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Abstract

When instruments are weakly correlated with endogenous regressors,

conventional methods for instrumental variables estimation and infer-

ence become unreliable. A large literature in econometrics develops

procedures for detecting weak instruments and constructing robust con-

fidence sets, but many of the results in this literature are limited to

settings with independent and homoskedastic data, while data encoun-

tered in practice frequently violate these assumptions. We review the

literature on weak instruments in linear IV regression with an emphasis

on results for non-homoskedastic (heteroskedastic, serially correlated,

or clustered) data. To assess the practical importance of weak instru-

ments, we also report tabulations and simulations based on a survey of

papers published in the American Economic Review from 2014 to 2018

that use instrumental variables. These results suggest that weak instru-

ments remain an important issue for empirical practice, and that there

are simple steps researchers can take to better handle weak instruments

in applications.
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1. Introduction

In instrumental variables (IV) regression, the instruments are called weak if their correlation

with the endogenous regressors, conditional on any controls, is close to zero. When this

correlation is sufficiently small, conventional approximations to the distribution of two-stage

least squares and other IV estimators are generally unreliable. In particular, IV estimators

can be badly biased, while t-tests may fail to control size and conventional IV confidence

intervals may cover the true parameter value far less often than we intend.

A recognition of this problem has led to a great deal of work on econometric methods

applicable to models with weak instruments. Much of this work, especially early in the

literature, focused on the case where the data are independent and the errors in the reduced

form and first stage regressions are homoskedastic. Homoskedasticity implies that the

variance matrix for the reduced form and first stage regression estimates can be written as

a Kronecker product, which substantially simplifies the analysis of many procedures. As

a result, there are now extensive theoretical results on detection of weak instruments and

construction of identification-robust confidence sets in the homoskedastic case.

More recently, much of the theoretical literature on weak instruments has considered

the more difficult case where the data may be dependent and/or the errors heteroskedastic.

In this setting, which we refer to as the non-homoskedastic case, the variance of the reduced

form and first stage estimates no longer has Kronecker product structure in general, ren-

dering results based on such structure inapplicable. Because homoskedasticity is rarely a

plausible assumption in practice, procedures applicable to the non-homoskedastic case have

substantial practical value.

This survey focuses on the effects of weak instruments in the non-homoskedastic case.

We concentrate on detection of weak instruments and weak-instrument robust inference.

The problem of detection is relevant because weak-instrument robust methods can be more

complicated to use than standard two-stage least squares, so if instruments are plausibly

strong it is convenient to report two-stage least squares estimates and standard errors.

If instruments are weak, on the other hand, then practitioners are advised to use weak-

instrument robust methods for inference, the second topic of this survey. We do not survey

estimation, an area in which less theoretical progress has been made.1

In addition to surveying the theoretical econometrics literature, we examine the role of

weak instruments in empirical practice using a sample of 230 specifications gathered from

17 papers published in the American Economic Review (AER) from 2014-2018 that use

the word “instrument” in their abstract. These papers use a wide variety of instruments

to study a broad range of questions. For example, Hornung (2014) studies the long-term

effects of skilled migration using the settlement patterns of French Hugenots in Prussia,

instrumenting with population losses due to plagues during the Thirty Years’ War. Young

(2014) studies the effect of sectoral growth on total factor productivity, instrumenting with

defense expenditures. Finally, Favara & Imbs (2015) study the effect of bank credit on

housing prices, instrumenting with US bank branching deregulations. For a full list of the

1Two notable exceptions are Hirano & Porter (2015) and I. Andrews & Armstrong (2017).
Hirano & Porter (2015)’s contribution is a negative result: they prove that, if one includes the
possibility that instruments can be arbitrarily weak, then no unbiased estimator of the coefficient of
interest exists without further restrictions. I. Andrews & Armstrong (2017) show, however, that if
one imposes correctly the sign of the first stage regression coefficient then asymptotically unbiased
estimation is possible, and they derive unbiased estimators.
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papers we consider, and additional details, please see the online appendix.

We use this sample for two purposes. The first is to learn what empirical researchers

are actually doing when it comes to detecting and handling weak instruments. The second

is to develop a collection of specifications that we use to assess the importance of weak

instrument issues and the performance of weak instrument methods in data generating

processes reflective of real-world settings.

Figure 1 displays a histogram of first stage F-statistics reported in specifications in

our AER sample with a single endogenous regressor, truncated above at 50 for visibility.

The first stage F-statistic for testing the hypothesis that the instruments are unrelated to

the endogenous regressor is a standard measure of the strength of the instrument. Many

of the first stage F-statistics in our AER sample are in a range that, based on simulations

and theoretical results, raise concerns about weak instruments, including many values less

than 10. This suggests that weak instruments are frequently encountered in practice.
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Figure 1

Distribution of reported first stage F-statistics (and their non-homoskedastic generalizations) in 72
specifications with a single endogenous regressor and first stage F smaller than 50. Total number
of single endogenous regressor specifications reporting F-statistics is 108.

Another noteworthy feature of the data underlying Figure 1 is that 13 of the 16 papers

with a single endogenous regressor reported at least one first stage F-statistic. Evidently and

reassuringly, there is widespread recognition by researchers that one needs to be attentive

to the potential problems caused by weak instruments. This said, our review of these papers

leads us to conclude that there is room for improving current empirical methods.

Specifically, in the leading case with a single endogenous regressor, we recommend that

researchers judge instrument strength based on the effective F-statistic of Montiel Olea &

Pflueger (2013). If there is only a single instrument, we recommend reporting identification-

robust Anderson-Rubin confidence intervals. These are efficient regardless of the strength

of the instruments, and so should be reported regardless of the value of the first stage F.
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Finally, if there are multiple instruments, the literature has not yet converged on a single

procedure, but we recommend choosing from among the several available robust procedures

that are efficient when the instruments are strong.

The paper is organized as follows. Section 2 lays out the instrumental variables model

and notation. Section 3 describes the weak instruments problem. Section 4 reviews meth-

ods for detecting weak instruments, Section 5 reviews weak-instrument robust inference,

and Section 6 concludes with a discussion of open questions in the literature on weak in-

struments. In the online appendix we discuss our AER sample, the details of our simulation

designs, and available Stata implementations of the procedures we discuss in the main text.

2. The Instrumental Variables Model

We study the linear instrumental variables (IV) model with a scalar outcome Yi, a p × 1

vector of potentially endogenous regressors Xi, a k × 1 vector of instrumental variables

Zi, and an r × 1 vector of exogenous regressors Wi. This yields the linear constant effects

instrumental variables model

Yi = X ′iβ +W ′iκ+ εi, 1.

X ′i = Z′iπ +W ′iγ + V ′i , 2.

where E[Ziεi] = 0, E[ZiV
′
i ] = 0, E[Wiεi] = 0, and E[WiV

′
i ] = 0. We are interested in β,

but Xi is potentially endogenous in the sense that we may have E[εiVi] 6= 0. Consequently

we may have E[Xiεi] 6= 0, so regression of Yi on Xi and Wi may yield biased estimates.

This model nests a wide variety of IV specifications encountered in practice. We allow

the possibility that the errors (εi, Vi) are conditionally heteroskedastic given the exogenous

variables (Zi,Wi), so E[(εi, V
′
i )′(εi, V

′
i )|Zi,Wi] may depend on (Zi,Wi). We further allow

the possibility that (Yi, Xi, Zi,Wi) are dependent across i, for example due to clustering or

time-series correlation. Finally, the results we discuss generalize to the case where the data

are non-identically distributed across i, though we do not pursue this extension.

Substituting for Xi in (1), we obtain the equation

Yi = Z′iδ +W ′i τ + Ui 3.

with δ = πβ. In a common abuse of terminology, we will refer to (1) as the structural form,

(2) as the first stage, and (3) as the reduced form (for the older meaning of these terms,

see e.g. Hausman (1983)). We can equivalently express the model as (1)-(2) or as (2)-(3),

since each set of equations is an invertible linear transformation of the other. Likewise, the

errors (Ui, Vi) = (εi + βVi, Vi) are an invertible linear transformation of (εi, Vi).

For ease of exposition we focus primarily on the case with a scalar endogenous regressor

Xi, and so assume p = 1 unless noted otherwise. In our AER sample 211 of the 230

specifications have p = 1, so this appears to be the leading case in practice. Further,

for most of this section we assume that the instruments Zi are orthogonal to the control

variables Wi, and so drop the controls from our notation. We discuss how to handle non-

orthogonal control variables at the end of this section.

In this survey, we focus on estimators and tests that are functions of the reduced form

least squares coefficient δ̂, the first stage least squares coefficient π̂, and matrices that

can be consistently estimated from the first stage and reduced form (e.g. variance and

weighting matrices). Estimators in this class include two-stage least squares, which for
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Q̂ZZ = 1
n

∑
ZiZ

′
i can be written as

β̂2SLS =
(
π̂′Q̂ZZ π̂

)−1
π̂′Q̂ZZ δ̂, 4.

as well as efficient-two-step GMM β̂2SGMM =
(
π̂′Ω̂

(
β̂1
)−1

π̂
)−1

π̂′Ω̂
(
β̂1
)−1

δ̂, for Ω̂(β) an

estimator for the variance of δ̂ − π̂β and β̂1 a first-step estimator. Limited information

maximum likelihood and continuously updated GMM likewise fall into this class.

Under mild regularity conditions (and, in the time-series case, stationarity), (δ̂, π̂) are

consistent and asymptotically normal in the sense that

√
n

(
δ̂ − δ
π̂ − π

)
→d N (0,Σ∗) 5.

for

Σ∗ =

(
Σ∗δδ Σ∗δπ
Σ∗πδ Σ∗ππ

)
=

(
Q−1
ZZ 0

0 Q−1
ZZ

)
Λ∗
(
Q−1
ZZ 0

0 Q−1
ZZ

)
where QZZ = E[ZiZ

′
i] and

Λ∗ = lim
n→∞

V ar

((
1√
n

∑
i

UiZ
′
i,

1√
n

∑
i

ViZ
′
i

)′)
.

Hence, the asymptotic variance of
√
n(δ̂ − δ, π̂ − π) has the usual sandwich form. Under

standard assumptions the sample-analog estimator Q̂ZZ will be consistent for QZZ , and we

can construct consistent estimators Λ̂∗ for Λ∗. These results imply the usual asymptotic

properties for IV estimators. For example, assuming the constant-effect IV model is cor-

rectly specified (so δ = πβ) and π is fixed and nonzero, the delta method together with

(5) implies that
√
n(β̂2SLS − β)→d N

(
0,Σ∗β,2SLS

)
for Σ∗β,2SLS consistently estimable. We

can likewise use (5) to derive the asymptotic distribution for other IV estimators such as

limited information maximum likelihood or two-step and continuously updated GMM.

Homoskedastic and Non-Homoskedastic Cases A central distinction in the literature

on weak instruments, and in the historical literature on IV more broadly, is between what

we term the homoskedastic and non-homoskedastic cases. In the homoskedastic case, we as-

sume that the data (Yi, Xi, Zi,Wi) are iid across i and the errors (Ui, Vi) are homoskedastic,

so E[(Ui, V
′
i )′(Ui, V

′
i )|Zi,Wi] does not depend on (Zi,Wi). Whenever these conditions fail,

whether due to heteroskedasticity or dependence (e.g. clustering or time-series dependence),

we will say we are in the non-homoskedastic case.

Two-stage least squares is efficient in the homoskedastic case but not, in general, in the

non-homoskedastic case. Whether homoskedasticity holds also determines the structure of

Λ∗. Specifically, in the homoskedastic case we can write

Λ∗ = E

[(
U2
i UiVi

UiVi V 2
i

)
⊗
(
ZiZ

′
i

)]
= E

[(
U2
i UiVi

UiVi V 2
i

)]
⊗QZZ

where the first equality follows from the assumption of iid data, while the second follows from

homoskedasticity. Hence, in homoskedastic settings the variance matrix Ω∗ can be written

as the Kronecker product of a 2× 2 matrix that depends on the errors with a k× k matrix
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that depends on the instruments. The matrix Σ∗ inherits the same structure, which as we

note below simplifies a number of calculations. By contrast, in the non-homoskedastic case

Σ∗ does not in general have Kronecker product structure, rendering these simplifications

inapplicable.

Dealing with Control Variables If the controls Wi are not orthogonal to the instruments

Zi, we need to take them into account. In this more general case, let us define (δ̂, π̂)

as the coefficients on Zi from the reduced form and first stage regressions of Yi and Xi,

respectively, on (Zi,Wi). By the Frisch-Waugh theorem these are the same as the coefficients

from regressing Yi and Xi on Z⊥i , the part of Zi orthogonal to Wi. One can likewise derive

estimators for the asymptotic variance matrix Σ∗ in terms of Z⊥i and suitably defined

regression residuals. Such estimators, however, necessarily depend on the assumptions

imposed on the data generating process (for example whether we allow heteroskedasticity,

clustering, or time-series dependence).

A simple way to estimate Σ∗ in practice when there are control variables is to jointly

estimate (δ̂, π̂) in a seemingly unrelated regression with whatever specification one would

otherwise use (including fixed effects, clustering or serial-correlation robust standard errors,

and so on). Appropriate estimates of Σ∗ are then generated automatically by standard

statistical software.

3. The Weak Instruments Problem

Motivated by the asymptotic approximation (5), let us consider the case where the reduced

form and first stage regression coefficients are jointly normal(
δ̂

π̂

)
∼ N

((
δ

π

)
,Σ

)
6.

with Σ = 1
n

Σ∗ known (and, for ease of exposition, full-rank). Effectively, (6) discards the

approximation error in (5) as well as the estimation error in Σ̂∗ to obtain a finite-sample

normal model with known variance. This suppresses any complications arising from non-

normality of the OLS estimates or difficulties with estimating Σ and focuses attention solely

on the weak instruments problem. Correspondingly, results derived in the model (6) will

provide a good approximation to behavior in applications where the normal approximation

to the distribution of (δ̂, π̂) is accurate and Σ is well-estimated. By contrast, in settings

where the normal approximation is problematic or Σ̂ is a poor estimate of Σ, results derived

based on (6) will be less reliable (see Section 6 below, and Young (2018)).

Since the IV model implies that δ = πβ, the IV coefficient is simply the constant of

proportionality between the reduced form coefficient δ and the first stage parameter π. In

the just-identified setting matters simplify further, with the IV coefficient becoming β =

δ/π, and the usual IV estimators, including two-stage least squares and GMM, simplifying

to β̂ = δ̂/π̂. Just-identified specifications with a single endogenous variable constitute a

substantial fraction of the specifications in our AER sample (101 out of 230), highlighting

the importance of this case in practice.

It has long been understood (see e.g. Fieller (1954)) that ratio estimators like β̂ can

behave badly when the denominator is close to zero. The weak instruments problem is sim-

ply the generalization of this issue to potentially multidimensional settings. In particular,

when the first stage coefficient π is close to zero relative to the sampling variability of π̂,
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the normal approximations to the distribution of IV estimates discussed in the last section

may be quite poor. Nelson & Startz (1990a) and Nelson & Startz (1990b) provided early

simulation demonstrations of this issue, while Bound et al. (1995) found similar issues in

simulations based on Angrist & Krueger (1991).

The usual normal approximation to the distribution of β̂ can be derived by linearizing β̂

in (δ̂, π̂). Under this linear approximation, normality of (δ̂, π̂) implies approximate normality

of β̂. This normal approximation fails in settings with weak instruments because β̂ is highly

nonlinear in π̂ when the latter is close to zero. As a result, normality of (δ̂, π̂) does not

imply approximate normality of β̂. Specifically, the IV coefficient β̂ = δ̂/π̂ is distributed as

the ratio of potentially correlated normals, and so is non-normal. If π is large relative to the

standard error of π̂, however, then π̂ falls close to zero with only very low probability and

the nonlinearity of β̂ in (δ̂, π̂) ceases to matter. Hence, we see that non-normality of the

instrumental variables estimator arises when the first stage parameter π is small relative to

its sampling variability. The same issue arises in the overidentified case with p = 1 < k,

where the weak instruments problem arises when the k×1 vector π of first stage coefficients

is close to zero relative to the variance of π̂. Likewise, in the general 1 ≤ p ≤ k case, the

weak instruments problem arises when the k × p matrix π of first stage coefficients is close

to having reduced rank relative to the sampling variability of π̂.

Failure of the Bootstrap A natural suggestion for settings where conventional asymptotic

approximations fail is the bootstrap. Unfortunately, the bootstrap (and its generalizations,

including subsampling and the m-out-of-n bootstrap) do not in general resolve weak in-

struments issues. See D. Andrews & Guggenberger (2009). For intuition, note that we can

view the bootstrap as simulating data based on estimates of the data generating process.

In the model (6), the worst case for identification is π = 0, since in this case β is totally

unidentified. In the normal model (6), however, we never estimate π perfectly, and in par-

ticular estimate π̂ = 0 with probability zero. Hence, the bootstrap incorrectly “thinks” β

is identified with probability one. More broadly, the bootstrap can make systematic errors

in estimating the strength of the instruments, which suggests why it can yield unreliable

results. None of the IV specifications in our AER sample used the bootstrap.

Motivation of the Normal Model The normal model (6) has multiple antecedents. A

number of papers in the early econometric literature on simultaneous equations assumed

fixed instruments and exogenous variables along with normal errors, which leads to the

homoskedastic version of (6), sometimes with Σ unknown (Anderson & Rubin 1949; Sawa

1969; Mariano & Sawa 1972).

More recently, a number of papers in the literature on weak instruments including

Kleibergen (2002), Moreira (2003), D. Andrews et al. (2006), and Moreira & Moreira

(2015) derive results in the normal model (6), sometimes with the additional assumption

that the underlying data are normal. While here we have motivated the normal model

(6) heuristically based on the asymptotic normality (5) of the reduced form and first stage

estimates, this connection is made precise elsewhere in the literature. Staiger & Stock

(1997) show that the normal model (6) arises as an approximation to the distribution

of the scaled reduced form and first stage regression coefficients under weak-instrument

asymptotics where the first stage shrinks at a
√
n rate. As discussed in Staiger & Stock

(1997), these asymptotics are intended to capture situations in which the true value of the

first stage is on the same order as sampling uncertainty in π̂, so issues associated with
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small π cannot be ignored. Finite sample results for the model (6) then translate to weak-

instrument asymptotic results via the continuous mapping theorem. Many other authors

including Kleibergen (2005), D. Andrews et al. (2006), I. Andrews (2016), and I. Andrews

& Armstrong (2017) have built on these results to prove validity for particular procedures

under weak-instrument asymptotics.

More recently D. Andrews & Guggenberger (2015), I. Andrews & Mikusheva (2016),

D. Andrews & Guggenberger (2017), D. Andrews (2018), and D. Andrews et al. (2018a)

have considered asymptotic validity uniformly over values of the first stage parameter π and

distributions for (Ui, Vi,Wi, Zi). These authors show that some, though not all, procedures

derived in the normal model (6) are also uniformly asymptotically valid, in the sense that

e.g. the probability of incorrectly rejecting true null hypotheses converges to the nominal

size uniformly over a large class of data generating processes as the sample size increases.

D. Andrews et al. (2018a) discuss general techniques to establishing uniform asymptotic

validity, but the argument for a given procedure is case-specific. Hence, in this review we

focus on the normal model (6) which unites much of the weak-instruments literature, and

refer readers interested in questions of uniformity to the papers cited above.

Simulated Distribution of t-Statistics While we know from theory that weak instru-

ments can invalidate conventional inference procedures, whether weak instruments are a

problem in a given application is necessarily case-specific. To examine the practical im-

portance of weak instruments in recent applications of instrumental variables methods, we

report simulation results calibrated to our AER sample.

Specifically, we calibrate the normal model (6) to each of the 124 specifications in the

sample for which we can estimate the full variance matrix Σ of the reduced form and first

stage estimates, based either on results reported in the paper or replication files. We drop

four specifications where our estimate of Σ is not positive definite.2 It happens to be the case

that all remaining specifications have only a single endogenous regressor (p = 1). Hence,

our simulation results only address this case. In each specification, we set the first stage

parameter π to the estimate π̂ in the data, and set δ to π̂β̂2SLS , the product of the first stage

with the two-stage least squares estimates. We set Σ equal to the estimated variance matrix

for (δ̂, π̂), maintaining whatever assumptions were used by the original authors (including

the same controls, clustering at the same level, and so on).

In each specification we repeatedly draw first stage and reduced form parameter esti-

mates (δ̂∗, π̂∗) and for each draw calculate the two-stage least squares estimate, along with

the t-statistic for testing the true value of β (that is, the value used to simulate the data).

In the left panels of Figures 2 and 3, we plot the median t-statistic and the frequency

with which nominal 5% two-sided t-tests reject on the vertical axis, and the average of

the effective F-statistic of Montiel Olea & Pflueger (2013), which we introduce in the next

section, on the horizontal axis. This statistic is equivalent to the conventional first stage

F-statistic for testing π = 0 in models with homoskedastic errors, but adds a multiplicative

correction in models with non-homoskedastic errors. For visibility, we limit attention to the

106 out of 124 specifications where there average first stage F-statistic is smaller than 50

(the remaining specifications exhibit behavior very close to those with F-statistics between

2Three of these cases arise due to rounding error in cases where we calculate Σ based on reported
estimates and standard errors, while the last arises from a case with a large number of fixed effects
and a small number of clusters.
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Figure 2

Median of t-statistic for testing true value of β plotted against the average effective F-statistic of
Montiel Olea & Pflueger (2013) in calibrations to AER data, limited to the 106 out of 124

specifications with average F smaller than 50. Just-identified specifications are plotted in black,

while over-identified specifications are in blue. Left panel plots median at parameter values
estimated from AER data, while middle and right panels plot, respectively, the 5th and 95th

percentiles of the median t-statistic under the Bayesian exercise described in the text. Red line
corresponds to a first stage F of 10.
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Figure 3

Rejection probability for nominal 5% two-sided t-tests plotted against the average effective
F-statistic of Montiel Olea & Pflueger (2013) in calibrations to AER data, limited to the 106 out

of 124 specifications with average F smaller than 50. Just-identified specifications are plotted in

black, while over-identified specifications are in blue. Left panel plots size at parameter values
estimated from AER data, while middle and right panels plot, respectively, the 5th and 95th

percentiles of the size under the Bayesian exercise described in the text. Red line corresponds to a

first stage F of 10.

Several points emerge clearly from these results. First, there are a non-trivial number of

specifications with small first stage F-statistics (e.g. below 10, the rule of thumb cutoff for

weak instruments proposed by Staiger & Stock (1997)) in the AER data. Second, even for

specifications with essentially the same first stage F-statistic, the median t-statistic and the

size of nominal 5% t-tests can vary substantially due to other features (for example the true

value β and the matrix Σ). Third, we see that among specifications with a small average F-

statistic, behavior can deviate substantially from what we would predict under conventional
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(strong-instrument) asymptotic approximations. Specifically, conventional approximations

imply that the median t-statistic is zero and 5% t-tests should reject 5% of the time. In

our simulations, by contrast, we see that the median t-statistic sometimes has absolute

value larger than one, while the size of 5% t-tests can exceed 30%. These issues largely

disappear among specifications where the average F-statistic exceeds 10, and in these cases

conventional approximations appear to be fairly accurate.

These results suggest that weak-instrument issues are relevant for modern applications

of instrumental variables methods. It is worth emphasizing that these simulations are

based on the normal model (6) with known variance Σ, so these results arise from the

weak instruments problem alone and not from e.g. non-normality of (δ̂, π̂) or difficulties

estimating the variance matrix Σ.

These results are sensitive to the parameter values considered (indeed, this is the reason

the bootstrap fails). Since we estimate (β, π) with error, it is useful to quantify the uncer-

tainty around our estimates for the median t-statistic and the size of t-tests. To do so, we

adopt a Bayesian approach consistent with the normal model (6), and simulate a posterior

distribution for the median t-statistic and the size of 5% t-tests. Specifically, we calculate

the posterior distribution on (δ, π) after observing (δ̂, π̂) using the normal likelihood from

(6) and a flat prior. We draw values(
δ̃

π̃

)
∼ N

((
δ̂

π̂

)
,Σ

)
for the reduced form and first stage parameters from this posterior, calculate the implied

two-stage least squares coefficient β̃, and repeat our simulations taking (β̃, π̃) to be the

true parameter values (setting the reduced form coefficient to π̃β̃). The middle panels of

Figures 2 and 3 report the 5th percentiles of the median t-statistic and size, respectively,

across draws (β̃, π̃), while the right panels report the 95th percentiles. As these results

suggest, there is considerable uncertainty about the distribution of t-statistics in these

applications. As in our baseline simulations, however, poor performance for conventional

approximations is largely, though not exclusively, limited to specifications where the average

effective F-statistic is smaller than 10.

Finally, it is interesting to consider behavior when we limit attention to the subset of

specifications that are just-identified (i.e. that have k = 1), which are plotted in black in

Figures 2 and 3. Interestingly, when we simulate behavior at parameter estimates from

the AER data in these cases, we find that the largest absolute median t-statistic is 0.06,

while the maximal size for a 5% t-test is just 7.1%. If, on the other hand, we consider

the bounds from our Bayesian approach, the worst-case absolute median t-statistic is 0.9

while the worst-case size for the t-test is over 40%. Hence, t-statistics appear to behave

much better in just-identified specifications when we consider simulations based on the

estimated parameters, but this is no longer the case once we incorporate uncertainty about

the parameter values.

4. Detecting Weak Instruments

The simulation results in the last section suggest that weak instruments may render con-

ventional estimates and tests unreliable in a non-trivial fraction of published specifications.

This raises the question of how to detect weak instruments in applications. A natural initial

suggestion is to test the hypothesis that the first stage is equal to zero, π = 0. As noted
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in Stock & Yogo (2005), however, conventional methods for inference on β are unreliable

not only for π = 0, but also for π in a neighborhood of zero. Hence, we may reject that

π = 0 even when conventional inference procedures are unreliable. To overcome this is-

sue, we need formal procedures for detecting weak instruments, rather than tests for total

non-identification.

Tests for Weak Instruments with Homoskedastic Errors Stock & Yogo (2005) con-

sider the problem of testing for weak instruments in cases with homoskedastic errors. They

begin by formally defining the set of values π they will call weak. They consider two differ-

ent definitions, the first based on the bias of IV estimates relative to OLS and the second

based on the size of Wald- or t-tests. In each case they include a value of π in the weak

instrument set if the worst-case bias or size over all possible values of β exceeds a thresh-

old (they phrase this result in terms of the correlation between the errors ε and V in (1)

and (2), but for Σ known this is equivalent). They then develop formal tests for the null

hypothesis that the instruments are weak (that is, that π lies in the weak instrument set),

where rejection allows one to conclude that the instruments are strong.

In settings with a single endogenous regressor, Stock & Yogo (2005)’s tests are based

on the first stage F-statistic. Their critical values for this statistic depend on the number of

instruments, and tables are available in Stock & Yogo (2005). If we define the instruments

as weak when the worst-case bias of two-stage least squares exceeds 10% of the worst case

bias of OLS, the results of Stock and Yogo show that for between 3 and 30 instruments the

appropriate critical value for a 5% test of the null of weak instruments ranges from 9 to

11.52, and so is always close to the Staiger & Stock (1997) rule of thumb cutoff of 10. By

contrast, if we define the instruments as weak when the worst-case size of a nominal 5%

t-test based on two-stage least squares exceeds 15%, then the critical value depends strongly

on the number of instruments, and is equal to 8.96 in cases with a single instrument but

rises to 44.78 in cases with 30 instruments.

Stock & Yogo (2005) also consider settings with multiple endogenous variables. For

such cases they develop critical values for use with the Cragg & Donald (1993) statistic for

testing the hypothesis that π has reduced rank. Building on these results, Sanderson &

Windmeijer (2016) consider tests for whether the instruments are weak for the purposes of

estimation and inference on one of multiple endogenous variables.

Tests for Weak Instruments with Non-Homoskedastic Errors The results of Stock

& Yogo (2005) rely heavily on the assumption of homoskedasticity. As discussed above, in

homoskedastic settings the variance matrix Σ for (δ̂, π̂) can be written as the Kronecker

product of a 2 × 2 matrix with a k × k matrix, which Stock & Yogo (2005) use to obtain

their results. As noted in Section 2, by contrast, Σ does not in general have Kronecker

product structure in non-homoskedastic settings, and the tests of Stock & Yogo (2005)

do not apply. Specifically, in the non-homoskedastic case the homoskedastic first stage F-

statistic is inapplicable, and should not be compared to the Stock & Yogo (2005) critical

values (Montiel Olea & Pflueger 2013).

Despite the inapplicability of Stock & Yogo (2005)’s results, F-statistics are frequently

reported in non-homoskedastic settings with multiple instruments. In such cases, some

authors report non-homoskedasticity-robust F-statistics

FR =
1

k
π̂′Σ̂−1

ππ π̂, 7.
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for Σ̂ππ an estimator for the variance of π̂, while others report traditional, non-robust

F-statistics

FN =
1

k
π̂′Σ̂−1

ππ,N π̂ =
n

kσ̂2
V

π̂′Q̂ZZ π̂ 8.

for Σ̂ππ,N =
σ̂2
V
n
Q̂−1
ZZ and σ̂2

V an estimator for E[V 2
i ]. In our AER data, for instance, none of

the 52 specifications that both have multiple instruments and report first stage F-statistics

assume homoskedasticity to calculate standard errors for β̂, but at least six report F-

statistics do assume homoskedasticity (we are unable to determine the exact count because

most authors do not explicitly describe how they calculate F-statistics, and not all papers

provide replication data). To illustrate, the left panel of Figure 4 plots the distribution

of F-statistics reported in papers in our AER sample, broken down by the method (robust

or non-robust) used, when we can determine this. Given the mix of methods, we use “F-

statistic” as a generic term to refer both to formal first stage F-statistics FN (which assume

homoskedasticity and single endogenous regressor) and to generalizations of F-statistics to

non-homoskedastic settings, cases with multiple endogenous regressors, and so on.
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Figure 4

Distribution of reported first stage F-statistics (and their non-homoskedastic generalizations) in 72
specifications with a single endogenous regressor and first stage F smaller than 50. 36 other

specifications (not shown) have a single endogenous regressor but first stage F-statistic larger than

50. Left panel decomposes by statistic computed (either non-robust F-statistic FN , robust
F-statistic FR, or unknown). Note that in settings with a single endogenous regressor, the

Kleibergen-Paap F-statistic reduces to the robust F-statistic, so we categorize papers reporting

this statistic accordingly. Right panel decomposes by label used by authors in text (either
Kleibergen-Paap or not explicitly discussed).

Use of F-statistics in non-homoskedastic settings is built into common statistical soft-

ware. When run without assuming homoskedastic errors the popular ivreg2 command in

Stata automatically reports the Kleibergen & Paap (2007) Wald statistic for testing that

π has reduced rank along with critical values based on Stock & Yogo (2005) (Baum et al.

2007), though the output warns users about Stock & Yogo (2005)’s homoskedasticity as-

sumption. In settings with a single endogenous variable the Kleibergen & Paap (2007) Wald

statistic is equivalent to a non-homoskedasticity-robust F-statistic FR for testing π = 0,

while in settings with multiple endogenous regressors it is a robust analog of the Cragg &

Donald (1993) statistic. Interestingly, despite the equivalence of Kleibergen-Paap statistics

and robust F-statistics in settings with a single endogenous variable, the distribution of

published F-statistics appears to differ depending on what label the authors use. In partic-
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ular, as shown in the right panel of Figure 4, published F-statistics labeled by authors as

Kleibergen-Paap statistics tend to be smaller.

We are unaware of theoretical justification for the use of either FN or FR to gauge

instrument strength in non-homoskedastic settings. As an alternative, Montiel Olea &

Pflueger (2013) propose a test for weak instruments based the effective first stage F-statistic

FEff =
π̂′Σ̂−1

N,πππ̂

tr(Σ̂ππQ̂ZZ)
=
tr(Σ̂ππ,N Q̂ZZ)

tr(Σ̂ππQ̂ZZ)
FN =

kσ̂2
V

tr(Σ̂∗ππQ̂ZZ)
FN . 9.

In cases with homoskedastic errors FEff reduces to FN , while in cases with non-

homoskedastic errors it adds a multiplicative correction that depends on the robust variance

estimate. Likewise, in the just-identified case FEff reduces the FR (and so also coincides

with the Kleibergen & Paap (2007) Wald statistic), while in the non-homoskedastic case it

weights π̂ by Q̂ZZ rather than Σ̂−1
ππ .

The expressions for the two-stage least squares estimator in (4), FR in (7), FN in (8),

and FEff in (9) provide some intuition for why FEff is an appropriate statistic for testing

instrument strength when using two-stage least squares in the non-homoskedastic case while

FR and FN are not. Two-stage least squares behaves badly when its denominator, π̂′Q̂ZZ π̂,

is close to zero. The statistic FN measures this same object but, because it is non-robust, it

“gets the standard error wrong” and so does not have a noncentral F distribution as in Stock

& Yogo (2005). Indeed, in the non-homoskedastic case FN can be extremely large with high

probability even when π′QZZπ is small. By contrast, the statistic FR measures the wrong

population object, π′Σ−1
πππ rather than π′Q−1

ZZπ, so while it has a noncentral F distribution

its noncentrality parameter does not correspond to the distribution of β̂2SLS .3 Finally, FEff

measures the right object and “gets the standard errors right on average.” More precisely,

FEff is distributed as a weighted average of noncentral χ2 variables where the weights,

given by the eigenvalues of Σ̂
1
2
ππQ̂ZZΣ̂

1
2
ππ/tr(Σ̂ππQ̂ZZ), are positive and sum to one. Montiel

Olea & Pflueger (2013) show that the distribution of FEff can be approximated by a non-

central χ2 distribution, and formulate tests for weak instruments as defined based on the

Nagar (1959) approximation to the bias of two-stage least squares and limited information

maximum likelihood. Their test rejects when the effective F-statistic exceeds a critical

value. Note, however, that their argument is specific to two-stage least squares and limited

information maximum likelihood, so if one were to use a different estimator, a different test

would be needed.

For k = 1, Σππ, Σππ,N , and QZZ are all scalar, and FR = FEff . Both statistics

have a noncentral F distribution with the same noncentrality parameter that governs the

3The inapplicability of FR and FN in the non-homoskedastic case is illustrated by the following
example, which builds on an example in Montiel Olea & Pflueger (2013). Let k = 2, QZZ = I2,
and

Σππ = E

[(
U2
i UiVi

UiVi V 2
i

)]
⊗
(
ω2 0
0 ω−2

)
.

Under weak instrument asymptotics with π = C/
√
n for C fixed with both elements nonzero, as

ω2 → ∞ one can show that the distribution of the two-stage least squares estimate is centered
around the probability limit of ordinary least squares, which is what we expect in the fully uniden-
tified case. Hence, from the perspective of two-stage least squares the instruments are irrelevant
asymptotically. At the same time, both FN and FR diverge to infinity, and so will indicate that the
instruments are strong with probability one. By contrast, FEff converges to a χ2

1 and so correctly
reflects that the instruments are weak for the purposes of two-stage least squares estimation.
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distribution of the IV estimator. Thus, in settings with k = 1, FR = FEff can be used with

the Stock & Yogo (2005) critical values based on t-test size (the mean of the IV estimate

does not exist when k = 1).

For k > 1, as noted above the theoretical results of Montiel Olea & Pflueger (2013)

formally concern only the Nagar (1959) approximation to the bias. Our simulations based

on the AER data reported in the last section suggest, however, that effective F-statistics

may convey useful information about instrument strength more broadly, since we saw that

conventional asymptotic approximations appeared reasonable in specifications where the

average effective F-statistic exceeded 10. This is solely an empirical observation about a

particular dataset, but a study of why this is the case in these data, and whether this finding

generalizes to a broader range of empirically-relevant settings, is an interesting question for

future research.

The main conclusion from this section is that FEff , not FR or FN , is the preferred

statistic for detecting weak instruments in over-identified, non-homoskedastic settings with

one endogenous variable where one uses two-stage least squares or limited information

maximum likelihood.4 FEff can be compared to Stock & Yogo (2005) critical values for

k = 1 and to Montiel Olea & Pflueger (2013) critical values for k > 1, or to the rule-of-

thumb value of 10. It appears that none of the papers in our AER sample computed FEff

(except for the k = 1 case where it equals FR), but we hope to see the wider use of this

statistic in the future.

4.1. Screening on the first stage F-Statistic

Given a method for detecting weak instruments, there is a question of what to do if we

decide the instruments are weak. Anecdotal evidence and our AER data suggest that in

some instances, researchers or journals may decide that specifications with small first stage

F-statistics should not be published. Specifically, Figure 1 shows many specifications just

above the Staiger & Stock (1997) rule of thumb cutoff of 10, consistent with selection

favoring F-statistics above this threshold.

It is important to note that Figure 1 limits attention to specifications where the original

authors report first stage F-statistics, and uses the F-statistics as reported by the authors.

By contrast, in our simulation results we calculate effective F-statistics for all specifications

in our simulation sample (i.e. where we can obtain a full-rank estimate of the variance

matrix Σ), including in specifications where the authors do not report F-statistics, and

match the assumptions used to calculate F-statistics to those used to calculate standard

errors on β̂. So, for example, in a paper that assumed homoskedastic errors to calcu-

late F-statistics, but non-homoskedastic errors to calculate standard errors on β̂, we use

a non-homoskedasticity-robust estimator Σ̂ππ to compute the effective F-statistic in our

simulations, but report the homoskedastic F-statistic FN in Figure 1. We do this because

the F-statistic reported by the original authors seems the relevant one when thinking about

selection on F-statistics.

While selection on first stage F-statistics is intuitively reasonable, it can unfortunately

result in bias in published estimates and size distortions in published tests. This point was

made early in the weak instruments literature by Nelson et al. (1998), and relates to issues

4Unfortunately, we are unaware of an analog of the Montiel Olea & Pflueger (2013) approach
for settings with multiple endogenous variables.
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of pretesting and publication bias more generally. To illustrate the impact of these issues,

we consider simulations calibrated to our AER data in which we drop all simulation draws

where the effective F-statistic is smaller than 10. Figure 5 plots the size of nominal 5%

t-tests in this setting against the average effective F-statistic (where the average effective

F-statistic is calculated over all simulation draws, not just those with FEff > 10).
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Figure 5

Rejection probability for nominal 5% two-sided t-tests after screening on FEff > 10, plotted
against the average effective F-statistic in calibrations to AER data. Limited to the 106 out of 124

specifications with average effective F smaller than 50. Just-identified specifications are plotted in

black, while over-identified specifications are in blue. Left panel plots size at parameter values
estimated from AER data, while middle and right panels plot, respectively, the 5th and 95th

percentiles of the size under the Bayesian exercise described in Section 3. Red line corresponds to

a first stage F of 10.

The results in Figure 5 highlight that screening on the F-statistics can dramatically

increase size distortions. This is apparent even in simulations based on reported parameter

estimates (shown in the left panel), where the maximal size exceeds 70%, as compared to a

maximal size of less than 35% for t-tests without screening on the F-statistic. Matters look

still worse when considering the upper bound for size (shown in the right panel), where many

specifications have size close to one. Hence, screening on the first stage F-statistic appears

to compound, rather than reduce, inferential problems arising from weak instruments. This

problem is not specific to the effective F-statistic FEff , and also appears if we screen on

FN or FR. Likewise, if we move the threshold from 10 to some other value, we continue to

see size distortions in a neighborhood of the new threshold.

If we are confident our instruments are valid, but are concerned they may be weak,

screening on F-statistics is unappealing for another reason: it unnecessarily eliminates

specifications of potential economic interest. In particular, as we discuss in the next section

a variety of procedures for identification-robust inference on β have been developed in the

literature. By using these procedures we may gain insight from the data even in settings

where the instruments are weak. Hence, weak instruments alone are not a reason to discard

applications.

5. Inference with Weak Instruments

The literature on weak instruments has developed a variety of tests and confidence sets that

remain valid whether or not the instruments are weak, in the sense that their probability

of incorrectly rejecting the null hypothesis and covering the true parameter value, respec-
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tively, remains well-controlled. Since instrumental variables estimates are non-normally

distributed when the instruments are weak, these procedures do not rely on point estimates

and standard errors but instead use test inversion.

The idea of test inversion is that if we are able to construct a size-α test of the hypothesis

H0 : β = β0 for any value β0, then we can construct a level 1 − α confidence set for β

by collecting the set of non-rejected values. Formally, let us represent a generic test of

H0 : β = β0 by φ(β0), where we write φ(β0) = 1 if the test rejects and φ(β0) = 0 otherwise.

We say that φ(β0) is a size-α test of H0 : β = β0 in the normal model (6) if

sup
π

Eβ0,π [φ(β0)] ≤ α,

so the maximal probability of rejecting the null hypothesis, assuming the null is true, is

bounded above by α no matter the value of π. If φ(β0) is a size-α test of H0 : β = β0 for

all values β0 then CS = {β : φ(β) = 0} , the set of values not rejected by φ, is a level 1− α
confidence set

inf
β,π

Prβ,π {β ∈ CS} ≥ 1− α. 10.

In practice, we can implement test inversion by taking a grid of potential values β, evaluating

the test φ at all values in the grid, and approximating our confidence set by the set of non-

rejected values.

When the instruments can be arbitrarily weak, correct coverage (10) turns out to be

a demanding requirement. Specifically, the results of Gleser & Hwang (1987) and Dufour

(1997) imply that in the normal model (6) without restrictions on (β, π) any level 1 − α
confidence set for β must have infinite length with positive probability. For intuition,

consider the case in which π = 0, so β is unidentified. In this case, the data are entirely

uninformative about β, and to ensure coverage 1− α a confidence set CS must cover each

point in the parameter space with at least this probability, which is impossible if CS is

always bounded. That the confidence set must be infinite with positive probability for all

(β, π) then follows from the fact that the normal distribution has full support. Hence,

if the event {CS infinite length} has positive probability under π = 0, the same is true

under all (β, π). This immediately confirms that we cannot obtain correct coverage under

weak instruments by adjusting our (finite) standard errors, and so points to the need for a

different approach such as test inversion.

To fix ideas we first discuss test inversion based on the Anderson-Rubin (AR) statistic,

which turns out be efficient in just-identified models with a single instrument. We then turn

to alternative procedures developed for over-identified models and inference on subsets

of parameters. Finally, we discuss the effect of choosing between robust and non-robust

procedures based on a pre-test for instrument strength. Since we base our discussion on the

OLS estimates (δ̂, π̂), the procedures we discuss here can be viewed as minimum-distance

identification-robust procedures as in Magnusson (2010).

5.1. Inference for Just-Identified Models: the Anderson-Rubin Test

Test inversion offers a route forward in models with weak instruments because the IV model

with parameter β implies testable restrictions on the distribution of the data regardless of

the strength of the instruments. Specifically, the IV model implies that δ = πβ. Hence,

under a given null hypothesis H0 : β = β0 we know that δ − πβ0 = 0, and hence that

g(β0) = δ̂ − π̂β0 ∼ N(0,Ω(β0)) for Ω(β0) = Σδδ − β(Σδπ + Σπδ) + β2Σππ
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where Σδδ, Σππ, and Σδπ denote the variance of δ̂, the variance of π̂, and their co-

variance, respectively. Hence the AR statistic (Anderson & Rubin 1949), defined as

AR(β) = g(β)′Ω(β)−1g(β), follows a χ2
k distribution under H0 : β = β0 no matter the

value of π. Note that Anderson & Rubin (1949) considered the case with homoskedastic

normal errors, so the AR statistic as we define it here is formally a generalization of their

statistic that allows for non-homoskedastic errors.

Using the AR statistic, we can form an AR test of H0 : β = β0 as φAR(β0) =

1
{
AR(β0) > χ2

k,1−α
}

for χ2
k,1−α the 1 − α quantile of a χ2

k distribution. As noted by

Staiger & Stock (1997) this yields a size-α test that is robust to weak instruments. Hence,

if we were to re-compute Figure 3 for the AR test, the size would be flat at 5% for all

specifications. We can thus form a level 1−α weak-instrument-robust confidence set CSAR
by collecting the non-rejected values. In the case with homoskedastic errors (or with non-

homoskedastic errors but a single instrument) as noted by e.g. Mikusheva (2010) one can

derive the bounds of CSAR analytically, avoiding the need for numerical test inversion.

Since AR confidence sets have correct coverage regardless of the strength of the instru-

ments, we know from Gleser & Hwang (1987) and Dufour (1997) that they have infinite

length with positive probability. Specifically, as discussed in Dufour & Taamouti (2005) and

Mikusheva (2010) CSAR can take one of three forms in settings with a single instrument:

(i) a bounded interval [a, b], (ii) the real line (−∞,∞), and (iii) the real line excluding an

interval (−∞, a] ∪ [b,∞). In settings with more than one instrument but homoskedastic

errors, the AR confidence set can take the same three forms, or may be empty. These

behaviors are counter-intuitive, but have simple explanations.

First, as noted by Kleibergen (2007), as |β| → ∞, AR(β) converges to the Wald statistic

for testing that π = 0 (equal to k times the robust first stage F-statistic). Hence, the level-α

AR confidence set has infinite length if and only if a robust F-test cannot reject that π = 0,

and thus that β is totally unidentified. Thus, infinite-length confidence sets arise exactly in

those cases where the data do not allow us to conclude that β is identified at all.

Second, CSAR may be empty only in the over-identified setting. In this case, the AR

approach tests that δ = πβ0, which could fail either because δ = πβ for β 6= β0, or because

there exists no value β such that δ = πβ. In the latter case the over-identifying restrictions

of the IV model fail. Hence, the AR test has power against both violations of our parametric

hypothesis of interest and violations of the IV model’s overidentifying restrictions, and an

empty AR confidence set can be interpreted as a rejection of the overidentifying restrictions.

The overidentifying restrictions could fail due either to invalidity of the instruments or to

treatment effect heterogeneity as in Imbens & Angrist (1994), but either way imply that

the constant-effect IV model is misspecified.

The power of Anderson-Rubin tests against violations of the IV model’s overidentifying

restrictions means that if we care only about power for testing the parametric restriction

H0 : β = β0, AR tests and confidence sets can be inefficient. In particular, in the strongly-

identified case with ‖π‖ large one can show that the usual Wald statistic (β̂ − β0)2/σ̂2
β̂

is

approximately noncentral-χ2
1 distributed with the same noncentrality as AR(β0), so tests

based on the Wald statistic (or equivalently, two-sided t-tests) have higher power than tests

based on AR. Strong identification is important for this result. Chernozhukov et al. (2009)

show that the AR test is admissible (i.e. not dominated by any other test) in settings with

homoskedastic errors and weak instruments.

www.annualreviews.org • Weak Instruments 17



Efficiency of AR in Just-Identified Models In just-identified models there are no overi-

dentifying restrictions and the AR test has power only against violations of the parametric

hypothesis. In this setting, Moreira (2009) shows that the AR test is uniformly most pow-

erful unbiased. We say that a size-α test φ is unbiased if Eβ,π [φ(β0)] ≥ α for all β 6= β0 and

all π, so the rejection probability when the null hypothesis is violated is at least as high as

the rejection probability when the null is correct. The Anderson-Rubin test is unbiased, and

Moreira (2009) shows that for any other size-α unbiased test φ, Eβ,π [φAR(β0)− φ(β0)] ≥ 0

for all β 6= β0 and all π. Hence, the AR test has (weakly) higher power than any other size-α

unbiased test no matter the true value of the parameters. In the strongly-identified case

the AR test is asymptotically efficient in the usual sense, and so does not sacrifice power

relative to the conventional t-test.

Practical Performance of AR Confidence Sets Since Anderson-Rubin confidence sets

are robust to weak identification and are efficient in the just-identified case, there is a

strong case for using these procedures in just-identified settings. To examine the practical

impact of using AR confidence sets, we return to our AER dataset, limiting attention to

just-identified specifications with a single endogenous variable where we can estimate the

joint variance-covariance matrix of (π̂, δ̂). In the sample of 34 specifications meeting these

requirements, we find that AR confidence sets are quite similar to t-statistic confidence sets

in some cases, but are longer in others. Specifically, in two specifications the first stage

is not distinguishable from zero at the 5% level so AR confidence sets are infinite. In the

remaining 32 specifications AR confidence sets are 56.5% longer than t-statistic confidence

sets on average, though this difference drops to 20.3% if we limit attention to specifications

that report a first stage F-statistic larger than 10, and to 0.04% if we limit attention to

specifications that report a first stage F-statistic larger than 50. Complete results are

reported in Section D of the online appendix.

5.2. Tests for Over-Identified Models

In contrast to the just-identified case, in over-identified settings the AR test is robust but

inefficient under strong identification. This has led to a large literature seeking procedures

that perform better in over-identified models.

Towards this end, note that in the normal model (6) the Anderson-Rubin statistic for

testing H0 : β = β0 depends on the data only through g(β0) = δ̂ − π̂β0. To construct

procedures that perform as well as the t-test in the strongly-identified case, it is valuable

to incorporate information from π̂, which is informative about which deviations of δ − πβ0
from zero correspond to violations of the parametric restrictions of the model, rather than

the overidentifying restrictions. Specifically, under alternative parameter value β, δ̂− π̂β0 ∼
N(π(β − β0),Ω(β0)). See I. Andrews (2016) for discussion. Hence, to construct procedures

that perform as well as the t-test in well-identified, over-identified cases, a number of authors

have considered test statistics that that depend on (δ̂, π̂) through more than δ̂ − π̂β0.

Once we seek to construct weak-instrument-robust tests that depend on the data

through more than g(β0), however, we encounter an immediate problem: even under the

null H0 : β = β0, the distribution of (δ̂, π̂) depends on the (unknown) first stage parameter

π. Hence, for a generic test statistic s(β0) that depends on (δ̂, π̂), the distribution of s(β0)

under the null will typically depend on π. For example, if we take s(β0) to be the absolute

t-statistic |β̂ − β0|/σ̂β̂ , we know that the distribution of t-statistics under the null depends
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on the strength of the instruments. One could in principle find the largest possible 1-α

quantile for s(β0) over the null consistent with some set of values for π, for example an

initial confidence set as in the Bonferroni approach of Staiger & Stock (1997). For many

statistics s(β0), however, this requires extensive simulation and will be computationally

intractable, and moreover typically entails a loss of power.

An alternative approach eliminates dependence on π through conditioning. Specifically,

under H0 : β = β0(
g(β0)

π̂

)
∼ N

((
0

π

)
,

(
Ω (β0) Σδπ − Σππβ0

Σπδ − Σππβ0 Σππ

))
.

Thus, if we define

D(β) = π̂ − (Σπδ − Σππβ) Ω(β)−1g(β),

we see that (g(β), D(β)) is a one-to-one transformation of (δ̂, π̂), and under H0 : β = β0(
g(β0)

D(β0)

)
∼ N

((
0

π

)
,

(
Ω (β0) 0

0 Ψ(β0)

))
for Ψ(β0) = Σππ − (Σπδ − Σππβ0) Ω (β0)−1 (Σδπ − Σππβ0). Thus, under the null the nui-

sance parameter π enters the distribution of the data only through the statistic D(β0),

while g(β0) is independent of D(β0) and has a known distribution. Hence, the conditional

distribution of g(β0) (and thus of (δ̂, π̂)) given D(β0) doesn’t depend on π. This condition-

ing approach was initially introduced to the weak-instruments literature by Moreira (2003),

who studied the homoskedastic case. In settings with homoskedastic errors g(β0) and D(β0)

are transformations of the statistics S and T introduced by Moreira (2003) – see I. Andrews

& Mikusheva (2016).

We can simulate the conditional distribution of any statistic s(β0) given D(β0) under

the null by drawing g(β0)∗ ∼ N(0,Ω(β0)), constructing (δ̂∗, π̂∗) as(
δ̂∗

π̂∗

)
=

(
I + β0 (Σπδ − Σππβ0) Ω (β0)−1 β0I

(Σπδ − Σππβ0) Ω (β0)−1 I

)(
g (β0)∗

D (β0)

)
for given D (β0) , and tabulating the resulting distribution of s∗(β0) calculated based on

(δ̂∗, π̂∗). If we denote the conditional 1− α quantile as cα(D(β0)), we can then construct a

conditional test based on s as φs = 1 {s(β0) > cα(D(β0))} , and provided s(β0) is continu-

ously distributed conditional on D(β0) this test has rejection probability exactly α under

the null, Eβ0,π [φs(β0)] = α for all π, while if the conditional distribution of s(β0) has

point masses the test has size less than or equal to α. As noted by Moreira (2003) for the

homoskedastic case, this allows us to construct a size-α test based on any test statistic s.

For further discussion of the simulation approach described above and a formal size control

result applicable to the non-homoskedastic case, see I. Andrews & Mikusheva (2016).

Tests which have rejection probability exactly α for all parameter values consistent with

the null are said to be similar. Theorem 4.3 of Lehmann & Romano (2005) implies that if the

set of values of π is unrestricted then all similar size-α tests of H0 : β = β0 are conditional

tests in the sense that their conditional rejection probability given D(β0) under the null is

equal to α. Moreover, in the present setting the power functions for all tests are continuous,

so if the set of values (β, π) is unrestricted then all unbiased tests are necessarily similar.

Thus, the class of conditional tests nests the class of unbiased tests. Together, these results
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show that in cases where (β, π) is unrestricted, the class of conditional tests has attractive

properties. Within this class, however, there remains a question of what test statistics

s(β0) to use. In the homoskedastic case we recommend using the likelihood ratio statistic

as proposed by Moreira (2003). In the non-homoskedastic case, however, the literature has

not yet converged on a recommendation, other than to use one of several procedures that

is efficient under strong instruments.

Tests for Homoskedastic Case A wide variety of test statistics have been proposed in the

literature. Kleibergen (2002) proves that a particular score statistic (Breusch & Pagan 1980)

has correct size in the model with homoskedastic errors, while in the same model Moreira

(2003) proposes the general conditioning approach for homoskedastic models and notes that

both the AR test and Kleibergen (2002)’s score test are conditional tests (trivially, since

their conditional critical values do not depend on D(β0)). Moreira (2003) further proposes

conditional Wald and likelihood ratio tests, based on comparing the Wald and likelihood

ratio statistics to a conditional critical value. Unlike AR, both the score and likelihood

ratio statistics depends on both (δ̂, π̂), and conditional tests based on these statistics are

efficient in the well-identified case.

D. Andrews et al. (2006) find that the conditional likelihood ratio (CLR) test of Moreira

(2003) has very good power properties in the homoskedastic case with a single endogenous

variable. The Kronecker product structure of the variance matrix Σ in this setting means

that the problem is unchanged by linear transformations of the instruments. It is therefore

natural to limit attention to tests that are likewise invariant, in the sense that their value

is unchanged by linear transformations of the instruments. D. Andrews et al. (2006) show,

however, that the power of such invariant tests depends only on the correlation between the

errors (U, V ), the (variance-normalized) length of the first stage π, and the true parameter

value β. Imposing an additional form of invariance to limit attention to two-sided tests, D.

Andrews et al. (2006) show numerically that the CLR test has power close to the upper

bound for the power of any invariant similar test over a wide range of parameter values,

where the calculation is made feasible by the low dimension of the invariant parameter

space. D. Andrews et al. (2008) extend this result by showing that the power envelope

for invariant non-similar tests is close to that for invariant similar tests, and thus that (a)

there is not a substantial power cost to imposing similarity in the homoskedastic setting

if one limits attention to invariant tests, and (b) that the CLR test performs well even

in comparison to non-similar tests. Building on these results, Mikusheva (2010) proves a

near-optimality property for CLR confidence sets. D. Andrews et al. (2018b) add a note of

caution, showing that there exist parameter values not explored by D. Andrews et al. (2006)

where the power of the CLR test is further from the power envelope, but still recommend

the CLR test for the homoskedastic, single endogenous regressor setting.

Tests for Non-Homoskedastic Case The simplifications obtained using Kronecker struc-

ture of Σ are no longer available in the non-homoskedastic case, introducing substantial

complications.

Motivated by the positive results for the CLR test, a number of authors have explored

analogs and generalizations of the CLR test for non-homoskedastic settings. The working

paper version of D. Andrews et al. (2006), D. Andrews et al. (2004), introduces a version

of the CLR test applicable to the non-homoskedastic case, while Kleibergen (2005) intro-

duces the conditioning statistic D(β0) for the non-homoskedastic case and developed score
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and quasi-CLR statistics applicable in this setting. D. Andrews & Guggenberger (2015)

introduce two alternative quasi-CLR tests for non-homoskedastic settings that allow a sin-

gular covariance matrix Σ. I. Andrews (2016) studies tests based on linear combinations of

AR and score statistics, noting that the CLR test can be expressed in this way. Finally,

Moreira & Moreira (2015) and I. Andrews & Mikusheva (2016) introduce a direct general-

ization of the CLR test to settings with non-homoskedastic errors, which again compares

the likelihood ratio statistic to a conditional critical value.

All of these extensions of the CLR test are efficient under strong identification, and all

but the proposal of I. Andrews (2016) reduce to the CLR test of Moreira (2003) in the

homoskedastic, single endogenous variable setting where the results of D. Andrews et al.

(2006) apply. At the same time, however, while these generalizations are intended for the

non-homoskedastic case, evidence on their performance in the weakly identified case has

largely been limited to simulation results.

To derive tests with provable optimality properties in the weakly-identified non-

homoskedastic case, a recent literature has focused on optimizing weighted average power,

meaning power integrated with respect to weights on (β, π). Specifically the similar test

maximizing weighted average power with respect to the weights ν,
∫
Eβ,π[φ]dν(β, π), rejects

when

s(β0) =

∫
f(δ̂, π̂;β, π)dν(β, π)/f(δ̂, π̂|D(β0);β0)

exceeds its conditional critical value. Intuitively, this weighted average power optimal test

rejects when the observed data is sufficiently more likely to have arisen under the weighted

alternative H1 : β 6= β0, weighted by ν, than under the null H0 : β = β0. As this description

suggests, the choice of the weight ν plays an important role in determining the power and

other properties of the resulting test, though the use of conditional critical values ensures

size control for all choices of ν.

Moreira & Moreira (2013) and Montiel Olea (2017) show that weighted average power

optimal similar tests can attain essentially any admissible power function through an appro-

priate choice of weights. Montiel Olea (2017) further proposes particular choices of weights

ν for the homoskedastic and non-homoskedastic cases, while Moreira & Moreira (2015)

show that unless the weights are chosen carefully weighted average power optimal similar

tests may have poor power even in the homoskedastic case, and that the problem can be

still worse in the non-homoskedastic case. To remedy this, they modify the construction of

weighted average power optimal tests to enforce a sufficient condition for local unbiased-

ness, and showed that these tests perform well in simulation and are asymptotically efficient

in the case with strong instruments. Finally, Moreira & Ridder (2017) propose weights ν

motivated by invariance considerations. They further show that there exist parameter con-

figurations in the non-homoskedastic case where tests that depend only on the AR and

score statistics, like those of Kleibergen (2005) and I. Andrews (2016), have poor power.

To summarize, in settings with a single endogenous regressor and homoskedastic errors,

the literature to date establishes good properties for the CLR test of Moreira (2003). In

settings with non-homoskedastic errors, by contrast, a large number of procedures have been

proposed, but a consensus has not been reached on what procedures to use in practice,

beyond the recommendation that researchers use procedures that are efficient when the

instruments are strong. Consequently, it is not yet clear what procedure(s) to recommend

in this case.
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5.3. Inference with Multiple Endogenous Regressors

The tests we have so far discussed for models with a single endogenous regressor can all be

generalized to tests of hypotheses on the p×1 vector β in settings with multiple endogenous

variables (as in 19 of the 230 specifications in our AER sample). By inverting such tests,

we can form simultaneous confidence sets for β. Test inversion with multiple endogenous

variables becomes practically difficult for moderate or high-dimensional β, since the number

of grid points at which we need to evaluate our test grows exponentially in the dimension.

See the supplementary materials to I. Andrews (2016) for a discussion of this issue. On

the other hand, high-dimensional settings do not appear common in practice, and no spec-

ification in our AER data has more than four endogenous regressors. It is in any event

rare to report confidence sets for the full vector β in multidimensional settings with strong

instruments. Instead, it is far more common to report standard errors or confidence sets

for one element of β at a time.

Formally, suppose we decompose β = (β1, β2) and are interested in tests or confidence

sets for the subvector β1 alone. This is known as the subvector inference problem. One

possibility for subvector inference is the projection method. In the projection method, we

begin with a confidence set CSβ for the full parameter vector β, and then form a confidence

set for β1 by collecting the implied set of values

CSβ1 =
{
β1 : there exists β2 such that (β1, β2) ∈ CSβ

}
.

This is called the projection method because we can interpret CSβ1 as the projection of

CSβ onto the linear subspace corresponding to β1. The projection method was advocated

for the weak instruments problem by Dufour (1997), Dufour & Jasiak (2001), and Dufour

& Taamouti (2005). Dufour & Taamouti (2005) derive analytic expressions for projection-

based confidence sets using the AR statistic in the homoskedastic case.

Unfortunately, the projection method frequently suffers from poor power. When

used with the AR statistic, for example, we can interpret the projection method as

minimizing AR(β1, β2) with respect to the nuisance parameter β2, and then comparing

minβ2 AR(β1, β2) to the same χ2
k critical value we would have used without minimization.

As a result, projection-method confidence sets often cover the true parameter value with

probability strictly higher than the nominal level, and so are conservative.

If the instruments are strong for the purposes of estimating β2 (so if β1 were known,

estimation of β2 would be standard), these problems have a simple solution: we can reduce

our degrees of freedom to account for minimization over the nuisance parameter. Results

along these lines for different tests are discussed by Stock & Wright (2000), Kleibergen

(2005), and I. Andrews & Mikusheva (2016).

If we cannot assume β2 is strongly identified, matters are unfortunately more compli-

cated. Guggenberger et al. (2012) show that in the setting with homoskedastic errors one

can reduce the degrees of freedom for the AR statistic to mitigate projection conservative-

ness (using a χ2
k−p2 critical value for p2 the dimension of β2), and Guggenberger et al.

(2018) propose a further modification to improve power. On the other hand, Guggenberger

et al. (2012) show that the analog of their result fails for the score statistic of Kleibergen

(2002). Moreover, Lee (2015) shows that even the results of Guggenberger et al. (2012) for

the AR statistic does not extend to the general non-homoskedastic case.

To improve the power of the projection method without assuming the nuisance pa-

rameter β2 is strongly identified, Chaudhuri & Zivot (2011) propose a modified projection

approach which chooses the initial confidence set CSβ to ensure improved performance for
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CSβ1 in the case with strong instruments. In particular, Chaudhuri & Zivot (2011) base

CSβ on the combination of a modified score statistic with an Anderson-Rubin statistic,

and show that the resulting CSβ1 comes arbitrarily close to efficiency in the case with

strong instruments. I. Andrews (2018) proposes a variant of this approach for constructing

confidence sets for functions f(β) of the parameter vector other than subvectors, while D.

Andrews (2018) generalizes Chaudhuri & Zivot (2011) in several directions, introducing a

variety of test statistics and deriving confidence sets that are asymptotically efficient in the

strongly identified case. Finally, Zhu (2015) introduces a Bonferroni approach for subvector

inference that provides an alternative to projection.

5.4. Two-Step Confidence Sets

Weak-instrument-robust confidence sets are not widely reported in practice. For instance,

only two papers in our AER sample report robust confidence sets. When such confidence

sets are reported, it often appears to be because the authors have uncovered evidence that

their instruments are weak. For example, in a survey of 35 empirical papers that reported

confidence sets based on Moreira (2003), I. Andrews (2018) finds that 29 had at least one

specification reporting a first stage F-statistic smaller than 10.

Used in this way, robust confidence sets may act as an alternative to dropping specifi-

cations altogether, which as discussed in Section 4.1 can result in large size distortions. In

particular one can consider constructing a two-step confidence set, where one first assesses

instrument strength and then reports conventional confidence sets if the instruments appear

strong and a robust confidence set if they appear weak. As discussed in I. Andrews (2018),

the results of Stock & Yogo (2005) imply bounds on the size of two-step confidence sets

based on the first stage F-statistic in homoskedastic or just-identified settings. In overi-

dentified non-homoskedastic settings, by contrast, I. Andrews (2018) shows that two-step

confidence sets based on the robust first stage F-statistic FR and conventional cutoffs can

have large size distortions. To address this, I. Andrews (2018) proposes an approach to

detecting weak instruments by comparing robust and non-robust confidence sets. This ap-

proach controls coverage distortions for two-step confidence sets in both homoskedastic and

non-homoskedastic settings, including in cases with multiple endogenous variables.

The implications of the negative results of I. Andrews (2018) for two-step confidence

sets based on FR in empirically relevant settings, or for two-step confidence sets based on

FEff , are not clear. To examine this issue, Figure 6 plots the size of two-step tests based

on the effective F-statistic (which use a t-test if FEff > 10 and an AR test if FEff ≤ 10)

against the average effective F-statistic in simulations based on our AER data.

The results of Figure 6 show that two-step confidence sets based on the effective F-

statistic have at most mild size distortions in simulations calibrated to our AER data.

Specifically, no specification yields size exceeding 10%, and even when we consider upper

bounds no specification yields size exceeding 11.5%.

6. Open Questions

While considerable progress has been made on both detecting weak instruments and devel-

oping identification-robust confidence sets, a number of important open questions remain.

As suggested in the last section, no consensus has been reached on what inference proce-

dures to use in over-identified models with non-homoskedastic errors. Likewise, existing
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Figure 6

Rejection probability for nominal 5% two-step test that uses 5% t-test and 5% AR test when the

effective F-statistic is larger than and smaller than 10, respectively. Limited to the 106 out of 124

specifications with average effective F smaller than 50. Just-identified specifications are plotted in
black, while over-identified specifications are in blue. Left panel plots size at parameter values

estimated from AER data, while middle and right panels plot, respectively, the 5th and 95th

percentiles of the size under the Bayesian exercise described in Section 3. Red line corresponds to
a first stage F of 10.

optimality results for weak-instrument-robust inference on subsets of parameters only ad-

dress behavior in the strongly-identified case.

Simulation results calibrated to our AER sample raise additional questions. First, we

found that conventional t-tests appears to perform reasonably well in specifications where

the average effective F-statistic is larger than 10, even in over-identified, non-homoskedastic

cases. Likewise, we found that two-step confidence sets based on the effective F-statistic

appear to have well-controlled size distortions. These results suggest that the effective F-

statistic might provide a useful gauge of identification strength in a wider range of cases

than is suggested by the current theoretical literature, but a more extensive and formal

exploration of whether this is in fact the case and if so, why, is needed.

Another set of open questions concerns model misspecification. Existing weak

instrument-robust procedures assume the constant-effect linear instrumental variables

model holds. If the model is instead misspecified, for example because the instruments

are invalid, then as noted by Guggenberger (2012) existing weak-instrument robust confi-

dence sets do not have correct coverage for the true parameter value. Of course, the same

is also true for conventional confidence sets with strong but invalid instruments, so this

issue is not unique to robust confidence sets. In over-identified settings with weak instru-

ments, however, the arguments for size control of existing procedures break down even if

one considers inference on pseudo-true parameter values (e.g. the population analog of the

two-stage least squares or GMM coefficient). This issue was noted and corrected for two-

stage least squares estimates in strong-instrument settings with heterogeneous treatment

effects in the appendix to Imbens & Angrist (1994), and more recently by Lee (2018). To

the best of our knowledge, however, analogous results have not been developed for settings

with weak instruments.

Concern about model misspecification could also interact with the practice of screening

on instrument strength: if one thinks that many instruments used in practice are slightly

invalid (in the spirit of e.g. Conley et al. (2012)), then while this will result in size distor-

tions, it typically will not qualitatively change results when the instruments are strong. On
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the other hand, when the instruments are weak, even a small degree of instrument invalidity

could account for most of the relationship between Z and X, and so lead to qualitatively

quite different conclusions. To address this, researchers may wish to limit attention to set-

tings where the instruments are sufficiently strong for them to be confident that results will

be qualitatively robust to low levels of instrument invalidity. How to make this argument

precise and conduct inference, however, we leave to future work.

Another important open question concerns the validity of the normal approximation to

the distribution of the reduced form and first stage coefficients. In this review, including in

our simulations, we have used the model (6) which takes the reduced form and first stage

coefficients (δ̂, π̂) to be normally distributed with known variance. While this approximation

can be justified with asymptotic arguments, whether or not it is reasonable in a given

application is necessarily case-specific. Important recent work by Young (2018) casts serious

doubt on the quality of this normal approximation in many applications.

Using a sample of studies published in the journals of the American Economic Associ-

ation which overlaps with but is substantially larger than our AER sample, Young (2018)

finds that many reported results are heavily influenced by a small number of observations or

clusters. Since the Central Limit Theorem used to derive the limiting normal distribution (5)

for the reduced form and first stage coefficients assumes that the influence of each observa-

tion is small, this suggests that the normal approximation may be unreasonable. Moreover,

Young (2018) notes that variance estimates Σ̂ for settings with non-homoskedastic data

(which Young calls the non-iid case) can be extremely noisy in finite samples. In simula-

tions that account for these factors, Young finds large size distortions for both conventional

and AR tests, with particularly severe distortions for AR tests in over-identified settings.

Young (2018) further finds that first stage F-statistics do not appear to provide a reliable

guide to the performance of conventional inference procedures, and that we may spuriously

observe large first stage F-statistics even when the instruments are irrelevant, though he

finds somewhat better behavior for the tests of Montiel Olea & Pflueger (2013). To address

these issues, Young (2018) suggests using the bootstrap for inference.

We know that bootstrap procedures based on IV estimates or t-statistics are generally

invalid when the instruments are weak, and so are not a satisfactory solution in settings

with weak instruments. However, appropriately constructed bootstrap procedures based on

identification-robust statistics may remain valid. For example, Moreira et al. (2009) show

validity of bootstrapped score and Anderson-Rubin tests under weak instruments in the

homoskedastic case, where it important for their results that the bootstrap be recentered to

ensure that δ̂− π̂β has mean zero under the bootstrap distribution. Subsequently, Davidson

& MacKinnon (2014) proposed additional bootstrap procedures, but did not establish their

validity when the instruments are weak. We expect that is should be possible to extend

the results of Moreira et al. (2009) showing validity of bootstrap-based identification-robust

tests to the non-homoskedastic case, and to other identification-robust procedures. At the

same time, even when used with identification-robust test statistics the bootstrap is not a

panacea, and Wang & Tchatoka (Forthcoming) show that the bootstrap does not ensure

size control for subvector inference based on the AR statistic. Given the concerns raised

by Young (2018), and the practical importance of the non-homoskedastic case, such an

extension seems like an important topic for future work.
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