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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: Hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 



Revised 1/8/15 5/6-3 

Introductory Application  

 

 
What is the price elasticity of demand for gasoline? 
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Data: 

 48 continental U.S. states, January 1989-March 2008, monthly 

 volume, pump prices (nominal and real), state taxes, unemployment 

rates 

 Source: Davis and Kilian, J. Appl. Econometrics (2011), augmented 

with unemployment rates (nicely documented replication files at 

http://qed.econ.queensu.ca/jae/2011-v26.7/davis-kilian/) 

  

http://qed.econ.queensu.ca/jae/2011-v26.7/davis-kilian/
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All regressions in first differences with fixed effects (why)? 

 
* (1) OLS, growth rates, HR SEs; 

reg dlvolume dlrpumpprice unemployment i.statefip i.time, r;  

*; 

* (2) OLS, growth rates, cluster SEs; 

reg dlvolume dlrpumpprice unemployment i.statefip i.time, cluster(statefip);  

*; 

* (3) 2SLS, contemporaneous pump price only; 

ivregress 2sls dlvolume unemployment (dlrpumpprice = drstatetax_tot)  

    i.statefip i.time, cluster(statefip);  

*; 

* (4) 2SLS, one lead and 0-2 lags of pump prices; 

ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/2).dlrpumpprice  

  = F.drstatetax_tot L(0/2).drstatetax_tot) i.statefip i.time, 

  cluster(statefip);  

lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice ; 

*; 

* (5) 2SLS, one lead and 0-3 lags of pump prices; 

ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/3).dlrpumpprice  

  = F.drstatetax_tot L(0/3).drstatetax_tot) i.statefip i.time, 

  cluster(statefip);  

lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice 

     + L3.dlrpumpprice; 
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. reg dlvolume dlrpumpprice unemployment i.statefip i.time, r; 

 

Linear regression                                      Number of obs =   11040 

                                                       F(278, 10761) =   37.02 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4917 

                                                       Root MSE      =  .04481 

 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.1960045    .019535   -10.03   0.000    -.2342967   -.1577123 

unemployment |  -.0009202   .0006881    -1.34   0.181    -.0022689    .0004286 

             | 

 ------------------------------------------------------------------------------ 
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.  reg dlvolume dlrpumpprice unemployment i.statefip i.time, cluster(statefip); 

 

Linear regression                                      Number of obs =   11040 

                                                       F( 46,    47) =       . 

                                                       Prob > F      =       . 

                                                       R-squared     =  0.4917 

                                                       Root MSE      =  .04481 

 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.1960045   .0399006    -4.91   0.000    -.2762742   -.1157348 

unemployment |  -.0009202   .0002402    -3.83   0.000    -.0014033    -.000437 

------------------------------------------------------------------------------ 
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. ivregress 2sls dlvolume unemployment (dlrpumpprice = drstatetax_tot)  

 

Instrumental variables (2SLS) regression               Number of obs =   11040 

                                                       Wald chi2(278)=22597.94 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4593 

                                                       Root MSE      =  .04562 

 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice |  -.7157622   .2239263    -3.20   0.001     -1.15465   -.2768747 

unemployment |  -.0008435   .0002272    -3.71   0.000    -.0012888   -.0003983 

             | 

------------------------------------------------------------------------------ 

  



Revised 1/8/15 5/6-13 

 

> ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/2).dlrpumpprice = 

F.drstatetax_tot L(0/2).drstatetax_tot)  

>   i.statefip i.time, cluster(statefip); 

 

Instrumental variables (2SLS) regression               Number of obs =   10896 

                                                       Wald chi2(278)=12805.00 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4565 

                                                       Root MSE      =  .04562 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice | 

         F1. |   .3718785   .1418534     2.62   0.009     .0938509    .6499061 

         --. |  -.7353892    .233089    -3.15   0.002    -1.192235   -.2785432 

         L1. |   .1886337   .1439397     1.31   0.190     -.093483    .4707504 

         L2. |  -.1230229   .1116925    -1.10   0.271    -.3419363    .0958905 

unemployment |  -.0009755   .0002183    -4.47   0.000    -.0014034   -.0005476 

------------------------------------------------------------------------------ 
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.    lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice ; 

 

 ( 1)  F.dlrpumpprice + dlrpumpprice + L.dlrpumpprice + L2.dlrpumpprice = 0 

 

------------------------------------------------------------------------------ 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -.2978998   .1886253    -1.58   0.114    -.6675985    .0717989 

------------------------------------------------------------------------------ 
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. * 2SLS, one lead and 0-3 lags of pump prices; 

. ivregress 2sls dlvolume unemployment (F.dlrpumpprice L(0/3).dlrpumpprice 

dlrpumpprice = F.drstatetax_tot L(0/3).drstatetax_tot)  

>   i.statefip i.time, cluster(statefip); 

 

Instrumental variables (2SLS) regression               Number of obs =   10848 

                                                       Wald chi2(278)=11495.52 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.4576 

                                                       Root MSE      =  .04557 

                              (Std. Err. adjusted for 48 clusters in statefip) 

------------------------------------------------------------------------------ 

             |               Robust 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

dlrpumpprice | 

         F1. |   .3724716   .1421469     2.62   0.009     .0938689    .6510744 

         --. |  -.7289675   .2341491    -3.11   0.002    -1.187891   -.2700438 

         L1. |    .186246   .1435427     1.30   0.194    -.0950925    .4675846 

         L2. |  -.1219444   .1117365    -1.09   0.275     -.340944    .0970552 

         L3. |  -.0012995   .1009509    -0.01   0.990    -.1991596    .1965605 

unemployment |  -.0008956   .0002608    -3.43   0.001    -.0014068   -.0003844 

------------------------------------------------------------------------------ 
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.    lincom F.dlrpumpprice + dlrpumpprice + L1.dlrpumpprice + L2.dlrpumpprice + 

L3.dlrpumpprice; 

 

 ( 1)  F.dlrpumpprice + dlrpumpprice + L.dlrpumpprice + L2.dlrpumpprice + 

L3.dlrpumpprice = 0 

 

------------------------------------------------------------------------------ 

    dlvolume |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -.2934937   .1789459    -1.64   0.101    -.6442212    .0572338 

------------------------------------------------------------------------------ 

 

 

-0.293  -0.30 = 2.8%  1200 mmt = + 105 mmt/year 
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Brief Review of IV Regression and Sources of Exogeneity 

 

IV regression with one included endogenous variable Y, no included exogenous 

regressors: 

 

yt = 0 + 1Yt + ut 

 

 The problem: corr(Y,u)  0, possibly because of simultaneous causation, 

omitted variable bias, or errors in variables. 

o If corr(Y,u)  0 then OLS is biased and inconsistent 

 

 Terminology:  endogeneity and exogeneity 

o An endogenous variable is one that is correlated with u  

o An exogenous variable is one that is uncorrelated with u  

 



Revised 1/8/15 5/6-18 

The IV Estimator, one Y and one Z 

yt = 0 + 1Yt + ut 

 

Two conditions for a valid instrument 

1. Instrument relevance:   corr(Z,Y)  0 

2. Instrument exogeneity:   corr(Z,u) = 0 

 

By instrument exogeneity,  

cov(u,Z) = cov(y – 0 – 1Y,Z) = 0 

so           cov(y,Zi) =  1cov(Y,Z) 

By instrument relevance, 1 = 
cov( , )

cov( , )

y Z

Y Z
 

 

The IV (2SLS) estimator:   
1

ˆ IV  = 
yZ

YZ

s

s
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Multiple instruments:  Zi is k  1 

For all vectors a, by instrument exogeneity, 

cov(u,aZ) = cov(y – 0 – 1Y,aZ) = 0 

or 

    cov(y,aZ) =  cov(1Y,aZ)  = 1cov(Y,aZ) 

 

By instrument relevance, 1 = 
cov( , )

cov( , )

y

Y





a Ζ

a Z
 

 

Which choice of a is the best?   

 when k > 1, different IV estimators are available 

 What is the value of a that results in the most efficient (lowest variance) 

estimator asymptotically?   

 Result is TSLS (or others! LIML, k-class,…) 
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Two Stage Least Squares (TSLS) 

 

Suppose you have k valid instruments, Z. 

Stage 1: Regress Y on Z, obtain the predicted values Ŷ  

Stage 2: Regress y on Ŷ ; the coefficient on Ŷ  is  

the TSLS estimator, 
1

ˆTSLS . 

 

 Intuitively, the first stage isolates part of the variation in Y that is uncorrelated 

with u 

 In terms of the previous slide, aZ is constructed to be the linear combination of 

instruments that is the predicted value of Y 

 This is the linear combination that maximizes the sample correlation between 

Y and aZ.  
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The General IV Regression Model 

Extension to: 

 multiple endogenous regressors (Y1,…,Ym) 

 multiple instrumental variables (Z1,…,Zk) 

 multiple included exogenous variables (W1,…,Wr) 

 

Why use multiple instruments? 

 More relevant instruments means more variation in Ŷ  which means smaller 

variance 

 

Why include the W’s? 

 For instrument exogeneity, you need corr(u,Z) = 0.  The definition of u 

depends on what variables are included – u might only be uncorrelated with 

Z, conditional on the W’s (you still need control variables!) 
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Terminology: identification & overidentification 

 In general, a parameter is identified if different values of the parameter produce 

different distributions of the data. 

 In IV regression, the coefficients 1,…, m are: 

o exactly identified if #IVs = k = m. 

o overidentified if k > m 

Then there are more than enough instruments – you can test the 

validity of redundant instruments (more on this shortly) 

o underidentified if k < m 

Then there are too few instruments – you need more! 

 

More terminology: strong and weak instruments 

 Strong instruments: partial correlation corr(Z,Y|W) is “large” 

 Weak instruments: partial correlation corr(Z,Y|W) is “small” 
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The IV regression model in matrix form 

 

y = Y + W + U  

 

where y is n  1, Y is n  m, and W is n  r and the n  k  matrix of k 

instruments is Z 

 

TSLS in general IV regression  

Stage 1: Regress Y on Z and W to obtain the predicted 

values Ŷ  

Stage 2: Regress y on Ŷ  and W; the coefficient vector on Ŷ  is  

the TSLS estimator, ˆTSLS  
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Conventional asymptotic results for the TSLS estimator: 

 

 If the instruments are strong and exogenous, plus some moments exist, then 

TSLS is consistent (
1

ˆTSLS  
p

 1) 

 If the data are i.i.d. (e.g. cross-sectional) and homoskedastic*, then TSLS 

estimator is asymptotically normal: 

n ( 1
ˆTSLS  – ) 

d

 N(0, TSLS) 

where 

TSLS =  
1

1 2

u




YZ ZZ ZYQ Q Q  

 

where QYZ = E(YtZt), etc. 

 

*Homoskedasticity: E(
2

tu |Zt) = 
2

u  = constant 
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n (
1

ˆTSLS  – ) 
d

 N(0, TSLS) 

TSLS =  
1

1 2

u




YZ ZZ ZYQ Q Q  

 

 Note that 
1

YZ ZZ ZYQ Q Q  is the (population) variance of the predicted value of Y 

from the first stage regression – so the higher the first-stage R2, the smaller the 

TSLS variance 

 Because of the asymptotic normal distribution, inference is conventional – 

confidence intervals are  1.96 standard errors, F-tests are justified, etc. 

 The linear combination of Z (aZ in previous slide) estimated in the first stage 

is the “right” one –TSLS is asymptotically efficient (under strong instruments) 

 Heteroskedasticity: 

o To guard against heteroskedasticity in TSLS, use “heteroskedasticity-

robust” (HR) standard errors  

o Under heteroskedasticity, IV is no longer efficient – the efficient 

estimator is the efficient GMM estimator (more on this shortly) 
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Checking Overidentifying Restrictions: the J-test 

 

Consider the simplest case: 

 

yt = 0 + 1Yt + ut,   

 

 Suppose there are two valid instruments:  Z1t, Z2t 

 Then you could compute two separate TSLS estimates. 

 Intuitively, if these 2 TSLS estimates are very different from each other, 

then something must be wrong: one or the other (or both) of the 

instruments must be invalid. 

 The J-test of overidentifying restrictions makes this comparison in a 

statistically precise way. 

 This can only be done if #Z’s > #Y’s (overidentified). 
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Sources of Exogeneity (where do instruments come from?) 

 

General comments 

The hard part of IV analysis is finding valid instruments 

 Traditional (simultaneous equation) method: “variables that are excluded 

from the equation of interest and enter another equation in the system” 

o e.g. supply shifters that do not affect demand 

  More general (contemporary) view: look for exogenous variation (Z) that is 

“as if” randomly assigned (does not directly affect y) but affects Y. 

 Formally these are the same but they suggest different empirical strategies.   

  



Revised 1/8/15 5/6-28 

 Stinebrinckner and Stinebrinckner (2008) is a great example for teaching… 

o Individual student data, 210 (first semester freshman wave of a multiyear 

panel data set), Berea College (Kentucky), 2001 

o Y = first-semester GPA 

o X = average study hours per day (time use survey) 

o Z = 1 if roommate brought video game, = 0 otherwise 
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1) What is weak identification, and why do we care? 

 

1a) Four examples 

 

Example #1:  Philip G. Wright and the supply and demand for flaxseed 

 

ln(
flaxseed

iQ ) = 0 + 1ln(
flaxseed

iP ) + ui 

 

The first application of IV regression was to estimate the supply elasticity of 

flaxseed. 

 

Flaxseed was used around the turn of the century for production of linseed oil – 

used (pre-petroleum derivatives) as a paint binder or wood finish.  

 

Philip G. Wright (1928), “The Tariff on Animal and Vegetable Oils,” App. B. 
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Figure 4, p. 296, from P.G. Wright, Appendix B (1928): 
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Philip Wright (1861-1934) 

Economist, teacher, poet 

MA Harvard, Econ, 1887 

Lecturer, Harvard, 1913-1917 

Sewall Wright (1889-1988) 

genetic statistician 

ScD Harvard, Biology, 1915 

Prof., U. Chicago, 1930-1954 
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The Wrights’ letters, December 

1925 - March 1926 
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Notes: e = supply elasticity,  = demand elasticity; by “output” in this 

paragraph PGW means supply. 
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… 
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 Flaxseed was grown mainly in the upper Midwest (can plant in April and 

harvest in August) 

 PGW data: 

o Prices are Minneapolis fall prices 

o Rainfall is average in Bismark ND, Duluth MN, Minneapolis MN 

o Data are annual, 1904-1923 

o PGW deviated all data from a linear trend 

o Y = Q (% deviation from trend) 

o X = P (% deviation from trend) 

o Z = building permits (deviation from trend) 

 Exogeneity: corr(ui, Building Permitsi) = 0? 

 Relevance: corr(Pi, Building Permitsi) 0? 
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Checking for Instrument Relevance: Wright’s Flaxseed Data 

What went wrong with PGW’s supply elasticity regression? 

 

Z = deviation of building permits from trend = bp_dev 
 

. ivregress 2sls output_dev (price_dev = bp_dev), first; 

 

First-stage regressions 

----------------------- 

                                                  Number of obs   =         20 

                                                  F(   1,     18) =       1.25 

                                                  Prob > F        =     0.2783 

                                                  R-squared       =     0.0649 

                                                  Adj R-squared   =     0.0130 

                                                  Root MSE        =     0.2168 

 

------------------------------------------------------------------------------ 

   price_dev |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      bp_dev |  -.2732793   .2444394    -1.12   0.278    -.7868275    .2402689 

       _cons |   .0077936   .0484871     0.16   0.874     -.094074    .1096612 

------------------------------------------------------------------------------ 
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Instrumental variables (2SLS) regression               Number of obs =      20 

                                                       Wald chi2(1)  =    0.72 

                                                       Prob > chi2   =  0.3974 

                                                       R-squared     =  0.1641 

                                                       Root MSE      =  .21633 

 

------------------------------------------------------------------------------ 

  output_dev |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   price_dev |  -.7553123   .8925526    -0.85   0.397    -2.504683    .9940587 

       _cons |  -.0906035   .0487388    -1.86   0.063    -.1861299    .0049228 

------------------------------------------------------------------------------ 

Instrumented:  price_dev 

Instruments:   bp_dev 
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Example #2 (cross-section IV): Angrist-Kreuger (1991)  

 What are the returns to education? 

 y = log(earnings) 

 Y = years of education 

 Z = quarter of birth; k = #IVs = 3 binary variables or up to 178 

 (interacted with year-of-birth, state-of-birth) 

 n = 329,509 

A-K results: ˆTSLS  = .081 (SE = .011) 

Then came Bound, Jaeger, and Baker (1995)… 

 

 The problem is that Z (once you include all the interactions) is weakly 

correlated with Y 
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Example #3 (linear GMM):  New Keynesian Phillips Curve 

 

e.g. Gali and Gertler (1999), where xt = labor share; see survey by Mavroeidis, 

Plagborg-Møller, and Stock (JEL, 2014).  Hybrid NKPC with shock t: 

 

t = xt + fEtt+1 + bt–1 + t 

 

Rational expectations:    Et–1(t – xt – ft+1 – bt–1) = 0 

GMM moment condition:  E[(t – ft+1 – bt–1 – xt)Zt] = 0 

Instruments:     Zt = {t–1, xt–1, t–2, xt–2,…} (GG: 23 total) 

Issues: 

 Zt needs to predict t+1 – beyond t–1 (included regressor) 

 But predicting inflation is really hard!  Atkeson-Ohanian (2001), Stock and 

Watson (2007), recent literature on backwards-looking Phillips curve 
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Example #4 (nonlinear GMM):  Estimating the elasticity of intertemporal 

substitution, nonlinear Euler equation 

 

With CRRA preferences, in standard GMM notation, 

 

h(Yt,) = 
1

1
1

G
t

t G

t

C
R

C



 







 
 

 
 

 

where Rt+1 is a G1 vector of asset returns and G is the G-vector of 1’s. 

GMM moment conditions (Hansen-Singleton (1982)): 

 

E[h(Yt,)  Zt] = 0 where Zt = ct, Rt, etc. 

 

 Zt must predict consumption growth (and stock returns) using past data 
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How important are these deviations from normality quantitatively? 

Nelson-Startz (1990a,b) plots of the distribution of the TSLS t-statistic: 

 

Dark line = irrelevant instruments; dashed light line = strong instruments; 

intermediate cases: weak instruments 
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Working definition of weak identification 

We will say that  is weakly identified if the distributions of GMM or IV 

estimators and test statistics are not well approximated by their standard 

asymptotic normal or chi-squared limits because of limited information in the 

data. 

 Departures from standard asymptotics are what matters in practice 

 The source of the failures is limited information, not (for example) heavy 

tailed distributions, near-unit roots, unmodeled breaks, etc. 

 We will focus on large samples - the source of the failure is not small-sample 

problems in a conventional sense.  In fact most available tools for weak 

instruments have large-sample justifications.  This is not a theory of finite 

sample inference (although it is closely related, at least in the linear model.) 

 Throughout, we assume instrument exogeneity – weak identification is about 

instrument relevance, not instrument exogeneity 
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Some special cases: 

 Special cases we will come back to 

o  is unidentified 

o Some elements of  are strongly identified, some are weakly identified 

 A special cases we won’t come back to 

o   is partially identified, i.e. some elements of  are identified and the 

rest are not identified 

 Not a special case  

o  is set identified, i.e. the true value of  is identified only up to a set 

within .  Weak identification and set identification could be married in 

theory, but they haven’t been.   

o Inference when there is set identification is a hot topic in econometric 

theory.  Set identification will come up in SVARs. 
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Additional preparatory comments 

 The literature has differing degrees of maturity and completion: 

o Testing and confidence intervals in classical (cross-sectional) IV regression 

model with a single included endogenous regressor: a mature area in which 

the first order problems are solved 

o Estimation in general nonlinear GMM – little is known  

 These lectures focus on: 

o explaining how weak identification arises at a general level; 

o providing practical tools and advice (“state of the art”)  

o providing references to the most recent literature (untested methods) 

 Literature reviews:   

o Mikusheva (2013) – focuses on linear IV, comprehensive 

o Andrews and Stock (2007) (comprehensive but technical) 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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2) Classical IV regression I: Setup and asymptotics 

 

Classical IV regression model & notation 

Equation of interest:    yt = Yt  + ut,  m = dim(Yt) 

k exogenous instruments Zt:  E(utZt) = 0, k = dim(Zt) 

Auxiliary equations:    Yt = Zt + vt, corr(ut,vt) =  (vector) 

Sampling assumption    (yt, Yt, Zt) are i.i.d. 

 

Equations in matrix form:   y = Y + u 

         Y = Z + v 

Comments: 

 We assume throughout the instrument is exogenous (E(utZt) = 0) 

 Included exogenous regressors have been omitted without loss of generality 

 Auxiliary equation is just the projection of Y on Z 
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IV  regression with one Y and a single irrelevant instrument 

 

  ˆTSLS  =  




Z y

Z Y
 = 

( )



Z Y + u

Z Y
 =  + 





Z u

Z Y
  

 

If Z is irrelevant (as in Bound et. al. (1995)), then Y = Z + v = v, so 

 

ˆTSLS  –  =  




Z u

Z v
 = 1

1

1

1

T

t t

t

T

t t

t

Z u
T

Z v
T








 

d

  u

v

z

z
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u

v

z

z

 
 
 

 ~ 
2

2
0, u uv

uv v

N
 

 

  
  

  

 

 

Comments: 

 ˆTSLS  isn’t consistent (this should make sense) 

 Distribution of ˆTSLS  is Cauchy-like (ratio of correlated normals) 
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 The distribution of ˆTSLS  is a mixture of normals with nonzero mean:  write zu 

= zv + ,    z, where   = uv/
2

v .  Then  

u

v

z

z
 = v

v

z

z

 
 =  +

vz


, and 

vz


|zv ~ N(0, 

2

2

vz


) 

so the asymptotic distribution of ˆTSLS  – 0 is the mixture of normals, 

ˆTSLS  – (0 + ) 

d

  

2

2
(0, ) ( )

vz v v

v

N f z dz
z


  (1 irrelevant instrument) 

 heavy tails (mixture is based on inverse chi-squared) 

 center of distribution of ˆTSLS  is 0 + .  But  

ˆOLS  - 0 = 
/

/

n

n





Y u

Y Y
 = 

/

/

n

n





v u

v v

p

  
2

uv

v




 = , so plim( ˆOLS ) = 0 +  

Thus ˆTSLS  is centered around plim( ˆOLS ) 

 

This is one end of the spectrum; the usual normal approximation is the other.  If 

instruments are weak the distribution is somewhere in between…
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TSLS with possibly weak instruments, 1 included endogenous regressor 

Suppose that Z is fixed and u, v are normally distributed.  Then the sample size 

enters the distribution of ˆTSLS  only through the concentration parameter 2, 

where 

2 =  ZZ/ 2

v  (concentration parameter). 

 

 2 plays the role usually played by n 

 As 2  , the usual asymptotic approximation obtains: 

as 2  , ( ˆTSLS  – ) 
d

  N(0, 2

u / 2

v )  

(the 2

v  terms in  and limiting variance cancel) 

 for small values of 2, the distribution is nonstandard 

 Digression: for a possibly helpful expansion of TSLS estimator in terms of 2 

in the classical case, see Rothenberg (1984) 
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How important are these deviations from normality quantitatively? 

Nelson-Startz (1990a,b) plots of the distribution of the TSLS t-statistic: 

 

Dark line = irrelevant instruments; dashed light line = strong instruments; 

intermediate cases: weak instruments 
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Four approaches to computing distributions of IV statistics with weak IVs 

The goal: a distribution theory that is tractable; provides good approximations 

uniformly in 2; and can be used to compare procedures  

 

1. Finite sample theory? 

 large literature in 70s and 80s under the strong assumptions that Z is 

fixed (strictly exogenous) and (ut, vt) are i.i.d. normal 

 literature died – distributions aren’t tractable, results aren’t useful 

 

2. Edgeworth expansions?  

 expand distn in orders of T–1/2 – requires consistent estimability 

 work poorly when instruments are very weak (Rothenberg (1984)) 

 

3. Bootstrap and subsampling?  

 Neither work uniformly (irrelevant to weak to strong) in general 

 We return to these later (recent interesting literature) 
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4. Weak instrument asymptotics 

Adopt nesting that makes the concentration parameter tend to a constant as 

the sample size increases; that is, model F as not increasing with the sample 

size. 

This is accomplished by setting  = C/ T   

 This is the Pitman drift for obtaining the local power function of the first-

stage F. 

 This nesting holds E2 constant as T  . 

 Under this nesting, F 
d

  noncentral 2

k /k with noncentrality parameter 

E2/k (so F = Op(1)) 

 Letting the parameter depend on the sample size is a common ways to 

obtain good approximations – e.g. local to unit roots (Bobkoski 1983, 

Cavanagh 1985, Chan and Wei 1987, and Phillips 1987) 
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Weak IV asymptotics for TSLS estimator, 1 included endogenous vble: 

ˆTSLS  – 0 = (YPZu)/(YPZY) 

Now 

YPZY = 

1
( ) ( )

TT T


         

    
    

Z v Z Z Z Z Z v
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             
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d
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Similarly,  

YPZu = 

1
( ) )

TT T


       

    
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d
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so 

ˆTSLS  – 0 
d
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(  )
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 
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 Under weak instrument asymptotics, 2 
p

  CQZZC/ 2

v  = / 2

v  

 Unidentified special case: ˆTSLS  – 0 
d

  v u

v v

z z

z z




 (obtained earlier) 

 Strong identification:   ( ˆTSLS  – 0) 
d

  N(0, 2

u ) (standard limit) 
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Summary of weak IV asymptotic results: 

 Resulting asymptotic distributions are the same as in the exact normal classical 

model with fixed Z – but with known covariance matrices. 

 IV estimators are not consistent (and are biased) under this nesting 

 

Digression: Identification and consistency 

 Identification means (loosely) that if you change a parameter, the 

distribution of the data changes.  Because you can estimate the distribution 

of the data, this means you can work backwards to the parameter. 

 Identification does not imply consistency.  Consider the regression model, 

with T  : 

Yt = 0Dt + 1(1 – Dt) + ut, where Dt = 
1,  1,...,10

0,  11,...,

t

t T





 

Both 0 and 1 are identified, but only 1 is consistently estimable. 



Revised 1/8/15 5/6-67 

Summary of weak IV asymptotic results, ctd: 

 

 IV estimators are nonnormal ( ˆTSLS  has mixture of normals with nonzero mean, 

where mean  k/2) 

 Test statistics (including the J-test of overidentifying restrictions) do not have 

normal or chi-squared distributions 

 Conventional confidence intervals do not have correct coverage (coverage can 

be driven to zero) 

 Provide good approximations to sampling distributions uniformly in 2 for T 

moderate or greater (say, 100+ observations). 

 Remember, 2 is unknown – so these distributions can’t be used directly in 

practice to obtain a “corrected” distribution…. 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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3) Classical IV regression II: Detection of weak instruments 

 

Bound et. al. revisited 

 n = 329,509 (it is 2, or 2/k, not sample size that matters!)  

 for K = 3 (quarter of birth only), F = 30.53,  

o Recall that E(F) = 1 + 2/k 

o Estimate of 2/k is 29.53 

o Estimate 2 as k(F–1) = 3(30.53–1) = 88.6 

 for K = 178 (all interactions), F = 1.869 

o Estimate of 2 = 178(1.869–1) = 154.7 

o Estimate of 2/k is 0.869 

 We will see that numerical work suggests that 

o 2/k = 29.53: strong instruments 

o 2/k = 0.869: very weak instruments 
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How weak is weak?  Need a cutoff value for 2 

 

The basic idea is to compare F to some cutoff.  But how should that cutoff be 

chosen?  In general, this depends on the statistic you are using (different statistics 

have different sensitivities to 2).  TSLS is among the worst (most sensitive) – 

and is also most frequently used.  So, it is reasonable to develop a cutoff for F 

assuming use of TSLS. 

 

Various procedures: 

 First stage F > 10 rule of thumb 

 Stock-Yogo (2005a) bias method 

 Stock-Yogo (2005a) size method 
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TSLS bias cutoff method (Stock-Yogo (2005a)) 

 

Let 2

10%bias  be the value of 2 such that, if 2  2

10%bias , the maximum bias of 

TSLS will be no more than 10% of the bias (inconsistency) of OLS. 

Stock-Yogo (2005a): decision rule of the form:  

 

if   F 
 
  

 .10(k),  conclude that instruments are 
weak

strong

 
 
 

 

where F is the first stage F-statistic* and .10(k) is chosen so that P(F > .10(k); 2 

= 2

10%bias ) = .05 (so that the rule acts like a 5% significance test at the boundary 

value 2 = 2

10%bias ). 

 

*F = F-statistic testing the hypothesis that the coefficients on Zt = 0 in the 

regression of Yt on Zt, Wt, and a constant, where Wt = the exogenous regressors 

included in the equation of interest. 
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TSLS bias cutoff method (Stock-Yogo (2005a)), ctd 

Some background:  

 The relative squared normalized bias of TSLS to OLS is, 

  

    
2

nB  = 

IV IV

OLS OLS

ˆ ˆ( β β) 'Σ ( β β)

ˆ ˆ( β β) 'Σ ( β β)

YY

YY

E E

E E

 

 
 

 

The square root of the maximal relative squared asymptotic bias is: 

 

Bmax =  max: 0 <   1 limn|Bn|, where  = corr(ut,vt) 

 

This maximization problem is a ratio of quadratic forms so it turns into a 

(generalized) eigenvalue problem; algebra reveals that the solution to this 

eigenvalues problem depends only on 2/k and k; this yields the cutoff 2

bias .  
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Critical values 

 

One included endogenous regressor 

The 5% critical value of the test is the 95% percentile value of the noncentral 
2

k /k distribution, with noncentrality parameter 2

bias /k 

 

Multiple included endogenous regressors 

The Cragg-Donald (1993) statistic is: 

 

gmin = mineval(GT), where GT = 1/2Σ̂

VV
YPZY 1/2Σ̂

VV
/k, 

 

 GT is essentially a matrix first stage F statistic 

 Critical values are given in Stock-Yogo (2005a) 

 

Software 

 STATA (ivreg2),… 
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5% critical value of F to ensure indicated maximal bias  

(Stock-Yogo, 2005a) 

 

To ensure 10% maximal bias, need F  11.52; F  10 is a rule of thumb
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5% critical values for Weak IV test statistic gmin ,  

for 10% maximal TSLS Bias (Stock-Yogo (2005), Table 1) m = dim(Yt) 

 

k m = 1 m = 2 m = 3 

3 9.08 – – 

4 10.27 7.56 – 

5 10.83 8.78 6.61 

6 11.12 9.48 7.77 

7 11.29 9.92 8.50 

8 11.39 10.22 9.01 

9 11.46 10.43 9.37 

10 11.49 10.58 9.64 

15 11.51 10.93 10.33 

20 11.45 11.03 10.60 

25 11.38 11.06 10.71 

30 11.32 11.05 10.77 
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Other methods for detecting weak instruments 

 

Stock-Yogo (2005a) size method 

 Instead of controlling bias, control the size of a Wald test of  = 0 

 Less frequently used 

 Not really relevant (any more) since fully robust methods for testing exist 

 

Recent work has focused on extention to heteroskedasticity and serial correlation 

 The problem: With heteroskedasticity, except in special cases the 

concentration parameter for 2SLS and the noncentrality parameter of the 

first-stage F (either hetero-robust or nonrobust) don’t coincide 

 The solution: ongoing research. See Olea Montiel and Pflueger (2013) , I. 

Andrews (2014)  

 

  



Revised 1/8/15 5/6-77 

Other methods for detecting weak instruments 

 

Examination of R2, partial R2, or adjusted R2 

 None of these are a good idea, more precisely, what needs to be large is the 

concentration parameter, not the R2.  An R2 = .10 is small if T = 50 but is 

large if T = 5000. 

 The first-stage R2 is especially uninformative if the first stage regression has 

included exogenous regressors (W’s) because it is the marginal explanatory 

content of the Z’s, given the W’s, that matters. 
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Outline 

 

1) What is weak identification, and why do we care? 

2) Classical IV regression I: Setup and asymptotics 

3) Classical IV regression II: Detection of weak instruments 

4) Classical IV regression III: hypothesis tests and confidence intervals 

5) Classical IV regression IV: Estimation 

6) GMM I: Setup and asymptotics 

7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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4) Classical IV regression III: 

Hypothesis tests and confidence intervals 

 

There are two approaches to improving inference (providing tools): 

 

Fully robust methods: 

 Inference that is valid for any value of the concentration parameter, including 

zero, at least if the sample size is large, under weak instrument asymptotics 

o For tests: asymptotically correct size (and good power!) 

o For confidence intervals: asymptotically correct coverage rates 

o For estimators: asymptotically unbiased (or median-unbiased) 

 

Partially robust methdos: 

 Methods are less sensitive to weak instruments than TSLS – e.g. bias is 

“small” for a “large” range of 2 
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Fully Robust Testing 

 The TSLS t-statistic has a distribution that depends on 2, which is unknown 

 Approach #1: use a statistic whose distribution depends on 2, but use a 

“worst case” conservative critical value 

o This is unattractive – substantial power loss 

 Approach #2: use a statistic whose distribution does not depend on 2
 (two 

such statistics are known) 

 Approach #3: use statistics whose distribution depends on 2, but compute 

the critical values as a function of another statistic that is sufficient for 2 

under the null hypothesis. 

o Both approaches 2 and 3 have advantages and disadvantages – we 

discuss both  
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Approach #2:  Tests that are valid unconditionally  

(that is, the distribution of the test statistic does not depend on 2) 

 

The Anderson-Rubin (1949) test 

Consider H0:  = 0 in  y = Y + u,   

Y = Z + v 

 

The Anderson-Rubin (1949) statistic is the F-statistic in the regression of y – Y0 

on Z. 

 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
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AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y
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Comments 

 AR( ˆTSLS ) = the J-statistic  

 Null distribution doesn’t depend on 2: 

Under the null, y – Y0 = u, so 

AR = 
/

/ ( )

P k

M T k



 

Z

Z

u u

u u
 ~ Fk,n–k   if ut is normal 

  AR 
d

  2

k /k   if ut is i.i.d. and Ztut has 2 moments (CLT) 

 The distribution of AR under the alternative depends on 2 – more 

information, more power (of course) 
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The AR statistic if there are included endogenous regressors 

 

Let W denote the matrix of observations on included exogenous regressors, so 

the structural equation and first stage regression are, 

 

   y = Y + W + u 

   Y = Z + WW  + v 

 

The AR statistic is the F-statistic testing the hypothesis that the coefficients on Z 

are zero in the regression of y – Y0 on Z and W. 
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Advantages and disadvantages of AR 

 

Advantages 

 Easy to use – entirely regression based 

 Uses standard F critical values 

 Works for m > 1 (general dimension of Z) (see Kleibergen and Mavroeidis 

(2009) for subset inference when m > 1)  

 

Disadvantages 

 Difficult to interpret:  rejection arises for two reasons: 0 is false or Z is 

endogenous 

 Power loss relative to other tests (we shall see) 

 Is not efficient if instruments are strong – under strong instruments, not as 

powerful as TSLS Wald test (power loss because AR(0) has k degrees of 

freedom) 
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Kleibergen’s (2002) LM test 

 

Kleibergen developed an LM test that has a null distribution that is 
2

1  - doesn’t 

depend on 2. 

 

Advantages 

 Fairly easy to implement 

 Is efficient if instruments are strong 

 

Disadvantages 

 Has very strange power properties – power function isn’t monotonic 

 Its power is dominated by the conditional likelihood ratio test 
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Approach #3: Conditional tests 

Conditional tests have rejection rate 5% for all points under the null (0, 
2) 

(“similar tests”) 

 

Recall your first semester probability and statistics course… 

 Let S be a statistic with a distribution that depends on  

 Let T be a sufficient statistic for  

 Then the distribution of S|T does not depend on  

 

Here (Moreira (2003)): 

 LR will be a statistic testing  = 0 (LR is “S” in notation above) 

 QT will be sufficient for 2 under the null (QT is “T”) 

 Thus the distribution of LR| QT does not depend on 2 under the null 

 Thus valid inference can be conducted using the quantiles of LR| QT – that is, 

critical values that are a function of QT 
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Moreira’s (2003) conditional likelihood ratio (CLR) test 

LR = max log-likelihood() – log-likelihood(0) 

 

After lots of algebra, this becomes: 

 

LR = ½{ ˆ
SQ  – ˆ

TQ  + [( ˆ
SQ  – ˆ

TQ )
2
 + 4 2ˆ

STQ ]
1/2

} 

 

where 

Q̂  = 
ˆ ˆ

ˆ ˆ

S ST

ST T

Q Q

Q Q
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 
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Y
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 
 

. 
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CLR test, ctd. 

 

Implementation: 

 QT is sufficient for 2 (under weak instrument asymptotics) 

 The distribution of LR|QT does not depend on 2 

 LR proc exists in STATA (condivreg), GAUSS 

 STATA (condivreg), Gauss code for computing LR and conditional p-values 

exists 
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Advantages and disadvantages of the CLR test 

Advantages 

 More powerful than AR or LM 

 In fact, effectively uniformly most powerful among valid tests that are 

invariant to rotations of the instruments (Andrews, Moreira, Stock (2006) – 

among similar tests; Andrews, Moreira, Stock (2008) – among nonsimilar 

tests) 

 Implemented in software (STATA,…) 

 

Disadvantages 

 More complicated to explain and write down  

 Only developed (so far) for a single included endogenous regressor 

 As written, the software requires homoskedastic errors; extensions to 

heteroskedasticity and serial correlation have been developed but are not in 

common statistical software 
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Confidence Intervals 

(a) A 95% confidence set is a function of the data contains the true value in 

95% of all samples 

(b) A 95% confidence set is constructed as the set of values that cannot be 

rejected as true by a test with 5% significance level 

 

Usually (b) leads to constructing confidence sets as the set of 0 for which  –1.96 

< 0
ˆ

ˆ( )SE

 




 < 1.96.  Inverting this t-statistic yields ̂   1.96SE( ̂ ) 

 This won’t work for TSLS – tTSLS isn’t normal (the critical values of tTSLS 

depend on 2) 

 Dufour (1997) impossibility result for weak instruments: unbounded 

intervals must occur with positive probability. 

 However, you can compute a valid, fully robust confidence interval by 

inverting a fully robust test! 
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(1) Inversion of AR test: AR Confidence Intervals 

 

95% CI = {0: AR(0) < Fk,T–k;.05} 

 

Computational issues: 

 For m = 1, this entails solving a quadratic equation: 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 < Fk,T–k;.05 

 

 For m > 1, solution can be done by grid search or using methods in Dufour 

and Taamouti (2005) 

 

 Sets for a single coefficient can be computed by projecting the larger set onto 

the space of the single coefficient (see Dufour and Taamouti (2005)), also see 

Kleibergen and Mavroeidis (2009) 
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AR confidence intervals, ctd. 

 

95% CI = {0: AR(0) < Fk,T–k;.05} 

  

Four possibilities: 

 a single bounded confidence interval 

 a single unbounded confidence interval 

 a disjoint pair of confidence intervals 

 an empty interval 

 

Note: 

 Difficult to interpret 

 Intervals aren’t efficient (AR test isn’t efficient) under strong instruments 
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(2) Inversion of CLR test: CLR Confidence Intervals 

 

95% CI = {0: LR(0) < cv.05(QT)} 

 

where cv.05(QT) = 5% conditional critical value 

 

Comments: 

 Efficient GAUSS and STATA (condivreg) software 

 Will contain the LIML estimator (Mikusheva (2005)) 

 Has certain optimality properties:  nearly uniformly most accurate invariant; 

also minimum expected length in polar coordinates (Mikusheva (2005)) 

 Only available for m = 1 
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Extensions to >1 included endogenous regressor 

 Usually the extension to higher dimensions is easy – standard normal t-ratios, 

chi-squared F-tests, etc.  But once normality of estimators and chi-squared 

distribution of tests are gone, the extensions are not easy.  

 CLR exists in theory, but unsolved computational issues because the 

conditioning statistic has dimension m(m+1)/2 (Kleibergen (2007)) 

 Can test joint hypothesis H0:  = 0 using the AR statistic: 

 

AR(0) = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )

P k

M T k
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under H0, AR 
d

  2

k /k  
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Recent references on testing in linear IV case, including robustifying 

(heteroskedasticity, autocorrelation): 

I. Andrews (2013) 
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Outline 
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10) Many instruments 
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5) Classical IV regression IV: Estimation 

 

Estimation is much harder than testing or confidence intervals 

 Uniformly unbiased estimation is impossible (among estimators with support 

on the real line), uniformly in 2 

 Estimation must be divorced from confidence intervals 

 

Partially robust estimators (with smaller bias/better MSE than TSLS): 

Remember k-class estimators? 

ˆ( )k  = [Y(I – kMZ)Y]–1[Y(I – kMZ)y] 

TSLS:  k = 1,        

LIML:  k = ˆ
LIMLk  = smallest root of det(YY – kYMZY) = 0 

Fuller:  k = ˆ
LIMLk – c/(T–k–#included exog.), c > 0  
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Comparisons of k-class estimators 

 

Anderson, Kunitomo, and Morimune (1986) – using second order theory 

Hahn, Hausman, and Kuersteiner (2004) – using MC simulations 

 

LIML 

  median unbiased to second order 

 HHK simulations – LIML exhibits very low median bias 

 no moments exist! There can be extreme outliers 

 LIML also can be shown to minimize the AR statistic: 

 

ˆ LIML : min AR() = 0 0

0 0

( ) ( ) /

( ) ( ) / ( )
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 

 
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so LIML necessarily falls in the AR confidence set if it is nonempty 
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Comparisons of k-class estimators, ctd. 

Fuller 

 With c = 1, lowest RMSE to second order among a certain class 

(Rothenberg (1984)) 

 In simulation studies (m=1), Fuller performs very well with c = 1  

Others  

 (Jacknife TSLS; bias-adjusted TSLS) are dominated by Fuller, LIML 

 

LIML (and other) estimators with heterogeneous treatment effects. 

Kolesár (2013) shows that a class of minimum distance estimators, which 

includes LIML and the Hausman et. al. (2012) many instrument estimator, 

can have an estimand that is outside the convex hull of the individual 

treatment effects – that is, it estimates an object which is not a treatment 

effect for anyone, or a (convex) average of anyone’s. A big problem for 

LIML and related estimators – making them much less attractive as a 

solution to the weak (or many) instrument problem. 
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Summary and recommendations 

 Under strong instruments, LIML, TSLS, k-class will all be close to each 

other. 

 under weak instruments, TSLS has greatest bias and large MSE  

 LIML has the advantage of minimizing AR – and thus always falling in the 

AR (and CLR) confidence set.  LIML is a reasonable (good) choice as an 

alternative to TSLS. 

 But LIML is not well-suited to situations in which there are heterogeneous 

treatment effects, such as individual-level program evaluation studies. 
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What about the bootstrap or subsampling? 

The bootstrap is often used to improve performance of estimators and tests 

through bias adjustment and approximating the sampling distribution. 

 

A straightforward bootstrap algorithm for TSLS: 

yt = Yt + ut 

Yt = Zt + vt 

i) Estimate ,  by ˆTSLS , ̂  

ii) Compute the residuals ˆ
tu , ˆ

tv  

iii) Draw T “errors” and exogenous variables from { ˆ
tu , ˆ

tv , Zt}, and construct 

bootstrap data ty , 
tY  using ˆTSLS , ̂  

iv) Compute TSLS estimator (and t-statistic, etc.) using bootstrap data 

v) Repeat, and compute bias-adjustments and quantiles from the boostrap 

distribution, e.g. bias = bootstrap mean of ˆTSLS  – ˆTSLS  using actual data 
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Bootstrap, ctd. 

 Under strong instruments, this algorithm works (provides second-order 

improvements). 

 Under weak instruments, this algorithm (or variants) does not even provide 

first-order valid inference 

The reason the bootstrap fails here is that ̂  is used to compute the 

bootstrap distribution.  The true pdf depends on 2, say fTSLS( ˆTSLS ;2) 

(e.g. Rothenberg (1984 exposition above, or weak instrument 

asymptotics).  By using ̂ , 2 is estimated, say by 2̂ .  The bootstrap 

correctly estimates fTSLS( ˆTSLS ; 2̂ ), but fTSLS( ˆTSLS ; 2̂ )  fTSLS( ˆTSLS ;2) 

because 2̂  is not consistent for 2. ‘ 
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Bootstrap, ctd. 

 This is simply another aspect of the nuisance parameter problem in weak 

instruments.  If we could estimate 2 consistently, the bootstrap would work 

– but we if so wouldn’t need it anyway (at least to first order) since we would 

have operational first order approximating distributions! 

 This story might sound familiar – it is the same reason the bootstrap fails in 

the unit root model, and in the local-to-unity model, which led to Hansen’s 

(1999) grid bootstrap, which has been shown to produce valid confidence 

intervals for the AR(1) coefficient by Mikusheva (2007). 

 Failure of bootstrap in weak instruments is related to failure of Edgeworth 

expansion (uniformly in the strength of the instrument), see Hall (1992) in 

general, Moreira, Porter, and Suarez (2005a,b) in particular. 

 One way to avoid this problem is to bootstrap test statistics with null 

distributions that do not depend on 2
.  Bootstrapping AR and LM does 

result in second order improvements, see Moreira, Porter, and Suarez 

(2005a,b). 
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What about subsampling?  

Politis and Romano (1994), Politis, Romano and Wolf (1999) 

 

Subsampling uses smaller samples of size m to estimate the parameters directly.  

If the CLT holds, the distribution of the subsample estimators, scaled by /m T , 

approximates the distribution of the full-sample estimator. 

 

A subsampling algorithm for TSLS:   

(i) Choose subsample of size m and compute TSLS estimator 

(ii) Repeat for all subsamples of size m (in cross-section, there are 

T

m

 
 
 

 such subsamples; in time series, there are T–m) 

(iii) Compute bias adjustments, quantiles, etc. from the rescaled 

empirical distribution of the subsample estimators. 
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Subsampling, ctd. 

 Subsampling works in some cases in which bootstrap doesn’t (Politis, 

Romano, and Wolf (1999)) 

 However, it doesn’t work (doesn’t provide first-order valid approximations 

to sampling distributions) with weak instruments (Andrews and 

Guggenberger (2007a,b)). 

 The subsampling distribution estimates fTSLS( ˆTSLS ; 2

m ), where 2

m  is the 

concentration parameter for m observations.  But this is less (on average, by 

the factor m/T) than the concentration parameter for T observations, so the 

scaled subsample distribution does not estimate fTSLS( ˆTSLS ; 2

T ). 

 Subsampling can be size-corrected (in this case) but there is power loss 

relative to CLR; see Andrews and Guggenberger (2007b) 
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Outline 
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10) Many instruments 
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6) GMM I: Setup and asymptotics 

 

GMM notation and estimator 

GMM “error” term (G equations):  h(Yt;);  0 = true value 

Errors times k instruments:    t() = 
1 1

0( , )
G k

t th Y Z
 

  

Moment conditions - k instruments:  Et() = E[
1 1

0( , )
G k

t th Y Z
 

 ] = 0 

GMM objective function:   ST() = 1/2 1/2

1 1

( ) ( )
T T

t T t

t t

T W T    

 

   
   
   

   

GMM estimator:       ̂  minimizes ST() 

Linear GMM:        h(Yt;) = yt – Yt 

(linear GMM is the IV regression model, allowing for possible 

heteroskedasticity and/or serial correlation in the errors h) 
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Efficient GMM 

Centered sample moments:  T() =  1/2

1

( ) ( )
T

t t

t

T E   



  

Efficient (infeasible) GMM:  WT =  –1,  = E[T()T()] = 2
( )(0)

t
S   

Feasible GMM 

Estimator of :     ˆ ( )  = HAC estimator of  = ˆ ( )
S

j j

j S

 


 ,  

where    ˆ ( )j   =   
1

1
( ) ( ) ( ) ( )

T

t t t j t j

tT
        




   

      {j} are kernel weights (e.g. Newey-West) 

Feasible GMM variants 

One-step      WT = fixed matrix (e.g. WT = I) 

Two-step efficient:    (1)

TW  = I, (2)

TW  = ̂( (1)̂ )–1 

Iterated:      continue iterating, with ( 1)i

TW   = ̂ ( ( )ˆ i )-1 

CUE (Hansen, Heaton, Yaron 1996): WT = ̂()–1 (evaluate ̂  at every !) 
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Standard GMM asymptotics 

1)  Establish consistency by showing the minimum of ST will occur local to the 

true value 0:   Pr[ST() < ST(o)]  0 for |  – 0| >  

so by smoothness of the objective function, Pr[|̂   – 0| > ]  0 

 

2)  Establish normality by making quadratic approximation to ST, based on 

consistency (which justifies dropping the higher order terms in the Taylor 

expansion): 

ST(̂ )  ST(0) + T (̂  – 0)

0

1 ( )TS

T 








  

+ ½ T (̂  – 0)

0

21 ( )TS

T




 

 
 

   

 T (̂  – 0) 

so   T (̂  – 0)  

0

1
21 ( )TS

T




 



 
 

    0

1 ( )TS

T 








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If WT 
p

  W (say), then 

0

21 ( )TS

T




 



 
 

p

  DWD, where D = E

0

( )t



 






 

0

1 ( )TS

T 








 

d

  N(0,DWWD) 

so    T (̂  – 0)  

0

1
21 ( )TS

T




 



 
 

    0

1 ( )TS

T 








  

d

  N(0,[DWD]–1DWWD[DWD]–1) 

 

Feasible efficient GMM 

For two-step, iterated, and CUE, WT 
p

  –1, so T (̂  – 0) 
d

  N(0, ) 

where   = (D–1D)–1 

Estimator of variance matrix:      ̂  = [D̂(̂ )̂ (̂ )D̂(̂ )]–1 
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Weak identification in GMM – what goes wrong in the usual proof? 

Digression: 

 We will use the term “weak identification” because “weak instruments” is 

not precise in the nonlinear setting  

 In the linear case, the strength of the instruments doesn’t depend on  

 In nonlinear GMM, the strength of the instruments can depend on :  they 

can be weak for some departures h(Yt,) - h(Yt,0), but strong for others 

 

When identification is weak, there are 2 problems with the usual proof: 

(a) The curvature, which reflects the amount of information, is small, so the 

maximizer of ST might not be close to 0. 

(b) The curvature matrix is not well-approximated as nonrandom (I. Andrews 

and Mikusheva (2014a, b)) 

(c) The linear term, 

0

( )TS










, is not approximately normal with mean 0 
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Illustration: linear IV in the GMM framework 

The TSLS objective function (two-step GMM) is exactly quadratic: 

S() = (y – Y)PZ(y – Y) 

= [u – Y( – 0)]PZ[u – Y( – 0)] 

= uPZu + (2uPZY)( – 0) –  ½( – 0)(2YPZY)(  – 0) 

or   

ST(̂ ) = ST(0) + T (̂  – 0)

0

1 ( )TS

T 








  

+ ½ T (̂  – 0)

0

21 ( )TS

T




 

 
 

   

 T (̂  – 0) 

where       ST(0) = uPZu 

    

0

1 ( )TS

T 








 = 2uPZY/ T  

    

0

21 ( )TS

T




 



 
 = 2YPZY/T
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Illustration: linear IV in the GMM framework, ctd. 

(a) The curvature is small (so estimator need not be local) 

0

21 ( )TS

T




 



 
 = 2YPZY  

= 2
/

/ ( )
/ ( )

P k
M T k

M T k


 

 

Z
Z

Z

Y Y
Y Y

Y Y
 

= 2kF 2

vs , 

where F is the first-stage F and 2

vs  is the estimator of 2

v . 

(b)  The curvature is random – not well approximated by a constant 

   F/2  1 as 2  , but for small 2, F = 2 +op(1) 

(c)  Under weak instrument asymptotics, the linear term is non-normal: 

   

0

1 ( )TS

T 








 = 2uPZY/ T  

d

  2( + zv)zu, 

which has a mixture-of-normals distribution with a nonzero mean (recall the 

distribution of TSLS under weak instrument asymptotics) 
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Alternative asymptotics for weak identification 

As in the linear case, we need asymptotics for GMM that are tractable; that 

provide a good approximations uniformly in strength of identification; and that 

can be used to compare procedures. 

 

Alternative approaches: 

1. Finite sample – good luck! 

2. Edgeworth and related expansions – useful for developing partially robust 

procedures but won’t cover complete range through unidentified case 

3. Bootstrap & resampling – doesn’t work in linear IV special case 

4. Weak identification asymptotics – provide nesting (parameter sequence) that 

provides an approximation uniformly in strength of identification 
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Weak ID asymptotics in GMM 

(Stock and Wright (2000); Cheng and Andrews (2012)) 

Use local sequence (sequence of mean functions) to provide non-quadratic global 

approximation to ST(): 

 

ST() = 1/2 1/2

1 1

( ) ( )
T T

t T t

t t

T W T    

 

   
   
   

   

 

Write  

1/2

1

( )
T

t

t

T  



  =  1/2

1

( ) ( )
T

t t

t

T E   



  + 1/2

1

( )
T

t

t

T E 



  

      = T() + T Et() 

      = T() + mT() 
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Weak ID asymptotics in GMM, ctd. 

Applied to the linear IV regression model, this reorganization yields, 

1/2

1

( )
T

t

t

T  



  = 1/2

1

( )
T

t t t

t

T y Y Z



  

=  1/2

0

1

( )
T

t t t

t

T u Y Z 



   

= 1/2

1

T

t

t

T 



   – E 1/2

0

1

( )
T

t t

t

T Y Z 



 
 

 
  

= T() + mT() 

where t =  0 0( ) ( )t t t t t tu Z Y Z E Y Z        .  Now: 

 T() = 1/2

1

T

t

t

T 



  
d

   N(0, ) (because t is mean zero and i.i.d. – 

instrument strength doesn’t enter this limit (subtracted out))  

 The mean function mT() is a finite nonrandom (linear) function under the 

local nesting  = T–1/2C 
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Weak ID asymptotics in GMM, ctd. 

1/2

1

( )
T

t

t

T  



  =  1/2 1/2

1 1

( ) ( ) ( )
T T

t t t

t t

T E T E      

 

    = T() + mT() 

 

Suppose: 

1. mT 
p

  m uniformly in , where m() is a limiting (finite continuous 

differentiable) function. 

This is the extension to a function of assuming  = T–1/2C 

 

2. T()  (), where () is a Gaussian stochastic process on  with mean 

zero and covariance function (1,2) = E(1)(2) 
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Weak ID asymptotics in GMM, ctd. 

2. T  , where () is a Gaussian stochastic process on  with 

 mean zero and covariance function (1,2) = E(1)(2) 

 

Digression on T  :   

Item #2 is an extension of the FCLT.  Generally, the FCLT talks about 

convergence in distribution of a sequence of random  

functions, to a limiting function, which has a (limiting) distribution.  In 

the more familiar time series FCLT, the function is indexed by s = /T  

[0,1], and the limiting process has the covariance matrix of Brownian 

motion (it is Brownian motion).  Here, the function is indexed by , and 

the limiting process has the covariance matrix (1,2).  The proof of the 

FCLT entails proving: 
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Weak ID asymptotics in GMM, ctd. 

 

(a) Convergence of finite dimensional distributions.  Here, this 

corresponds the joint distributions of T(1), T(2),…, T(r).  But 

T() =  1/2

1

( ) ( )
T

t t

t

T E   



 , so it is a weak (standard) assumption 

that T(1), T(2),…, T(r) will converge jointly to a normal; the 

covariance matrix is filled out using (1,2) (applied to all the points). 

 

(b) Tightness (or stochastic equicontinuity).  That is, for 1 and 2 close, 

that T(1) and T(2) must be close (with high probability).  This 

allows going from the function evaluated at finitely many points, to the 

function itself.  Proving this is application specific (depends on 

h(Yt,)).  Proof in the linear GMM case is in Stock and Wright (2000). 
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Weak ID asymptotics in GMM, ctd. 

Back to main argument… 

 

Under 1 and 2,  1/2

1

( )
T

t

t

T  



   () + m() 

3. WT() 
p

  W() uniformly in , where W() is psd, continuous in  

 

Under 1, 2, and 3,    ST() = 1/2 1/2

1 1

( ) ( ) ( )
T T

t T t

t t

T W T     

 

   
   
   

    

 S() = [() + m()]W[() + m()] 

and 

      ̂   *, where * = argmin S() 
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Weak ID asymptotics in GMM, ctd. 

̂   * = argmin {S() = [() + m()]W[ () + m()]} 

Comments 

 With t() = (yt – Yt)Zt and WT = (ZZ/T)–1, this yields the weak IV 

asymptotic distribution of TSLS obtained earlier. 

 ST() is not well approximated by a quadratic (is not quadratic in the limit) 

with a nonrandom curvature matrix that gets large – instead, ST() is Op(1) 

 ̂  is not consistent in this setup 

 ̂  has a nonstandard limiting distribution 

 Standard errors of ̂  aren’t meaningful (1.96SE isn’t valid conf. int.) 

 J-statistic doesn’t have chi-squared distribution 

 Well-identified elements of ̂  have the usual limiting normal distributions, 

under the true values of the weakly identified elements 

 Extensions and proofs are in Stock and Wright (2000) 

 What about intermediate “semi-strong” cases? Chen and Andrews (2012) 
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7) GMM II:  Detection of weak identification 

 

This is an open area of research with no best solution.  Some thoughts: 

 

1. In linear GMM, the noncentrality parameter of the first-stage F and the 

concentration parameter are no longer the same thing if there is 

heteroskedasticity and/or serial correlation in h(Yt,).  With 

heteroskedasticity, the first-stage F still provides a reasonable guide (MC 

findings) but with serial correlation the first stage F isn’t very reliable. 

 

2. Wright (2003) provides a test for weak instruments, based on the extension 

of the Cragg-Donald (1993) using the estimated curvature of the objective 

function.  The test is a test of non-identification (contrast with Stock-Yogo, 

testing whether 2 exceeds a critical cutoff; in  
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Wright (2003), the cutoff is taken to be 2 = 0 in linear IV case).  The test is 

conservative, which gives it low power against weak identification – a 

benefit in this instance.  Important drawback is that it is only local (multiple 

peak problem). 

 

3. Some symptoms of weak identification: 

 CUE, two-step, and iterated GMM converge to quite different values (see 

Hansen, Heaton, Yaron (1996) MC results) 

 for two-step and iterated, the normalization matters 

 multiple valleys in the CUE objective function 

 Significant discrepancies between GMM-AR confidence sets (discussed 

below) and conventional Wald confidence sets 
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8) GMM III:  Hypothesis tests and confidence intervals 

 

Extensions of methods in linear IV: 

 

(1) The GMM-Anderson Rubin statistic 

(Kocherlakota (1990); Burnside (1994), Stock and Wright (2000))  The extension 

of the AR statistic to GMM is the CUE objective function evaluated at 0: 

   
0( )CUE

TS   = 1/2 1 1/2

0 0 0

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

     
d

  (0)(0)
–1(0) ~ 2

k  

 Thus a valid test of 0:  = 0 can be undertaken by rejecting if ST(0) > 5% 

critical value of 2

k . 
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The GMM-Anderson Rubin statistic, ctd 

 The statistic above tests all elements of .  If some elements are strongly 

identified, they can be concentrated out (estimated under the null) for valid 

subset inference.  Specifically, let  = (, ), and let  be weakly identified 

and  be strongly identified.  Fix  at the hypothesized value 0 and let 

ˆGMM  be an efficient GMM estimator of , at the given value of 0.  Then 

construct the CUE objective function, using the hypothesized value of  and 

the estimated value of : 

0
ˆ( , )CUE GMM

TS    = 1/2 1 1/2

0 0 0

1 1

ˆ ˆ ˆˆ( , ) ( , ) ( , )
T T

GMM GMM GMM

t t

t t

T T         

 

   
   

   
   

 

The statistic 
0

ˆ( , )CUE GMM

TS    has a 2

dim( )k    distribution under H0:  = 0, 

and is a weak-identification robust test statistic for H0:  = 0. 
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GMM-Anderson-Rubin, ctd. 

In the homoskedastic linear IV model, the GMM-AR statistic simplifies to the 

AR statistic (up to a degrees of freedom correction): 

0( )CUE

TS   = 1/2 1 1/2

0 0 0

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

= 

1

1/2 2 1/2

0 0

1 1

'
( ) ( )

T T

t t t v t t t

t t

T y Y Z s T y Y Z
T

 



 

 

          
    

 
Z Z

 

= 0 0

0 0

( ) ( )

( ) ( ) / ( )

P

M T k

 

 

 

  

Z

Z

y Y y Y

y Y y Y
 = k  AR(0) 

Comments: 

 The statistic, 
0( )CUE

TS  , is called various things in the literature, including the 

S-statistic, the CUE objective function statistic, the nonlinear AR statistic, 

and the GMM-AR statistic.  I think GMM-AR is the most descriptive and we 

will use that term here. 
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GMM-Anderson-Rubin, ctd. 

 

 The GMM-AR statistic has the same issues of interpretation issues as the 

AR, specifically, the GMM-AR rejects because of endogenous instruments 

and/or incorrect  

 With little information, the GMM-AR can fail to reject any values of  

(remember the Dufour (1997) critique of Wald tests) 
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(2) GMM-LM 

Kleibergen (2005) – develops score statistic (based on CUE objective 

function – details of construction matter) that provides weak-identification 

valid hypothesis testing for sets of variables 

(3) GMM-CLR 

Andrews, Moreira, Stock (2006) – extension of CLR to linear GMM with a 

single included endogenous regressor, also see Kleibergen (2007).  Very 

limited evidence on performance exists; also problem of dimension of 

conditioning vector 

(4) Other methods 

Guggenberger-Smith (2005) objective-function based tests based on 

Generalized Empirical Likelihood (GEL) objective function (Newey and 

Smith (2004)); Guggenberger-Smith (2008) generalize these to time series 

data.  Performance is similar to CUE (asymptotically equivalent under weak 

instruments) 



Revised 1/8/15 5/6-131 

Confidence sets 

 Fully-robust 95% confidence sets are obtained by inverting (are the acceptance 

region of) fully-robust 5% hypothesis tests 

 Computation is by grid search in general: collect all the points  which, when 

treated as the null, are not rejected by the GMM-AR statistic. 

 Subsets by projection (see Kleibergen and Mavroeidis (2009) for an application 

of GMM-AR confidence sets and subsets) 

 Valid tests must be unbounded (contain ) with finite probability with weak 

instruments 

Bottom line recommendation 

Work is under way in this area, but the best thing for now is to use the 

GMM-AR statistic to test  = 0, and to invert the GMM-AR statistic to 

construct the GMM version of the AR confidence set.  The GMM-AR 

statistic must in general be inverted by grid search.  The GMM-AR 

confidence set, if nonempty, will contain the CUE estimator. 
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Example (linear GMM):  New Keynesian Phillips Curve 

See the survey by Mavroeidis, Plagborg-Møller, and Stock (2014) 

 

 

Hybrid NKPC:    t = xt + fEtt+1 + bt–1 + t 

 

Rational expectations:   Et(t – xt – ft+1 – bt–1) = 0 

GMM moment condition:  E[(t – ft+1 – bt–1 – xt)Zt] = 0 

Instruments:     Zt = {t–1, xt–1, t–2, xt–2,…} 

 

m = 2, so AR sets are needed. Confidence intervals can be computed by 

projecting the sets to the axes.  
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minev(μ2) = 1.8              minev(μ2) = 108 
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9) GMM IV:  Estimation 

 

 Impossibility of a (data-based) fully robust estimators are available – just as 

in linear case 

 The challenge is to find partially robust estimators – estimators that improve 

upon 2-step and iterated GMM (which perform terribly – just like TSLS) 

 

(a) The continuous updating estimator (CUE) 

Hansen, Heaton, Yaron (1996).  The CUE minimizes, 

 

( )CUE

TS   = 1/2 1 1/2

1 1

ˆ( ) ( ) ( )
T T

t t

t t

T T      

 

   
   

   
   

 

Basic idea: “same  in the numerator and the denominator”. 
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Comments 

 The CUE might seem arbitrary but actually it isn’t.  In fact, it was shown 

above that in the linear model with spherical errors, the CUE objective 

function is the AR statistic, ( )CUE

TS   = AR().  It was stated above (without 

proof) that LIML minimizes the AR statistic.  So in the special case of linear 

GMM when there is no heteroskedasticity or serial correlation, the CUE 

estimator is LIML (asymptotically under weak instrument asymptotics if  is 

estimated). 

 CUE will always be contained in the GMM-AR set 

 The CUE seems to inherit median unbiasedness of LIML (MC result; for 

some theory see Hausman, Menzel, Lewis, and Newey (2007)) 

 CUE (like LIML) exhibits wide dispersion in MC studies (Guggenberger 

2005) 
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(b) Other estimators 

 Generalized empirical likelihood (GEL) family.  Interestingly, GEL 

estimators are asymptotically equivalent to CUE under weak instrument 

asymptotics (Guggenberger and Smith (2005)) 

 Fuller-k type modifications explored in Hausman, Menzel, Lewis, and 

Newey (2007), with some simulation evidence. 

 These alternative estimators are promising but preliminary and their 

properties, including the extent to which they are robust to weak instruments 

in practice, are not yet fully understood. 
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7) GMM II:  Detection of weak identification 

8) GMM III:  Hypothesis tests and confidence intervals 

9) GMM IV:  Estimation 

10) Many instruments 
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10) Many Instruments 

 

The appeal of using many instruments 

 Under standard IV asymptotics, more instruments means greater efficiency. 

 This story is not very credible because 

(a) the instruments you are adding might well be weak (you already have 

used the first two lags, say) and  

(b) even if they are strong, this requires consistent estimation of increasingly 

many parameter to obtain the efficient projection – hence slow rates of 

growth of the number of instruments in efficient GMM literature. 



Revised 1/8/15 5/6-143 

Example of problems with many weak instruments – TSLS 

 

Recall the TSLS weak instrument asymptotic limit: 

ˆTSLS  – 0 
d

  
(  )

(  ) (  )

v u

v v

z z

z z



 



 
 

with the decomposition, zu = zv + .  Suppose that k is large, and that 

/k   (one way to implement “many weak instrument asymptotics”).  Then 

as k  , 

zv/k 
p

  0 and zu/k 
p

  0 

zvzv/k 
p

  1 and zv/k 
p

  0 (zv and  are independent by construction) 

 

Putting these limits together, we have, as k  , 

(  )

(  ) (  )

v u

v v

z z

z z



 



 
 

p

  
1



 
 

In the limit that  = 0, as k   TSLS is consistent for the plim of OLS! 
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Comments  

 This calculation cuts a corner – it uses sequential asymptotics (T  , then k 

 ).  However the sequential asymptotics is justified under certain 

(restrictive) conditions on K/T (specifically, k4/T  0) 

 Typical conditions on k are k3/T  0 (e.g. Newey and Windmeijer (2004)) 

 Many instruments can be turned into a blessing (if they are not too weak! 

They can’t push the scaled concentration parameter to zero) by exploiting the 

additional convergence across instruments.  This can lead to bias corrections 

and corrected standard errors.  There is no single best method at this point 

but there is promising research, e.g. Newey and Windmeijer (2004), Chao 

and Swanson (2005), and Hansen, Hausman, and Newey (2006)) 
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Comments, ctd. 

 For testing, the AR, LM, and CLR are all valid under many instruments 

(again, slow rate: k   but k3/T  0) in the classical IV regression model; 

the CLR continues to be essentially most powerful (the power of the AR 

deteriorates substantially because of the large number of restrictions being 

tested) 

 An important caveat in all of this is that the rates suggest that the number of 

instruments must be quite small compared to the number of observations.  

(The specific rate at which you can add instruments depends on their strength 

– the stronger the instruments, the more you can add; see the discussion in 

Hansen, Hausman, and Newey (2006) for example.)  Consider the k3/T  0 

rate:  

with T = 200 and k = 6, k3/T =  1.08. 

with T = 329,509 and k = 178, k3
/T = 17 (!) 
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Instrument selection 

 Donald and Newey (2001) provide an information criterion instrument 

selection method in the classical linear IV model that applies when some 

instruments are strong ( strongly identified) and others possibly weak.  

Problem with is that you need to know which are strong. 

 Unaware of instrument selection methods that are appropriate when all 

instruments are possibly weak. 
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Final comments on many instruments 

 Strong instruments: more instruments, more efficiency 

 Weak instruments: more weak instruments, less reliable inference – more 

bias, size distortions (using standard estimators – two-step and iterated 

GMM) 

 Don’t be fooled by standard errors that get smaller as you add instruments.  

Remember the result that ˆTSLS  – ˆOLS  
p

  0 as k   (and k3/T  0) when 

all but a few instruments are irrelevant. 

 Some gains seem to be possible in theory (papers cited above) by exploiting 

the idea of many instruments but the theory is delicate: bias adjustments and 

size corrections that hold for rates such as k   but k3/T  0, but break 

down for k too large.  Work needs to be done before these are ready for 

implementation 

 For now, the best advice is to restrict attention to relatively few instruments, 

to use judgment selecting the strongest (recent lags, not distant ones), and to 

use relatively well understood. 
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Bottom line recommendations 

 

 Weak instruments/weak identification comes up in a lot of applications 

 In the linear case, it is helpful to check the first-stage F to see if weak 

instruments are plausibly a problem. 

 TSLS and 2-step efficient GMM can give highly misleading estimates if 

instruments are weak. 

 TSLS and 2-step GMM confidence intervals, constructed in the usual way 

( 1.96 standard errors) are highly unreliable (can have very low true 

coverage rates) if instruments are weak. 

 If you have weak instruments, the best thing to do is to get stronger 

instruments, but barring that you should use econometric procedures that 

are robust to weak instruments.  Robust procedures give valid inference 

even if the instruments are weak. 
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Bottom line recommendations, ctd. 

 

 In the linear case with m=1 and no serial correlation, the CLR and CLR 

confidence intervals are recommended.  Estimation by LIML is preferred 

to TSLS, but LIML can deliver very large outliers.  Fuller is also a 

plausible option (see above). 

 In the general nonlinear GMM case, GMM-AR confidence sets are 

recommended, but care must be taken in interpreting these (see discussion 

above).  If you must compute an estimator, CUE seems to be the best 

choice given the current state of knowledge. 


