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1) HAC/HAR Inference: Overview 

 

The task: valid inference on β when Xt and ut are possibly serially correlated: 

 

Yt = Xtʹβ + ut, E(ut|Xt) = 0, t = 1,…, T  

 

Asymptotic distribution of OLS estimator: 
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Assume throughout that WLLN and CLT hold:  
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d

   1 10, XX XXN     . 

 

ΣXX is easy to estimate, but what is Ω and how should it be estimated? 
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Ω: The Long-Run Variance of Xtut 

 

Let Zt = Xtut. Note that EZt = 0 (because E(ut|Xt) = 0). Suppose Zt is second order 

stationary.  Then 
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Standard approach: Newey-West Standard Errors 

 

 HAC/HAR SEs are generically needed in time series regression. The most 

common method (by far) for computing HAC/HAR SEs is to use the Newey-

West (1987) estimator. 

 Newey-West estimator: declining average of sample autocovariances 

ˆ ˆ1
m

NW

j

j m

j

m

 
    
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where  ˆ
j  = 

1

1 ˆ ˆ
T

t t j

t

Z Z
T





  , where ˆ
tZ  = Xt ˆ

tu . 

 

 Rule-of-thumb for m: m = mT = .75T1/3 (e.g. Stock and Watson, Introduction 

to Econometrics, 3rd edition, equation (15.17). 

o This rule-of-thumb dates to the 1990s. More recent research suggests it 

needs updating – and that, perhaps, the NW weights need to be replaced. 

 

Four examples… 
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Source: “USDA Assesses Freeze Damage of Florida Oranges,” Feb. 1, 2011 at 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/ 

http://blogs.usda.gov/2011/02/01/usda-assesses-freeze-damage-of-florida-oranges/
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Example 1: OJ prices and Freezing degree-days: 

lnPt = α + β(L)FDDt + ut 

 

Example 2: GDP growth and monetary policy shock: 

     lnGDPt  = α + β(L)
m

t   + ut 

 

Example 3: Multiperiod asset returns: 

     ln(Pt+k/Pt)  = α +βXt + 
t l

tu 
, e.g. Xt = dividend yieldt 

 

Example 4: (GMM) Hybrid New Keynesian Phillips Curve: 

   t = xt + fEtt+1 + bt–1 + t 

   where xt = marginal cost/output gap/unemployment gap and  

   πt = inflation. Suppose γb + γf = 1 (empirically supported); then 

   t = xt + f (Ett+1 - t–1) + t 

   Instruments: {t–1, xt–1, t–2, xt–2,…} 

 ηt could be serially correlated by omission of supply shocks  
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Digression: Why not just use GLS? 

 

The path to GLS: suppose ut follows an AR(1)  

Yt = Xtʹβ + ut,  

ut = ρut-1 + εt, εt serially uncorrelated 

 

This suggests Cochrane-Orcutt quasi-differencing: 

(1-ρL)Yt = ((1-ρL)Xt)ʹ + εt or 
ty = 

tx ʹβ + εt 

(Feasible GLS uses an estimate of ρ – not the issue here) 

 

Validity of the quasi-differencing regression requires E(εt| tx ) = 0: 

E(εt| tx ) = E(ut – ρut-1|xt – ρxt-1) = 0 

 

For general ρ, this requires all the cross-terms to be zero: 

(i) E(ut|xt) = E(ut-1|xt-1) =0  

(ii) E(ut|xt-1) =0 

(iii) E(ut-1|xt) =0 – this condition fails in examples 1-4 
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2) Notational Preliminaries: Three Representations, Three Estimators 
 

The challenge: estimate   Ω = j

j





  

 This is hard: the sum has ’s! 

 

 Draw on the literature on estimation of the spectral density to estimate Ω 

 

 Three estimators of the spectral density: 

(1) Sum-of-covariances:   ˆ sc  = 
1

( 1)

ˆ( )
T

T j

j T

k j


 

   

(2) Weighted periodogram:   ˆ wp  = 
1

ˆ ˆ

( 1)

2 ( ) (2 / )
T

T ZZ
l T

K l I l T 


 

  

(3) VARHAC:      ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A    

 

We follow the literature and focus on (1) and (2)   
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(1) Sum-of-covariances estimator of Ω 

 

Ω = j

j





  

 

Because Zt is stationary and Ω exists, j dies off. This suggests and estimator of 

Ω based a weighted average of the first few sample estimators of : 

 

ˆ sc  = 
1

( 1)

ˆ( )
T

T j

j T

k j


 

   

where ˆ
j  = 

1

1 T

t t j

t

Z Z
T





   (throughout, use the convention Zt = 0, t<1 or t > T)  

kT(.) is the weighting function or “kernel”: 

 Example:  kT(j) = 1 – |j/mT| = “triangular weight function” =  “Bartlett kernel” 

= “Newey-West weights” with truncation parameter mT  

 We return to kernel and truncation parameter choice problem below 
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(2) Smoothed periodogram estimator of Ω 

 

The periodogram as an inconsistent estimator of the spectral density: 

 Fourier transform of Zt at frequency ω: dZ(ω) = 
1

1

2

T
i t
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Z e
T









   

 The periodogram is  IZZ(ω) = ( ) ( )Z Zd d    

 

Asymptotically, IZZ(ω) is distributed as SZ(0)(
2

2 /2) (scalar case) 

 

 Mean: 
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= 

2

1

1 1

2

T
i t

t

t

E Z e
T



 

   

= 
1

2

i j

j

j

e 








  = SZ(ω) 
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 Distribution (Brillinger (1981), Priestley (1981), Brockwell and Davis 

(1991)):  

dZ(ω) = 
1

1

2

T
i t

t

t

Z e
T



 

  

 = 
1 1

1 1 1
cos sin

2
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t t

t t

Z t i Z t
T T

 
  

 
 

 
   

= z1 + iz2, say, where z1 and z2 are i.i.d. mean zero normal 

So 

IZZ(ω) = ( ) ( )Z Zd d   = 
2 2

1 2z z   
d

  SZ(ω)(
2

2 /2) 

 

 For ω evaluated at ωj = 2πj/T, j = 0, 1,…, T, dZ(ωj) and dZ(ωk) are 

asymptotically independent (orthogonality of sins and cosines). 

 The weighted periodogram estimator averages the periodogram near 

zero: 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T 

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(3) VAR-HAC estimator of Ω 

Approximate the dynamics of Zt by a vector autoregression:   A(L)Zt = ut 

 

so Zt has the vector MA representation,   Zt = A(L)-1ut 

Thus 

SZ(ω) =    
111

2

i i

uuA e A e 



 
   

so 
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1 11
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uuA A

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This suggests the VAR-HAC estimator (Priestley (1981), Berk (1974); den Haan 

and Levin (1997), 

 

ˆ VARHAC  = 1 1

ˆ ˆ
ˆ ˆˆ(1) (1)uuA A   

 

where ˆ(1)A   and ˆ ˆ
ˆ

uu  are obtained from a VAR estimated using ˆ
tZ . 

 



Revised 1/8/15 4-16 

3) The PSD Problem and Equivalence of Sum-of-Covariance and 

Spectral Density Estimators 

 

Not all estimators of Ω are positive semi-definite – including some natural ones. 

Consider the m-period return problem – so under the null β = 0, ut is a MA(m-1). 

This suggests using a specific sum of covariances estimator: 

   = 
1

( 1)

ˆ
m

j

j m



 

 . 

But   isn’t psd with probability one! Consider m = 2 and the scalar case: 

   = 
1

1

ˆ
j

j




  = 1
0

0

ˆ
ˆ 1 2

ˆ






 
 

 
 < 0 if 1

0

ˆ

ˆ




 = first sample autocorrelation < -0.5 

 

Solutions to the PSD problem 

 Restrict kernel/weight function so that estimator is PSD with probability 

one (standard method) 

 Hybrid, e.g. use   but switch to PSD method if   isn’t psd – won’t pursue 

(not used in empirical work) 
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Choice of kernel so that ˆ sc  is psd w.p.1 

 

Step 1: 

Note that ˆ wp  is psd w.p.1 if the frequency-domain weight function is non-

negative. Recall that ˆ wp  is psd if λʹ ˆ wp λ  0 for all λ. Now 

 

λʹ ˆ wp λ =  
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T   


 

  

= 
1

( 1)

2 ( ) ( ) ( )
T

T Z l Z l

l T

K l d d    


 

  
 

  

= 
1

2

( 1)

2 ( ) ( )
T

T Z l

l T

K l d  
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   0 

with probability 1 if KT(l)  0 for all l. 

 KT(l)  0, all l, is necessary and sufficient for ˆ wp  to be psd 
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Step 2:  ˆ wp  and ˆ sc  are equivalent! 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
T

T ZZ

l T

K l I l T 


 

  

 = 
1

2 / 2 /

( 1) 1 1

1 1
2 ( )

2 2

T T T
i lt T i ls T

T t s

l T t s

K l Z e Z e
T T

 
 




   

  
  
  

    

 = 
1

2 ( )/

( 1) 1 1

1
( )

T T T
i l s t T

T t s

l T t s

K l Z Z e
T




 

   

   

 = 
1 1

2 /

( 1) ( 1) 1

1
( )

T T T
i lj T

T t t j

l T j T t

K l Z Z e
T


 





    

    

 = 
1 1

(2 / )

( 1) 1 ( 1)

1
( )

T T T
i j T l

t t j T

j T t l T

Z Z K l e
T


 





    

    

 = 
1

( 1)

ˆ ( )
T

j T

j T

k j


 

  = ˆ sc , where kT(j) = 
1

(2 / )

( 1)

( )
T

i j T l

T

l T

K l e 




 

  

Result: ˆ sc  is psd w.p.1 if and only if kT is the (inverse) Fourier transform of a 

nonnegative frequency domain weight function KT. Also, kT is real if KT is 

symmetric (then kT(j) =  
1

1
(0) 2 ( )cos (2 / )

T

T Tl
K K l j T l




  ). 
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Kernel and bandwidth choice 

 

The class of estimators here is very large. What is a recommendation for 

empirical work? 

 

Two distinct questions: 

(i) What kernel to use? 

(ii) Given the kernel, what bandwidth to use? 

 

It turns out that problem (ii) is more important in practice than problem (i). 

 

Some final preliminaries 

 Closer look at four kernels: 

o Newey-West (triangular in time domain) 

o Flat in time domain 

o Flat in frequency domain 

o Epinechnikov (Quadratic Spectral) – certain optimality properties 

 Link between time domain and frequency domain kernels 
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Flat kernel in frequency domain 

In general: 

ˆ wp  = 
1

( 1)

2 ( ) (2 / )
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T ZZ
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K l I l T 

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Flat kernel: 
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The time-domain kernel corresponding to the flat frequency-domain kernel is  

kT(j) = 
1

(2 / )

( 1)

( )
T

i j T l

T

l T

K l e 




 

   

= (2 / )1

2 1

T
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B
i j T l

l BT

e
B
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
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= … T    
sin(2 / )

2 /

T

T

j m

j m




 , where mT = T/BT 

 

Important points: 

 mTBT = T: using few periodogram ordinates corresponds to using 

many covariances 

 Flat in frequency domain (which is psd) produces some negative 

weights in the sum-of-covariance kernel 

 

  



Revised 1/8/15 4-22 

Three PSD kernels in pictures 

 

 

Kernel k(x), x = |j|/m K(u), u = |l|/B 

Newey-West 1-|x| if |x|  1  

Parzen 1 – 6x2 + 6|x|3 if |x|<.5 

2(1-|x|)3 if .5 |x|  1 

 

Flat spectral  1 if |u|  1 
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4) Three Approaches to the Bandwidth Problem 

 

As in all nonparametric problems, there is a fundamental tradeoff between bias 

and variance when choosing smoothing parameters. 

 

 In frequency domain: 

ˆ wp  = 2 ( ) (2 / )
B

T ZZ

l B

K l I l T 


  

Larger B decreases variance, but increases bias 

 In time domain: 

ˆ sc  = ˆ( )
m

T j

j m

k j


  

Larger m increases variance, but decreases bias 

 Recall mTBT = T 

 

How should this bias-variance tradeoff be resolved? 
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First generation answer: 

Obtain as good an estimate of Ω as possible (Andrews [1991]) 

 “Good” means: 

o psd with probability 1 

o consistent (HAC) 

o minimize mean squared error:  

MSE(̂) = E(̂  - Ω)2 = bias(̂)2 + var(̂ )  

o This yields a bandwidth mT that increases with, but more slowly than, T  

 Practical issue:  

o if true spectral density is flat in neighborhood of zero, you should include 

many periodogram ordinates (large B); equivalently, if true j’s are small 

for j0 then you should include few ˆ
j ’s 

o But, you don’t know the true spectral density!!  

o So, in practice you can estimate and plug in, or use a rule-of-thumb. 

o The m = .75T1/3
 rule of thumb assumes Xt and ut are AR(1) with 

coefficient 0.5 

 Then use asymptotic chi-squared critical values to evaluate test statistics. 
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Big problem with the first generation answer 

 

 The resulting estimators do a very bad job of controlling size when the errors 

are in fact serially correlated, even with a modest amount of serial correlation  

o den Haan and Levin (1997) provided early complete Monte Carlo 

assessment 

o We will look at MC results later 

 

 Why? The key insight is that the min MSE problem isn’t actually what we 

are interested in – we are actually interested in size control or equivalently 

coverage rates of confidence intervals. 

o For coverage rates of confidence intervals, what matters is not bias2, but 

bias (Velasco & Robinson [2001]; Kiefer & Vogelsang [2002]; Sun, 

Phillips, and Jin (2008)) 

 

 Practical implication: use fewer periodogram ordinates (smaller B) i.e. more 

autocovariances (larger m). 
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Approach #2: Retain consistency, but minimize size distortion 

 

Sketch of asymptotic expansion of size distortion 

for details see Velasco and Robinson (2001), Sun, Phillips, and Jin (2008) 

 

Consider the case of a single X and the null hypothesis β = β0. Then ut = Yt – Xtβ0, 

and Zt = Xtut, so the Wald test statistic is, 

WT = 
 

2
1/2

1

ˆ

T

tT Z




  

The probability of rejection under the null thus is, 

 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 

where c is the asymptotic critical value (3.84 for a 5% test). The size distortion is 

obtained by expanding this probability… 
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First, note that 
1/2

1

T

tT Z

  and ̂  are asymptotically independent. Now 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 = 

 
2

1/2

1
ˆ

Pr

T

tT Z
c

 
 


  
  


 

= 
 

2
1/2

1
ˆ

ˆPr

T

tT Z
E c

  
  

        


 

 
ˆ

E F c
  
  

   

, where F = chi-squared c.d.f 

= 

2
ˆ ˆ1

( ) ( ) ( ) ...
2

E F c cF c cF c
       

       
      

 

so the size distortion approximation is, 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 ( )
( ) ( )

2

bias MSE
cF c cF c

 
 

 
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or 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 + smaller terms 

 

Thus minimizing the size distortion entails minimizing a linear combination of 

bias and variance – not bias2 and variance 
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Approach #3: “Fixed b” asymptotics 

 

 Drop consistency – but use correct critical values that account for additional 

variance (HAR) 

o This decision has a cost – consistency provides first-order asymptotic 

efficiency of tests – but this isn’t worth much if you don’t have size 

control  

 

 Fixed b corresponds in our notation to fixed B (or, equivalently, to m  T) 

o The fixed-b calculations typically use a FCLT approach, see Kiefer-

Vogelsang (2002), Müller (2007), Sun (2013). 

o We will sidestep the FCLT results by using classical results from the 

spectral density estimation literature for the flat kernel in the frequency 

domain. 
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5) Application to Flat Kernel in the Frequency Domain 

 

Consider scalar Xt and flat-kernel in frequency domain: 

ˆ̂
  = ˆ ˆ

2 2

2

B

ZZ
l BT

l
I

B T

 



 
 
 

   = ˆ ˆ

1

2 2B

ZZ
lT

l
I

B T

 



 
 
 

  

 This adjusts the kernel to drop ω = 0 since ˆ ˆ (0)
ZZ

I  = 0 (OLS residuals are 

orthogonal to X)  

 The second equality holds because  

(i) in scalar case, IZZ(ω) = IZZ(-ω), and  

(ii) ˆ ˆ (0)
ZZ

I  = 0 because ˆ (0)
Z

d  = 0 ( ˆ
tu  are OLS residuals) 

 This kernel plays a special historical role in frequency domain estimation. 

 

We now provide explicit results for the three approaches: 

i. Fixed B (this kernel delivers asymptotic t2B inference!) 

ii. Min MSE 

iii. Min size distortion 
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i. Fixed b 

 

 For this kernel, you don’t need to use FCLT approach – the result for its 

fixed-B distribution is very old and is a cornerstone of classical theory of 

frequency domain estimation (e.g. Brillinger (1981)). For Xt, ut stationary, 

with suitable moment conditions, 

(a) 
ˆ̂
  

d

  Ω  
2

2( / 2 )B B , that is,  

ˆ̂
  ~ Ω  

2

2( / 2 )B B  

(b) Moreover 
ˆ̂
  is asymptotically independent of 

1/2

1

T

tT Z

  ~ N(0,Ω)  

 It follows that, for B fixed, the t statistic has an asymptotic t2B distribution: 

  t = 

1/2

1

1/2ˆ

T

tT Z




  

d

  t2B 

 

 This result makes the size/power tradeoff clear – using t2B distribution has 

power loss relative to asymptotically efficient normal inference – but the 

power loss is slight for B  10 (say).  
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Sketch of (a) and (b): 

Consider scalar case, and recall that  ˆ ˆ 0
ZZ

I  = 0 (OLS residuals), so 

(a) Distribution of 
ˆ̂
  with B fixed: 

ˆ̂
  = ˆ ˆ

1

2 2B

ZZ
l

l
I

B T

 



 
 
 

   

~ 
1

2 2B

ZZ l

l

l
S

B T

 




 
 
 

 , where l ~ 
2

2 / 2   

=  
2

1

2 1 2
(0) 0 ...

2

B

ZZ ZZ l

l

l
S S

B T

 




      
  

  

 
1

2
(0)

B

ZZ l

l

S
B






  

= 2πSzz(0) 
2

2( / 2 )B B   

= Ω
2

2( / 2 )B B  

(b) 
ˆ̂
  is independent of 

1/2

1

T

tT Z

 . This follows from the result above that 

dZ(ωl) and dZ(ωk) are asymptotically independent, applied here to dZ(0) (the 

numerator) and dZ at other ωl’s (the denominator) 
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ii. and iii. – Preliminaries for the asymptotic expansions 

Bias 

 ˆ̂
E    = ˆ ˆ

1

2 2
(0)

B

ZZZZ
l

l
E I S

B T

 



  
  

  
  


1

2 2
(0)

B

ZZ ZZ

l

l
S S

B T

 



  
  

  
  

=      
2

1

2 2 1 2
0 0 0 ... (0)

2

B

ZZ ZZ ZZ ZZ

l

l l
S S S S

B T T

  



           
    

  

=      
2

1

2 2 1 2
0 0 0 ... (0)

2

B

ZZ ZZ ZZ ZZ

l

l l
S S S S

B T T

  



           
    

  

Because SZZ(ω) = SZZ(-ω), SZZʹ(0) = 0, and after dividing by Ω, 

 ˆ̂
E     =  

2

1

2 1 2
0 2 (0)

2

B

ZZ ZZ

l

l
S S

B T

 




     
  

  = 

2
1

2

B

d T

 
 
 

  

where d = 
2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 . 
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Variance 

2

ˆ̂
var( )


 = 

2

ˆ ˆ

1

2 2
var

B

ZZ
l

l
I

B T

 



  
  

  
  

  
2

2

2
1

4 2
var 2 (0)

B

ZZ ZZ

l

l
I S

B T

 




  
  
  

  

=

22
2 2

2
1

4 2
4 (0)

B

ZZ ZZ

l

l
S S

B T

 




 
 
 

  = … = 
1

B
 

(keeping only the leading term in the Taylor series expansion). 

 

Summary: relative bias and relative variance: 

2

ˆ̂
var( )


 = 

1

B
   and   

ˆ̂
( )E  


 = 

2
1

2

B

d T

 
 
 

, where d = 
2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 

Special case: Zt is AR(1) with autoregressive parameter α0: 

d = 
2

2

3 (1 )

8



 


  
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ii. Min MSE 

MinB MSE(
ˆ̂
 ) = MinB bias2(

ˆ̂
 ) + var(

ˆ̂
 ) 

= MinB 

2
2

1

2

B

d T

  
  

  

 + 
2

B


 

Solution: 

ˆ( )MinMSE

TB  =  
2/5 4/5d T , where d = 

2

3 (0)

4 (0)

ZZ

ZZ

S

S 
 = 

2

2

3 (1 )

8



 


  

 

iii. Min Size Distortion 

MinB Pr[WT < c] – F(c)  MinB 
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 

Solution (for α > 0): 

1 ˆ( )stOrderSize

TB  = 

1/3

2/3( )

2 ( )

cF c
d T

F c

 
  

 

where c = 3.84 for 5% tests and F is 
2

1   cdf. 
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Optimal HAC Bandwidths for flat spectral kernel: 

Zt AR(1) with parameter α 

 T = 100 T = 800 

Minimize: MSE Size 

distortion 

MSE Size 

distortion 

α B m B m B m B m 
.1 43 5 25 8 131 6 62 13 
.2 30 7 18 11 90 9 45 18 
.3 23 9 14 14 69 12 36 22 
.4 18 11 12 17 54 15 30 27 
.5 14 14 10 21 43 19 25 33 
.6 11 18 8 25 33 24 20 40 
.7 8 24 6 32 25 32 16 51 
.8 6 35 5 44 17 47 11 70 
.9 3 65 3 73 9 85 7 116 

Notes: b = bandwidth in frequency domain, m = lag truncation parameter in 

time domain.  

o The rule-of-thumb m = .75T1/3 corresponds to m = 4 for T = 100 and m = 

7 for T = 800 (however not directly comparable since the rule-of-thumb 

is for the Newey-West kernel). 
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6) Monte Carlo Comparisons 

 

Illustrative results: 

 Design: Xt = 1, ut AR(1)  

 Flat spectral kernel (so that t2B inference is asymptotically valid under fixed-b 

asymptotics) 

 Two bandwidth choices: min MSE and minimize size distortion 

 Bandwidths chosen using plug-in formula based on estimated α (formula 

given above, with ̂  replacing α) 

 Additional MC results: den Haan and Levin (1997), Kiefer and Vogelsang 

(2002), Kiefer, Vogelsang and Bunzel (2000), Sun (2013). 
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7) Panel Data and Clustered Standard Errors 

 

Clustered standard errors are an elegant solution to the HAC/HAR problem in 

panel data. 

 Although the original proofs of clustered SEs used large N and small T 

(Arellano [2003]) in fact they are valid for small N if T is large (Hansen 

[2007], Stock and Watson [2008]), but using t or F (not normal or chi-

squared) inference. 

 The standard fixed effects panel data regression model 

 

Yit = αi + βʹXit + uit, i = 1,…,N, t = 1,…, T, 

 

where E(uit|Xi1,…, XiT, αi) = 0 and  uit is uncorrelated across i but possibly 

serially correlated, with variance that can depend on t; assume i.i.d. over i 

 The discussion here considers the special case Xt = 1– the ideas generalize 
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Clustered SEs with Xt = 1 

 

Yit = αi + β + uit, i = 1,…,N, t = 1,…, T, 

 

The fixed effects (FE) estimator is  

ˆ FE  = 
1 1

1 N T

it

i t

Y
NT  

   

Thus 

ˆ( )FENT    = 
1 1

1 1N T

it

i t

u
N T 

 
 
 

    

 = 
1

1 N

i

i

v
N 

 , vi = 
1

1 T

it

t

u
T 

  

 

For fixed N and large T, vi 

d

  N(0,Ω), i = 1,…, N (i.i.d.). Thus the problem is 

asymptotically equivalent to having N observations on vi, which is i.i.d. N(0,Ω). 
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Xt = 1 case, continued: 

Clustered variance formula:    ˆ cluster   = 
2

1

1
ˆ ˆ( )

N

i

i

v v
N 

 , 
îv  =   

1

1
ˆ

T

it

t

u
T 

  

By standard normal/t arguments: ˆ cluster  
d

  
2

1N

N

 
 = 

2

1 1

1

N N

N N

  



   

and         t = 0
ˆ

ˆ

FE

cluster

 


 

d

  1
1

N

N
t

N



  

 

 Note the complication of the degrees of freedom correction – this is because 

the standard definition of ˆ cluster  has N, not N-1, in the denominator. 

 Extension to multiple X: The F-statistic testing p linear restrictions on β, 

computed using ˆ cluster , is distributed ,p N p

N
F

N p



 

 For N very small, the power loss from tN-1 inference can be large – so for 

very small N it might be better to use HAC/HAR methods, not clustered SEs 

(not much work has been done on this tradeoff, however).  
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8) Summary 

 

 Applications of HAC/HAR methods are generic in time series. GLS is 

typically not justified because it requires strict exogeneity (no feedback from 

u to X) 

 Choice of the bandwidth is critical and reflects a tradeoff between bias and 

variance. 

 The rule-of-thumb m = .75T1/3 uses too few autocovariances (m is too small) 

– overweights variance at the expense of bias 

 However, inference becomes complicated when large m (small B) is used, 

because this increases the variance of ̂ . 

 In general (including for N-W weights), fixed-b inference is complicated and 

requires specialized tables (e.g. Kiefer-Vogelsang inference). 

 However, in the special case of the flat spectral kernel, asymptotically valid 

fixed-B inference is based on t2B. Initial results for size control (and power) 

using this approach are promising. 


