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A Class of Tests for Integration
and Cointegration

JAMES H. STOCK

1 Introduction

The intellectual architecture of cointegration analysis constitutes a watershed
accomplishment of time series econometrics in the 1980s. As of 1980, econo-
metricians confronted several apparently conflicting pieces of evidence about
long run relations among time series. It was recognized that many macroeco-
nomic time series exhibit trend-like behavior and have considerable persistence.
Granger (1966) expressed this as the series having much of their spectral power
at low frequencies, and Nelson and Plosser (1982) argued that this persistence
was captured by modeling the series as having a unit autoregressive root (being
integrated of order one). But how to model multiple time series in levels
remained unclear. On the one hand, regressions involving highly persistent,
unrelated series can produce spuriously large correlations and thus can in-
correctly appear to be related (Yule, 1926; Granger and Newbold, 1974). On
the other hand, the view that all levels relations are spurious seemed too severe:
some “great ratios,” such as the share of consumption in income, appeared
stable even though the variables themselves were growing (Kosobud and Klein,
1961), and these great ratios, when incorporated as regressors in otherwise
standard “first differences” specifications, can have statistically significant
coefficients and can be economically large (Davidson, Hendry, Srba, and Yeo,
1978). The achievement of cointegration analysis, as developed by Granger
(1983, 1986), Granger and Weiss (1983), and Engle and Granger (1987), was
to provide a unified framework in which to understand and to reconcile the
apparent conflict between spurious regressions and economically meaningful
long-run relations. Moreover, this early work provided probability models of
levels relations which were sufficiently well articulated to form a foundation
for the development and analysis of new tools for statistical inference in poten-
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tially cointegrated systems. Among the issues stressed in this early work is the
importance of correctly specifying the orders of integration of the component
series and testing for possible cointegration among the series, that is, of the
construction of powerful and reliable tests for integration and cointegration.!

This paper introduces a class of statistics that can be used to test for in-
tegration or cointegration in time series data. Many of the existing tests for
integration and cointegration are motivated by considering the problem of
testing whether an autoregressive root equals one against the alternative that
it is not equal to one; see, for example, Dickey and Fuller (1979), Phillips
(1987), and Phillips and Perron (1988) for tests for integration, and Engle and
Granger (1987), Phillips and Ouliaris (1990), and Stock and Watson (1988)
for tests for cointegration. In contrast, statistics in the proposed class test
directly the implication that an integrated process has a growing variance,
that is, has an order in probability of T* (is O,( T%)).

To motivate these statistics, let y,, ¢ =1, ..., T, be a univariate integrated
process with zero drift, sAy(O) be the spectral density of Ay, = y, — ¥;., at
frequency zero, [-] denote the greatest lesser integer function, => denote weak
convergence on D[0, 1], and define v§(X) = (2msp (0) T) *y;qy for 0 < A < L.
Then, under general conditions, v} => W, where W is standard Brownian
motion on [0, 1]. The scaling factor 77 is consequence of y, being I(1). In
contrast, if y; is I(0}, y, is O,(1).

These observations suggest developing test statistics based on the implica-
tion that an I(1) process is O,( T*) whereas an 1(0) process is 0,(1). The ap-
proach pursued in this paper is to consider the class of tests constructed using
continuous functionals g: D[0, 1] — M!, such that the distribution of g(W)
has arbitrarily small mass in a small neighborhood of g(0). Heuristically, if ,
is 1(0), then by the continuous mapping theorem g(v%) will converge to g(0).
This suggests that g(v}) could be used to construct a test of the I(1) null that
is consistent against the 1(0) alternative. If s, (0) is suitably estimated, it will
have an asymptotic null distribution that does not depend on any nuisance
parameters. This approach readily handles general trend specifications, in-
cluding both the leading cases of demeaning or polynomial detrending as well
as more general trend specifications. The details are provided in Section 2.

[n addition to suggesting new test statistics, this class of tests provides a
unifying framework for many previously proposed tests. It therefore provides
a simple way to generalize results for existing tests to different types of trends,
for example. Although not all tests for a unit root fit into this framework,
three that do are examined in Section 3. These are a modified version of Sargan
and Bhargava’s (1983) uniformly most powerful (UMP) and Bhargava’s (1986)
locally most powerful invariant (MPI) tests in the first order case; the Phillips
(1987) and Phillips-Perron (1988) Z, statistic; and Lo’s {(1991) generalization
of Mandelbrot’s (1975) rescaled range (“R/S”) statistic.

Section 4 extends the results of Section 2 to tests for cointegration. These
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tests build on Engle and Granger’s (1987) suggestion by replacing y, with the
residual from a contemporaneous regression of the level of one element of a
detrended multivariate time series on the levels of the other elements. The
technical arguments in this section draw on results of Phillips and Quliaris
(1990). Like the univariate tests, these are developed for general trends.

Section 5 considers issues of consistency. Section 6 presents the results of a
Monte Carlo experiment that compares selected new g() tests with several
previously proposed tests. The experimental design includes several models
estimated for postwar US data. Section 7 concludes.

2 Tests for Integration

Suppose that, under the null hypothesis, the univariate time series variable
Y can be written as the sum of a purely deterministic component d,(3) and a
component that is integrated of order one:

t
y =d(B)+ D u, t=1..,T. (2.1)
s=1

The finite dimensional parameter vector {3 is estimated by 3. Let w = 275,(0),
where s,(0) is the spectral density of u, at frequency zero, let vo(A) =
Ty Iy and let Dy(X; §) = diry(B)- The two processes vy and Dy{-; §) are
assumed to satisfy:

Assumption 1. The following hold jointly:
(a) vp=> VwW, where 0 < w < 0, and
(b) T%{D1(-;B) ~ Dy(; B)} => VwD, where D € D[0, 1] has a distribution
that does not depend on G or on the nuisance parameters describing the
distribution of {u,}.

This covers many special cases of practical interest. Consider first the partial
sum process vp. For most of what follows, the general Assumption 1(a) will
suffice, although at times it is convenient to consider the special case in which
u, is the linear process,

U, = C(L)Et’ f(:)]lcjl < 09, C(l) =0 (22)
=

where ¢, is a martingale difference sequence with Elejle, 1, €, 5, ...] = 0% and
sup, Eje,|*"%|€,_y, €2, ---] < 00 for some § > 0. The one-summability of ¢(L),
along with these moment conditions, implies Assumption 1(a) (where w =
¢(1)%0?) using a standard functional central limit theorem (e.g., Chan and Wei,
1988, theorem 2.2; Hall and Heyde, 1980, theorem 4.1).2

Assumption 1(b) is satisfied by a wide variety of trend functions. To estab-
lish notation, some important special cases follow.
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A. Constant. In this case d(8) = f,- A natural estimator of fyisfy=7=
T5T 45 the demeaned series is

Y=y, — 7. (2.3a)

B. Linear time trend. For reasons discussed below, it is convenient to normal-
ize the known parts of the trend specification to be bounded. Thus the linear
trend is written d,(f8) = By + B,(t/T). If the unknown parameters B, and 3

are estimated by the ordinary least squares (OLS) estimators (B, 1), then the
detrended series is

Yy = Yy — B() - Bl (t/T) (23b)

Bhargava (1986) derives an alternative detrending procedure for his locally
MPI tests in the first order Gaussian case with drift; his estimators are 3, =
T-(T+ 1)/(2AT-1))(yp- ) and B, = (T/(T-1))(yp— 9,)- The detrended

series is

tB =Y — 50 — B1 (t/T)‘ (2.30)

C. General trends that are linear in 8. This framework nests the more gener?J
time trend d,(8) = @'z, where z,is a J x 1 vector of known deterministic
terms. Let 7,()\) = a7 and assume that:

e =T, T,€D[01], i=1..,J, where M = fl 7(s)r(s)'ds (2.4)

is nonsingular and sup)oy)|Tig(A)] < Tlorall T, i=1, ..., J.

A natural estimator of ﬁ is the QLS estimator 3= (Zt__livt )Ly, The
normalization |7;7(A)] < Fobtains by selecting the proper scaling factor, which
can be done without loss of generality. In this normalization the true coefficient
might depend on T, e.g. a trend ¢ with -y fixed is rewritten as 3,(t/T), where
8, = vT. This complicates the interpretation of the coefficients but simplifies

treatment of the projections, the latter being of interest here. This is clarified
by two examples.

C(i). Polynomial time trends. In this case, d(8) = LZ40,(1/ T, so that
TN = (L, [TN/T, ..., ((TA/T)"Y. Bvidently 7, — 7 = (1, A, AT,
direct caleulation indicates that M is nonsingular, with M;; = 1/(s + j - 1).

C(ii). Segmented time trend. Perron (1989) has proposed tests for a unit
root against the alternative hypothesis that the deterministic component of
the series contains a segmented trend. An example is the “mean shift” model,

d(3) = 3, + 31t > [TAD+ 6,/ T), 0<X <1,
where 1(+) denotes the indicator function. In this model the intercept term in-

creases from 3, to 4, + 4, after a fraction Ay of the sample has passed; general-
izations to other shifts or breaks in the trend are discussed in Perron (1989).
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In the mean shift model, 7{A) = (1, 1([TA] > [TA]), [TA]/T), and (2.4) is
satisfied with 7(A) = (1, 1(A > Ap), A).

The limiting representations in Assumption 1 depend on w. To eliminate
this dependence, assume for now that there is a consistent estimator for w:

Assumption 2. Under the null hypothesis & 2 w.

A variety of such estimators exist; an autoregressive estimator is considered
in Section 4.

Define v to be the scaled stochastic process formed using the detrended
series:

vE(N) = (TD) u{ym —dry (8)}- (2.5)
If Assumptions 1 and 2 hold, then
vh => Ve (2.6)

where V¢ is the stochastic process V%= W - D.

In general, Assumption 1 must be verified for the form of detrending
and the null stochastic process at hand. The condition in Assumption 1(b) is
demonstrated here for the leading cases. Let vy()\) = (Tw) Vy[T,\], vHA) =
(Tw)” %?J[TA], vp(A) = (TW)” l/zy[m, and vB()) = (TW) ™y T)\} We have:

Theorem 1. Assume that Assumptions 1(a) and 2 hold.

(a) If d,(B) = 0, then vy => W;

(b) If d(B8) = B,, then v¥.=> V# where V*()) - JoW(s)ds;

(c) If d(B) = B, + Bit, then 1, => V™ and vp=> VB, where VT(A) = W(A)
— a)(A) [ W(s)ds ~ ay(N) JLsW(s)ds and VE(N) = W(A) — (A - %) W(1) -
Jd W(s)ds, where a)(\) = 4 - 61 and ay(A) = -6 + 12X,

(d) For general trends that are linear in G, if (2.4) holds and 3 is estimated
by OLS, then v‘§~=> Ve, where VI(X) = W()) - {fo W(s)7(s)/ dsM 1} r(A).

Proofs of theorems are in Appendix A.

Theorem 1 provides expressions for V* the limiting detrended process, in the
leading cases. The processes V* and V", derived in Park and Phillips (1988,
1989) and Stock and Watson (1988), have natural Hilbert space interpretations
as the continuous time analogues of the discrete time detrended processes; for
a discussion, see Park and Phillips (1988, 1989). To simplify notation the result
(d) is presented explicitly only for the OLS estimator. However, it generalizes
directly to other estimators of 3 that are linear in y, as long as the weights
satisfy a condition analogous to (2.4).

It follows from (2.6) and the Continuous Mapping Theorem (e.g. Hall and
Heyde, 1980, theorem A.3) that if g(-) is a continuous function from D[0, 1]
to R, then

g(vt) => g(V?) (2.7)
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Theorem 1 implies that this holds for each of the leading cases.

The asymptotic representations (2.6) and (2.7) form the basis for the pro-
posed class of tests of integration. Specifically, let G¢= {g:D[0, 1] — R'} be
the collection of functionals that satisfy:

(a) ¢ is continuous; (2.8)
(b) 3 ¢, |c,] < o0, such that Pr{g( V) <el=aforala,0<a<l;
(c) g(0) < ¢, forall a, 0 < a < L.

Several remarks are in order.

(a) The family G¢ provides a natural class of test statistics for the null hypo-
thesis that y, — d,(5) is I(1) against the alternative that it is I(0). Under the
null, g{v3) has an asymptotic distribution on the real line, with critical values
¢, that depend on the functional g. Under a fixed stationary alternative, y, —

([3) is 0,(1). This suggests constructing tests of level « of the form, reject if
9(v3) < ¢,. (The use of the left tail as the rejection region is without loss of
generahty, since the g(-) can be replaced by —¢(-}.) Conditions for consistency,
including choice of &, are discussed in Section 5.

(b) This approach to constructing tests suggests working backwards
from the desired asymptotic representations to the actual test statistic. For
example, suppose one wished to develop a unit root test with a Xl asymptotic
null distribution. Because W (and in general V¢) has Gaussian marginals, 1t
is simple to write down continuous functionals of these processes with x1
distributions. For example, W(1)? and V9(1)? have distributions that are
multiples of a x2, so g(v%) = v4(1)?/E( V¥(1)?) provides a unit root test statistic
that has a x? distribution. Kahn and Ogaki’s (1988) J, test statistic is of this
forrn Jr = g(vy) + 0,(1), where ¢(f) = f(1)? so that J;has an asyrptotic
\} distribution.

(c) Other examples of existing tests that fall into this framework are a modi-
fication of the Sargan-Bhargava (1983) and Bhargava (1986) tests, the Phillips
Perron Z, statistic, and Lo’s (1991) modification of Mandelbrot’s (1975) R/S
statistic. These are discussed in more detail in the next section.

(d) Condition (2.8)(b) indexes G by the type of detrending. In general the
type of detrending restricts the functionals g that can be used to construct
consistent tests. For example, consider g(f) = {3 sf(s)ds}® From Theorem 1,
g(V#y = {1 s(W(s) ~ [L, W( r) dryds}? = { [3(s~ v2) W(s)ds}?, which is distrib-
uted as a constant times a x1 Because g¢is also contmuous, g € G*. However,
straightforward algebra shows that g(V") = 0 a.s.,so g ¢ G". This result has
a simiple interpretation in light of the discussion of V7 following Theorem 1:
because V7 can be thought of as detrended Brownian motion, its Hilbert space
projection against a linear trend is zero.

(¢) The definition of G might seem so broad as to include all consistent
unit root tests, but this is not so; the class refers only to continuous functionals
of vy An example of a test not in this class is Park and Choi’s (1988) J(p, 9)
statistic (also see Park, 1990). To be concrete, suppose that d, = 0, so the
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J(0, 1) statistic is appropriate; this is J(0, 1) = T'EL, 4%/TET (y, - 7)% -

1=> {[d W(s)2ds/ ([ W(s) ds) -1} The asymptotlc representation suggests
considering the functional, g(f) = { [1£%/(Jif)? - 1}7%. However, this functional
is not continuous at f= 0.3 ThlS is not just a technicality: when v;=> 0 under
the alternative, g must be continuous at 0 to ensure consistency.

The reason that the Jstatistic does not fall into this class yet is consistent
in that it exploits a different property to obtain consistency. The G class ex-
ploits the different orders in probability of the underlying time series, while
the J statistic exploits the relative differences in rates of convergence of sums
of Ay, and (A %,))? for d = -1, 0, 1, where u, is 1(0).

(f) The fact that the form of the g(-) functional does not depend on the type
of detrending (subject to remark (d) above) emphasizes that the steps of elim-
inating the deterministic components and testing for unit roots are conceptu-
ally distinct. This is sometimes obscured in procedures in which detrending
and testing are performed in the same step. It is also evident that detrending
a series when it is not required does not change the asymptotic size of the
tests (although it can adversely affect power), because D does not depend on
8. In contrast, failing to detrend a series that contains a trend typically leads
to a loss of consistency and an incorrect asymptotic size.

3 Relation to Previously Proposed Tests for Integration

This section shows that several previously proposed tests for integration can
be expressed, or are closely related to, g(-) tests. The main result is that there
are simple ¢(-) statistics that are asymptotically equivalent to Sargan and
Bhargava’s (1983) and Bhargava’s (1986), where the asymptotic equivalence
occurs both under the null and under a local alternative. It is also shown that
the Phillips—Perron Z_ statistic can be cast as a ¢(-) statistic, as can Lo’s (1991)
modification of Mandelbrot’s (1975) R/S statistic.

3.1 The Sargan—Bhargave and Bhargava Tests

Sargan and Bhargava (1983) considered the problem of testing for integration
in the first order Markov model with i.i.d. Gaussian errors:

14
v =B+ o, €iid NO,0*), t=1,.,T, (3.1)
where (p, 3,, o?) are unknown parameters. They showed that the statistic
T T
R=3"(Ay /> () (32)
t=2 t=1

provides the basis for a test of the random walk null {p = 1) against the
stationary alternative (|p| < 1). (Note that R is the Durbin-Watson statistic
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for a regression of y, against a constant.) Similarly, in the case of a time trend,
Bhargava (1986) considered the maintained model,

t
y =0+ 6+ 0%, €iid N(©0,6%), t=1..T, (3.3)

s=1

where (p, 8, B,, 0°) are unknown; he showed that

T T
R=Y (AP /Y WP (3.4)

{ t=1

can be used to construct a test of p = 1 against |p| < 1, which he claimed to
be MPI in the neighborhood of p = 1, where y? is given in (2.3c).
Sargan-Bhargava and Bhargava did not provide asymptotic distribution

theory for their tests. However, it obtains as a direct consequence of Theorem
1.

Corollary 1.1. Assume that v, is generated by (2.1). Then
(a) T'R™ => mfi VA(s)*ds
(b) TR =>mfi VE(s)ds

where m = w/var(Ay,).

Thus the asymptotic null distribution of the R and R, statistics depends on
the nuisance parameters through the spectral density of Ay, at the origin.
However, there is a simple g(-) statistic that is essentially the same as the R
and R, statistic, but which provides the basis for an asymptotically similar
test under the null model (2.1). Let

dsalf) = [ f(sPds, (35)

so that gep(vh) = TIL (vi)? = T20L (y%)?/@ and ggp(v3) = T‘IZthl(Uf)z
= T2*LL (y#)?/@. Thus ggp(vh) and gep(vs) are respectively TR and
T'R;}, except that & appears in the denominator rather than T‘lzg_;z(Ayt)?.
It follows from Theorems 1 and 2 that, if Assumptions 1 and 2 hold and w =
var(Ay,) (as is implied by (3.1) with p = 1), then ggz(v%) and ggp(v¥) respec-
tively are asymptotically equivalent to the Sargan-Bhargava and Bhargava
tests under the null hypothesis.

The primary merit of the R and R, statistics is Sargan-Bhargava’s and
Bhargava’s claims of finite sample optimality properties under (3.1) and (3.3).
It is therefore of interest to compare the power of R and R, to that of the
gsp(+) statistics. This can be done by deriving a representation for these stat-
istics under a local alternative, that is, under an alternative that approaches
the unit root null as the sample size increases. Since the Sargan-Bhargava

and Bhargava exact tests assume a first order model, suppose that y, is gen-
erated by
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= pr¥y + & t=1...T, g iid (0,0), (3.6)

where Elet|4 < oc. As the local alternative, adopt Phillips’ (1987) formulation,
so that pp = /T where c is a constant (also see Cavanagh, 1985; Chan and
Wei, 1987). Following Phillips (1987) and Phillips and Perron (1988), define
A) = fA A9 ds).
Computation of the g(-) statistics requires selecting a specific estimator of
w. For this discussion, suppose that w is estimated by an average of sample
covariances:

Zut +2§:T &’tﬁt—j}’ (3.7)

t=3+2

where &, = y}'- pyi_,, where p = Z,_Qy yi I/Z ' o(3,)%. Note that, as is pointed
out in Phillips and Ouliaris {(1990) and Stock and Watson (1988), it is import- .
ant to use the estimated p rather than the null value p = 1 in constructing &
to ensure that the resulting test is consistent.

The next result uses Theorem 6.2 of Phillips and Perron (1988) to provide
a limiting representation for the g(-), R, and R, statistics under this local
alternative.

Theorem 2. Let y, be generated by (3.6), and let the estimator @ in (3.7) be
used to construct v# and v, where £ — 0o as T — oo and £ = o(T"/*). Then:

(2) gsp(vh) => [q Vi(s)*ds,

(b) gss(v) => fg VE(s)ds,

(¢) TR => [} VH(s)?ds, and

(d) TR => [} Vf(s)zds,
where VE(A) = W, () - [iW(s)ds and VB(X) = W()) - (A - )WL) -
JAW (5)ds.
In summary the gop(-) statistics have asymptotic null distributions that do
not depend on the nuisance parameters for general I(1) processes; Theorem 2
implies that, for the AR(1) case, they have the same local asymptotic repres-
entations and therefore the same local power as the original Sargan-Bhargava
and Bhargava statistics.

3.2 The Phillips and Phillips~Perron Tests

The Z, statistics proposed by Phillips (1987) and Phillips and Perron (1988)
also are closely related to a g(-) statistic. Assume here that d(3) =0 and 3 =
0, so that their statistic is

T T
Zy =T(p-1)~ 'é”{‘;’ - T_lz (Y = PYra )2}/T—22 Y1 (38)
t=1 t=1
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where @ and § are defined in and following (3.7), respectively. Because
STy, Ay, = B{yh- L1 (Ay)?} (where g, = 0), (3.8) can be rearranged to
yield

T-1
Za = %{6T(1)2 - 1}/T—1ZT~]T(t/T)2 - %T(p - 1)27 (39)

where U{)\) = (T@)‘szm]. Thus the Z, statistic can be rewritten as Z, =
9.(Tp) - % T(p - 1)%, where:

0.(f) = SUAP =1}/ f) flsPds. (310

Under the null and the local alternative (3.6), T(p—1)? 50 so Z,~ g,(t7) 20,
so in this case Z, and ¢,(T;) are asymptotically equivalent. Tests formed using
g9.{f) in (3.10) will be referred to below as modified Z, (MZ,) tests. In addition,
g, is the functional associated with the Dickey-Fuller root test in the first
order model.

3.3 The R/S Statistic

Mandelbrot (1975) proposed the “rescaled range,” or “range over standard
deviation” (R/9), statistic to detect fractionally differenced processes. Mandel-
brot’s motivation is essentially that used here: the order in probability of a
fractionally differenced process is other than 7% (the order depends on the

fractional differencing parameter). Suppose here that d,(3) = ;. Then the
R/S statistic is,

T

~ .1 . _ 1

Qr=T Z(ma‘xlstST Yp — My gy y,) /(T 12 A?Jtz)Q‘

t=2

Because supy g nf(A) -~ infyeq 1 f(A) is continuous, it follows from Assumption
1 that Qp => yim{supyey WA - infyeoy WO}, where m = w/var(Ay). As
do the Sargan-Bhargava and Bhargava statistics, the asymptotic distribution
of Q7 depends on the nuisance parameter m.

Lo (1991) suggested eliminating this dependence on m by considering &
modification of the R/S statistic:

Qr = (T‘:’)‘%(maxlgtgr Y — miniqcp Yy)- (3.11)

Evidently this is a g-statistic: Qp = gpg(vy), where ggpg(f) = sup, ) f(A) -
infy¢j013f/(A). Under Assumptions 1 and 2, gpslvg) => gro(W).
4 Testing for Cointegration

Engle and Granger (1987) proposed testing for whether a multivariate time
series is cointegrated of order (1, 1) by regressing one of the individual series
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on the remaining series and testing for a unit root in the residual. The reasoning
behind this procedure is that, if the multivariate series are individually in-
tegrated and are not jointly cointegrated, then any linear combination of the
series will be integrated; if, however, the series are cointegrated, then the linear
combination formed by the cointegrating vector will be stationary. Since the
OLS estimator of the cointegrating vector is consistent (Stock, 1987), the resid-
uals from a levels cointegrating regression can proxy for this linear combination.

Engle and Yoo (1987) derived the asymptotic distribution of the Dickey-
Fuller (1979) 7, t-statistic, computed using the residuals from a levels regres-
sion, under the null hypothesis that the constituent time series are independent
random walks. Phillips and Quliaris (1990) derived the asymptotic distribu-
tions of this and other residual-based cointegration test statistics under more
general conditions. Their approach is used here to generalize the univariate
g(:) tests to residual-based tests for cointegration.

Let Y,be a n x 1time series variable generated by the multivariate counter-
part of (2.1):

t

Y, =d(8)+>.U,, t=1..,T, (4.1)
s=1

where d,(3) and U, are n x 1 deterministic and stochastic terms, respectively.

The parameter vector 3 is typically unknown and is estimated by 8. The assump-

tion made on {d,(3), U,} in the multivariate case is analogous to Assumptions

1(a) and 1(b). Let v ); B) = T_%{Y[T,\} — d[m(ﬁ)}. Then:

Assumption 3. uf}(-, B) => B¢ where B%is an n x 1 Gaussian process on
D[0, 1] with mean 0 and E{B%A)BY\)'} = Qf()\), where fis a scalar function
on [0, 1] that does not depend on f or the distribution of { U/}, and where Q2
s n X n.

Because 2 can be factored as Q@ = HH’, Assumption 3 implies that
vi(,8) => BV, (42)

where V?is a n x 1 Gaussian process with E(V4(A) VYN)) = f(A\)1,, so the
distribution of V? does not depend on 3 or on the nuisance parameters de-
scribing the distribution of {U,}.

Like Assumption 1, Assumption 3 is satisfied under general conditions on
U, For example, if U, = C(L)e,, where C(L) is 1-summable and ¢, is an n x 1
martingale difference sequence satisfying multivariate extensions of the moment
conditions stated after (2.2), then Assumption 3 follows from Chan and Wei
(1988), Theorem 2.2, with Q2 = C(1)E,C(1)', where %, = Fe e} As is discussed
below, the assumption is also satisfied by a large number of estimated trend
specifications.

Under the null hypothesis, Y, is not cointegrated. It is assumed here that
interest is in testing whether 2 has full versus reduced rank; g is treated as a
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nuisance parameter. (An alternative, not pursued here, would be to consider

cointegration that involves the trend terms as well.) Thus it is natural to

consider residual-based tests in which the series are 1n1t1ally detrended.
Partition Y%as [Y{,|Y#]’, where Y{=Y,- d(f) and Y{,is a scalar process.

Suppose that the cointegrating vector a is estlmated by regressmg Y¢on Yi;

1
SR AR A
The residuals are 2¢= &% Y? Let

T ¢
@, = {T’lz'&f -{—ZZT Z @yd,_;} (4.3)

t=j+2

dd

where @, = 2,~ §3, ,, with § = 1L,2,2, /0082,
The strategy is to apply the univariate g(-) tests to the residuals zt The
standardized detrended residuals are:

( )= (Tw, )_% A[m] (4.4)

To handle the leading special cases, analogously to Section 2 adopt the nota-
tion iy, 04, 97, and #5. As in the univariate case, these standardized residuals
have limiting representations in terms of functionals of Brownian motion. Let
W denote standard n x 1 Brownian motion, and partition the n x 1 stochastic

processes V, W, etc. conformably with Y,. The following theorem summarizes
results for the leading cases.

Theorem 3. Assume that Assumption 3 holds, that § has full rank, and that
sup,B(U,)* < o0, i = 1, ..., n. Then % => (a%a?)"a¥ vV, where

& =L =(f VWY as) [ V) s Y.

In the leading special cases, this result holds with:
(a) for 4(B) =0, Vi= W;
(b) for d(8) = B,, VA(A) = W()) - [iW(s)ds;
(c) for d(B) = B, + Bit, VT(N) = W(}) al(A)f& W(s)ds — ay(N) Jos W(s)ds

and VE(A) = W(A) - (A - %) W(1) - [RW(s)ds, where a,(\) = 4 — 6)
and () = -6 + 12

Theorem 3 states that, under the null hypothesis of no cointegration, the resid-
uals from the levels regressions have an asymptotic distribution that is the
same as the indicated functionals of multivariate Brownian motion.

The multivariate version of trends that are linear in 3 is d,(3) = Bz, where
dis nx Jand x,is J x 1. The OLS estimator is 3 = (L, Y, 2} (L z,z)
If 74{A) = a7y satisfies (2.4), a direct calculation as in the proof of Theorem
1(d) shows that 14, 3) => HV?, where V() = W(A) - {fEW(s)yr(s) dsM}T.
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Thus, like the leading cases addressed in Theorem 4, this more general trend
specification satisfies Assumption 3 and (4.2).

As in the univariate case, if g(-) is continuous, then g(3%) => g(V%). Because
the limiting representations in Theorem 3 do not depend on any nuisance
parameters other than n, this can form the basis for constructing tests with
critical values that can be tabulated as a function of n. This therefore general-
izes Phillips and Ouliaris’s (1990) results for selected residual-based tests for
cointegration to the entire family of tests defined by G

As a specific example, consider the modification of the Sargan-Bhargava
statistic formed using (3.5):

gsp(p) = Z Jo=>a {f s)V(s)'ds}a /(a'd). (4.5)

This statistic is related to the Pu statistic proposed by Phillips and Ouliaris
(1990); the difference is that, in (4.5), the cointegrating residuals are scaled
by @, while in the Pu statistic these residuals are scaled by an estimate of the
conditional variance of Y7, given Y, constructed using an estimate of the spec-
tral density matrix S, y(0).

5 Consistency

This section examines the consistency of univariate g-tests against I{0) alterna-
tives both in general and in some special cases. The general consistency result
is given in the following theorem. Recall that, in the notation of Section 2,
DA\ B) = d[T,\}(ﬁ) and, for trends that are linear in 3, d,(8) = B'z,, with 74{})

= Iy

Theorem 4. Assume that y, = d,(3) + w,, where sup, Bjw,|**® < co for some
6 > 0, and that one of the following holds:

(a) T Dy(-, B) = Dy(:, B)} => 0O or
(b) DA, B) = B'7(}), where 7 satisfies (2.4) and 3 is estimated by OLS.
If & 5 k= 0, then g(v?) is consistent for all g € G%

This provides sufficient conditions for the consistency of all g € G% However,
some g € G?will be consistent under weaker conditions, and rate results can
be obtained for specific tests if different conditions are assumed. In addition,
this theorem assumes that @ has a nonzero limit under the alternative, some-
thing that must be shown on an estimator-by-estimator basis.

We therefore examine the consistency of four specific g(-) tests, constructed
using an autoregressive estimator of w, in the case that d,(8) = 0. The four
functionals are:

a(f) = RIis)rds (5.1a)
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a(f) = finlf(s)lds, 1y
a(f) = [f35'F(s)dsl?, (5.1¢)
gpslf) = SUP,\e[o,1]f (s) - inf,\ego,qf (8), (5.1d)

where f(s) is a function on the unit interval.

The g, functional is examined because, for = 2, it leads to the generalization
of the Sargan-Bhargava and Bhargava statistics. As mentioned in Section 2,
the g, functional has the useful property that, in the univariate context, its
distribution is a constant times a x2. (Note however that for n > 1 the distribe-
tion of g; is not x?, but rather involves the random processes in Theorem 3.)
The gpgfunctional leads to Lo’s (1991) modification (3.11) of the R/S statistic.
The g, statistic is included to demonstrate the variety of conditions that lead
to consistency of g{-) tests.

The calculated test statistics are the sample analogs of (5.1):

glvg) = T%Ethllvtlra (5.2a)
gvy) = T Inlv), (5.2b)
g(vg) = {TAZg;l(t/ T)r”z}za (5.2¢)
Ips(vy) = max, ¥~ Miny v, = Q. (5.2d)

Here, w is estimated by a sequence of autoregressive spectral density estim-
ators. That is, let @(1) be the OLS estimator of a(1) in the regression,

Ay =By + By T a(L)Ay, ;1 + e, (53)

where a{L) is a lag polynomial of length p and e, is the regression error. The
autoregressive spectral density estimator is @ = &%/(1 - a(1))*

Were y,_, not in the regression (5.3), @ would be the autoregressive spectral
density estimator considered by Berk (1974), who proved its consistency under
general conditions on ¢(L) in (2.2) for p — oo and p = o T'/%). Said and Dickey
(1984) extended this result to the regression coefficients of (5.3); the consist-
ency of & under the null is an implication of their Theorem 6.1. Thus (v satisfies
Assumption 2.

The properties of the univariate tests are investigated under the alternative
that y, is a stationary linear process with nonzero mean:

y, = f +w, where w, =bL)g, ¢ iid. (0,07), E¢ <oq, (54
where 0 < [b(e¥)

Yoo Ywe (=, 7, ilbj, < o3,
=0
and Zjldjl < 00, where d(z) = b(z)™L.
=0

In general & converges t0 @ nonzero constant under this alternative:

Lemma 1. Suppose that ¥, is generated by (5.4), p — o0, p = o(Tl/g)a
p* ity — 0, and 2229(j ~ 1)d; = 0. Then & £ 0?/(2?20(3' - 1)dj)2 = e
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The next theorem provides rates of consistency against (5.4).

Theorem 5. Assume that the conditions of Lemma 1 hold.
(a) If E(€") < oo, then (T*"/InT)g,(vy) 5 0 for all r > 0.
(b) If E(In|y)|)* < oo, then gy(vq) + (%~ 8)InT 2 ~oc0 for all § > 0.
(¢) Tgy(vy) & B2/K(1 + ) forall r > 0.
(d) If ¢;= 0, 7 < 0, and if there exist nonstochastic sequences {az, by} such

that by + apmax; . qe| % €*, where ¢* has a distribution on the real
line, then gps(vr) = O (max(|bq, 1)/VTag).

Two remarks are in order.

(a) The rates at which the statistics converge under the alternative is stri-
kingly different. Indeed, the rate of convergence of the test g,(-) can be made
arbitrarily large; the cost of a faster rate is an increased number of moments
of €, assumed to exist under the alternative. It is instructive to compare these
to other rate results in the literature. In particular, Phillips and Ouliaris (1990)
show that the Z, statistic has a rate of T under the fixed alternative, whereas
the Dickey—Fuller t-statistic has a rate of 7. All else equal, these results sug-
gest that the Z,, MZ,, and the modified Sargan-Bhargava statistics might be
expected to exhibit better power against I(0) alternatives than the Dickey-
Fuller t-statistic.

(b) The rate of convergence of the R/S statistic depends on the rate
of convergence of the extreme order statistics of {¢,}. In general, if b, +
apMax, ., /€, has alimiting distribution, then it will be of the Fréchet, Weibull,
or Gumbel form; the sequences {ag, by}, if they exist, depend on the distribu-
tion of {¢,} (Reiss, 1989, p. 152). For example, if {¢,} are i.i.d. N(0, o?), then
ap= (2InT)" and by = ~2InT. Thus, for Gaussian ¢, Qr = O,((2ln T)%/VT)
under H;. It can also be shown that v;=> 0 under the conditions of Theorem
5(d). Thus these conditions are sufficient to show the consistency not just of
the R/S test, but of all g-statistics. In this sense, the treatment of the R/S
statistic in theorem 5 relies on the strongest conditions for consistency.

6 Monte Carlo Results

This section presents the results of a Monte Carlo study of several of the tests
discussed in the previous sections. The design includes two types of models:
stylized models found elsewhere in the literature, included here to permit
comparisons across studies, and empirical models based on postwar US time
series data. The motivation for using the empirical models is that, to make
recommendations for empirical practice, it is important to study the finite
sample behavior of the statistics in probability models typical of those found
in applications.
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6.1 Univariate Tests

The experiment examines the behavior of seven tests for a unit root under
eight different probability models (data generating processes). The leading
case in practice is an I(1) null with unknown drift versus the alternative that
the process is stationary around a linear time trend; see, for example, the ex-
tensive discussion in Christiano and Eichenbaum (1989). Thus the Monte
Carlo experiment focuses on the linear trend case, d(3) = £, + B,(¢/T).

Of the seven unit root tests, five are g(-) tests discussed above, of which
four are new, and two are standard tests. These two are the Dickey-Fuller &
statistic and the Phillips-Perron Z, statistic. These statistics have been studied
extensively elsewhere and therefore provide a basis for comparison of these

results with Monte Carlo examinations of other tests. The unit root tests
considered are:

1. The modified Sargan-Bhargava (MSB) statistic, based on the functional

ausalf) = {f| Fsds}; (6)

2. The Dickey-Fuller ¢-statistic (DF.);

3. The Phillips—Perron Z, statistic given in (3.8);

4. The modified Phillips-Perron Z, statistic (MZ,), g,(v}), where g(f)y =
B(f(1)? - 1)/ fof(s)*ds;

5. The modified R/S statistic @, given in (3.11);

6. The g, statistic in (5.2b), in which g,(f) = [3ln|f(s)|ds;

7. The g, statistic in (5.2c) with r = 2, so that g5(f) = {Jaf(s)ds}>.

The MSB statistic (6.1) is evaluated using v&, while the MZ_, R/S, g5, and g
statistics are evaluated using vf; for these tests, the spectral density was
estimated by the autoregressive spectral estimator & defined following (5.3);
with 4 lags ( T'= 100) and 5 lags (7= 200). The DF._ autoregression was evalu-
ated with 4 lags (T'= 100) and 5 lags (7' = 200). The Z, statistic was evaluated
using £ =4 (T=100) and £ = 5 (T = 200).
Asymptotic critical values for the g(-) tests were computed by Monte Carlo
simulation using a standard Gaussian random walk of length T'= 500. Critical
values for the univariate DF,_ and Z_ statistics were taken from Fuller (1976,
pp. 373 and 371, respectwely) As a reference, asymptotlc critical values for
the MSDB statistic are provided in Table 1.
Of the eight probability models considered, the first three are standard and
provide a basis for comparison against other results in the literature (in par-
ticular Schwert, 1989). These take the form:

(1-pL)y, = v, wu, =¢ +0, ¢ iid NO1), ¢t=01.,T, (6.2)

where § = 0 {model 1), § = 0.5 (model 2), and § = -0.5 (model 3).
The remaining probability models were estimated using five quarterly US
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Table 1. Asymptotic critical percentiles for the univariate
MSB statistic

Percentile Demeaned Detrended
.025 0.17405 0.15250
05 0.19144 0.16449
10 0.21426 0.18030
.20 0.24894 0.20415
.30 0.27957 0.22418
.50 0.34302 0.26235
.70 0.42787 0.30843
.80 0.49094 0.34229
.90 0.58267 0.39049
.95 0.66777 0.43341
975 0.74723 0.47113

Notes: The MSB statistic is gyqp(v%) (demeaned) and gyyqp(v)
(detrended), where gysp (f) = {f{ f(5)2ds}" and where v and v%
are defined in Section 2. Based on 20,000 Monte Carlo replications
with T = 500.

time series over the period 1948:1 to 1988:IV. The series were selected using
two criteria: first, that the series either has been examined in the literature
for its unit root properties or is closely related to series that have been so
studied; and second, it has a spectral shape that is representative of those
found in postwar US data. The evaluation of the second criterion drew on
Stock and Watson (1990), in which various time series properties of 163
monthly US time series, including plots of their spectra, are cataloged.

The five series chosen are: model 4: the real money supply (M2), in log-
arithms; model 5: the inventory to sales ratio for manufacturing and trade
(IVT82); model 6: the number of new business incorporations, in logarithms
(INC); model 7: the 90-day US Treasury bill rate (FYGM3); and mode! 8:
total real personal income less transfer payments (GMYXP8). The data (and
mnemonics) are from the CITIBASE database. Most empirical macroeconomic
research uses quarterly series, often quarterly averages of monthly values, so
these monthly series were aggregated to the quarterly level before transforma-
tions or estimation.

The empirical models were obtained by estimating

o(L)(1 = pL)y, = By + ¢, (6.3)

where a(L) has order 6 and, for estimation, p = 1 is imposed.4 A natural way
to assess the fit of these models is to consider the qualitative adequacy of their
approximations in the frequency domain. To this end, the spectra of these
series, estimated using the AR(6) approximation (solid line) and using a
smoothed periodogram with a Fejer kernel with bandwidth 10 (dashed line)
are graphed in Figures 1-5. In each case, there appears to be no qualitatively
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Figure 5. Total real personal income less transfer payments, USA, 1948:1-1988:1V:
estimated spectral density {growth rates)

important feature of the spectrum missed by the AR(6) estimates. One notable
feature is that although the 90-day Treasury bill rate and new business
incorporations exhibit substantial high frequency power, none of the spectra
increase sharply with frequency. This is typical of the 163 series in Stock
and Watson (1990). In only a few cases, such as import and export figures,
are the series dominated by their high frequency movements. Even in these
cases, however, aggregation to the quarterly level substantially reduces
the high frequency component. The estimated parameters are provided in Ap-
pendix B.

Because these models are based on autoregressive approximations, there is
the possibility that the performance of autoregression-based tests will be over-
stated because the model approximation error is slight. For each series, the
calculations were therefore repeated using an ARMA(1, 5) model, (1 - pL)Y:
= b(L)e, with p and b(L) estimated by maximum likelihood. By varying p in
simulations (keeping b(L) fixed), this model is capable of generating data under
both the null and the alternative.

For cach of the cight models, the tests were studied using Gaussian errors
under the null (p = 1) and under three alternatives: for T = 100, p = .95, .90,
and .80; for T'= 200, p=.975, .95, and .90. These choices of p permit examining

the predicted stability of the power function under the local alternative pp=
eT= 14 ¢/T + o(c/T).
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6.2 Cointegration Tests

The test statistics examined in the univariate experiments were also examined
using four bivariate models, except that the g, statistic was evaluated using
r=11in (5.1c), i.e. g3(f) = {[3sf(5)ds}?. The test statistics were computed as
described for the univariate tests, except using the cointegrating residuals
based on demeaned series. The choice was made to demean rather than detrend
for comparability with earlier studies. Critical values for the DF_(“ADF” in
Engle and Granger, 1987; Phillips and Ouliaris, 1990) and Z,, tests were taken
from Phillips and Ouliaris (1990); for the other statistics, they were computed
by Monte Carlo simulation using the asymptotic representations of these
statistics with 5,000 Monte Carlo replications.

The simulation examined four models. The first three are bivariate exten-
sions of the univariate model (6.2), namely,

t

¢ t t
Y = %Zult +%Ept_suzt» Yoo = %Zuu —%Zpt_su?ta (6.4)
s=1

s=1 s=1 s=1

where u, = ¢, + f¢, |, t =1, ..., T, with ¢,1.i.d. N0, ;) and § = 0 (model 1),
0.5 (model 2), and -0.5 (model 3). Under the alternative, p < 1, the cointeg-
rating vector is (1 -1) and 2, = pz,_, + 4, This simple model provides a useful
starting point: because z, is generated by the same process under the alternative
in (6.4) as is y, in the stationary univariate case in (6.2), the differences in
size and power between the univariate and bivariate tests can largely be attrib-
uted to random variations of the estimated cointegrating vector and to the
different types of detrending, rather than to differences in the specification of
nuisance parameters.
The experiment also examined an empirical model (model 4) of the form:

Ay, = 1y + 1y, (6.5)
(1- pL)zy = pigy +utyy,

where U, = (u, u,,}' was approximated by a VAR(6). The model was estimated
with y,, and y,, respectively being inventories (IVMT82) and sales (MT82) in
manufacturing and trade, aggregated from the monthly to the quarterly level,
in logarithms, from 1952:I to 1988:1V. The motivation for choosing this pair
is that the inventory-to-sales ratio was one of the series examined in the pre-
vious Monte Carlo simulation. The cointegrating vector (1 —1) was imposed
In estimation, and the possibility of cointegration was admitted in estimation
by specifying the right-hand side of the 2, equation in (6.5} in terms of 2, ,
and lags of Az, ;, with the dependent variable being z,_,.

In all four models, the pseudo-data were generated using T = 200, Gaussian
errors, and zero drift (;; = p, = 0in (6.5)). Under the null of no cointegration,
f = 1; the alternatives were p = .95, .9, and .85.
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6.3 Results and Discussion

The univariate results are summarized in Tables 2-4. For each model, the first
row gives the size of the test based on the asymptotic critical value. Because
the size typically differs from the asymptotic level, the reported power is size-

Table 2. Size and power of tests for integration, detrended statistics, 7" = 100
Rejection probabilities for tests with asymptotic level 5%

Model p Test statistic
MSB DF, Z, MZ, R/S % %
1 1.00 081 070 062 084 157 .083 054
95 164 070 102 162 153 144 093
90 .306 128 235 .308 274 275 143
80 574 309 669 572 AT7 524 236
2 1.00 075 062 000 072 174 076 053
95 .168 072 081 .163 158 144 089
90 308 123 .159 .306 272 272 126
80 564 .282 374 564 478 503 211
3 1.00 043 082 802 .042 055 ,043 063
95 170 074 001 .170 162 158 087
90 327 .149 108 .329 208 .304 139
80 606 441 491 .628 571 .505 259
4 1.00 028 .105 .008 .029 187 .037 052
95 231 071 080 260 231 229 070
90 487 117 168 .524 466 .436 123
.80 737 .210 .359 760 .662 .679 .201
5 1.00 168 203 072 171 257 167 090
95 181 079 082 175 171 .166 .086
.90 384 .165 147 .380 359 .352 150
80 781 AT6 A35 773 733 736 313
6 1.00 003 074 018 003 026 .009 055
.95 253 .083 071 284 258 .242 073
.90 580 151 157 607 560 .526 126
80 874 .373 402 .891 814 .838 251
7 1.00 047 046 065 046 099 047 054
95 160 072 .103 .165 .145 .146 085
50 207 119 .223 .305 .249 275 128
80 532 272 621 532 A17T 478 209
8 1.0 042 223 .079 037 174 .054 .069
95 048 041 036 068 .052 066 023
90 465 128 128 555 AT8 474 081
.80 915 .350 434 942 .903 .894 .201

Notes: The pseudo-data were generated using (6.2) (models 1-3) and (6.3) (models 4-8). The first
Tow for each model (with p = 1) presents size, based on the asymptotic critical values; the remain-
ing rows present the size-adjusted power. The MSB statistic was evaluated using v’%, the remaining
¢statistics and Z, using v, and (1, ¢) were included as regressors in the DF._ autoregression. The

e:symptotic critical values were computed by Monte Carlo simulation. The results are based on
2,000 Monte Carlo replications.
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Table 3. Size and power of tests for integration, detrended statistics, 7= 200
Rejection probabilities for tests with asymptotic level 5%

Model p Test statistic
MSB DF_ Z, MZ, R/S % 9
1 1.00 060 .060 .072 058 .085 .062 064
975 141 .084 .093 .143 140 134 068
.95 302 .155 210 307 272 273 .100
.90 .681 436 651 .689 .592 608 165
2 1.00 .047 .052 .025 .049 .095 047 .055
975 .148 073 .089 143 134 136 .069
.95 310 138 .205 318 273 286 107
.90 .683 .399 561 687 572 620 187
3 1.00 032 .080 721 .025 .020 027 .061
975 .165 078 100 165 154 158 07
.95 .348 .163 238 .360 319 336 109
.90 727 .509 699 .769 .670 727 190
4 1.00 053 .103 033 .052 165 059 062
975 091 .068 067 .109 .098 .095 045
.95 321 148 .184 375 .324 302 091
.90 727 367 521 773 .684 666 175
5 1.00 157 .200 .243 .158 178 147 .070
975 .185 097 102 181 179 172 077
.95 408 202 .220 403 373 371 135
.90 843 .600 .092 849 .785 807 234
6 1.00 018 073 065 018 .032 .020 056
.975 078 .079 .056 092 .085 .093 047
.95 .334 .168 179 .385 343 337 .090
.90 813 473 .559 .862 785 791 .199
7 1.00 .032 043 095 .027 .046 031 057
975 .149 .078 102 .158 151 141 .074
.95 .322 .153 233 334 .300 .288 .108
.90 .682 412 .669 .699 .584 628 184
8 1.00 107 214 189 113 .199 110 .060
975 .002 .033 006 003 .001 .008 .005
95 .052 143 070 126 051 154 032
.90 .683 .016 501 848 729 801 167

Notes: See the notes to Table 2.

adjusted: the power was computed using the critical values that produce 5
percent rejections under the null hypothesis for the indicated number of
observations for the given model. This size-adjusted power is reported in the
remaining three rows for each model.

In model 1, all the statistics have sizes close to their 5 percent level, even
for T = 100 (except for the R/S statistic). The size results for the DF, and
Z,, statistics for models 2 and 3 are similar to those that have appeared
elsewhere, with the size of the DF, statistic being stable but the size of the
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Table 4. Size and power of tests for integration, ARMA(1, 5) models,
detrended statistics, T = 200
Rejection probabilities for tests with asymptotic level 5%

Model p Test statistic
MSB DF, Z, MZ, R/S 9 %

4 1.00 .076 068 .023 079 .188 .078 .060
975 189 079 .090 161 150 149 077
.95 308 134 183 312 273 277 102
.90 618 327 468 619 .501 .550 .168

5 1.00 023 037 .016 022 060 029 051
9715 151 070 086 157 151 138 079
95 307 124 172 313 284 .269 AA
90 637 320 420 625 526 554 188

b 1.00 .089 D79 .019 .093 175 092 057
975 150 079 .094 162 154 145 075
.95 .308 144 184 316 279 274 118
90 638 362 467 642 542 573 186

T 1.00 180 149 .032 208 .345 187 065
975 169 083 .091 168 162 149 078
95 .343 158 .208 336 .303 304 119
.50 .665 399 .585 667 .568 610 .202

8 1.00 .079 076 .022 088 .209 .089 057
975 152 073 .090 154 147 131 076
95 .308 135 .186 310 .283 253 110
.90 .633 338 .504 625 537 535 .180

Notes: The data were generated according to estimated ARMA(1, 5) models described in the text.
See the notes to Table 2.

Z_ statistic changing substantially with . The tradeoff between this stability
of the size and the size-adjusted power is evident in these models, with the Z,
statistic having better power than DF . Interestingly, in models 1-3 the MZ,
statistic has power properties comparable to the Z_ statistic, but has size that
is closer to the level. Indeed, the MZ, statistic has essentially the same size
as the MSB statistic under model 1, the case in which the MSB statistic is
asymptotically equivalent to Bhargava’s exact test. The g, statistic also ex-
hibits good power, better than DF_ and almost as good as MZ,, and stable
size in these simple models.

The size distortions in models 2 and 3 are not in the same direction for al
the statistics. In particular, the size of the MZ_ statistic in model 3 is substan-
tially below its level, while the opposite is true for the Z, statistic. Because
the main difference between these statistics is the spectral estimator at fre-
quency zero, this emphasizes its key role in determining the sampling properties
of the statistics.

The results for the empirically derived models differ from those for the
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simpler models and warrant several observations. First, the size distortions
for the DF statistic are as large as for the Z_ statistic (models 5 and 8). Second,
the size distortions, while substantial, are not nearly as severe as in model 3.
A possible explanation is that none of the models exhibit spectra with the pre-
ponderance of power at high frequencies. However, this possibility was admitted
by estimating relatively long autoregressions on potentially overdifferenced
series. To the extent that these series are typical of those used in empirical
analyses, this negative MA problem might not be as severe in practice as might
be suggested by the results for model 3.

Third, the R/S statistic exhibits substantial size distortions, even for 7'=
200 and even for models in which the other statistics do not exhibit this prob-
lem. This suggests that the sampling distribution of the finite-sample extreme
order statistic in series with complicated dependence is not well-approximated
by its asymptotic limit.

Fourth, although the size results for the AR and ARMA simulations typic-
ally differ, the size performance for the autoregressions-based tests is not clearly
better in the AR simulations. The implication, reinforced by the results for
models 2 and 3, is that specification bias is not key in determining the sampling
distribution of the spectral density estimator. However, the size distortion of
the Z, statistic is substantially less when the ARMA model is used; in this
case, the Z, statistic (which uses 5 lags for T'= 200) is correctly specified.

Fifth, the size-adjusted power of the autoregressive tests is reduced when
the data are generated according to the MA specification. However, the overall
ranking of the powers is largely unaffected, with the Dickey-Fuller {-statistic
having lower power than the MSB, Z , or MZ, statistics. This is consistent
with the theoretical predictions of Theorem 4 (and related results in the lit-
erature) that indicate relatively faster rates of convergence for these statistics
under the null.

Sixth, the MSB statistic performs well. Aside from the g, statistic (which
has the best size performance and by far the worst power), the MSB statistic
has the least size distortion, followed by g,. The power of the MSB statistic
is also quite good. For example, in models 5 and 6, its power against p = .9
with T = 200 exceeds 80 percent in the AR simulations. The power also com-
pares well to the power of Bhargava’s MPI R, statistic in the first order model
(model 1). For example, the power of the R, test was separately computed to
be .76 for p = .9 and T = 200, while the MZ_ and MSB statistics respectively
have power .68 and .69. In several models, MZ_ performs as well as MSB.

The cointegration results are summarized in Table 5. The most powerful
tests are the 7, MZ,, and MSB tests. The univariate size difficulties of the
Z  statistic are mirrored in bivariate model 3. For the models considered here,
only the DF_and g, statistics have size consistently close to their level, and
the power of the g, statistic is so low as to eliminate it as a serious contender.
For all tests, in models 1-3 the power is lower than in the corresponding uni-
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Table 5. Size and power of cointegration tests, demeaned statistics, n = 2, T =200
Rejection probabilities for tests with asymptotic level 5%

Model p Test statistic
MSB DF_ Z, MZ, R/S 9y 0

1 1.00 115 .052 .069 .104 157 112 064
.95 180 127 .192 179 154 170 055
.90 426 .329 553 433 338 .392 081
.85 669 .583 878 .673 .530 .620 J12

2 1.00 124 .054 024 110 185 121 066
.95 .160 21 .154 .162 .162 163 061
90 .388 305 413 391 322 .380 090
.85 620 .556 684 621 .509 .593 115

3 1.00 070 .050 .663 .059 060 .068 060
.95 143 119 184 147 133 146 062
90 358 .336 579 .365 317 .351 072
85 564 .599 901 574 481 .553 083

4 1.00 A27 078 056 112 .148 126 068
95 108 113 077 110 093 103 080
.90 173 193 100 174 147 .165 105
.85 251 .298 124 253 206 243 138

Notes: The pseudo-data were generated using (6.4) (models 1-3) and (6.5) (model 4). The first
row for each model (with p = 1) presents size, based on the asymptotic critical values; the remain-
ing rows present the size-adjusted power. All statistics were evaluated using the residuals from
cointegrating regressions of y#, on y4, For the MSB, MZ,, R/S, g,, and g, tests, these residuals
were standardized by an autoregressive estimate of the spectral density with 5 lags. The asymptotic
critical values were computed by Monte Carlo simulation. The results are based on 5,000 Monte
Carlo replications.

variate case. A striking feature of model 4 is that the power of all of the tests
is very low, much lower than in the stylized models 1-3, although the size
distortion is no more severe than under the base model 1. Despite the limited
nature of these results, they suggest that these tests can exhibit low power
and substantial size distortions, indicating room for further work.

7 Summary and Conclusions

The statistics developed here provide a new class of tests for integration and
cointegration. The idea behind these tests is simple: that an integrated process
grows at rate T", whereas a stationary process does not. This formulation also
provides a unifying framework for many previous tests found in the literature
and extends to general trend processes.

Once the class of tests is formulated, a natural question is which member
of the class will have the greatest power against a specific model, and whether
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the finite-sample properties of the test are satisfactory. Although it is possible
to obtain general results for some processes, such as local-to-unit root processes,
and to characterize the rate of convergence of specific members of the class
under a fixed alternative, such results provide only a partial answer to the ques-
tion of determining the optimal test in this class. The approach taken here has
been to investigate size and power numerically. The main novelty of the Monte
Carlo simulations is the use of empirical models to generate the pseudo-data.
In the univariate case, these models are representative of a broad set of US
time series, and include series that have substantial power at high frequencies.

While the Monte Carlo results examine only a limited number of tests, they
nonetheless provide several conclusions for empirical practice. First, the MSB
and MZ, tests have good power properties, relative to the other tests. The size
of both tests is also reasonably well controlled. Second, the size distortions of
the Z,, statistic suggested elsewhere might be overstated in terms of their prac-
tical importance: in the empirical models, both in their AR and MA formula-
tion, the size distortions are less than in the stylized pure MA(1) models (but
see Schwert, 1989, for an argument for using more extreme MA representa-
tions). Third, simulations using the empirical models suggest that the size
distortion for the Dickey~Fuller #statistic can be more severe than is suggested
by simulations based on the simple MA(1) models; in addition, the size-
adjusted power of the Dickey-Fuller statistics is typically substantially lower
than that of several of the other statistics. Fourth, the modified R/S statistic
has consistently poor size properties.

The main conclusion from the more limited Monte Carlo analysis of the
residual-based cointegration tests is that, of those studied, none performs par-
ticularly well. Although the size of some of the tests, for example the Dickey~
Fuller ¢statistic, is close to its asymptotic level, the power of all of the tests
is poor in the one empirical model examined.

Appendix A: Proofs of Theorems

Proof of Theorem 1. (a)—(c). The results follow from Assumption 1 and
Theorem 2.2 of Chan and Wei (1988) after straightforward calculations. The
calculations for yp,) are given in the proof of Theorem 5.1 of Stock and Watson
(1988).

(d). Write

T*{Dp(NB) - Dr(XB)} = {(T- lzztzt) NT- Zthu 1IN/ T).

t=1 s=1
It follows from (2.4) that 77T 52, — M and T73/*CL 1$:Zs~1“ =
Vfir(s) W(s) ds, 50 T%{Dy(X; B) = Dy X )} => VE{Mfr(s) W(s)ds}'r(A)
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Because 7 and M do not depend on unknown parameters, Assumption 1(b) is
satisfied. It follows that v} => W - 3*'7, where #* = M [l7(s) W(s)ds. u

Proof of Theorem 2. The results (a) and (b) follow from Theorem 6.2 of Phillips
and Perron (1988), since under the local alternative T%(p — p;) 2 0. The
results (c) and (d) follow by direct calculation, noting that T(p;-1) — c. &

Proof of Theorem 3. Consider the terms 7 “&¥Y?¢and @, separately. First,
following Phillips and Ouliaris (1990), partition H conformably with Y, so
that

| Hipf _ |4
0 Hyl|l |H)|
where hy; is a scalar. Then T e Y[TA] can be written as:
oy = -V QoYY )T )
H
=>[1|—(| HVV{'H H, ViV H [h“ 12 (V4N
V= BV B[ HVEVE G 2 V)

= [huy | Hyy = ([ VD[ VIV V)
=[hyy | Hys *}hl(f‘/ld‘@d,)(f‘@dvzd’)— — Hp, V4N
= @V (A1)

where a¥ = [1|-(JVEVI)(fV§V¥)1], and, to simplify notation, [VIVY rep-
resents [y Vd(s V(s)'ds, etc.
Next consider @, and let o*¢ = [1|-H,fVeVI(fVEVIVIHL. Then

Z T Z pzt_l)(zt——] ﬁﬁf_] 1)

j=—f t=342

=a” Z T Z “PYtd1)(Y Ve ) @

j=-F t=73+2
=>a ¥Qa™.
The argument that the term in brackets converges to ) is made in Phillips
and Ouliaris (1990}, proof of Theorem 4.1(a). It relies on £ — oo, £ = o( TV),

and p - 1 = 0,(1); see Phillips and Ouliaris (1990) for the details. Using Q =
HH'’ and (A.1), one obtains:

@, =>a YQa’ = o"VYHH' 0" = hLaYal. (A.2)

It follows from (A.1) and (A.2) that (T@,) &% Yfln} => (a%ad)Yad vi()).
(a), (b), (c).The proof of (a) is immediate withY? = ¥, V¢ = W, etc.

To prove (b) and (c) it only needs to be shown that D(); 3) is such that

(A3) is satisfied. This follows by direct calculation. For example, T7%( Y/: (T~
TYL, Y) => B()\) -~ [}B(s)ds = B*(\), where B has covariance matrix §)
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= 215,(0); this can be factored as B* = HV¥, where V* is as given in the
statement of the theorem. &

Proof of Theorem 4. (a) Write v-(A) = (1) %{y{n diry (,@)} = (T@)'%{y[m
- d[TA](/B)} (1) ]/Z{D (A, 5) Dr(A, B)}.

By assumption, @ & k> 0 and T~ /Q{DT( B) - D+, B)} => 0. Thus the
result follows if ( TW) *w% => 0, where wi{}) = Yy~ raiB) = wipy-

To show that (7W) "w% => 0, it is convenient to work in the restriction

of D0, 1] to C[0, 1], with the metric p{f;, o) = sup,ep ylfilA) — H(A)] (see
Hall and Heyde, 1980). Let wy = 0 and define the interpolation of w;py) to be

wi{A) = {wipy + (TA = [TA)(w [TA]+1 “’[T,\])}/(Tw)l/ so that wi(A) € C[0, 1].
Note that max; ., flw] = supyejoy) |wl{\)|. Then, for all € >0,

Prlpp(w},0) > €] = Prfsupyerg [“’T()\)I > €]
w, / (T“"
< E{ma‘thgT 1wt|/{(Tw)26}}2+6

T
< T eI B ),

= Pr[maxKKT

which tends to zero under the assumptions & % k= 0 and sup,E]w,|**? < co.
Thus w} => 0 so v => 0. Because g is continuous at 0, g(v3) => ¢(0), s0 in
particular, by the definition of G% Pr[g(v3) < ¢,] — Pr[g(0) < ¢,]=1 for all a.

(b) Write D (X, 3)— DX, B) = 7 N(3—B). By assumption, 7 — 7, where
sup ol (M| < 7, i =1, ..., J. Thus Do(X, B) — Dy(A, B) => 0if 3~ 650,
But this follows from notlng ﬁrst that T™'3 z,z) — M, where M is nonsingular
by assumption; and second that:

T T
ETY" N gaiww, <7277 i |cov(w,,w,_, )| < 0.

t=1 s=1 y=—0Q

With this result and Chebyshev’s inequality, 3-8 20, so D{), B)- DA\ B)
=> (), so condition (i) in the statement of the theorem is satisfied. ®

Proof of Lemma 1. Under (5.4), y, has the autoregressive representation, d( L)y,
= Byd(1) + €, or y, = Byd(1) + 6(L)y,; + €. Thus:

Ay, = fpd(1) + (6(1) — Vy,—y +6*(L)Ay,,; + ¢, (A.3)

where dy = 1, §(L) = L'(1 — d(L)) and & = -L.2.,,6, Thus (A.3) is the
population regression, the parameters of which are estimated by the sequence
of pth order autoregressions (5.3). The stated assumptions satisfy the con-
ditions of Berk's (1974) Theorem 1 for the £,-consistency of §(z). Thus the
OLS estimator of a linear combination of these parameters will be consistent,.
Thus @ £ g2/(1 - §*(1))% By direct calculation, §(1) = X2o(-2%,6) =1
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- 220(1-5)d; Thusw 5 o222 - I)dj]2 = k, where >222(j - 1) d;is nonzero
by assumption. B

Proof of Theorem 5. (2) (T*"/InT)g,(vy) = T XL T7( Tw) ¥y /T =
& (TS |y ln T,

By Lemma 1, @ 2, K% By Chebyschev’s inequality, it therefore suffices

to show that E(T'EL,lyl"/InT)* — 0. Now:

T T T
BT | /T = T2 S E|G +wil [ +w[ /(0 T)
t=1

t=1 s=1

which converges to zero if Elwaw|™ < ¢ < oo for all £, s. Now:

E|w,w,|” < Bw? = EO(L)e)”

00 o0
< Z...Zo'bjj--]bjw

jl =0 j2r =
[s @]
S (Z|bj
=0

for all t, whence the result follows,
(b)Prlgy(0y) + (%~ T > ¢ = Pr{T'Shylnly) + %lnd > ¢ + fnT] <
E{T'TLin|y| + #nd}/(c + fnT)2
Because In& % Ink, the final expression tends to 0 for any fixed ¢, le] < o0,
if E(T'2F In|y))? is bounded. Byy B(T ' Eiylnfy))? < E(In|y,|)?, which is
finite by assumption, 80 PY[QZ(UT) 4 (1 - §)InT > ] — 0 for all 6 > 0, || < ce.
() Tas(vg) = T{T S/ Tyy o)} = {TE(t/T)y,}*/@. The result
follows from T‘IZ(t/T)TYt 5 Bo/(1 + 1)-
(d) grs(vy) = (T@)“V?;[maxlgtST(ﬁg + w) ~ ming ¢, 7(By + W)}
= Z(Ta’)‘ﬁmax‘Sts 1w
< (o) maxy o setiblen)
< (2@‘1/22}'2& bj) TY%max; << Tl€4-
Let § = 2@’%2]%';0[@( and IGI(T) = maxlgthIEtl' Then:

a7 fmax(by|,)ns ) < i(a, j max(pr DI (br +ar )/ oz = br far)
= 4(bp +0r |E|(T))/rna,x([bT|71) — gbp [ max(|by],1) = Yr-

E(‘Et—-jl | .“‘et'—j?r |)

PrE(ET),

If max(]bq], 1) — oo, ther _lIJT 4 Qzéyiowjl/ﬁ = O(1). If max(|bgl, 1]/) — 1, then
Vp=> (sziglbﬂ/ﬁ)(ﬁ* +hmT\>oobT) _ 0p(1). In either case, (apT " /max(|by,
1) grslvy) = O,(1). ™
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Appendix B: Parameter Values for Univariate Empirical Models

Table B.1. Parameter values for autoregressive models
Ay, =+ Z?:]ajAyt_j + €, var(c,) = o?

FM2D82  IVTS2 INC FYGM3  GMYXPS8
7 00258 00014 01161 03745 00604
a, 67637 20533 23772 38856 41444
a ~.08429 07999 17631 50840 —.01607
a 15530 -.09785 23341 12858 19326
a,  —12098 15694  —04855  —928511  —.09893
a 13364 -.18534 00143 28979 14897
a ~13687  —.02694  -.02781  -.20488  —05931
o? 00871 02996 03466 72906 00810

Table B.2. Parameter values for moving average models

Ye = PYpa t+ Z?:lbjftj’ var(e,) = o*

FM2D82 IVI82  INC FYGM3  GMYXP8
po -01250 00119  -00403 06702  .00203
p 94752 70443 83050 82045 91451
b, 69039 A577 35072 BITO3 44412
b 38310 42011 37087 -.928322 22312
by 32080 13251 -00319 23636 34864
by 16604 03387 -03071 36649  .28337
b 11714 -17188 00009 08113 .12500
o? 00870 02897 03373 70532 .00804

Notes: The mnemonics refer to the Citibase name of the series; the series
and transformations are discussed in the text. The moving average para-
meters were estimated by maximum likelihood using detrended series.

Notes

1. My personal introduction to these issues came when John Geweke asked me to
discuss some paper by Granger on modeling time series in levels (Granger, 1983)
at the winter meetings of the Econometric Society in December 1983. I was a first
year assistant professor and this was my first opportunity to be a discussant. In
that discussion I showed that if two variables are cointegrated of order (1,1) in
Granger’s (1983) terminology, if they have a bivariate finite order moving average
representation in first differences, and if there are sufficiently many moments, then
the estimator of the cointegrating coefficients will be consistent at rate T. Professor
Granger approached me afterward and encouraged me to write up my notes. The
result was eventually published (Stock, 1987), and I have always been grateful for
his intellectual generosity, encouragement, and support.

2. Alternative conditions under which Assumption 1{a) is satisfied are provided by
Herrndorf (1984) (also see Phillips, 1987; Ethier and Kurtz, 1986).



166 James H. Stock

3. To see this, let f,(A) = %A, f(N) = %8, so fi, f;, € C[0, 1]. Under the sup norm,
pcfi, ) = subyepylfi(A) = H(A)], both f and f, are in a é-neighborhood of 0. But
g(f)) = 3 and g(f,) = 0o, so there is no open é-neighborhood of 0 that maps into an
arbitrarily small e-neighborhood.

4. The first differences were used to produce null models that would err on the side
of inducing substantial power at high frequencies, a situation in which unit root
tests have performed poorly (see Schwert, 1989). The same AR(6) approximation
was used for all series in part because of its theoretical justification (Berk, 1974),
in part because the objective here is not to develop optimal forecasting models of
these particular series but rather to have a conveniently parameterized set of time
series models with representative spectra.
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