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1) VARs, SVARs, and the Identification Problem 

 

A classic question in empirical macroeconomics: what is the effect of a 

policy intervention (interest rate increase, fiscal stimulus) on macroeconomic 

aggregates of interest – output, inflation, etc? 

Let Yt be a vector of macro time series, and let 
r

t  denote an unanticipated 

monetary policy intervention.  We want to know the dynamic causal effect of 
r

t  

on Yt: 

t h

r

t

Y





, h = 1, 2, 3,…. 

 

where the partial derivative holds all other interventions constant.  In macro, this 

dynamic causal effect is called the impulse response function (IRF) of Yt to the 

“shock” (unexpected intervention) 
r

t . 

 The challenge is to estimate t h

r

t

Y




 
 
 

 from observational macro data. 
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Two conceptual approaches to estimating dynamic causal effects (IRF) 

1) Structural model (Cowles Commission): DSGE or SVAR 

2) Quasi-Experiments 

 

The identification problem. Consider the Reduced form VAR(p): 

     Yt = A1Yt–1 + … + ApYt–p + ut 

or     A(L)Yt = ut,  where A(L) = I – A1L – A2L
2 – … – ApL

p 

where Ai are the coefficients from the (population) regression of Yt on Yt-1,…,Yt-p. 

 ut = Yt – Proj(Yt|Yt-1,…, Yt–p) are the innovations, and are identified. 

 If ut were the shocks, then we could compute the structural IRF using the 

MA representation of the VAR, Yt = A(L)-1ut. 

 But in general ut is affected by multiple shocks: in any given quarter, GDP 

changes unexpectedly for a variety of reasons. 

 For example, if n = 2, 

u1t = R12u2t + 1t 

u2t = R21u1t + 2t 

o To identify R we need an instrument Zt or a restriction on the parameters. 

o For example, R12 = 0 identifies R (Cholesky decomposition) 
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Reduced form to structure: 

 

Suppose: (i)   A(L) is finite order p (known or knowable) 

(ii)  ut spans the space of structural shocks t, that is, t  = Rut, 

where R is square (equivalently, Yt is linear in the structural 

shocks & the model is invertible) 

(iii) A(L), u , and R are time-invariant, e.g. A(L) is invariant 

 to policy changes over the relevant period 

 

Because εt = Rut,  

RA(L)Yt = Rut = εt. 

Letting RA(L) = B(L), this delivers the structural VAR, 

      B(L)Yt = t,  

The MA representation of the SVAR delivers the structural IRFs: 

      Yt = D(L)t, D(L) = B(L)–1 = A(L)–1R–1 

Impulse response:  t h

t

Y





 = Dh 
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Summary of VAR and SVAR notation 

 

Reduced form VAR Structural VAR 

A(L)Yt = ut B(L)Yt = t 

Yt = A(L)–1ut = C(L)ut Yt = B(L)–1t = D(L)t 

A(L) = I – A1L – A2L
2 – … – ApL

p B(L) = B0 – B1L – B2L
2 – … – BpL

p 

 

Eutut = u (unrestricted) 

 
Ett =  = 

2

1

2

0

0 k





 
 
 
 
 

 

Rut = t 

B(L) = RA(L)   (B0 = R) 

D(L) = C(L)R–1 

 Note the assumption that the structural shocks are uncorrelated 

 D(L) is the structural IRF of Yt w.r.t. t. 

 structural forecast error variance decompositions are computed from D(L) 

and  
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 Identification of R and identification of shocks: Two equivalent views 

 

1.  Identification of R.  In population, we can know A(L).  If we can identify R, 

we can obtain the SVAR coefficients, B(L) = RA(L). 

 

2.  Identification of shocks.  If you knew (or could estimate) one of the shocks, 

you could estimate the structural IRF of Y w.r.t. that shock.  Partition Yt into 

a policy variable rt and all other variables: 

Yt = 

( 1 1)

(1 1)

k

t

t

X

r

 



 
 
 
 

 , ut = 

X

t

r

t

u

u

 
 
 

 , t = 

X

t

r

t





 
 
 

,  

The IRF/MA form is Yt = D(L)t, or 

Yt =  ( ) ( )YX YrD L D L

X

t

r

t





 
 
 

 = DYr(L)
r

t  + vt,  

where vt = DYX(L)
X

t . Because E
r

t vt = 0, the IRF of Yt w.r.t. 
r

t , DYr(L) is 

identified by the population OLS regression of Yt onto 
r

t . 
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A word on “invertibility”:   

 

Recall the SVAR assumption: 

(ii)  ut spans the space of structural shocks t, that is, t  = Rut,  

where R is square  

 This is often called the assumption of invertibility: the VAR can be inverted 

to span the space of structural shocks.  If there are more structural shocks 

than ut’s, then condition (ii) will not hold.   

 One response is to add more variables so that ut spans t.  This response is an 

important motivation of the FAVAR approach (references below) 

 If agents see future shocks, invertibility fails.  Or, does the definition of 

shock just become more subtle (an expectations shock)?   

 See Lippi and Reichlin (1993, 1994), Sims and Zha (2006b), Fernandez-

Villaverde, Rubio-Ramirez, Sargent, and Watson (2007), Hansen and 

Sargent (2007), E. Sims (2012), Blanchard, L’Huillier, and Lorenzoni 

(2012), Forni, Gambetti, and Sala (2012), and Gourieroux and Monfort 

(2014) 
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This talk 

 

 Early promise of SVARs  

Surveys of classical methods: Christiano, Eichenbaum, and Evans 

(1999), Lütkepohl (2005), Stock and Watson (2001), Watson (1994) 

Survey of new ideas about how to tackle the identification problem  

 

 Critiques of the 1990s  

 

 This talk focuses on the interesting new work on identification – much of it 

quite recent – in response to those critiques 
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Outline 
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2a) Identification by Short Run Restrictions 

 

Overview: the traditional SVAR identification approach 

Bernanke (1986), Blanchard and Watson (1986), Sims (1986) 

 

(a) 2-variable example.  

u1t = R12u2t + 1t 

u2t = R21u1t + 2t 

 Suppose R12 = 0. E.g. Blanchard and Galí (2007) for oil price shocks. 

 Then ε1t = u1t so R21 can be estimated by OLS (u1t is uncorrelated with ε2t). 

 How credible is the Blanchard-Galí assumption? 
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(b) System identification. In general, the SVAR is fully identified if  

 

RuR =           

 

can be solved for the unknown elements of R and .. Recall that Σu is identified. 

 There are k(k+1)/2 distinct equations in the matrix equation above, so the 

order condition says that you can estimate (at most) k(k+1)/2 parameters.   

 If we set  = I (just a normalization), there are k2 parameters 

 So we need k2 – k(k+1)/2 = k(k–1)/2 restrictions on R.   

 If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single restriction 

(commonly, that R is lower or upper triangular). 

 This ignores rank conditions, which can matter.  

 This description of identification is via method of moments, however 

identification can equally be described via IV, e.g. see Blanchard and Watson 

(1986). 
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(c) Identification of only one shock or IRF.  Many applications now take a 

limited information approach, in which only a row of R is identified.  Partition t 

= Rut, and partition Yt so that: 

 
X

t

r

t





 
 
 

 = 
XX Xr

rX rr

R R

R R

 
 
 

X

t

r

t

u

u

 
 
 

           

 

If RrX and Rrr are identified, then (in population) 
r

t  can be computed using just 

the final row and DYr(L) can be computed by the regression of Yt on 
r

t , 1

r

t  ,…. 
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(d) The “fast-r-slow” scheme.  Almost all short-run restriction applications can 

be written as “fast-r-slow.”  Following CEE (1999), the benchmark timing 

identification assumption is 

  

S

t

r

t

f

t







 
 
 
 
 

 = 

0 0

0

SS

rS rr

fS fr ff

R

R R

R R R

 
 
 
 
 

S

t

r

t

f

t

u

u

u

 
 
 
 
 

 where Yt is partitioned 

St

t

ft

X

r

X

 
 
 
 
 

 

which identifies 
r

t  as the residual from regressing 
r

tu  on 
S

tu . 

 

Selected criticisms of timing restrictions (Rudebusch (1998), others) 

 The implicit policy reaction function doesn’t accord with theory or 

practical experience (does Fed ignore the stock market?)  

 Implementations often ignore changes in policy reaction functions 

 questionable credibility of lack of in-period response of Xst to rt 

 VAR information is typically far less than standard information sets 

 Estimated monetary policy shocks don’t match futures market data 
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2b) [Identification by Long Run Restrictions] 

 

This approach identifies R by imposing restrictions on the long run effect of one 

or more ’s on one or more Y’s. 

 

Reduced form VAR:     A(L)Yt = ut 

Structural VAR:      B(L)Yt = t,   Rut = t,  B(L) = RA(L) 

 

Long run variance matrix from VAR:   = A(1)–1u A(1)–1 

Long run variance matrix from SVAR:  = B(1)–1 B(1)–1 

Digression: B(1)–1 = D(1) is the long-run effect on Yt of t; this can be seen using 

the Beveridge-Nelson decomposition, 

    
1

t

s

s

Y


  = D(1) 
1

t

s

s




  + D*(L)t, where 
*

iD  = 
1

j

j i

D


 

  

Notation:  think of Yt as being growth rates, e.g. if Yt is employment growth, 

lnNt, then 
1

t

s

s

Y


  is log employment, lnNt 
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Long run restrictions, ctd. 

 

From VAR:    = A(1)–1u A(1)–1 

From SVAR:   = B(1)–1 B(1)–1 = RA(1)–1 A(1)–1R 

 

System identification by long run restrictions. The SVAR is identified if  

RA(1)–1 A(1)–1R =     (*)    

can be solved for the unknown elements of R and .. 

 There are k(k+1)/2 distinct equations in (*), so the order condition says that 

you can estimate (at most) k(k+1)/2 parameters.  If we set  = I (just a 

normalization), it is clear that we need k2 – k(k+1)/2 = k(k–1)/2 restrictions 

on R.   

 If k = 2, then k(k–1)/2 = 1, which is delivered by imposing a single exclusion 

restriction (that is, R is lower or upper triangular). 

 This ignores rank conditions, which matter  

 This is a moment matching approach; an IV interpretation comes later 
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Long run restrictions, ctd. 

 

The long run neutrality restriction.  The main way long restrictions are 

implemented in practice is by setting  = I and imposing zero restrictions on 

D(1).  Imposing Dij(1) = 0 says that the effect the long-run effect on the ith 

element of Yt, of the jth element of t is zero 

If  = I, the moment equation above can be rewritten, 

 

 = D(1)D(1)           

 

where D(1) = B(1)–1.  Because RA(1) = B(1), R is obtained from D(1) as  

R = A(1)–1B(1), and B(L) = RA(L) as above. 
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Comments: 

 If the zero restrictions on D(1) make D(1) lower triangular, then D(1) is the 

Cholesky factorization of . 

 Blanchard-Quah (1989) had 2 variables (unemployment and output), with the 

restriction that the demand shock has no long-run effect on the 

unemployment rate.  This imposed a single zero restriction, which is all that 

is needed for system identification when k = 2. 

 King, Plosser, Stock, and Watson (1991) work through system and partial 

identification (identifying the effect of only some shocks), things are 

analogous to the partial identification using short-run timing. 

 This approach was at the center of a debate about whether technology shocks 

lead to a short-run decline in hours, based on long-run restrictions (Galí 

(1999), Christiano, Eichenbaum, and Vigfusson (2004, 2006), Erceg, 

Guerrieri, and Gust (2005), Chari, Kehoe, and McGrattan (2007), Francis and 

Ramey (2005), Kehoe (2006), and Fernald (2007)) 

 More generally, the theoretical grounding of long-run restrictions is often 

questionable; for a case in favor of this approach, see Giannone, Lenza, and 

Primiceri (2014) 
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Long run restrictions, ctd. 

 

In this literature,  is estimated using the VAR-HAC estimator, 

VAR-HAC estimator of :  ̂  = 1 1ˆ ˆˆ(1) (1)uA A    

D(1) and R are estimated as:  ˆ (1)D  = Chol(̂), R̂  = 
1

ˆˆ (1) (1)D A


 
 

 

Comments: 

 A recurring theme is the sensitivity of the results to apparently minor 

specification changes, in Chari, Kehoe, and McGrattan’s (2007) example 

results are sensitive to the lag length.  It is unlikely that ˆ
u  is sensitive to 

specification changes, but ˆ(1)A  is much more difficult to estimate. 

 These observations are closely linked to the critiques by Faust and Leeper 

(1997), Pagan and Robertson (1998), Sarte (1997), Cooley and Dwyer (1998), 

Watson (2006), and Gospodinov (2008), which are essentially weak instrument 

concerns. 

 One alternative is to use medium-run restrictions, see Uhlig (2004) 
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3a) Identification from Heteroskedasticity 

 

Suppose: 

(a) The structural shock variance breaks at date s: ,1 before, ,2 after. 

(b) R doesn’t change between variance regimes. 

(c) normalize R to have 1’s on the diagonal, but no other restrictions; thus the 

unknowns are: R (k2–k); ,1 (k), and ,2(k). 

 

First period:  Ru,1R = ,1 k(k+1)/2 equations, k2 unknowns 

Second period:  Ru,2R = ,2 k(k+1)/2 equations, k more unknowns 

 

Number of equations = k(k+1)/2 + k(k+1)/2 = k(k+1) 

Number of unknowns = k2 – k + k + k = k(k+1) 

 

Rigobon (2003), Rigobon and Sack (2003, 2004) 

ARCH version by Sentana and Fiorentini (2001) 
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Identification from Heteroskedasticity,ctd. 

 

Comments: 

1. There is a rank condition here too – for example, identification will not be 

achieved if ,1 and ,2 are proportional. 

2. The break date need not be known as long as it can be estimated consistently 

3. Different intuition: suppose only one structural shock is homoskedastic.  Then 

find the linear combination without any heteroskedasticity! 

4. This idea also can be implemented exploiting conditional heteroskedasticity 

(Sentana and Fiorentini (2001)) 

5. But, some cautionary notes: 

a. R must remain constant despite change in  (think about it…) 

b. Strong identification will come from large differences in variances 

 

Example: Wright (2012), Monetary Policy at ZLB 

  



Revised 1/8/15         7-24 

 

 

Outline 

 

1) VARs, SVARs, and the Identification Problem 

2) Classical approaches to identification 

2a) Identification by Short Run Restrictions 

2b) [Identification by Long Run Restrictions] 

3) New approaches to identification (post-2000) 

3a) Identification from Heteroskedasticity 

3b) Direct Estimation of Shocks from High Frequency Data  

3c) External instruments 

3d) Identification by Sign Restrictions  

 



Revised 1/8/15         7-25 

 

3b) Direct Estimation of Shocks from High Frequency Data 

 

Monetary shock application:  Estimate r

t  directly from daily data on monetary 

announcements or policy-induced FF rate changes: 

 Recall, 

  Yt =  ( ) ( )YX YrD L D L

X

t

r

t





 
 
 

 = DYr(L)
r

t  + vt,  

where vt = DYX(L)
X

t , so if you observed 
r

t  you could estimate DYr(L). 

 Cochrane and Piazessi (2002)  

aggregates daily 
r

t  (Eurodollar rate changes after FOMC 

announcements) to a monthly 
r

t  series 

 Faust, Swanson, and Wright (2003, 2004) 

estimates IRF of rt wrt 
r

t  from futures market, then matches this to a 

monthly VAR IRF (results in set identification – discuss later) 

 Bernanke and Kuttner (2005) 
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3c) External Instruments 

 

The external instrument approach entails finding some external information 

(outside the model) that is relevant (correlated with the shock of interest) and 

exogenous (uncorrelated with the other shocks). 

 

Example 1: The Cochrane- Piazessi (2002) shock (ZCP) measures the part of 

the monetary policy shock revealed around a FOMC announcement – but not 

the shock revealed at other times. If CP’s identification is sound, ZCP  
r

t  but 

(i) corr(
r

t ,ZCP)  0 (relevance) 

(ii) corr(other shocks, ZCP) = 0 (exogeneity) 
 

Example 2: Romer and Romer (1989, 2004, 2008); Ramey and Shapiro 

(1998); Ramey (2009) use the narrative approach to identify moments at 

which fiscal/monetary shocks occur. If identification is sound, ZRR  
r

t  but 

(i) corr(
r

t ,ZRR)  0 (relevance) 

(ii) corr(other shocks, ZRR) = 0 (exogeneity) 
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Selected empirical papers that can be reinterpreted as external instruments 

 

 Monetary shock: Cochrane and Piazzesi (2002), Faust, Swanson, and 

Wright (2003. 2004), Romer and Romer (2004), Bernanke and Kuttner 

(2005), Gürkaynak, Sack, and Swanson (2005) 

 

 Fiscal shock: Romer and Romer (2010), Fisher and Peters (2010), Ramey 

(2011) 

 

 Uncertainty shock: Bloom (2009), Baker, Bloom, and Davis (2011), 

Bekaert, Hoerova, and Lo Duca (2010), Bachman, Elstner, and Sims 

(2010) 

 

 Liquidity shocks: Gilchrist and Zakrajšek’s (2011), Bassett, Chosak, 

Driscoll, and Zakrajšek’s (2011) 

 

 Oil shock: Hamilton (1996, 2003), Kilian (2008a), Ramey and Vine (2010) 
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The method of External Instruments 

Stock (2007), Stock and Watson (2012); Mertens and Ravn (2013);Gertler 

and P. Karadi (2014); for IV in VAR (not full method) see Hamilton (2003), 

Kilian (2009). 

Additional notation: focus on shock 1 

 Reduced form VAR:    A(L)Yt = ut 

 

Structural errors t:    Rut = εt or ut = R-1εt, or ut = Hεt 

 

 Structural MAR:    Yt = A(L)–1ut = C(L)ut = C(L)Hεt 

Partitioning notation:  ut = Ht =  
1

1

t

r

rt

H H





 
 
 
 
 

 =   1

1

t

t

H H







 
 
 

  

 Structural MAR:     Yt = C(L)Ht = C(L)H11t + C(L)Ht 

 

Structural MAR for jth variable: Yjt = 
1

,, 1 1

0 0

r

k jk j t k t k

k k

C H C H 
  

   

 

   
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Identification of H1 

A(L)Yt = ut,   ut = Hεt =  
1

1

t

r

rt

H H





 
 
 
 
 

 

 

Suppose you have k instrumental variables Zt (not in Yt) such that 

(i)  1t tE Z   =    0 (relevance) 

(ii)  jt tE Z   = 0, j = 2,…, r (exogeneity) 

(iii)  t tE   
 
= εε = D = 

1

2 2( ,..., )
r

diag     

Under (i) and (ii), you can identify H1 up to sign & scale 

( )t tE u Z  = ( )t tE H Z   =  
1

1

( )

( )

t t

r

rt t

E Z

H H

E Z





 
 
 
 


 

 =  1 0

0

rH H

 
 
 
 
 

 = H1αʹ  
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Identification of H1, ctd. 

 

( )t tE u Z   = ( )t tE H Z   =   1

1

( )

( )

t t

t t

E Z
H H

E Z








 
 
 
 

 = H1αʹ 

 

Normalization 

 The scale of H1 and 
1

2

  is set by a normalization subject to  

uu = HDHʹ    where D = 
1

2 2( ,..., )
r

diag     

 Normalization used here: a unit positive value of shock 1 is defined to 

have a unit positive effect on the innovation to variable 1, which is u1t.  

This corresponds to: 

 

(iv) H11 = 1  (unit shock normalization)  

 

where H11 is the first element of H1 
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Identification of H1, ctd. 

 

Impose normalization (iv): 

( )t tE u Z   = 
1t t

t t

Eu Z

Eu Z

 
 
  

  = H1αʹ = 
11

1

H

H




 
 

 
 = 

1

1

H




 
 

 
 

So  

1 1t t

t t

H Eu Z

Eu Z





 
 
  

  = 
1

1

H

H









 
  

 

or 

1 1t tH Eu Z
 = t tEu Z

 

 

  If Zt is a scalar (k = 1):  
1H 

 = 
1

t t

t t

Eu Z

Eu Z

  
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Identification of ε1t 

εt = H–1ut = 

1

t

r

H

u

H

 
 
 
 

 

 

 Identification of first column of H and εε = D identifies first row of H–1 

up to scale (can show via partitioned matrix inverse formula). 

 

 Alternatively, let  be the coefficient matrix of the population regression 

of Zt onto ut: 

 

    = 
1( )t t uE Z u    = 

1

1 ( )H HDH    = 
1 1 1

1H H D H      = (/
1

2

 )H1ʹ 

 

because H–1H1 = (1 0 … 0) ʹ.  Thus ε1t is identified up to scale by 

ut = 

1

2






H1ʹut = 

1

2






ε1t 
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Identification of ε1t, ctd 

 

ut is the predicted value from the population projection of Zt on t: 

 

 1t  = ut = 
1( )t t uE Z u   ut = 

1

2






ε1t 

  has rank 1 (in population), so this is a (population) reduced rank 

regression 

 2 instruments identify 2 shocks.  Suppose they are shocks 1 and 2, 

identified by Z1t and Z2t.  Then 

 

E(
1t 2t ) = 

1

1 2( ) ( )t t u t tE Z u E u Z   

     

which = 0 if both instruments satisfy (i) – (iii) 
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Estimation 

 

Recall notation:  H1 = 
11

1

H

H 

 
 
 

,  ut = 
1t

t

u

u

 
 
 

 

 

Impose the normalization condition (iv)  H11 = 1, so 

 

E(utZtʹ) = H1ʹ = 
1

1

H 

 
 
 

  or  E(ut  Zt) = 
1

1

H 

 
 
 

    

 

High level assumption (assume throughout) 

 

 1

1

1
[ ] [ ]

T

t t

t

u Z H
T




    d N(0,)     
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Estimation of H1 

 

Efficient GMM objective function: 

S(H1,;̂)   

= 1

1 11 1

1 11 1ˆˆ ˆ( ) ( ) ( ) ( )
T T

t t t t

t t

u Z u Z
H HT T

 

  

      
            

      
   

k = 1 (exact identification):    E(utZtʹ) = H1ʹ = 
1H



 

 
 
 

 

so GMM estimator solves,   1

1
ˆ

T

t tt
T u Z

  = 
1

ˆ

ˆˆH



 

 
 
 

 

GMM estimator:    
1Ĥ 

 = 

1

1

1

11

ˆ

ˆ

T

t tt

T

t tt

T u Z

T u Z












  

  

IV interpretation:     ˆ
jtu  = H1j 1̂tu  + ujt,  

       1̂tu  = jʹZt + vjt 
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GMM estimation of H
1
ʹ and ε1t 

 

Recall    1t  = 
1( )t t uE Z u   ut = ut   

 

Estimator: 

 k = 1: 

  1̂t  is the predicted value (up to scale) in the regression of Zt on ˆ
tu  

 

 k > 1(no-HAC): 

Absent serial correlation/no heteroskedasticity, the GMM estimator 

simplifies to reduced rank regression: 

 

Zt =  ˆ
tu  + t        (RRR) 

 

 If Zt is available only for a subset of time periods, estimate (RRR) using 

available data, compute predicted value over full period 
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Strong instrument asymptotics 

 

 k = 1 case: 

 1 1
ˆT H H   

d N(0, ʹ), where  = 1

1r

H

I





 
 
    

 Overidentified case (k > 1):  

o usual GMM formula 

o J-statistics, etc. are standard textbook GMM 

 

Weak instrument asymptotics: k = 1 

(Stock and Watson (2012b)) Weak IV asymptotic setup – local drift (limit of 

experiments, etc.): 

 = T = a/ T  

Obtain weak instrument distribution 
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Empirical Application: Stock-Watson (BPEA, 2012) 

Dynamic factor model identified by external instruments: 

 U.S., quarterly, 1959-2011Q2, 200 time series 

 Almost all series analyzed in changes or growth rates 

 All series detrended by local demeaning – approximately 15 year centered 

moving average: 

 
Quarterly GDP growth (a.r.)   Quarterly productivity growth 

Trend:    3.7%  2.5%         2.3%  1.8%  2.2%  
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Instruments 

 

1. Oil Shocks 

a. Hamilton (2003) net oil price increases 

b. Killian (2008) OPEC supply shortfalls 

c. Ramey-Vine (2010) innovations in adjusted gasoline prices 

 

2.  Monetary Policy 

a. Romer and Romer (2004) policy 

b. Smets-Wouters (2007) monetary policy shock 

c. Sims-Zha (2007) MS-VAR-based shock 

d. Gürkaynak, Sack, and Swanson (2005), FF futures market 

 

3. Productivity 

   a. Fernald (2009) adjusted productivity 

   b. Gali (200x) long-run shock to labor productivity 

   c. Smets-Wouters (2007) productivity shock  
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Instruments, ctd. 

 

4.  Uncertainty 

  a. VIX/Bloom (2009) 

  b. Baker, Bloom, and Davis (2009) Policy Uncertainty 

 

5. Liquidity/risk 

  a. Spread: Gilchrist-Zakrajšek (2011) excess bond premium  

  b. Bank loan supply: Bassett, Chosak, Driscoll, Zakrajšek (2011)  

c. TED Spread 

 

6. Fiscal Policy 

  a. Ramey (2011) spending news  

     b. Fisher-Peters (2010) excess returns gov. defense contractors 

  c. Romer and Romer (2010) “all exogenous” tax changes. 
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“First stage”: F1: regression of Zt on ut, F2: regression of u1t on Zt 

 
 

Structural Shock F1 F2 

1. Oil   

   Hamilton  2.9 15.7 
   Killian  1.1 1.6 

   Ramey-Vine 1.8 0.6 

2.  Monetary policy   

   Romer and Romer 4.5 21.4 
   Smets-Wouters  9.0 5.3 
   Sims-Zha  6.5 32.5 
   GSS 0.6 0.1 

3.  Productivity   

   Fernald TFP 14.5 59.6 
   Smets-Wouters 7.0 32.3 
   
   

Structural Shock F1 F2 

4.  Uncertainty   
   Fin Unc (VIX) 43.2 239.6 
   Pol Unc (BBD) 12.5 73.1 

5.  Liquidity/risk F1 F2 

   GZ EBP Spread 4.5 23.8 
   TED Spread  12.3 61.1 
   BCDZ Bank Loan  4.4 4.2 

6.  Fiscal policy   

   Ramey Spending 0.5 1.0 

   Fisher-Peters 
Spending 

1.3 0.1 

   Romer-Romer 
Taxes 

0.5 2.1 
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Correlations among selected structural shocks 

OilKilian oil – Kilian (2009) 

MRR  monetary policy – Romer and Romer (2004) 

MSZ  monetary policy – Sims-Zha (2006) 

PF  productivity – Fernald (2009) 

UB  Uncertainty – VIX/Bloom (2009) 

UBBD uncertainty (policy) – Baker, Bloom, and Davis (2012) 

LGZ  liquidity/risk – Gilchrist-Zakrajšek (2011) excess bond premium 

LBCDZ liquidity/risk – BCDZ (2011) SLOOS shock 

FR  fiscal policy – Ramey (2011) federal spending 

FRR  fiscal policy – Romer-Romer (2010) federal tax 

 OK MRR MSZ PF UB UBBD SGZ BBCDZ FR FRR 

OK 1.00            

MRR 0.65   1.00           

MSZ 0.35   0.93   1.00          

PF 0.30   0.20   0.06   1.00         

UB -0.37   -0.39   -0.29   0.19   1.00        

UBBD 0.11   -0.17   -0.22   -0.06   0.78   1.00       

LGZ -0.42   -0.41   -0.24   0.07   0.92   0.66   1.00      

LBCDZ 0.22   0.56   0.55   -0.09   -0.69   -0.54   -0.73   1.00   

FR -0.64   -0.84   -0.72   -0.17   0.26   -0.08   0.40   -0.13   1.00    

FRR 0.15   0.77   0.88   0.18   0.01   -0.10   0.02   0.19   -0.45   1.00 
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IRFs: strong-IV (dashed) and weak-IV robust (solid) pointwise bands 

 
Kilian (2008) oil shock (F2 = 1.6)  
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Hamilton (1996, 2003) oil shock (F2 = 15.7) 
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Ramey-Vine (2010) oil shock (F2 = 0.6) 

  



6/7-47 

 

 
Romer and Romer (2004) monetary policy shock (F2 = 21.4) 

  



6/7-48 

 

 
Smets-Wouters (2007) monetary policy shock (F2 = 5.3) 

  



6/7-49 

 

 
Sims-Zha (2006) monetary policy shock (F2 = 32.5) 
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Fernald (2009) productivity shock (F2 = 59.6) 
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Smets-Wouters (2007) productivity shock (F2 = 32.3) 
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Bloom (2009) (VIX) uncertainty shock (F2 = 239.6) 
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Baker, Bloom, Davis (2012) policy uncertainty shock (F2 = 73.1) 
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Gilchrist and Zakrajšek (2011) excess bond premium liquidity/risk shock  (F2 = 

23.8)  
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Bassett, Chosak, Driscoll, and Zakrajšek (2011) bank loan supply liquidity/risk 

shock (F2 = 4.2) 
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Ramey (2011) fiscal (spending) shock (F2 = 1.0) 
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Fisher and Peters (2010) fiscal (spending) shock (F2 = 0.1) 
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Romer and Romer (2010) fiscal (tax) schock (F2 = 2.1) 
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Outline 

 

1) VARs, SVARs, and the Identification Problem 

2) Classical approaches to identification 

2a) Identification by Short Run Restrictions 

2b) [Identification by Long Run Restrictions] 

3) New approaches to identification (post-2000) 

3a) Identification from Heteroskedasticity 

3b) Direct Estimation of Shocks from High Frequency Data  

3c) External Instruments 

3d) Identification by Sign Restrictions  

4) Inference: Challenges and Recently Developed Tools 
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3d) Identification by Sign Restrictions 

 

Consider restrictions of the form:  a monetary policy shock… 

 does not decrease the FF rate for months 1,…,6 

 does not increase inflation for months 6,..,12 

These are restrictions on the sign of elements of D(L). 

 

Sign restrictions can be used to set-identify D(L).  Let D denote the set of D(L)’s 

that satisfy the restriction. There are currently three ways to handle sign 

restrictions:  

1. Faust’s (1998) quadratic programming method 

2. Uhlig’s (2005) Bayesian method 

3. Uhlig’s (2005) penalty function method 

 

I will describe #2, which is the most popular method (the first steps are the same 

as #3; #1 has only been used a few times) 
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Sign restrictions, ctd. 

 

It is useful to rewrite the identification problem after normalizing by a Cholesky 

factorization (and setting  = I): 

 

SVAR identification:     RuR =  

Normalize  = I; then     u = R–1R–1= 
1

cR
QQ

1

cR
 

 

Where 
1

cR
 = Chol(u) and Q is a nn orthonormal matrix so QQʹ = I. Then 

 

Structural errors:   ut = 
1

cR
Qεt 

Structural IRF:    D(L) = C(L)
1

cR
Q 

 

Let D denote the set of acceptable IRFs (IRFs that satisfy the sign restrictions)
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Sign restrictions, ctd. 

Structural IRF:    D(L) = C(L)
1

cR
Q 

 

Uhlig’s algorithm (slightly modified): 

(i)   Draw Q  randomly from the space of orthonormal matrices 

(ii) Compute the IRF ( )D L  = D(L) = C(L) 1

cR  Q   

(iii) If ( )D L   D, discard this trial Q  and go to (i).  Otherwise, if  

( )D L   D, retain Q  then go to (i) 

(iv) Compute the posterior (using a prior on A(L) and u, plus the 

retained Q ’s) and conduct Bayesian inference, e.g. compute 

posterior mean (integrate over A(L), u, and the retained Q ’s), 

compute credible sets (Bayesian confidence sets), etc. 

 

This algorithm implements Bayes inference using a prior proportional to 

(A(L), u)1( ( )D L   D)(Q) 

where (Q) is the distribution from which Q is drawn. 
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n = 2 example 

 

Consider a n = 2 VAR: A(L)Yt = ut and structural IRF  

 

D(L) = 
11 12

21 22

( ) ( )

( ) ( )

D L D L

D L D L

 
 
 

 = A(L)-1 1

cR
Q. 

 

The sign restriction is D21,I  0, I = 1,…, 4 (shock 1 has a positive effect on 

variable 2 for the first 4 quarters). 

 

Suppose the population reduced form VAR is A(L)Yt = ut where 

 

A(L) = 
1

1

1

2

(1 ) 0

0 (1 )

L

L









 
 

 
  and Σu = I so 

1

cR
 = I. 

 

What does set-identified Bayesian inference look like for this problem, in a large 

sample?  

 With point-identified inference and nondogmatic priors, it looks like 

frequentist inference (Bernstein-von Mises theorem) 
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n = 2 example, ctd. 

 

Step 1: use n =2 to characterize Q 

 

In the n = 2 case, the restriction QQʹ = I implies that there is only one free 

parameter in Q, so that all orthonormal Q can be written, 

 

Q = 
cos sin

sin cos

 

 

 
 
 

 [check: 
cos sin

sin cos

 

 

 
 
 

cos sin

sin cos

 

 

 
  

 = I] 

 

 The standard method, used here, is to draw Q by drawing θ ~ U[0,2π]  

 The main point of this example is that the uniform prior on θ ends up being 

informative for what matters, D(L), so much so that the prior induced a 

Bayesian posterior coverage region strictly inside the identified set. 

 

Step 2:  Condition for checking whether Q is retained: 

21
ˆ ( )D L  = 

1 1

21

ˆ ˆ( ) cA L R Q  
 

  0 for first 4 lags 
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Step 3: In a very large sample, A(L) and Σu will be essentially known (WLLN), 

so that  

 

1 1ˆ ˆ( ) cA L R Q    
1

1

1

2

1 0 cos sin(1 ) 0

0 1 sin cos0 (1 )

L

L

 

 





    
   

    
  

= 
1 1

1 1

1 1

2 2

(1 ) cos (1 ) sin

(1 ) sin (1 ) cos

L L

L L

   

   

 

 

   
 

  
 

 

so    21
ˆ ( )D L  = 

1 1

21

ˆ ˆ( ) cA L R Q  
 

  (1-α2L)-1sinθ 

 

Thus the step, keep Q if 21,
ˆ

iD   0, i = 1,…,4 reduces to keep Q if sinθ  0, which 

is equivalent to 0  θ  π. 

 

Thus, in large samples the posterior of 21
ˆ ( )D L  is  (1-α2L)-1sinθ, for θ ~ U[0,π]. 
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Characterization of posterior 

A draw from the posterior (for a retained θ is):    D21(L) = (1-α2L)-1sinθ 

 

Posterior mean for D21,i:  E[D21,i] =  2 siniE     

=  2 sini E    

    = 2

0

1
sini d



  


  

= 2

0
( cos )

i





  = 2

2 i


  .637 2

i  

 

Posterior distribution: drop scaling by 2

i  and focus on sinθ part 

 

Pr[sinθ  x] = Pr[θ  Sin-1(x)] for θ ~ U[0,π/2] 

 

     = 2Sin-1(x)/π 

 

So the pdf of x is:  fX(x) = 12
Sin ( )

d
x

dx 

   = 
2

2

1 x 
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So the posterior of 21,
ˆ

iD  is: p( 21,
ˆ

iD |Y)   
2

2

2

1

i

x


 
 

  

67% posterior probability interval with equal mass in each tail: 

Lower cutoff:  

Pr[sinθ  x] = 1/6 → xlower = sin(π/12) = .259 

Pr[sinθ  x] = 5/6 → xupper = sin(5π/12) = .966 

 

so 67% posterior coverage interval is [.259 2

i , .966 2

i ], with mean .637 2

i  

 

What’s wrong with this picture? 

 Posterior coverage interval: [.259 2

i , .966 2

i ], with mean .637 2

i  

 Identified set is [0, 2

i ] 

 What is the frequentist confidence interval here? 

 Why don’t Bayesian and frequentist coincide? 
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Recent references on sign-restriction VARs: 

Baumeister and Hamilton (WP, 2014) 

Fry and Pagan (2011) 

Kilian and Murphy (JEEA, 2012)  

Moon and Schorfheide (ECMA, 2012) 

Moon, Schorfheide, and Granziera (WP, 2013) 


