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Abstract

This paper provides weak-instrument asymptotic representations of tests for instrument validity by Hahn and

Hausman’s (HH) [Hahn, J., Hausman, J., 2002. A new specification test for the validity of instrumental variables.

Econometrica 70, 163–189.], and uses these representations to compute asymptotic power against weak or

irrelevant instruments. The HH tests were proposed as pretests, and the asymptotic properties of post-test

inferences, conditional on the tests failing to reject instrument validity, are also examined.
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1. Introduction

Hahn and Hausman (2002; henceforth HH) recently proposed new tests for the validity of

inferences based on conventional first-order asymptotics in overidentified instrumental variables (IV)
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regression. Consider the case of a single included endogenous regressor. If the instruments are valid,

they reasoned, then standard first-order asymptotics implies that the two stage least squares (TSLS)

estimator obtained by regressing one of the endogenous variables, y1, on the other, y2, should be close

to the reciprocal of the TSLS estimator of the breverse regressionQ of y2 on y1. Accordingly, HH

propose a statistic that is the difference between the forward TSLS estimator and the reciprocal of the

reverse TSLS estimator, adjusted for second-order bias and standardized by a second-order expression

for the variance of this difference. They also propose a similarly motivated test statistic based on the

Nagar (1959) — type bias adjusted TSLS (BTSLS) estimator of Donald and Newey (2001). Hahn and

Hausman (2002, 2003) suggest that tests based on these statistics will reject if one or the other of the

conditions for instrument validity fail, that is, if the instruments are weak and/or if they are

endogenous.

This paper focuses on the use of a HH statistic to test the null hypothesis that instruments are

strong against the alternative that they are weak. Although HH report Monte Carlo results, we are

unaware of asymptotic results about the power or consistency of the HH tests against weak or

irrelevant instruments. Accordingly, Section 2 provides the asymptotic distribution of the HH statistics
Fig. 1. Asymptotic power of 10% HH tests using m1 and m2 against weak-instruments, as a function of the concentration

parameter divided by the number of instruments (l2 /K).
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for the case that sample is large but the instruments are weak or irrelevant. This entails applying the

weak-instrument asymptotics of Staiger and Stock (1997), in which the so-called bconcentration
parameter,Q a unitless measure of the strength of the instruments and of the quality of the standard large-

sample normal approximation (see Rothenberg, 1984), is held constant as the sample size increases. The

HH tests were proposed as a pretest, and these weak-instrument limiting distributions, combined with

results in Staiger and Stock (1997), provide asymptotic distributions of k-class estimators, conditional on

passing a HH pretest.

Section 3 provides numerical results concerning the performance of the HH tests. First, we evaluate

the asymptotic power of the HH tests against weak-instruments; next, we consider the performance of

two post-test IV estimators, limited information maximum likelihood (LIML) and the estimator of Fuller

(1977), conditional on passing a HH pretest. Section 3 also reports Monte Carlo results indicating that

the weak-instrument asymptotics provide good approximations to the finite-sample distributions of

interest when there are at least 100 observations.

We have three main findings. First, the asymptotic power of the HH tests against weak or irrelevant

instruments is low and the tests are not consistent against nonidentification (irrelevant instruments); for
Fig. 2. Asymptotic median bias of the Fuller and LIML estimators: unconditional, conditional on |m1|V1.645 (bHH-m1Q), and
conditional on |m2|V1.645 (bHH-m2Q).
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the parameter values we consider the power of a 10% HH test ranges from 8% to 35%. Second, a HH

pretest tends to screen out large outliers for LIML but not for Fuller’s estimator, although the pretest

does not reduce the median bias of either estimator. Third, preliminary screening using a HH pretest

neither reduces nor increases the size distortions of the LIML and Fuller Wald tests of b=b0.
2. The HH test statistics and their weak-instrument asymptotic distributions

Following HH, consider the IV regression model with a single endogenous regressor:

y1 ¼ y2b þ u ð1Þ

y2 ¼ ZPP þ �� ð2Þ
where y1 and y2 are n�1 vectors of the n observations on the two endogenous variables, Z is a n�K

matrix of observations on the K instrumental variables, b is the unknown scalar coefficient of interest,P
Fig. 3. 95% quantile of |b̂ �b| for the Fuller and LIML estimators: unconditional, conditional on |m1|V1.645 (bHH-m1Q), and
conditional on |m2|V1.645 (bHH-m2Q).
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is a K�1 unknown parameter vector, and u and n are n�1 vectors of i.i.d. errors with variances ru
2 and

rn
2 and correlation q.

2.1. The HH test statistics

Let b̂ denote an IV estimator of b, let r̂ u
2=(y1�y2b̂ ) V(y1�y2b̂ ) / (n�1), and let PZ=Z(ZVZ)

�1ZV
and MZ= IK�PZ, where IK is the K�K identity matrix. The HH TSLS-based test statistic is

m1 ¼ dˆ1=
ffiffiffiffiffiffi
ŵw1

p
; ð3Þ

where1

dˆ1 ¼
ffiffiffi
n

p
"
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u y2VPZy2 � K � 1ð Þy2VMZy2= n� Kð Þ½ 	2

n� Kð Þ y2VPZy2ð Þ2 y2VPZy1ð Þ2
:

The HH Nagar-based test statistic is

m2 ¼ dˆ2=
ffiffiffiffiffiffi
ŵw2

p
; ð4Þ

where

dˆ2 ¼
ffiffiffi
n

p
"
y2VPZy1 � K � 2ð Þy2VMZy1= n� K þ 2ð Þ
y2VPZy2 � K � 2ð Þy2VMZy2= n� K þ 2ð Þ
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u
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:

Using second-order asymptotics under the assumption of strong instruments, HH show that m1 and m2

have standard normal null distributions.
1
The expression for N̂ given here is obtained by substituting â / (1� â)=(K�1) / (n�K), as used in HH Eq. (3.8), into the expression for N̂

following HH Eq. (3.5).



Fig. 4. Rejection rate (size) of a nominal 5% Wald test of b =b0 based on the Fuller and LIML estimators: unconditional,

conditional on |m1|V1.645 (bHH-m1Q), and conditional on |m2|V1.645 (bHH-m2Q).
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The reason that b̂ and r̂u
2 appear in (3) and (4) is to estimate the incidental parameters b and ru

2 that

arise in the second-order asymptotics. HH originally proposed estimating the incidental parameters by

LIML. The extensive Monte Carlo study of Hahn et al. (2004) suggests, however, that the estimator of

Fuller (1977) is a better choice because it is less prone to outliers when instruments are weak.

2.2. Weak instrument asymptotic distribution

The asymptotic representation of m1 and m2 is derived under a sequence of alternatives in

which the concentration parameter is held fixed as the sample size increases. Following Staiger and

Stock (1997), let PP ¼ C=
ffiffiffi
n

p
; where C is a fixed matrix. Under this nesting, the concentration

parameter is

l2 ¼ CVQZZC=r
2
n; ð5Þ

where QZZ=E(ZVZ /n). If l2=0, then the instruments are irrelevant and b is unidentified.
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Define the 2�2 matrices �̄ and B, where �̄11=�̄22=1 and �̄12=�̄21=q and where B11=l2 and

B12=B21=B22=0. Define 8 to be a 2�2 random matrix with a noncentral Wishart distribution with K

degrees of freedom, covariance matrix �̄, and noncentrality matrix B, and denote the elements of 8 as

   ¼ n1 n2

n2 n3

�
:

�
ð6Þ

Under the conditions of Lemma A1 and Theorem 1 in Staiger and Stock (1997), the following limits

hold jointly:

y1VPZy1; y2VPZy1; y2VPZy2ð Þ !d ðr2
uH1;rur��H2;r2

�����1Þ;
y1VMZy1=n; y2VMZy1=n; y2VMZy2=nð Þ !p ðr2

uJ1;rur�� J2;r2
uÞ;

bˆ !d ru b¯ þ D
	 


=r��; and
r̂r2
u !d r2

uS;

ð7Þ

where b̄=rnb /ru, H1= b̄2n1+2b̄n2+n3, H2= b̄n1+n2, J1= b̄2+2qb̄+1, J2= b̄+q, S=1�2qD+D2,

and D=(n2�qj*) / (n1�j*). If b̂ is the LIML estimator, then j*=jLIML* = the smallest root of

det(8�j�̄)=0. If b̂ is Fuller’s estimator, then j*=jFuller* =jLIML* �c, where c is the adjustment

constant of Fuller (1977) (see Hahn et al. (2004, Eq. (4)), where the constant is denoted by a).

Substitution of the expressions in the preceding paragraph into (3) and (4) yields

m1 !d jH1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K � 1ð Þ

p
Sj1� K � 1ð Þ=���1j
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���1
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���1H2

�
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�
ð8Þ

m2 !d jb¯þ Djj���1 � K � 1ð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K � 1ð Þ

p
S

H2 � K � 2ð ÞJ2
���1 � K � 2ð Þ � H1 � K � 2ð ÞJ1

H2 � K � 2ð ÞJ2

�
;

�
ð9Þ

where N*=(K�1){H1� (K�1)J1�J2[2H2� (K�1)J2]+J1n1}.

2.2.1. Remarks
1. Both test statistics m1 and m2 have Op(1) limits. This suggests that neither test will reject with

probability one asymptotically, regardless of the value of l2, and in particular that neither test is

consistent against nonidentification.

2. The limiting representations for k-class estimators in Staiger and Stock (1997) are joint with (8) and

(9), making it possible to evaluate numerically the asymptotic distribution of k-class estimators

conditional on passing the HH pretest.

3. Different k-class estimators have different Op(1) weak-instrument asymptotic distributions, so the

weak-instrument asymptotic distributions of m1 and m2 depend on which estimator is used for the

incidental parameters.

3. Numerical results

This section examines the asymptotic behavior of the HH pretests by Monte Carlo evaluation of the

weak-instrument limits (8) and (9) using 20,000 Monte Carlo draws of the noncentral Wishart random



Table 1

Monte Carlo comparison of finite-sample and weak-instrument asymptotic distributions: m2 HH test rejection rate and Fuller

estimator RMSE

K l2 /K q n R2 HH-m2

rejection rate

RMSE for Fuller (c =1)

Unconditional Conditional

5 0.5 0.5 50 0.0476 0.128 0.579 0.578

5 0.5 0.5 100 0.0244 0.135 0.585 0.570

5 0.5 0.5 l 0.135 0.596 0.592

5 2.0 0.5 50 0.1667 0.098 0.351 0.339

5 2.0 0.5 100 0.0909 0.078 0.365 0.348

5 2.0 0.5 l 0.089 0.361 0.349

5 0.5 0.9 50 0.0476 0.221 0.542 0.547

5 0.5 0.9 100 0.0244 0.205 0.573 0.577

5 0.5 0.9 l 0.223 0.574 0.580

5 2.0 0.9 50 0.1667 0.099 0.284 0.283

5 2.0 0.9 100 0.0909 0.088 0.265 0.258

5 2.0 0.9 l 0.097 0.271 0.261

30 0.5 0.5 100 0.1304 0.065 0.532 0.498

30 0.5 0.5 200 0.0698 0.074 0.496 0.468

30 0.5 0.5 l 0.079 0.481 0.451

30 2.0 0.5 100 0.3750 0.069 0.174 0.171

30 2.0 0.5 200 0.2308 0.088 0.157 0.153

30 2.0 0.5 l 0.085 0.156 0.154

30 0.5 0.9 100 0.1304 0.095 0.320 0.304

30 0.5 0.9 200 0.0698 0.094 0.280 0.264

30 0.5 0.9 l 0.107 0.285 0.265

30 2.0 0.9 100 0.3750 0.079 0.138 0.139

30 2.0 0.9 200 0.2308 0.087 0.138 0.137

30 2.0 0.9 l 0.092 0.139 0.139

The bHH-m2 Rejection RateQ is the fraction of times that the m2-based HH test, calculated using the Fuller (c =1) estimator for

the incidental parameters, rejects at the 10% significance level (that is, |m2|N1.645). The final two columns report the RMSE of

the indicated estimator, either unconditionally (without a pretest) or conditional on passing the HH pretest (that is, if

|m2|V1.645). The finite-sample results were computed by Monte Carlo using 1000 draws, using the design described in the text;

the results for n =l were computed using 20,000 draws from the weak-instrument asymptotic distribution.
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variable W. Following HH (footnote 5), we set var(y1i|Zi)=1,rn
2=var(y2i|Zi)=1, and b̄=�2q so that

ru
2=1. With this normalization, the distributions of m1 and m2 depend only on K, l2, and q.

Throughout, the estimator of Fuller (1977) with c=1 is used to calculate the incidental parameters in m1

and m2.

3.1. Power

One definition of weak-instruments is that instruments are weak when the concentration parameter is

sufficiently small that conventional first-order asymptotics can be misleading (cf. Stock et al., 2002).

Given this definition, the power of the HH test should be high when l2 /K is small or zero and should

equal the size of the test when l2 /K is large.

The asymptotic power of the two HH tests, at the 10% significance level, is plotted in Fig. 1 as a

function of l2 /K for K=5 and 30 and for q=0.9 and 0.5. For the cases in Fig. 1, the asymptotic power
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of the 10% HH tests against l2 /Kb2 ranges from 8% to 35%. Generally speaking, the two tests

perform similarly. We have considered other values of K, q, and b̄, and the highest rejection rate we

found was 35% (we did not conduct an exhaustive search however). For 5% HH tests, the highest

rejection rate we found was 27%.

3.2. Post-test estimator performance

HH developed the m statistics to be used as a pretest: if the test fails to reject, then inference should

proceed using an estimator that has good second-order properties, for example LIML (HH, p. 179). Thus

another way to assess the performance of the statistics is to examine the reliability of post-test inferences,

conditional on the HH test failing to reject. For brevity, we focus on post-test inference using Fuller’s

estimator with c=1.

Fig. 2 presents the asymptotic median bias of LIML and Fuller’s estimator (a) unconditionally; (b)

conditional on passing the m1 test (|m1|V1.645), and (c) conditional on passing the m2 test (|m2|V1.645).
For Fuller’s estimator, there is essentially no difference between the conditional and unconditional median

bias curves. For LIML, the median bias is slightly greater conditional on passing a HH test than

unconditionally.

Fig. 3 shows the effect of aHHpretest on the absolute estimation error of the two estimators, specifically,

the 95% quantile of |b̂ �b| (this measure of estimation error is used instead of the RMSE or MAE because

LIML moments need not exist). Both HH pretests reduce the spread of the LIML estimation error, that is,

they tend to eliminate the largest outliers. For Fuller’s estimator, however, this quantile is not affected by a

pretest, and the unconditional quantile for Fuller’s estimator is less than or equal to the conditional quantile

for the LIML estimator.

Fig. 4 presents the asymptotic null rejection rate (the asymptotic size) of a nominal 5%Wald test of the

hypothesis b=b0 based on LIML and Fuller’s estimator (computed using the usual k-class standard error

formula), both unconditionally and conditional on passing a HH test. For small values of l2 /K, the size

distortions in bothWald tests can be substantial, especially in theq=0.9 case, although they tend to bemuch

less than those of the TSLS Wald test (Stock and Yogo, 2005). As in Fig. 2, the conditional and

unconditional Wald test size curves are essentially the same.

3.3. Finite-sample results

Weperformed aMonteCarlo experiment to checkwhether theweak-instrument asymptotic distributions

provide a good approximation to the finite-sample distributions of the HH statistic and post-test estimators.

The finite-sample results were computed using 1000 Monte Carlo draws for the system (1) and (2) with

i.i.d. normal errors; the parameter settings are the same as described in the first paragraph of this section.

To save space, we report a subset of results and focus on the m2 pretest (with the Fuller (c=1) estimator

of the nuisance parameter) and the Fuller (c=1) post-test estimator.

The results are summarized in Table 1. For a given value of K and l2 /K, the finite-sample rejection

rates of the m2 statistic (the bHH Rejection RateQ column) are close to each other and to the asymptotic

limit for all values of n; by n=100, the finite-sample rates generally are within Monte Carlo error of

the asymptotic rejection rates. The remaining columns report the RMSE of the Fuller (c=1) estimator,

first unconditionally then conditional on |m2|V1.645. Again, the finite-sample RMSE is in most cases

close to the asymptotic RMSE for n=50 (for K=5), and in all cases is close for n=100.
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