also, these results are subject to sampling
error. Although the design has carefully adhered to a recursive (simulated
real-time) structure, because there are many forecasting methods considered,
the estimated performance of the best-performing single method for these data
arguably overstates the population counterpart of this performance measure.
This criticism is less likely to be a concern, however, for the combination fore-
casts. Finally, it is unlikely that the best performing forecasts could have been
identified as such in real time. When PLS was applied to all forecasts (including
all the combination forecasts), the resulting PLS forecasts performed consider-
ably worse than the best combination forecast, and indeed on average it per-
formed worse than the benchmark method as measured by its mean relative
MSE.

Bearing these comments in mind, we turn to the implications of this forecast-
ing experiment for the five questions raised in the introduction.
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First, although some of the nonlinear forecasts improve upon the linear fore-
casts for some series, most of the nonlinear forecasting methods produce worse
forecasts than the linear methods. Overall, AR methods have lower average
loss than the LSTAR or ANN methods at the six and twelve month horizons.
The ANN methods have lower average loss at the one month horizon than
the AR methods, but the improvement is small and is only present after trim-
ming the outlier forecasts.

Second, perhaps surprisingly the nonlinear models that perform the best
are not necessarily the most tightly parameterized. Generally speaking the
ANN models have more nonlinear parameters than the LSTAR models, yet
the ANN models outperform the LSTAR models. Evidently the nonlinearities
exploited by the ANN models go beyond the switching or threshold effects
captured by the LSTAR specifications.

Third, forecasts at all horizons are improved by unit root pretests. Severe
forecast errors are made in nonlinear models specified in levels and in linear
models in levels with time trends, and these errors are reduced substantially
by choosing a differences or levels specification based on a preliminary test
for a unit root.

Fourth, pooled forecasts were found to outperform the forecasts from any
single method. The pooled forecasts that performed best combined the fore-
casts from all methods. Interestingly, although individual nonlinear methods
performed poorly, the median nonlinear forecast outperformed all individual
methods at all horizons, as did the averages of the nonlinear forecasts after
trimming. The pooling procedures that place weight on all forecasting methods
(whether equal weighting, inverse MSE weighting, or median) proved most
reliable, while those that emphasized the recently best performing methods
(especially PLS) proved least reliable. At the twelve month horizon, the mean
relative MSE of the pooled forecast computed by simple averaging of all 49
methods is .87, and the 2 percent percentile relative MSE is .27. There was
little effect (positive or negative) of using a reduced or rolling sample for com-
puting the combination weights. We find these gains from combining forecasts
to be surprising. Bates and Granger’s (1969) motivation for combining fore-
casts is that each forecast draws on a different information set, so that the
information embodied in the combined forecast is greater than the information
in any individual forecast. Here, however, all forecasts are univariate, and in
this sense the information sets of the forecasts are the same. These issues are
further explored in Chan, Stock, and Watson (1998).

Fifth, although the combination forecasts require considerable programming
and computation time to produce, the gains might well be worth this cost. If,
however, a macroeconomic forecaster is restricted to using a single method,
then, for the family of loss functions considered here, he or she would be well
advised to use an autoregression with a unit root pretest and data-dependent
lag length selection.
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Appendix

A.1 Nonlinear Optimization Methods

The ANN, exponential smoothing, and LSTAR models are nonlinear in the
parameters. This Appendix describes the optimization methods used to minim-
ize the least squares objective functions for the models.

Ezponential Smoothing. The parameters of the exponential smoothing models
were estimated using a Gauss-Newton optimizer. The parameters at date T}
were estimated using 200 iterations of the optimizer from a starting value of
0.5. These estimates were updated in subsequent time periods using two itera-
tions of the optimizer.

LSTAR models. The parameters of the LSTAR models were estimated using
a modified random search algorithm. The initial parameter estimates at date
T, were obtained as follows. The LSTAR models can be organized into families
of models that have natural nestings, from least complicated (fewest para-
meters) to most complicated. For example, one such family is, in increasing
order of complexity, {LS(1, L, L), LS(3, L, L), LS(6, L, L) }. For each family,
the most restrictive version of the model was estimated first. For this most
restrictive version the objective function was evaluated using 5,000 random
draws of the parameter vector. The parameter vectors corresponding to the
four smallest values of the objective function were then used as initial values
for 250 Gauss—Newton iterations, and the minimizer was chosen from the re-
sulting set of parameters. This parameter vector together with 1,000 additional
random draws was used to evaluate the objective function associated with the
next most complicated model in the family; the parameter vectors associated
with the two smallest values of the function were used to initialize 100 Gauss—
Newton iterations. This procedure was repeated for each larger model in the
nesting sequence.

At subsequent dates (T} < t < Tj), with probability .99 the parameter values
for each model were updated by taking three Gauss—Newton steps, using the
parameter estimates from the previous date as starting values. With prob-
ability .01 the parameters were updated by using the minimum of these results
and results obtained by completely reoptimizing from a set of 500 randomly
selected initial parameter values (using the same method as at time T7).

ANN models. ANN objective functions typically have multiple local minima.
When the previous algorithm was applied to ANN models, local minima were
obtained, and many of these local minima produced poor out of sample fore-
casts. A different algorithm was therefore used to fit the ANN models.

The algorithm used for the ANN models has two stages, a preprocessing
phase and a recursive estimation phase. In the preprocessing phase, the object-
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ive function for each model was intensively minimized at three dates, T, T,
and T, ;4 = (T} + T,)/2. For a model with one hidden unit the algorithm is:
(i) fit an AR(p) with a constant or time trend, in levels or differences as appro-
priate, for the desired horizon, and save the residuals ﬁgo) =y, - B()Ct—h; (ii)
using 10 randomly selected initial conditions for the nonlinear parameter vector
(1 in the first hidden unit, compute 50 Gauss—Newton iterations on the ob-
jective function 3,[4{”) — v,,9(6],¢,)]?, and retain the best of the resulting 10
sets of values of §,;; (iii) perform 15 Gauss—Seidel iterations over the full model.
Each Gauss—Seidel iteration involves (ilia) fixing §;; and estimating 3, and
;1 by OLS; (iiib) given the resulting values of 3, reestimating 3;; and 7, by
10 Gauss—Newton iterations. At each Gauss—Newton step only updated values
of 3, that improved the objective function were retained so that each step of
this algorithm is guaranteed not to increase the objective function.

For models with n,>1 hidden units and a single layer, the same procedure
was used, except that (i) was omitted, (ii) used the residuals from the model
with n; — 1 hidden units, and in (iii) the Gauss—Seidel steps moved sequentially
over each hidden unit, estimating 3,; holding f,; fixed, j = i, etc.

For models with two hidden units, this algorithm was used, with the modi-
fication that the nonlinear parameters {62]-1-, B,;} were estimated jointly by
Gauss—Newton, given {f), 7,;}, then given {8y, B8y,}, {5, 72;} were estimated
by OLS, etc.

In the recursive estimation phase, for ¢ = T}, ..., T}, in each time period a
single Gauss—Seidel iteration (with one nested Gauss—Newton step) was used
to update the parameters, with the initial estimates at ¢ = T} obtained from
the initial estimation phase. The objective function was also evaluated for the
parameter values obtained in the initial phase for T}, T, ;, and Tj. If at date
t either of these three produced a lower objective function value than the re-
cursively updated parameters, the Gauss—Seidel step for date ¢ was recomputed
using the T}, T4 or T5 parameter vector (as appropriate) as the initialization,
and the resulting new parameter vector was retained as the recursive estimate
and as the initial parameter vector for the Gauss—Seidel step at t + 1.

Performance of Algorithms. Several checks were performed on these algorithms
to assess their performance. These checks entailed examining the performance
of the optimizers (and variants on these optimizers) for different series and
different models.

One such check, which examined four series (mdu, fygm3, hsbr, ivintq) and
four models, is discussed here. In this experiment, the optimizer described
above was run 25 times for each model/series combination. This produced 25
series of recursive forecasts. The time series of optimized parameter values,
and thus the time series of recursive forecasts, differ from one trial to the next
solely because of different random draws of the starting values for the para-
meters. The four models investigated in this experiment are two LSTAR and
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two ANN models using both levels and differences of the data (LS(3, L, Ay, ,),
LS(3,D, Ay, ,), NN(3,L, 0), and NN(3, D, 0)). For the purpose of this paper,
the appropriate measure for assessing whether these algorithms converge to
a common optimum is neither the value of the in-sample objective function
nor the values of the estimated parameters, but rather the path of recursive
forecast errors produced. If the same sequence of forecasts is produced by each
trial, then for the purposes of this project the algorithms effectively converge
to the same value, which can reasonably be taken to be the optimum.

The results for six month ahead forecasts are summarized in Table A1. The
entries are summary statistics of the distribution of relative MSEs of the
sequence of simulated out of sample forecast errors across the 25 trials; as in
Table 2, the relative MSEs are standardized by the MSE of the AR(4, L, C).
Shown in the final row of each block are results from forecasts constructed
from more computationally intensive maximization algorithms. In the case of
the LSTAR model increasing computation by a factor of 50 led to results that
consistently achieved what appears to be the global optimum.6 In the case of
the ANN models, experiments suggested that there was little hope of consist-
ently achieving a global optimum for each time period even with a significant
increase in computational resources. In this case we simply computed a se-
quence of forecasts from the 25 trials by recursively choosing the forecast with
the best in-sample fit: that is, at each date, the current objective functions of
the 25 trials are compared, and the parameter values associated with the cur-
rently best of these in-sample objective functions is used to produce the forecast
at that date. This sequence of forecasts will by construction have the lowest
sequence of in-sample objective functions and in this sense is the closest to
the global optimum.

The results in Table Al suggest several conclusions. For some series and
models, the trials resulted in essentially identical results (for example, ivitq
and LS(3, D, Ay, ,)), while in other cases there was considerable variation
across the trials (mdu and NN(3, L, 0)). In general, the distribution of relative
MSEs is tighter for LSTAR models than for ANN models, and is tighter in
first differences than in levels. Strikingly, the relative MSE of the forecast
based on the global optimum (LSTAR models) does about as well as a ran-
domly selected forecast from the original group of 25: among the eight LSTAR
cases in Table A1, the global optimum produces forecast MSEs that are greater
than the median of the 25 trials in four cases and are less than or equal to the
median in four cases. The same is true for the forecasts based on the recursive
best fit for the ANN models. Evidently, among these model/series combina-
tions, the parameters with the best in-sample fits do not in general provide
the best out of sample forecasts. Rather, the forecasts with the lowest out of
sample MSEs typically are obtained from in-sample fits that are at local but
not global optima.

These findings are consistent with those from other checks we performed.
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Table Al. Distribution of relative MSES of 6-month ahead forecasts
across 25 optimization trials for selected series and models

Model Series
mdu fygm3 hsbr ivmtq
LS(3, L, Ay, ,)
Minimum 1.24 1.06 1.05 1.18
1st Quartile 1.30 1.10 1.06 1.18
Median 1.42 1.18 1.06 1.19
3rd Quartile 1.43 1.20 1.07 1.20
Maximum 2.41 1.43 1.16 1.27
In-Sample Optimum 1.76 1.35 1.20 1.18
LS(3, D, Ay, ,)
Minimum 0.99 0.99 1.10 1.01
1st Quartile 1.00 1.03 1.12 1.01
Median 1.00 1.21 1.16 1.01
3rd Quartile 1.01 1.22 1.19 1.01
Maximum 1.02 1.27 1.19 1.01
In-Sample Optimum 0.99 1.12 1.17 1.01
NN(3, L, 2, 0)
Minimum 1.71 0.91 0.97 1.62
1st Quartile 2.38 0.99 1.00 1.80
Median 2.46 1.07 1.04 1.93
3rd Quartile 2.77 1.16 1.05 1.97
Maximum 3.24 1.32 1.11 2.37
Rec. Best In-Sample 2.56 1.18 1.02 1.85
NN(3, D, 2, 0)
Minimum 0.92 0.98 1.05 1.01
1st Quartile 0.97 1.07 1.13 1.03
Median 1.00 1.12 1.15 1.04
3rd Quartile 1.04 1.21 1.19 1.06
Maximum 1.10 1.30 1.24 1.09
Rec. Best In-Sample 1.01 1.09 1.18 1.07

Notes: Entries are summaries of the distribution of relative MSEs of recursive
forecasts, where the benchmark MSE is the AR(4, L, C) model. “In-Sample
Optimum” refers to forecasts constructed from parameters that achieve the
global recursively calculated in-sample MSE. “Rec. Best In-Sample” refers to
the simulated real time forecast error produced using the sequence of parameter
values that, date by date, have the best in-sample fit selected from the 25
optimized parameter values in the different trials.

For many series, this indicates that there was a significant likelihood that
these algorithms would not locate a global optimum over some fraction of the
sample period. The probability of achieving a local and not global maximum
appeared to be higher for the ANN models than for the LSTAR models and
higher for series modeled in levels than in first differences. Finally, achieving
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a better in-sample value of the objective function does not necessarily imply
producing forecasts with better out-of-sample performance.

A.2 Data Description

This Appendix lists the time series used. The data were obtained from the
DRI BASIC Economics Database (creation date 9/97). The format for each
series is its DRI BASIC mnemonic; a brief description; and the first date used
(in brackets). A series that was preliminarily transformed by taking its
logarithm is denoted by “log” in parentheses; otherwise, the series was used
without preliminary transformation.

Abbreviations: sa = seasonally adjusted; saar = seasonally adjusted at an annual rate;

nsa = not seasonally adjusted.

1P industrial production: total index (1992 = 100, sa) [1959:1] (log)

IPP industrial production: products, total (1992 = 100, sa) [1959:1] (log)

IPF industrial production: final products (1992 = 100, sa) [1959:1] (log)

IPC industrial production: consumer goods (1992 = 100, sa) [1959:1] (log)

IPCD industrial production: durable consumer goods (1992 = 100, sa)
[1959:1] (log)

IPCN industrial production: nondurable consumer goods (1992 = 100, sa)
[1959:1] (log)

IPE industrial production: business equipment (1992 = 100, sa) [1959:1]
(log)

IPI industrial production: intermediate products (1992 = 100, sa) [1959:1]
(log)

IPM industrial production: materials (1992 = 100, sa) [1959:1] (log)

IPMD industrial production: durable goods materials (1992 = 100, sa)
[1959:1] (log)

IPMND industrial production: nondurable goods materials (1992 = 100, sa)
[1959:1] (log)

IPMFG industrial production: manufacturing (1992 = 100, sa) [1959:1] (log)

IPD industrial production: durable manufacturing (1992 = 100, sa)
[1959:1] (log)

IPN industrial production: nondurable manufacturing (1992 = 100, sa)
[1959:1] (log)

IPMIN industrial production: mining (1992 = 100, sa) [1959:1] (log)

IPUT industrial production: utilities (1992 = 100, sa) [1959:1] (log)

IPX capacity util rate: total industry (% of capacity, sa)(frb) [1967:1]

IPXMCA capacity util rate: manufacturing, total (% of capacity, sa)(frb) [1959:1]

IPXDCA capacity util rate: durable mfg (% of capacity, sa)(frb) [1967:1]

IPXNCA capacity util rate: nondurable mfg (% of capacity, sa)(frb) [1967:1]

IPXMIN capacity util rate: mining (% of capacity, sa)(frb) [1967:1]

IPXUT capacity util rate: utilities (% of capacity, sa)(frb) [1967:1]

LHEL index of help-wanted advertising in newspapers (1967 = 100; sa)
[1959:1]

LHELX employment: ratio; help-wanted ads: no. unemployed clf [1959:1]
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LHEM
LHNAG

LHUR
LHU680
LHUb5

LHU14

LHU15

LHU26

LHU27

LHCH
LPNAG
LP
LPGD

LPMI
LPCC

LPEM
LPED
LPEN

LPSP

LPTU

LPT

LPFR

LPS
LPGOV
LW
LPHRM
LPMOSA
LEH
LEHCC
LEHM
LEHTU

LEHTT
LEHFR

LEHS
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civilian labor force: employed, total (thous., sa) [1959:1] (log)

civilian labor force: employed, nonagric.industries (thous., sa) [1959:1]
(log)

unemployment rate: all workers, 16 years & over (%, sa) [1959:1]
unemploy. by duration: average (mean) duration in weeks (sa) [1959:1]
unemploy. by duration: persons unempl. less than 5 wks (thous., sa)
[1959:1] (log)

unemploy. by duration: persons unempl. 5 to 14 wks (thous., sa)
[1959:1] (log)

unemploy. by duration: persons unempl. 15 wks + (thous., sa)
[1959:1] (log)

unemploy. by duration: persons unempl. 15 to 26 wks (thous., sa)
[1959:1] (log)

unemploy. by duration: persons unempl. 27 wks 4 (thous, sa) [1959:1]
(log)

average hours of work per week (household data)(sa) [1959:1]
employees on nonag. payrolls: total (thous., sa) [1959:1] (log)
employees on nonag. payrolls: total, private (thous, sa) [1959:1] (log)
employees on nonag. payrolls: goods-producing (thous., sa) [1959:1]
(log)

employees on nonag. payrolls: mining (thous., sa) [1959:1] (log)
employees on nonag. payrolls: contract construction (thous., sa)
[1959:1] (log)

employees on nonag. payrolls: manufacturing (thous., sa) [1959:1] (log)
employees on nonag. payrolls: durable goods (thous., sa) [1959:1] (log)
employees on nonag. payrolls: nondurable goods (thous., sa) [1959:1]
(log)

employees on nonag. payrolls: service-producing (thous., sa) [1959:1]
(log)

employees on nonag. payrolls: trans. & public utilities (thous., sa)
[1959:1] (log)

employees on nonag. payrolls: wholesale & retail trade (thous., sa)
[1959:1] (log)

employees on nonag. payrolls: finance, insur.&real estate (thous., sa)
[1959:1] (log)

employees on nonag. payrolls: services (thous., sa) [1959:1] (log)
employees on nonag. payrolls: government (thous., sa) [1959:1] (log)
avg. weekly hrs. of prod. wkrs.: total private (sa) [1964:1]

avg. weekly hrs. of production wkrs.: manufacturing (sa) [1959:1]

avg. weekly hrs. of production wkrs.: mfg., overtime hrs. (sa)[1959:1]
avg. hr earnings of prod wkrs: total private nonagric ($, sa) [1964:1] (log)
avg. hr earnings of constr wkrs: construction (3, sa) [1959:1] (log)
avg. hr earnings of prod wkrs: manufacturing (3, sa) [1959:1] (log)
avg. hr earnings of nonsupv wkrs: trans & public util ($, sa) [1964:1]
(log)

avg. hr earnings of prod wkrs: wholesale & retail trade (sa) [1964:1] (log)
avg. hr earnings of nonsupv wkrs: finance, insur., real est (3, sa)
[1964:1] (log)

avg. hr earnings of nonsupv wkrs: services (3, sa) [1964:1] (log)
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HSFR housing starts: nonfarm(1947-58); total farm&nonfarm(1959-)(thous.,
sa) [1959:1] (log)

HSNE housing starts: northeast (thous.u.)s.a. [1959:1] (log)

HSMW housing starts: midwest(thous.u.)s.a. [1959:1] (log)

HSSOU housing starts: south (thous.u.)s.a. [1959:1] (log)

HSWST housing starts: west (thous.u.)s.a. [1959:1] (log)

HSBR housing authorized: total new priv. housing units (thous., saar)
[1959:1] (log)

HSBNE houses authorized by build. permits: northeast(thou.u.)s.a [1960:1]
(log)

HSBMW houses authorized by build. permits: midwest(thou.u.)s.a. [1960:1]
(log)

HSBSOU houses authorized by build. permits: south(thou.u.)s.a. [1960:1] (log)
HSBWST  houses authorized by build. permits: west(thou.u.)s.a. [1960:1] (log)
HNS new one-family houses sold during month (thous, saar) [1963:1] (log)
HNSNE one-family houses sold: northeast(thou.u., s.a.) [1973:1] (log)
HNSMW one-family houses sold: midwest(thou.u., s.a.) [1973:1] (log)
HNSSOU one-family houses sold: south(thou.u., s.a.) [1973:1] (log)

HNSWST  one-family houses sold: west(thou.u., s.a.) [1973:1] (log)

HNR new one-family houses, month’s supply @ current sales rate (ratio)
[1963:1]
HMOB mobile homes: manufacturers’ shipments (thous.of units, saar)

[1959:1] (log)

CONTC construct.put in place: total priv & public 1987$ (mil$, saar) [1964:1]
(log)

CONPC construct.put in place: total private 1987$ (mil$, saar) [1964:1] (log)

CONQC construct.put in place: public construction 87$ (mil$, saar) [1964:1]
(log)

CONDO9 construct.contracts: comm’l & indus.bldgs (mil.sq.ft.floor sp.; sa)
[1959:1] (log)

MSMTQ manufacturing & trade: total (mil of chained 1992 dollars)(sa) [1959:1]

(log)

MSMQ manufacturing & trade: manufacturing; total (mil of chained 1992
dollars)(sa) [1959:1] (log)

MSDQ manufacturing & trade: mfg; durable goods (mil of chained 1992
dollars)(sa) [1959:1] (log)

MSNQ manufact. & trade: mfg; nondurable goods (mil of chained 1992
dollars)(sa) [1959:1] (log)

WTQ merchant wholesalers: total (mil of chained 1992 dollars)(sa) [1959:1]
(log)

WTDQ merchant wholesalers: durable goods total (mil of chained 1992
dollars)(sa) [1959:1] (log)

WTNQ merchant wholesalers: nondurable goods (mil of chained 1992
dollars)(sa) [1959:1] (log)

RTQ retail trade: total (mil of chained 1992 dollars)(sa) [1959:1] (log)

RTDQ retail trade: durable goods total (mil.87$)(s.a.) [1959:1] (log)

RTNQ retail trade: nondurable goods (mil of 1992 dollars)(sa) [1959:1] (log)

IVMTQ manufacturing & trade inventories: total (mil of chained 1992)(sa)

[1959:1] (log)
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IVMFGQ
IVMFDQ

IVMFNQ
IVWRQ
IVRRQ
IVSRQ
IVSRMQ
IVSRWQ
IVSRRQ
PMI
PMP
PMNO
PMDEL
PMNV
PMEMP
PMCP
MOCMQ

MDOQ
MSONDQ

MO
MOWU
MDO
MDUWU
MNO
MNOU
MU
MDU
MNU

MPCON
MPCONQ

FM1
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inventories, business, mfg (mil of chained 1992 dollars, sa) [1959:1] (log)
inventories, business durables (mil of chained 1992 dollars, sa)
[1959:1] (log)

inventories, business, nondurables (mil of chained 1992 dollars, sa)
[1959:1] (log)

manufacturing & trade inv: merchant wholesalers (mil of chained
1992 dollars)(sa) [1959:1] (log)

manufacturing & trade inv: retail trade (mil of chained 1992
dollars)(sa) [1959:1] (log)

ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa)
[1959:1]

ratio for mfg & trade: mfg; inventory/sales (87$)(s.a.) [1959:1]

ratio for mfg & trade: wholesaler; inventory /sales (87%)(s.a.) [1959:1]
ratio for mfg & trade: retail trade; inventory /sales (87%)(s.a.) [1959:1]
purchasing managers’ index (sa) [1959:1]

napm production index (percent) [1959:1]

napm new orders index (percent) [1959:1]

napm vendor deliveries index (percent) [1959:1]

napm inventories index (percent) [1959:1]

napm employment index (percent) [1959:1]

napm commodity prices index (percent) [1959:1]

new orders (net)—consumer goods & materials, 1992 dollars (bci)
[1959:1] (log)

new orders, durable goods industries, 1992 dollars (bci) [1959:1] (log)
new orders, nondefense capital goods, in 1992 dollars (bci) [1959:1]
(log)

mfg new orders: all manufacturing industries, total (mil$, sa) [1959:1]
(log)

mfg new orders: mfg industries with unfilled orders (mil$, sa) [1959:1]
(log)

mfg new orders: durable goods industries, total (mil$, sa) [1959:1]
(log)

mfg new orders: durable goods industries with unfilled orders (mil$,
sa) [1959:1] (log)

mfg new orders: nondurable goods industries, total (mil$, sa) [1959:1]
(log)

mfg new orders: nondurable gds ind.with unfilled orders (mil$, sa)
[1959:1] (log)

mfg unfilled orders: all manufacturing industries, total (mil$, sa)
[1959:1] (log)

mfg unfilled orders: durable goods industries, total (mil$, sa) [1959:1]
(log)

mfg unfilled orders: nondurable goods industries, total (mil$, sa)
[1959:1] (log)

contracts & orders for plant & equipment (bil$, sa) [1959:1] (log)
contracts & orders for plant & equipment in 1992 dollars (bci)
[1959:1] (log)

money stock: m1(curr, trav.cks, dem dep, other ck’able dep)(bil$, sa)
[1959:1] (log)



FM2

FM3
FML
FM2DQ
FMFBA
FMBASE
FMRRA
FMRNBA
FMRNBC

FMFBA

FCLS
FCSGV

FCLRE
FCLIN

FCLNBF
FCLNQ
FCLBMC
CCI30M
CCINT
CCINV
FSNCOM
FSNIN
FSNTR
FSNUT
FSNFI
FSPCOM
FSPIN
FSPCAP

FSPTR
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money stock: m2(m1 + o’nite rps, euro$, g/p&b/d mmmis&savdrsm
time dep (bil$, sa) [1959:1] (log)

money stock: m3(m2 + lg time dep, term rp’s&inst only mmmfs)(bil$,
sa) [1959:1] (log)

money stock: 1(m3 + other liquid assets) (bil$, sa) [1959:1] (log)
money supply—m?2 in 1992 dollars (bci) [1959:1] (log)

monetary base, adj. for reserve requirement changes(mil$, sa) [1959:1]
(log)

monetary base, adj. for reserve req chgs(frb of st.louis)(bil$, sa)
[1959:1] (log)

depository inst reserves: total, adj for reserve req chgs(mil$, sa)
[1959:1] (log)

depository inst reserves: nonborrowed, adj res req chgs(mil$, sa)
[1959:1] (log)

depository inst reserves: nonborrow + ext cr, adj res req cgs(mil$, sa)
[1959:1] (log)

monetary base, adj for reserve requirement changes(mil$, sa) [1959:1]
(log)

loans & sec @ all coml banks: total (bil$, sa) [1973:1] (log)

loans & sec @ all coml banks: US govt. securities (bil$, sa) [1973:1]
(log)

loans & sec @ all coml banks: real estate loans (bil$, sa) [1973:1] (log)
loans & sec @ all coml banks: loans to individuals (bil$, sa) [1973:1]
(log)

loans & sec @ all coml banks: loans to nonbank fin. inst (bil$, sa)
[1973:1] (log)

commercial & industrial loans oustanding in 1992 dollars (bci)
[1959:1] (log)

wkly rp lg com’l banks:net change com’l & indus loans (bil$, saar)
[1959:1]

consumer instal.loans: delinquency rate, 30 days & over, (%, sa)
[1959:1]

net change in consumer instal cr: total (mil$, sa) [1975:1]

net change in consumer instal cr: automobile (mil$, sa) [1975:1]

nyse common stock price index: composite (12/31/65 = 50) [1959:1]
(log)

nyse common stock price index: industrial (12/31/65 = 50) [1966:1]
(log)

nyse common stock price index: transportation (12/31/65 = 50)
[1966:1] (log)

nyse common stock price index: utility (12/31/65 = 50) [1966:1] (log)
nyse common stock price index: finance (12/31/65 = 50) [1966:1] (log)
s&p’s common stock price index: composite (1941-43 = 10) [1959:1] (log)
s&p’s common stock price index: industrials (1941-43 = 10) [1959:1]
(log)

s&p’s common stock price index: capital goods (194143 = 10)
[1959:1] (log)

s&p’s common stock price index: transportation (1970 = 10) [1970:1]
(log)
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FSpPUT

FSPFI
FSDXP

FSPXE

FSNVV3

FYFF
FYCP
FYGM3

FYGM6

FYGT1

FYGT5

FYGT10

FYAAAC
FYBAAC
FWAFIT
FYFHA
EXRUS
EXRGER

EXRSW
EXRJAN
EXRUK

EXRCAN
HHSNTN
F6EDM
FTMC6
FTMM6
PWFSA
PWFCSA

PWIMSA

PWCMSA
PWFXSA

PW160A

PW150A
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s&p’s common stock price index: utilities (1941-43 = 10) [1959:1]
(log)

s&p’s common stock price index: financial (1970 = 10) [1970:1] (log)
s&p’s composite common stock: dividend yield (% per annum)
[1959:1] (log)

s&p’s composite common stock: price-earnings ratio (%, nsa) [1959:1]
(log)

nyse mkt composition: reptd share vol by size, 5000 + shrs, % [1959:1]
(log)

interest rate: federal funds (effective) (% per annum, nsa) [1959:1]
interest rate: commercial paper, 6-month (% per annum, nsa) [1959:1]
interest rate: US treasury bills, sec mkt, 3-mo.(% per ann, nsa)
[1959:1]

interest rate: US treasury bills, sec mkt, 6-mo. (% per ann, nsa)
[1959:1]

interest rate: US treasury const maturities, 1-yr. (% per ann, nsa)
[1959:1]

interest rate: US treasury const maturities, 5-yr. (% per ann, nsa)
[1959:1]

interest rate: US treasury const maturities, 10-yr. (% per ann, nsa)
[1959:1]

bond yield: moody’s aaa corporate (% per annum) [1959:1]

bond yield: moody’s baa corporate (% per annum) [1959:1]

weighted avg foreign interest rate(%, sa) [1959:1]

secondary market yields on fha mortgages (% per annum) [1959:1]
united states; effective exchange rate(merm)(index no.) [1973:1] (log)
foreign exchange rate: germany (deutsche mark per US$) [1973:1]
(log)

foreign exchange rate: switzerland (swiss franc per US$) [1973:1] (log)
foreign exchange rate: japan (yen per US$) [1973:1] (log)

foreign exchange rate: united kingdom (cents per pound) [1973:1]
(log)

foreign exchange rate: canada (canadian $ per US$) [1973:1] (log)

u. of mich. index of consumer expectations (bcd—83) [1959:1]

US mdse exports: [1964:1] (log)

US mdse imports: crude materials & fuels (mil$, nsa) [1964:1] (log)
US mdse imports: manufactured goods (mil$, nsa) [1964:1] (log)
producer price index: finished goods (82 = 100, sa) [1959:1] (log)
producer price index: finished consumer goods (82 = 100, sa) [1959:1]
(log)

producer price index: intermed mat. supplies & components

(82 = 100, sa) [1959:1] (log)

producer price index: crude materials (82 = 100, sa) [1959:1] (log)
producer price index: finished goods, excl. foods (82 = 100, sa)
[1967:1] (log)

producer price index: crude materials less energy (82 = 100, sa)
[1974:1] (log)

producer price index: crude nonfood mat less energy (82 = 100, sa)
[1974:1] (log)



PW561
PWCM

PWXFA

PSM99Q)
PUNEW
PUS1
PUH
PUS83
PU84
PUS85
PUC
PUCD
PUS
PUXF
PUXHS
PUXM
PSCCOM

PSCFOO
PSCMAT
PZFR
PCGOLD
GMDC
GMDCD
GMDCN
GMDCS
GMPYQ
GMYXPQ
GMCQ
GMCDQ
GMCNQ
GMCSQ

GMCANQ
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producer price index: crude petroleum (82 = 100, nsa) [1959:1] (log)
producer price index: construction materials (82 = 100, nsa) [1959:1]
(log)

producer price index: all commodities ex. farm prod (82 = 100, nsa)
[1959:1] (log)

index of sensitive materials prices (1990 = 100)(bci-99a) [1959:1] (log)
cpi-u: all items (82-84 = 100, sa) [1959:1] (log)

cpi-u: food & beverages (82-84 = 100, sa) [1967:1] (log)

cpi-u: housing (82-84 = 100, sa) [1967:1] (log)

cpi-u: apparel & upkeep (82-84 = 100, sa) [1959:1] (log)

cpi-u: transportation (82-84 = 100, sa) [1959:1] (log)

cpi-u: medical care (82-84 = 100, sa) [1959:1] (log)

cpi~u: commodities (82-84 = 100, sa) [1959:1] (log)

cpi-u: durables (82-84 = 100, sa) [1959:1] (log)

cpi-u: services (82-84 = 100, sa) [1959:1] (log)

cpi-u: all items less food (82-84 = 100, sa) [1959:1] (log)

cpi-u: all items less shelter (82-84 = 100, sa) [1959:1] (log)

cpi~u: all items less medical care (82-84 = 100, sa) [1959:1] (log)
spot market price index:bls & crb: all commodities (67 = 100, nsa)
[1959:1] (log)

spot market price index:bls & crb: foodstuffs (67 = 100, nsa) [1959:1]
(log)

spot market price index:bls & crb: raw industrials (67 = 100, nsa)
[1959:1] (log)

prices received by farmers: all farm products (1977 = 100, nsa)
[1975:1] (log)

commodities price:gold, london noon fix, avg of daily rate, $ per oz
[1975:1] (log)

pee, impl pr defl: pce (1987 = 100) [1959:1] (log)

pee, impl pr defl: pce; durables (1987 = 100) [1959:1] (log)

pee, impl pr defl: pce; nondurables (1987 = 100) [1959:1] (log)

pee, impl pr defl: pce; services (1987 = 100) [1959:1] (log)

personal income (chained) (series #52) (bil 923, saar) [1959:1] (log)
personal income less transfer payments (chained) (#51) (bil 92§, saar)
[1959:1] (log)

personal consumption expend (chained): total (bil 928, saar) [1959:1]
(log)

personal consumption expend (chained): total durables (bil 92§, saar)
[1959:1] (log)

personal consumption expend (chained): nondurables (bil 928, saar)
[1959:1] (log)

personal consumption expend (chained): services (bil 92§, saar)
[1959:1] (log)

personal cons expend (chained): new cars (bil 92§, saar) (log)
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Notes

. It should be emphasized that, like the experiment reported in this paper, these
studies are simulated real-time exercises, not a comparison of true real-time
forecasts. True real-time forecasts are based on preliminary data and often contain
significant judgmental adjustments; see for example McNees (1986, 1990) and the
surveys in Granger and Newbold (1977, ch. 8.4 and 1986, ch. 9.4). Although true
out-of-sample MSEs would differ from those reported here, the simulated real-time
nature of this experiment provides a controlled environment for comparing and
ranking different forecasting methods.

. A fixed lag length of six was used to compute the unit root test statistics. The unit
root pretests were computed and applied recursively, that is, the forecast of y,,,
using data through time ¢ were computed using the model selected at time ¢ by the
unit root pretest computed using data through time t. The critical values for
the unit root tests were chosen so that the pretest constituted a consistent rule for
selecting between the I(0) and I(1) specification. Specifically, for the DF-GLS test,
the critical value was In(120/¢) — 1.95, and for the DF-GLS" test the critical value
was In(120/¢) — 2.89. When ¢ = 120, these correspond to 5 percent significance level
unit root pretests, with lower significance levels as the sample size increases.

. See Swanson and White (1995, 1997) for discussion of ANN models in economics;
for a monograph treatment, see Masters (1994).

. See Granger and Teréisvirta (1993) for an exposition of the threshold autoregression
and smooth transition autoregression family of models, including LSTAR models.

. Other loss functions are possible, for example, the forecaster might have asymmetric
loss, cf. Granger (1969) and Diebold and Christofferson (1997). Under nonquadratic
loss, least squares forecasts are not optimal, but considering alternative estimation
methods is beyond the scope of this paper.

. The basic algorithm described above was augmented at each date ¢ by 1,000 randomly
selected trial values of the parameters. The four sets of parameters that yielded the
smallest SSR together with the optimum at date ¢t — 1 were each used as initial
values for 250 Gauss—Newton iterations. Finally, the parameter values associated
with the resulting smallest SSR was used to construct the forecasts and carried
forward as initial condition for date ¢t + 1. Experiments indicated that this algorithm
yielded essentially identical function values in repeated trials, suggesting that it
achieved a global optimum.
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