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1) HAC/HAR Inference: Overview 

 

The task: valid inference on β when Xt and ut are possibly serially correlated: 

 

Yt = Xtʹβ + ut, E(ut|Xt) = 0, t = 1,…, T  

 

Asymptotic distribution of OLS estimator: 
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Assume throughout that WLLN and CLT hold:  
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   1 10, XX XXN     . 

 

ΣXX is easy to estimate, but what is Ω and how should it be estimated? 
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Ω: The Long-Run Variance of Xtut 

 

Let Zt = Xtut. Note that EZt = 0 (because E(ut|Xt) = 0). Suppose Zt is second order 

stationary.  Then 
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Standard approach: Newey-West Standard Errors 

 

 HAC/HAR SEs are generically needed in time series regression. The most 

common method (by far) for computing HAC/HAR SEs is to use the Newey-

West (1987) estimator. 

 Newey-West estimator: declining average of sample autocovariances 

ˆ ˆ1
m
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j m
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where  ˆ
j  = 
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1 ˆ ˆ
T

t t j
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  , where ˆ
tZ  = Xt ˆ

tu . 

 

 Rule-of-thumb for m: m = mT = .75T1/3 (e.g. Stock and Watson, Introduction 

to Econometrics, 3rd edition, equation (15.17). 

o This rule-of-thumb dates to the 1990s. More recent research suggests it 

needs updating – and that, perhaps, the NW weights need to be replaced. 

 

Four examples… 
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Source: “USDA Assesses Freeze Damage of Florida Oranges,” Feb. 1, 2011 at 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/ 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/
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Example 1: OJ prices and Freezing degree-days: 

lnPt = α + β(L)FDDt + ut 

 

Example 2: GDP growth and monetary policy shock: 

     lnGDPt  = α + β(L)
m

t   + ut 

 

Example 3: Multiperiod asset returns: 

     ln(Pt+k/Pt)  = α +βXt + 
t l

tu 
, e.g. Xt = dividend yieldt 

 

Example 4: (GMM) Hybrid New Keynesian Phillips Curve: 

   t = xt + fEtt+1 + bt–1 + t 

   where xt = marginal cost/output gap/unemployment gap and  

   πt = inflation. Suppose γb + γf = 1 (empirically supported); then 

   t = xt + f (Ett+1 - t–1) + t 

   Instruments: {t–1, xt–1, t–2, xt–2,…} 

 ηt could be serially correlated by omission of supply shocks  
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Digression: Why not just use GLS? 

 

The path to GLS: suppose ut follows an AR(1)  

Yt = Xtʹβ + ut,  

ut = ρut-1 + εt, εt serially uncorrelated 

 

This suggests Cochrane-Orcutt quasi-differencing: 

(1-ρL)Yt = ((1-ρL)Xt)ʹ + εt or 
ty = 

tx ʹβ + εt 

(Feasible GLS uses an estimate of ρ – not the issue here) 

 

Validity of the quasi-differencing regression requires E(εt| tx ) = 0: 

E(εt| tx ) = E(ut – ρut-1|xt – ρxt-1) = 0 

 

For general ρ, this requires all the cross-terms to be zero: 

(i) E(ut|xt) = E(ut-1|xt-1) =0  

(ii) E(ut|xt-1) =0 

(iii) E(ut-1|xt) =0 – this condition fails in examples 1-4 
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2) Notational Preliminaries: Three Representations, Three Estimators 
 

The challenge: estimate   Ω = j

j





  

 This is hard: the sum has ’s! 

 

 Draw on the literature on estimation of the spectral density to estimate Ω 

 

 Three estimators of the spectral density: 

(1) Sum-of-covariances:   ˆ sc  = 
1

( 1)

ˆ( )
T

T j

j T

k j


 

   

(2) Weighted periodogram:   ˆ wp  = 
1

ˆ ˆ

( 1)

2 ( ) (2 / )
T

T ZZ
l T

K l I l T 


 

  

(3) VARHAC:      ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A    

 

We follow the literature and focus on (1) and (2)   
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(1) Sum-of-covariances estimator of Ω 

 

Ω = j

j





  

 

Because Zt is stationary and Ω exists, j dies off. This suggests and estimator of 

Ω based a weighted average of the first few sample estimators of : 

 

ˆ sc  = 
1

( 1)
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T j

j T

k j


 

   

where ˆ
j  = 

1

1 T

t t j

t

Z Z
T





   (throughout, use the convention Zt = 0, t<1 or t > T)  

kT(.) is the weighting function or “kernel”: 

 Example:  kT(j) = 1 – |j/mT| = “triangular weight function” =  “Bartlett kernel” 

= “Newey-West weights” with truncation parameter mT  

 We return to kernel and truncation parameter choice problem below 
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(2) Smoothed periodogram estimator of Ω 

 

The periodogram as an inconsistent estimator of the spectral density: 

 Fourier transform of Zt at frequency ω: dZ(ω) = 
1

1

2

T
i t
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Z e
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 The periodogram is  IZZ(ω) = ( ) ( )Z Zd d    

 

Asymptotically, IZZ(ω) is distributed as SZ(0)(
2

2 /2) (scalar case) 

 

 Mean: 
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  = SZ(ω) 
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 Distribution (Brillinger (1981), Priestley (1981), Brockwell and Davis 

(1991)):  

dZ(ω) = 
1
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i t

t

t

Z e
T



 

  

 = 
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cos sin
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= z1 + iz2, say, where z1 and z2 are i.i.d. mean zero normal 

So 

IZZ(ω) = ( ) ( )Z Zd d   = 
2 2

1 2z z   
d

  SZ(ω)(
2

2 /2) 

 

 For ω evaluated at ωj = 2πj/T, j = 0, 1,…, T, dZ(ωj) and dZ(ωk) are 

asymptotically independent (orthogonality of sins and cosines). 

 The weighted periodogram estimator averages the periodogram near 

zero: 

ˆ wp  = 
1
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K l I l T 
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(3) VAR-HAC estimator of Ω 

Approximate the dynamics of Zt by a vector autoregression:   A(L)Zt = ut 

 

so Zt has the vector MA representation,   Zt = A(L)-1ut 

Thus 

SZ(ω) =    
111

2

i i

uuA e A e 



 
   

so 

SZ(0) =    
1 11

1 1
2

uuA A


     

 

This suggests the VAR-HAC estimator (Priestley (1981), Berk (1974); den Haan 

and Levin (1997), 

 

ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A   

 

where ˆ(1)A   and ˆ ˆ
ˆ

uu  are obtained from a VAR estimated using ˆ
tZ . 
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3) The PSD Problem and Equivalence of Sum-of-Covariance and 

Spectral Density Estimators 

 

Not all estimators of Ω are positive semi-definite – including some natural ones. 

Consider the m-period return problem – so under the null β = 0, ut is a MA(m-1). 

This suggests using a specific sum of covariances estimator: 

   = 
1

( 1)

ˆ
m

j

j m



 

 . 

But   isn’t psd with probability one! Consider m = 2 and the scalar case: 

   = 
1

1

ˆ
j

j




  = 1
0

0

ˆ
ˆ 1 2

ˆ






 
 

 
 < 0 if 1

0

ˆ

ˆ




 = first sample autocorrelation < -0.5 

 

Solutions to the PSD problem 

 Restrict kernel/weight function so that estimator is PSD with probability 

one (standard method) 

 Hybrid, e.g. use   but switch to PSD method if   isn’t psd – won’t pursue 

(not used in empirical work) 
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Choice of kernel so that ˆ sc  is psd w.p.1 

 

Step 1: 

Note that ˆ wp  is psd w.p.1 if the frequency-domain weight function is non-

negative. Recall that ˆ wp  is psd if λʹ ˆ wp λ  0 for all λ. Now 

 

λʹ ˆ wp λ =  
1
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2 ( ) (2 / )
T

T ZZ

l T

K l I l T   


 

  

= 
1

( 1)

2 ( ) ( ) ( )
T

T Z l Z l

l T

K l d d    


 

  
 

  

= 
1

2

( 1)

2 ( ) ( )
T

T Z l

l T

K l d  


 

   0 

with probability 1 if KT(l)  0 for all l. 

 KT(l)  0, all l, is necessary and sufficient for ˆ wp  to be psd 
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Step 2:  ˆ wp  and ˆ sc  are equivalent! 

ˆ wp  = 
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Result: ˆ sc  is psd w.p.1 if and only if kT is the (inverse) Fourier transform of a 

nonnegative frequency domain weight function KT. Also, kT is real if KT is 

symmetric (then kT(j) =  
1

1
(0) 2 ( )cos (2 / )

T

T Tl
K K l j T l




  ). 
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Kernel and bandwidth choice 

 

The class of estimators here is very large. What is a recommendation for 

empirical work? 

 

Two distinct questions: 

(i) What kernel to use? 

(ii) Given the kernel, what bandwidth to use? 

 

It turns out that problem (ii) is more important in practice than problem (i). 

 

Some final preliminaries 

 Closer look at four kernels: 

o Newey-West (triangular in time domain) 

o Flat in time domain 

o Flat in frequency domain 

o Epinechnikov (Quadratic Spectral) – certain optimality properties 

 Link between time domain and frequency domain kernels 
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Flat kernel in frequency domain 

In general: 

ˆ wp  = 
1

( 1)
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Flat kernel: 
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The time-domain kernel corresponding to the flat frequency-domain kernel is  

kT(j) = 
1

(2 / )

( 1)

( )
T

i j T l

T

l T

K l e 




 

   

= (2 / )1

2 1

T
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B
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e
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= … T    
sin(2 / )

2 /

T

T

j m
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 , where mT = T/BT 

 

Important points: 

 mTBT = T: using few periodogram ordinates corresponds to using 

many covariances 

 Flat in frequency domain (which is psd) produces some negative 

weights in the sum-of-covariance kernel 
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Three PSD kernels in pictures 

 

 

Kernel k(x), x = |j|/m K(u), u = |l|/B 

Newey-West 1-|x| if |x|  1  

Parzen 1 – 6x2 + 6|x|3 if |x|<.5 

2(1-|x|)3 if .5 |x|  1 

 

Flat spectral  1 if |u|  1 
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4) Three Approaches to the Bandwidth Problem 

 

As in all nonparametric problems, there is a fundamental tradeoff between bias 

and variance when choosing smoothing parameters. 

 

 In frequency domain: 

ˆ wp  = 2 ( ) (2 / )
B

T ZZ

l B

K l I l T 


  

Larger B decreases variance, but increases bias 

 In time domain: 

ˆ sc  = ˆ( )
m

T j

j m

k j


  

Larger m increases variance, but decreases bias 

 Recall mTBT = T 

 

How should this bias-variance tradeoff be resolved? 
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First generation answer: 

Obtain as good an estimate of Ω as possible (Andrews [1991]) 

 “Good” means: 

o psd with probability 1 

o consistent (HAC) 

o minimize mean squared error:  

MSE(̂) = E(̂  - Ω)2 = bias(̂)2 + var(̂ )  

o This yields a bandwidth mT that increases with, but more slowly than, T  

 Practical issue:  

o if true spectral density is flat in neighborhood of zero, you should include 

many periodogram ordinates (large B); equivalently, if true j’s are small 

for j0 then you should include few ˆ
j ’s 

o But, you don’t know the true spectral density!!  

o So, in practice you can estimate and plug in, or use a rule-of-thumb. 

o The m = .75T1/3
 rule of thumb assumes Xt and ut are AR(1) with 

coefficient 0.5 

 Then use asymptotic chi-squared critical values to evaluate test statistics. 
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Big problem with the first generation answer 

 

 The resulting estimators do a very bad job of controlling size when the errors 

are in fact serially correlated, even with a modest amount of serial correlation  

o den Haan and Levin (1997) provided early complete Monte Carlo 

assessment 

o We will look at MC results later 

 

 Why? The key insight is that the min MSE problem isn’t actually what we 

are interested in – we are actually interested in size control or equivalently 

coverage rates of confidence intervals. 

o For coverage rates of confidence intervals, what matters is not bias2, but 

bias (Velasco & Robinson [2001]; Kiefer & Vogelsang [2002]; Sun, 

Phillips, and Jin (2008)) 

 

 Practical implication: use fewer periodogram ordinates (smaller B) i.e. more 

autocovariances (larger m). 

  



Revised 1/8/15 4-30 

Approach #2: Retain consistency, but minimize size distortion 

 

Sketch of asymptotic expansion of size distortion 

for details see Velasco and Robinson (2001), Sun, Phillips, and Jin (2008) 

 

Consider the case of a single X and the null hypothesis β = β0. Then ut = Yt – Xtβ0, 

and Zt = Xtut, so the Wald test statistic is, 

WT = 
 

2
1/2

1

ˆ

T

tT Z




  

The probability of rejection under the null thus is, 

 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 

where c is the asymptotic critical value (3.84 for a 5% test). The size distortion is 

obtained by expanding this probability… 
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First, note that 
1/2

1

T

tT Z

  and ̂  are asymptotically independent. Now 

Pr[WT < c] = 
 

2
1/2

1
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ˆ

T

tT Z
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 = 
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1/2

1
ˆ
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2
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1
ˆ

ˆPr
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tT Z
E c

  
  

        


 

 
ˆ

E F c
  
  

   

, where F = chi-squared c.d.f 

= 

2
ˆ ˆ1

( ) ( ) ( ) ...
2

E F c cF c cF c
       

       
      

 

so the size distortion approximation is, 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 ( )
( ) ( )

2

bias MSE
cF c cF c
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or 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 + smaller terms 

 

Thus minimizing the size distortion entails minimizing a linear combination of 

bias and variance – not bias2 and variance 
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Approach #3: “Fixed b” asymptotics 

 

 Drop consistency – but use correct critical values that account for additional 

variance (HAR) 

o This decision has a cost – consistency provides first-order asymptotic 

efficiency of tests – but this isn’t worth much if you don’t have size 

control  

 

 Fixed b corresponds in our notation to fixed B (or, equivalently, to m  T) 

o The fixed-b calculations typically use a FCLT approach, see Kiefer-

Vogelsang (2002), Müller (2007), Sun (2013). 

o We will sidestep the FCLT results by using classical results from the 

spectral density estimation literature for the flat kernel in the frequency 

domain. 
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5) Application to Flat Kernel in the Frequency Domain 

 

Consider scalar Xt and flat-kernel in frequency domain: 

ˆ̂
  = ˆ ˆ

2 2

2

B

ZZ
l BT

l
I

B T

 



 
 
 

   = ˆ ˆ

1

2 2B

ZZ
lT

l
I

B T

 



 
 
 

  

 This adjusts the kernel to drop ω = 0 since ˆ ˆ (0)
ZZ

I  = 0 (OLS residuals are 

orthogonal to X)  

 The second equality holds because  

(i) in scalar case, IZZ(ω) = IZZ(-ω), and  

(ii) ˆ ˆ (0)
ZZ

I  = 0 because ˆ (0)
Z

d  = 0 ( ˆ
tu  are OLS residuals) 

 This kernel plays a special historical role in frequency domain estimation. 

 

We now provide explicit results for the three approaches: 

i. Fixed B (this kernel delivers asymptotic t2B inference!) 

ii. Min MSE 

iii. Min size distortion 
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i. Fixed b 

 

 For this kernel, you don’t need to use FCLT approach – the result for its 

fixed-B distribution is very old and is a cornerstone of classical theory of 

frequency domain estimation (e.g. Brillinger (1981)). For Xt, ut stationary, 

with suitable moment conditions, 

(a) 
ˆ̂
  

d

  Ω  
2

2( / 2 )B B , that is,  

ˆ̂
  ~ Ω  

2

2( / 2 )B B  

(b) Moreover 
ˆ̂
  is asymptotically independent of 

1/2

1

T

tT Z

  ~ N(0,Ω)  

 It follows that, for B fixed, the t statistic has an asymptotic t2B distribution: 

  t = 

1/2

1

1/2ˆ

T

tT Z




  

d

  t2B 

 

 This result makes the size/power tradeoff clear – using t2B distribution has 

power loss relative to asymptotically efficient normal inference – but the 

power loss is slight for B  10 (say).  
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Sketch of (a) and (b): 

Consider scalar case, and recall that  ˆ ˆ 0
ZZ

I  = 0 (OLS residuals), so 

(a) Distribution of 
ˆ̂
  with B fixed: 

ˆ̂
  = ˆ ˆ

1

2 2B
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l
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B T
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= 2πSzz(0) 
2

2( / 2 )B B   

= Ω
2

2( / 2 )B B  

(b) 
ˆ̂
  is independent of 

1/2

1

T

tT Z

 . This follows from the result above that 

dZ(ωl) and dZ(ωk) are asymptotically independent, applied here to dZ(0) (the 

numerator) and dZ at other ωl’s (the denominator) 
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ii. and iii. – Preliminaries for the asymptotic expansions 

Bias 
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Because SZZ(ω) = SZZ(-ω), SZZʹ(0) = 0, and after dividing by Ω, 

 ˆ̂
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Variance 
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(keeping only the leading term in the Taylor series expansion). 

 

Summary: relative bias and relative variance: 

2

ˆ̂
var( )


 = 

1

B
   and   

ˆ̂
( )E  


 = 

2
1

2

B

d T

 
 
 

, where d = 
2

3 (0)

4 (0)

ZZ
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S

S 
 

Special case: Zt is AR(1) with autoregressive parameter α0: 

d = 
2

2

3 (1 )

8
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ii. Min MSE 

MinB MSE(
ˆ̂
 ) = MinB bias2(

ˆ̂
 ) + var(

ˆ̂
 ) 

= MinB 

2
2

1

2

B

d T

  
  

  

 + 
2

B


 

Solution: 

ˆ( )MinMSE

TB  =  
2/5 4/5d T , where d = 

2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 = 

2

2

3 (1 )

8



 


  

 

iii. Min Size Distortion 

MinB Pr[WT < c] – F(c)  MinB 
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 

Solution (for α > 0): 

1 ˆ( )stOrderSize

TB  = 

1/3

2/3( )

2 ( )

cF c
d T

F c

 
  

 

where c = 3.84 for 5% tests and F is 
2

1   cdf. 
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Optimal HAC Bandwidths for flat spectral kernel: 

Zt AR(1) with parameter α 

 T = 100 T = 800 

Minimize: MSE Size 

distortion 

MSE Size 

distortion 

α B m B m B m B m 
.1 43 5 25 8 131 6 62 13 
.2 30 7 18 11 90 9 45 18 
.3 23 9 14 14 69 12 36 22 
.4 18 11 12 17 54 15 30 27 
.5 14 14 10 21 43 19 25 33 
.6 11 18 8 25 33 24 20 40 
.7 8 24 6 32 25 32 16 51 
.8 6 35 5 44 17 47 11 70 
.9 3 65 3 73 9 85 7 116 

Notes: b = bandwidth in frequency domain, m = lag truncation parameter in 

time domain.  

o The rule-of-thumb m = .75T1/3 corresponds to m = 4 for T = 100 and m = 

7 for T = 800 (however not directly comparable since the rule-of-thumb 

is for the Newey-West kernel). 
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6) Monte Carlo Comparisons 

 

Illustrative results: 

 Design: Xt = 1, ut AR(1)  

 Flat spectral kernel (so that t2B inference is asymptotically valid under fixed-b 

asymptotics) 

 Two bandwidth choices: min MSE and minimize size distortion 

 Bandwidths chosen using plug-in formula based on estimated α (formula 

given above, with ̂  replacing α) 

 Additional MC results: den Haan and Levin (1997), Kiefer and Vogelsang 

(2002), Kiefer, Vogelsang and Bunzel (2000), Sun (2013). 
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7) Panel Data and Clustered Standard Errors 

 

Clustered standard errors are an elegant solution to the HAC/HAR problem in 

panel data. 

 Although the original proofs of clustered SEs used large N and small T 

(Arellano [2003]) in fact they are valid for small N if T is large (Hansen 

[2007], Stock and Watson [2008]), but using t or F (not normal or chi-

squared) inference. 

 The standard fixed effects panel data regression model 

 

Yit = αi + βʹXit + uit, i = 1,…,N, t = 1,…, T, 

 

where E(uit|Xi1,…, XiT, αi) = 0 and  uit is uncorrelated across i but possibly 

serially correlated, with variance that can depend on t; assume i.i.d. over i 

 The discussion here considers the special case Xt = 1– the ideas generalize 
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Clustered SEs with Xt = 1 

 

Yit = αi + β + uit, i = 1,…,N, t = 1,…, T, 

 

The fixed effects (FE) estimator is  

ˆ FE  = 
1 1

1 N T

it

i t

Y
NT  

   

Thus 

ˆ( )FENT    = 
1 1

1 1N T

it

i t

u
N T 

 
 
 

    

 = 
1

1 N

i

i

v
N 

 , vi = 
1

1 T

it

t

u
T 

  

 

For fixed N and large T, vi 

d

  N(0,Ω), i = 1,…, N (i.i.d.). Thus the problem is 

asymptotically equivalent to having N observations on vi, which is i.i.d. N(0,Ω). 
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Xt = 1 case, continued: 

Clustered variance formula:    ˆ cluster   = 
2

1

1
ˆ ˆ( )

N

i

i

v v
N 

 , 
îv  =   

1

1
ˆ

T

it

t

u
T 

  

By standard normal/t arguments: ˆ cluster  
d

  
2

1N

N

 
 = 

2

1 1

1

N N

N N

  



   

and         t = 0
ˆ

ˆ

FE

cluster

 


 

d

  1
1

N

N
t

N



  

 

 Note the complication of the degrees of freedom correction – this is because 

the standard definition of ˆ cluster  has N, not N-1, in the denominator. 

 Extension to multiple X: The F-statistic testing p linear restrictions on β, 

computed using ˆ cluster , is distributed ,p N p

N
F

N p



 

 For N very small, the power loss from tN-1 inference can be large – so for 

very small N it might be better to use HAC/HAR methods, not clustered SEs 

(not much work has been done on this tradeoff, however).  
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8) Summary 

 

 Applications of HAC/HAR methods are generic in time series. GLS is 

typically not justified because it requires strict exogeneity (no feedback from 

u to X) 

 Choice of the bandwidth is critical and reflects a tradeoff between bias and 

variance. 

 The rule-of-thumb m = .75T1/3 uses too few autocovariances (m is too small) 

– overweights variance at the expense of bias 

 However, inference becomes complicated when large m (small B) is used, 

because this increases the variance of ̂ . 

 In general (including for N-W weights), fixed-b inference is complicated and 

requires specialized tables (e.g. Kiefer-Vogelsang inference). 

 However, in the special case of the flat spectral kernel, asymptotically valid 

fixed-B inference is based on t2B. Initial results for size control (and power) 

using this approach are promising. 


