CHAPTER 2

Cointegration, long-run comovements, and
long-horizon forecasting

James H. Stock

1 INTRODUCTION

Over the past decade, methodological advances in modeling and analyzing
long-run relations have produced fundamental changes in the way that
econometricians approach economic time-series data. Prior to these
advances, econometric analysis of time-series data either ignored the
problems which arise when regressors are highly persistent, or used a
preliminary transformation to induce stationarity followed by analysis of
the transformed variables. Now, the concept of cointegration, developed by
Granger (1981), Granger and Weiss (1983), and Engle and Granger (1987),
which builds on work on error correction models (Sargan (1964) and
Davidson, Hendry, Srba, and Yeo (1978)), provides a powerful and widely
adopted framework for studying long-run as well as short-run relations.

This chapter undertakes a selective survey of some recent theoretical -

work and focuses on some problems which remain in this area.! The thesis
of this chapter is that, although the modern methodology of cointegra-
tion/unit root analysis provides a compelling framework for some prob-
lems, such as short-term forecasting using long-run information, for some
applications this methodology has important limitations. The limitations
of concern here arise when some of the regressors have an autoregressive
root which is large but, in contrast to the basic assumption of cointegration
analysis, not exactly one.

In empirical work it is common that an econometrician has evidence that
the largest autoregressive root « in a series x, is nearly one. For example,
confidence intervals for the largest autoregressive root are given in table 2.1
for three economic time series (the confidence intervals are computed by
inverting the Dickey-Fuller (1979) t-statistic using the method in Stock
(1991)). While the Dickey-Fuller test fails to reject a unit root for all three

Cointegration, long-run comovements 35

Table 2.1. Largest autoregressive roots of three economic time series

OLS . Median-
estimate unbiased 90%
DF of sum estimate  Confidence

Series #Obs. t-stat  of lags of a _ interval
US real GDP, 100 —296 0887 0.872 (0.744, 1.029)
70:1-94:1V (quarterly)
Australian wool price 250 —-2.28 0959 0.989 (0.940, 1.015)
74:3-94:12 (monthly)
90-day US Treasury 400 -212 097 0.985 (0.962, 1.006)
bill rate, 61:9-94:12
(monthly)

Notes: The “DF t-stat” is the Dickey-Fuller (1979) t-statistic testing the unit root
hypothesis. The OLS estimate of the sum of the lag coefficients is one plus the
coefficient on the lagged level term in the Dickey~Fuller regression. The median-
unbiased estimate and the 90 percent confidence interval were computed by
inverting the Dickey—Fuller test statistic using the method of Stock (1991). The
number of lags in the Dickey—Fuller regression was selected by the Bayes
information criterion (BIC). For the 90-day US Treasury bill rate, a constant
was included and the BIC chose 12 lags; for US real GDP and Australian wool
prices, a constant and a time trend were included and BIC chose 1 and 0 lags,
respectively.

series, neither do we reject roots close to one. Absent economic theory that
specifies a particular value of a, the confidence interval in table 2.1 provides
no objective basis for inferring, for example, that for the Australian wool
price series a = 1.00 rather than 0.98.

This chapter is organized around three of the practical problems which
motivated much of the original theoretical work on unit roots and
cointegration:

A Tests of the hypothesis that x, , does not predict y, when x, is
serially correlated and possibly has a unit autoregressive root.
A leading example is tests in linear rational expectations
models with highly autocorrelated regressors, for example, tests
of whether stock returns are predictable by lagged variables
such as the dividend yield (cf. Mankiw and Shapiro (1985),
Fama (1991)).
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B Inference about the parameters of long-run relationships. A
classic example is construction of a confidence interval for the
income elasticity in a levels consumption function relating log
consumption and log income.

C Long-run forecasting and the construction of forecast intervals
for y;,, or x;.,, where the forecast horizon k is long in the
sense that it is a non-trivial fraction 4 (e.g., 4 > 0.1) of the
sample size T.

In each of these problems, if x, is I(1) (@ = 1) then the methods of
stationary time-series econometrics will generally be inappropriate but
these three problems are well handled (asymptotically) using the technol-
ogy of integration and cointegration. However, if « is large but not exactly
one, then both the I(0) approach, which treats x, as stationary, and the I(1)
approach, which treats x, as having an exact unit root, can produce
systematic errors in inference.

In each of these three problems, the relevant distributions depend on the
nuisance parameter a. A common method for handling this nuisance
parameter is first to pretest for unit roots and/or cointegration and, when
indicated, to impose a unit root and/or cointegration. Assuming the pretest
isideal in the sense that type I errors tend to zero in large samples, this yields
asymptotically valid inference when a = 1.2 If, however, a is large but not
necessarily one, this pretest strategy will not deliver reliable inference in
problems A, B, or C, even with an ideal pretest. For example, in problem A,
controlling size asymptotically means that, under the null hypothesis, the
limit of the supremum (taken over ) of the rejection rate should be at most 5
percent, say. Although the supremum of the limit of the rejection rates
under this pretest procedure is controlled when a.is fixed, the limit of the
supremum is not, and this results in size distortions which persist agsymp-
totically. A Monte Carlo experiment in section 3 demonstrates that these
size distortions can be large, particularly in problem B.

Section 2 gives precise definitions of concepts related to I(1) regression
and briefly reviews the modern approach to problems A, B, and C; this will
be referred to as the “I(1)” methodology. Section 3 examines the perform-
ance of the I(1) approach to problems A, B, and C when « is large but not
exactly one. While perhaps this could be done using finite sample
techniques, such a treatment would be cumbersome at best. Because the key
source of difficulties is the single nuisance parameter a when it is large, the
analysis of section 3 uses an asymptotic approach which provides great
simplifications over a finite-sample treatment, yet retains the essential
dependence on a. This is done by modeling the largest autoregressive root
as local to unity, specifically, in a 7~ * neighborhood of one. It has been

Cointegration, long-run comovements 37

documented elsewhere (see Stock (1994a) for references) that this device
provides good approximations to finite sample distributions when a is large
and there are 100 or more observations. Thus, these asymptotics provide a
magnifying glass which focuses on the problematic dependence of the
finite-sample distributions on a.

Section 5 contains a review of several alternative, currently unconven-
tional approaches to problems A-C. One general conclusion, presented in
section 6, is that, despite the significant advances in this literature,
state-of-the-art techniques fail to provide acceptable inference in these
important applications. This should not be taken as a sweeping indictment
of research on cointegration and unit roots, for indeed much of value has
been learned. However, the conclusion suggests that current techniques
typically do not address adequately some of the problems which originally
motivated this line of research, and this in turns suggests directions for
future work.>

2 THE I(1) APPROACH TO PROBLEMS A, B,
AND C

In this chapter, a univariate time seriesu,, t = 1,..., 7, is said to be I(0) if the
sequence of its rescaled partial sums, T~ X"y, (where [-] denotes the
greatest lesser integer function), obeys a functional central limit theorem
and converges weakly to a stochastic process which is proportional to a
Brownian motion. This is implied by various primitive assumptions
including mixing conditions (Herrndorf (1984)) or by , being a one-
summable linear moving average of martingale difference sequences (Hall
and Heyde (1980), Phillips and Solo (1992)). In this section, attention is
limited to the case that the stochastic component of x, is I(1).*

21 Problem A: regression when x, is I(1)

When x, is I(1), problem A is a special case of the more general regression
problem

Y, =01zy, + 6, + 8525, + &, 1)

where £, is a martingale difference sequence with respect to its lags and to
(244 23,) and its lags, E¢} = o, z,, consists of I(0) variables (taken without
loss of generality to have mean zero), and z,, consists of I(1) variables which
are not themselves cointegrated (the spectral density of Az,, at frequency
zero has full rank). Problem A is nested in (1) by letting z,, = x,_, if x, is [(0)
and omitting z,, or by letting z,, = x,_, if x, is I(1) and omitting z,,.
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Another example of a regression nested in (1) is the augmented Dickey-
Fuller (1979) regression, which is obtained by setting
zy = Ay, -, Ay, ) and 23, =y,

Asymptotic distribution theory for ordinary least squares (OLS) estima-
tion of (1) has been developed by Chan and Wei (1988), Park and Phillips
(1988), and Sims, Stock, and Watson (1990). Asymptotically, the moment
matrix of the regressors is block diagonal; {T%$, —4,),
TS, — 3,), T(0; — 8;)} have- a joint limiting distribution where
T¥6, — 6,) is independent of {T*(5, — 6,), T(d; — 8,)}; and TS, — 6,)
4,N(0,(Ez,,2y,)” 'a}). Although tests involving only J, have conventional
x? distributions, in general, the limiting distribution of the Wald tests
involving ¢, is non-standard (an exception is when the cross spectral
density of (Az,,, £) is zero at frequency zero, in which case the distribution is
x?). In general, the Wald test statistic has a representation as a functional of
Brownian motion. For example, in the augmented Dickey—Fuller example
above, the t-statistic testing 6, = 1 has the Dickey-Fuller (1979) “¢,”
distribution. When the distribution depends on nuisance para-
meters, such as a spectral density at frequency zero, it typically can be
computed by simulation using consistent estimators of the nuisance
parameters.

The implication of these results for application A is that the distribution
of the t-statistic testing whether x, _ | predicts y, will in general have either a
N(0, 1) distribution if |a| < 1, or a non-standard distribution if « = 1. The
non-standard distribution is readily computed by Monte Carlo simulation.

2.2 Problem B: cointegrating regressions

Let Y,beann x 1 vector time series. Engle and Granger (1987) defined Y, to
be cointegrated if each element of Y, is I(1) but there exists an n x r matrix g
of full column rank with 1 < r < nsuch that 'Y, is I(0). Various forms are
available for representing cointegrated variables. Three useful, equivalent
forms are the levels vector autoregression (VAR) representation, the vector
error correction model (VECM) form (Engle and Granger (1987)), and the
triangular form (Campbell and Shiller (1987), Phillips (1991)); for discussion
see Engle and Yoo (1991) and Watson (1994). Here, we work with the
triangular form, in which Y, is partitioned into an r x 1 vector y, and a
k x 1 vector x, where k = n — r, and the cointegrating matrix is confor-
mably normalized as § = (I,, —0), where 0 is r x k. Including a constant
term, the triangular form is

X, = p,+ v, Av, =u, (2a)
Yo — oxr = fy T Uy, (2b)
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where u, = (u}, u},)' is a I(0) vector process, the spectral density of which at
frequency zero, £, has full rank. It is assumed throughout that v, is 0,(1).

Various estimators are available for estimation of the cointegrating
parameter 6. Although the OLS estimator of the regression of y, on x, is
consistent, in general it has bias of order O(T~!) and in finite samples this
bias can be large (Stock (1987)). This O(7~ ) bias can be avoided by using an
asymptotically efficient estimator. Many such estimators have been pro-
posed (see Hargreaves (1994) for a partial list). Some are readily motivated
as Gaussian maximum likelihood estimators (MLEs), or approximate
MLEs, in one of the representations above. One of the most common
MLEs s the Johansen (1988)/Ahn and Reinsel (1990) estimator, which is the
Gaussian MLE in a finite order VECM; see Watson (1994) for further
discussion.

The triangular form provides a convenient alternative starting point for
developing efficient estimators. As a motivation, suppose that u, is Gaus-
sian, and orthogonalize the system by projecting u,, on to u 1> that is, write
Uy = Efuy, | {u,,}) + 4, = d(L)u,, + ii,,, where d(L) is two sided. By con-
struction, {d,} and wu, are independent. Thus (2b) becomes,
Y, = 0x, + d(L)Ax, + &,,. Thus, if d(L) has finite order, by the theory of
seemingly unrelated regressions, § can be estimated efficiently by generaliz-
ed least squares (GLS) regression of y, onto x, and leads and lags of Ax,.
However, because x, is I(1), the GLS and OLS estimators of 6 in this
regression are asymptotically equivalent, so OLS estimation of this
augmented regression asymptotically yields the MLE. This approach can
be thought of as OLS with additional variables and variants of it have been
studied by Phillips and Loretan (1991), Saikkonen (1991), and Stock and
Watson (1993); the particular estimator just described is the “dynamic
OLS” (DOLS) estimator of Stock and Watson (1993).

The various efficient estimators of cointegrating vectors have the same
asymptotic distribution, which is a random mixture of normals (Johansen
(1988), Phillips (1991)). Importantly, standard Wald statistics testing g
restrictions on 6, based on an efficient estimator §, have asymptotic xf
distributions. Thus, despite the non-standard nature of the problem and the
non-standard distribution of the OLS estimator and the MLE, hypothesis
tests on 8 and confidence intervals for 8 can be constructed using standard
techniques. These powerful yet simple methods for inference on 0 are
arguably the greatest single accomplishment of cointegration theory. These
results are the foundation of the now-conventional cointegration approach
to problem B, in which an efficient estimator is used to estimate the
cointegration coefficients and confidence intervals are constructed based
on this estimate and its standard error.
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23 Problem C: long-run forecasting

Depending on the orders of integration and cointegration, standard models
for generating forecasts are the levels VAR (stationary series), the VECM
(cointegrated series), and the differences VAR (I(1), no cointegration). If the
series being forecast do not contain deterministic trends, then computation
of asymptotic prediction intervals conditional on the chosen model is
straightforward. Parameter uncertainty becomes more important when the
series contain deterministic trend components (Sampson (1991)).

3 DISTRIBUTIONS WHEN « IS LOCAL TO UNITY

This section analyzes the behavior of the I(1) procedures of the previous
section when a is large but not necessarily one. As discussed in the
introduction, in theory this could be done using finite sample techniques,
but a simpler and more incisive treatment is possible by focusing on the
problematic large root, in particular setting « =1 +¢/T, where c is a
constant, and using asymptotic approximations. In this case, the stochastic
part of T~ *x;;, converges to an Ornstein—-Uhlenbeck process (Bobkoski
(1983), Cavanagh (1985), Chan (1988), Chan and Wei (1987), and Phillips
(1987)). Distributions of functionals of the Ornstein—-Uhlenbeck process are
described by the single parameter c; however, ¢ is not consistently
estimable, although confidence intervals for ¢ can be constructed (Stock
(1991), Andrews (1993)).

The asymptotic power of efficient tests of an autoregressive unit root with
fixed size against the alternatived = 1 + ¢/T'is strictly less than one (Elliott,
Rothenberg and Stock (1996), Rothenberg and Stock (1995)). It follows that
if the critical value tends to infinity with the sample size, as needed if the test
is to distinguish I(1) from I(0) processes consistently, then the asymptotic
power of the test against the local-to-unity alternative is zero.®

31 Problem A with local-to-unity regressors®

Consider the bivariate model
X, = pe + U (L —al)y, = Uty = aL) ey, (3a)
Vo= My + X U Uy = E2p (3b)

wherea(L) = ¥ = a,L, a, = 1. Supposeinterest is in testing the hypothesis
7 = 7o, in the linear rational expectations application discussed in the
introduction, y, = 0. Further suppose that & = (¢, ¢,) is a martingale
difference sequence with E(eg|€, -1, &-2..-) =L = fo:}: sup,Eef <
w,i = 1,2, Ev3 < o0, and the roots of a(L) are fixed and greater than one.
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LetQ = [w;;] be 2n times the spectral density of u, = (u,,, u,,)’ at frequency
2€10,50 W, = 0y /a(1)* and @,, = g,,. Assume that the functional central
limit theorem T *ZiT*u, /w},, u,/w},) = W is satisfied, where “=>"
dgnote; weak convergence on D{0,1], where W= (W,, W,) is a two-
dimensional Brownian motion with covariance matrix Q = [®;], where
@y =@y =1 and &y, = @y, = 8 = 0,,/(0;,0,,). ’

Lett, denote the t-statistic testing the y = y,in (3b). Then, under the null

t,=1,, =01, +(1 - 5%t )

where 1, = (JJ4A)THIEW 1, = (JJ42) THIEAW,, J¥(s) = J(s)— [oJ.
(r)dr, J. is the Ornstein—Uhlenbeck process which obeys dJ (s) = ¢J (s) +c
dW (s), and z is a standard normal random variable distributed indcepen-
dently of (W,,J,).

I:Evident!y the limiting distribution of £, depends on both ¢ and 6. Because
d is copsxstently estimable (in general, by the sample cross-spectral
correlation of u, at frequency zero, here by the sample correlation between
the QLS residuals £, and £,,), & will be treated as known. However, ¢ is not
cc.)ns!ster!tly estimable, and, if 6 # 0,¢, has a non-standard asymptotic
dlstnputl.on. Thus asymptotic inference cannot in general rely on simply
substituting a suitable estimator ¢é for ¢ when selecting critical values for
tests of y.

Suppc_)se the test based on ¢, is performed following a consistent pretest
for a uplt root in x,: if the unit root test rejects, the N(0, 1) distribution is
used, if not, (4) is used. Evidently, the size of this procedure is
supP[ot, + (1 — 0*)*z¢(d,, d,)], where (d,,d,) are the critical values of
7,0 Numerical evaluationindicates that the size can be large. For example
for tests with nominal level 5 percent, if 3 = 0.9 the size is 0.33 if a constant is’

%ncluded in the regression (3b), and is 0.64 if a constant and time trend are
included.

32 Problem B with local-to-unity regressors

C9nsider the triangular form in the bivariate case with intercepts and where
a is the largest root of x,

X, = py + v,(1 —al)y, = u,, (5a)
Ve = Hy + th + uy, (Sb)

wher.e the value of 8, 8,, is taken to be non-zero. Asin(3), let 4, have spectral
density Q and assume T2 u, Joi,, uy/w3f,) = W, where W is defined
follm.mng (3). Note that, in contrast to(3b), in (5b) u,, is not restricted tobe a
martingale difference sequence but rather is a general I(0) process.
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If o is local to unity, then consistent pretests for unit roots and
cointegrationin (x,, y,) would lead one to conclude that x, and y,areI(1)and
cointegrated, so that 6 should be estimated using an efficient cointegration
estimator 0. However, Elliott (1994) showed that,evenif u, has a parametric
structure of known order, if « = 1 + ¢/T'and @ 1s a scalar, @ and its t-statistic
t, testing 6 = 6, have the limits

{T(é — 0o), ta} =>{ - wff*wi.lfJi‘sz.l(Nfz)'l
— cdwpwd,z — cd(1 — 81T H([IEH, 6

where W,_, is a standard Brownian motion, w, ; = W, — w2, /w,,and zis
a standard normal random variable, where (z, W,.,) are independent of
(W,,J,). As in problem A, the limiting random variables in (6) have
distributions which depend on c.

The implications parallel those for problem A. Tests of 6 = 8, typically
exhibit size distortions, even asymptotically, and confidence intervals for 8
can have coverage rates less than their nominal asymptotic value. In fact,
the asymptotic size of the Wald test of § = 6, based on ¢, with standard
normal critical values is arbitrarily close to one, depending on d.

33 Problem C with local-to-unity regressors

The presence of a large but not necessarily unit root substantially
complicates the problem of making long-run point and interval forecasts.’
To be concrete, consider the bivariate cointegrating model (5), where it is

further supposed that (u,,, u,,) obeys a VAR(p) with all roots strictly outside -

the unit circle and where Ev3 < co. Then in levels, (x,y,) obays a
VAR(p + 1) with one root local to the unit circle. ‘

Consider two alternative forecasting strategies. In the firsy, the
econometrician computes forecasts from a levels VAR. In the second, the
econometrician pretests for the number of unit roots in the system, after
which forecasts are constructed using the levels VAR (no unit roots
detected), a VECM with « = 1 imposed (one unit root), or a differences
VAR (two unit roots). To simplify the analysis, suppose that a consistent
1(0)/I(1) classification procedure is used, so that in sufficiently large samples
the pretest strategy, applied to (5), delivers a VECM with probability
approaching one. Finally, suppose that p is known.

At short horizons, the levels VAR and the pretest procedures yield
asymptotically equivalent forecasts and asymptotically valid prediction
intervals when a = 1 + ¢/T.8 However, the problem of long-term forecast-
ing is more complicated. Specifically, model the forecast horizon k as being
a constant fraction 4 of the sample size, so k = [T4]. Let x,; denote the
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co_ndltional mean of x, given (X,Y,X,_;V,—1.-.). Then
Ta o eyp Yrenr) = T~ ¥ (xg,0x7) + 0,(1). Moreover, T ix,,, =
e*J(1) + ¢/4) and T *yryx— 0x7,) B0, where J_ is as defined in
Zi(;tion 3.1, ¢ is N(O,w,,(1 — e*Y/(1 — e*)), and ¢, and J, are indepen-

First consider the levels VAR procedure, with forecasts Cr e 9148y
Then T *xpy, — Rryyp)=>[1 — e "9%e4J (1) + ¢(4), where c* is| a
0,1) ranfiom variable which depends on J; thus the long-run levels VAR
forecast is conditionally biased of order O(T%), with conditional bias
E[T™¥(x,4x — 2r4nn)| 7] = E[(1 — €<% | J(1)]eA)(1). The magni-
tuc?e of this bias depends on the distribution of ¢* which depends on
nuisance parameters. Typically, however, c* will be biased toward zero, so
the f9§ecast will be biased toward zero as well. Moreover, because ’the
copd1t10nal distribution of x;,, depends on ¢ but ¢ is not consistently
estimated, prediction intervals computed using standard (stationary) first-
order asymptotics will have incorrect tolerance levels.

The pretest estimator is also conditionally biased and produces invalid
long-run  prediction  intervals. For the pretest forecast,
?"*(x“,‘ = Xren) = (1 — e (1) + @(4). The limiting conditional bias
is E[T *xy,, — Xreyn)l xp] = (1 — €4)J (1), which for ¢ < 0 is biased
a\llay from zero. Imposition of the unit root produces incorrect inference on
¢’ and ¢(4) which results in prediction intervals with an incorrect
tolerance level.

‘ As in problems A and B, the central difficulty is the depend
distribution (here, the conditional distributionyof X730 ;Tc + J;I:)(;ICCO f:/lhl::l{
cannot be consistently estimated. ’

34 Finite sample simulation

A small Monte Carlo experiment was performed to assess whether these
issues are important in sample sizes typically encountered in econometric
applications. The design consists of equations for income (y,), consumption
(c,), and the unforecastable excess returns (r,) on a portfolio ‘of equities. The
parameters of the income autoregression were chosen to be similar to those

estimatgd for US real GDP, 70:1-94:1V (the first series in table 2.1)
Accordingly o

A.VI = 03&)’:—1 + Cln (7a)
¢, =0y, + 00 (7b)
re="{3 (7¢)
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Table 2.2. Monte Carlo results

1(0) methodology 1(1) methodology

T a c A @B’ (© @ ® ©O
100 1.00 0 025 083 035 0.05 094 067
0.975 —25 015 090 050 007 083 072
0.95 -5 012 093 056 0.11 066 0.78
0.90 —10 008 - 095 062 0.16 038 086
400 1.00 0 025 080 036 005 094 068

099375 —25 015 088 050 007 084 075
09875 =5 011 091 055 0.11 063 080
0975 —10 009 092 062 016 032 090

Nominal 0.05 095 0.68 005 095 068

Notes: Columns (A) contain Monte Carlo rejection rates of tests with nomi.nal level
5 percent. Columns (B) contain Monte Carlo coverage rates of confidence intervals
with nominal coverage rate 95 percent. Columns (C) contain Monte Carlo coverage
rates of prediction intervals with nominal coverage rate 68 percent. The design,
statistics and methodologies are described in the text. All regressions are run
including a constant, except for the first-differences regression used to generate the
I(1) forecasts, in which the constant was supressed. Results are based on 10,000
Monte Carlo replications.

where A =1 — aL, {, is iid. N(O,Z) with Z,=1,i=1,...,3, £,,=08,

£,,=09,%,,=05and =1 ForT= 100, the chosen values of « (1,
975, 95, -90) fall within the 90 percent confidence interval for « fgr real
GDP given in table 2.1; for T = 400, the chosen values (1, 99375, 9875,
-975) fall within the 90 percent confidence interval for « for the 90-day
Treasury bill rate. For both sample sizes, ¢ = N« — 1)is 0, —2.5, —5 and
—10.

Stylized versions of problems A, B, and C are examined by: (A) tc?sting
whether y, _, forecastsr, at the 5 percent significance level in a regression of
r, onto y, _; (B) constructing a 95 percent confidence interval for 6; 'and.(C)
constructing a 68 percent prediction interval for yr ., based on a univariate
forecast, where k = 0.25T. These problems were analyzed using two
methodologies. In the “I(0)” methodology, unit root issues are iggored: in
problem A, N(0, 1) critical values were employed to test y = 0 using t,; n
problem B, the confidence intervals for § were constructed using two stage
least squares (TSLS) with y,_, as an instrument (this is asymptotically fu}l
information maximum likelihood in (7) when o is unknown); and in
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problem C the 68 percent prediction interval for y;,, is computed using
standard methods after estimating an AR(2) in levels.

In the “I(1)” methodology, the econometrician assumes that « = 1 and
that(c,, y,) are cointegrated.® Accordingly, in problem A, the representation
(4)is used to obtain critical values for t,; in problem B, the hypothesis 6 = 1
is tested using the Wald test statistic from the MLE for the(c,, y,) system (the
MLE is the DOLS estimator with contemporaneous Ay, only); and in
problem C, 68 percent prediction intervals for y;,, are computed from
OLS estimation of an AR(1) in first differences.

The results are summarized in table 2.2. In confirmation of findings by
numerous researchers, when a = 1 the I(0) methodology does poorly, with
large size distortions in problems A and B and prediction intervals which
have low coverage, while the I(1) methodology does well. However, when
the root is slightly less than one, the 1(1) methodology fails. Confidence
intervals for @ based on the efficient cointegrating estimator have low
probabilities of containing the true value, and prediction intervals based on
¢ = 0aretoo wide(they do not reflect long-run mean reversion when ¢ < 0).
It should be stressed that these problems occur for values of @ within the 90
percent confidence intervals for US real GDP and the 90-day Treasury bill
rate in table 2.1. Under the local-to-unity nesting, the distortions are
relatively stable as the sample size increases for fixed ¢, which accords with
results elsewhere that the local-to-unity asymptotics provide a good guide
to the finite distributions.

4 POTENTIAL SOLUTIONS: PROBLEMS A AND B

This section reviews alternative approaches to problems A and B which
solve the size distortion problems in certain cases. This discussion focuses
on the case of no deterministic terms in either the data generation process or
the various statistics, although some remarks are made about extension to
the case of deterministic terms. The four approaches reviewed here are
conservative tests based on least squares statistics, non-parametric tests
based on sign and/or rank statistics, tests of whether the regression errors
are 1(0), and variable augmentation schemes.’® A detailed analysis of
finite-sample and asymptotic power of these approaches is beyond the

scope of this survey (see however Campbell and Dufour (1994, 1995) for
problem A).

4.1 Asymptotically conservative intervals and tests

An alternative approach to inference is to use the limiting distributions of
the relevant t-statistics, which depend on ¢, and then to evaluate these for a
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range of ¢. Cavanagh, Elliott, and Stock (1995) considered bounds tests in
problem A, and their results are briefly reviewed here (also see Dufour
(1990), who derived exact bounds tests for regression parameters with
Gaussian AR(1) errors and strictly exogenous regressors). The extension of
this approach to problem B is then briefly discussed.

First consider problem A, so that (3) holds with u, = u, = 0. Critical
values for a sup-bound test are chosen so that the test based on ¢, has sizeno
more than the prescribed level, uniformly in c. For example, 5 percent
critical values can be obtained as the extrema (over c) of the 2.5 percent
quantiles of the limiting random variable in (4). Alternatively, valid and
less-conservative critical values can be obtained by choosing the upper and
lower critical values so that the supremum (over c¢) of the rejection rate
equals the desired level of the test. This test will be conservativein the sense
that, for some ¢, the rejection rate under the null will be less than the level of
the test. Tests which are potentially less conservative can be constructed by
first computing a 100(1 — 7,) percent confidence set for ¢ (using Stock’s
(1991) or Andrews’ (1993) method), and then rejecting if ¢, rejects using a
10077, percent two-sided test based on critical values from (4) for every c in
the first-stage confidence set. By Bonferroni’s inequality, the combined
procedure has size no more than 1, + 7,. As with the sup-bound tests, ,
and 1, can be chosen so that the asymptotic size equals the desired level.
Extension of this approach to additional deterministic terms is straightfor-
ward.

In theory, the Bonferroni approach can be extended to problem B with
some modifications. To be concrete, suppose that € is estimated using an
efficient cointegration estimator which incorrectly imposes « = 1 when in
fact « = 1 + ¢/T, so that the associated t-statistic testing 6 = 0, has the
limiting representation in (6). As in (4), the only nuisance parameters
entering the second expression in (6) are 8, which is consistently estimgible,
and c. This permits construction of asymptotic confidence sets for 6 givenc.
A first-stage confidence set for ¢ can be constructed from univariate
methods as discussed above. Unlike (4), however, the quantiles of (6) are not
bounded in ¢, so the sup-bound test for the cointegration problem has
infinite critical values. It also seems likely that Bonferroni confidence
regions based on an efficient cointegration estimator will be quite wide,
making this approach less appealing in problem B.

4.2 Non-parametric tests

Campbell and Dufour (1995) consider problem A (with no intercept term)
and show that non-parametric tests achieve the desired size under weak
conditions on x,. For example, consider the sign test statistic

TR
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S@) = THEL {1, — yx,- )%, > 01— 3} ®)

If the conditional distribution of &, given x,_, has median zero,
{1eyx, -, = 0)} are i.i.d. Bernoulli random variables under general condi-
tions on x,, including but not limited to x, being stationary, I(1), or local to
I{1). Thus, under the null y = y,, S(y,)is a binomial random variable withan
asymptotic N(0, 1/4) distribution.

The local asymptotic power function of the sign test can be derived
assuming that a is local to one. Specifically, suppose that (3) holds. If 6 = 0,
the asymptotic power of the sign test of level n (with standard normal
critical value d,) against the alternative y = b/T is

P[|25|>d,] — E[® — d, — 2b0)w},f | J.]) _
+ & — d, + 2bf(O)wi, f 1S )], ©

where fis the p.d{. of ¢,, conditional on x,_,.

This approach can be extended to problem B by considering an
ir_xstrumental variables version of the sign test statistic (8). In the cointegra-
tion context, in general x, is endogenous and u,, is serially correlated, so
{1(u,,x, > 0} are not independent Bernoullis. Suppose, however, that u,, is
a(g — 1)th order moving average process, specifically, that the distribution
(with p.d.f. f) of u,, conditional on x,_, has median zero. Accordingly, let

R(0) = TTE {100, = 0x)x,, > 01 — 4} (10)

Under the null 8 = 0, if a = 1 + ¢/T then R (6,) 4 N(O, V), where ¥V =
Zi. _ {3P[sgn(u,,) = sgn(u,, ;)] — 1/4}, where sgn(z) is the sign of z. This
distribution does not depend on ¢ and thus holds if x, is I(1) or has a
local-to-unit root. A natural estimator for V is P(0) =
=f. - oV, — 0x)%,_, > 0L 1[(,—; — 0%, ), g—; > 0]); then P(6,)
-4 V uniformly in c. In (10), x,_ serves the role of an instrument for x,.

The extension of this approach to a non-zero intercept , in (5b) is not
automatic and appears to require joint or preliminary inference about p; cf.
Campbell and Dufour (1994).

43 Tests for residuals being 1(0)

Inproblem A, y, has two components, ¢,, which is serially uncorrelated and
yx,_, which is local to I(1). This suggests testing the hypothesis y = 0 by
testing whether y, is a martingale difference sequence against the alternative
that it is a random walk plus noise. Results in King (1980) and King and
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Hillier (1985) can be used to derive the family of efficient tests of the null that
y, is ii.d. Gaussian against the alternative that it is the sum of an iid.
Gaussian process and an independent (unobserved) Gaussian random walk
(Shively (1988)). In the case that the intercept is possibly non-zero, Nyblom
and Mikeliinen (1983) showed that the locally most powerful invariant
(LMPI) test of this hypothesis rejects for large values of
L“ = T-ZElT= 1(2:= ly;‘)z/a:’ where ys = ys - j’ and 63 = T‘lE‘T;l '2,
where 7 is the sample mean of y, (also see Nyblom (1986), Nabeya and
Tanaka (1988), Tanaka (1990), and Saikkonen and Luukkonen (1993a)).
Under the null, the test has a limiting distribution which is free of nuisance
parameters and is the mean square of a scalar Brownian bridge (Anderson
and Darling (1952), MacNeill (1978);, critical values are tabulated by
Nyblom and Mikeldinen (1983, table 1)).

The L* test is valid when p, is non-zero and unknown. For comparability
to the previous discussion, it is useful to consider a test which imposes
u,=0. Saikkonen and Luukkonen (1993a) show that, in the closely relate.d
problem of testing for a unit moving average root when the intercept 1s
known to be zero, the LMPI test rejects for large values of

L = TPAT *EL YD), | (11)

which has a y? null asymptotic distribution.
Although L and L* are derived assuming that x, is unobserved and is I(1),
these tests have power against (3) with a =1+ ¢/T. The asymptotic
. representation of L against the alternative y = b/T when (x,, y,) satisfy (3)
with p, = p, = 0 is (Wright (1996)) >

L=[Wy1) + bw, 1/“)22)*“;]2- «(12)
Note that this limiting distribution depends on 6 through the dependence of
W, and J.. s

The extension of this approach to problem B is straightforward. Here the
approach has the intuitive interpretation of testing directly the premise of
cointegration that y, — 6x, is I(0) against it being I(1). A technical complica-
tion is that, under problem B, the null is that the error correction term is a
general (0) process, whereas in problem A the corresponding error is a
martingale difference sequence under the null. However, this complication
can be handled either by estimating the spectral density at frequency zero
(cf. Park and Choi (1988), Tanaka (1990), and Kwiatkowski et al. (1992)) or
by suitable prefiltering (cf. Saikkonen and Luukkonen (1993a, 1993b)).
Here, we focus on the first of these approaches.

Specifically, consider (5) with u, =0 and let u,(0) = y, — 0x, and
gy = T kil (m), where f.4m)= (T = m) "E 1% — )

(X,_m — %), k is a kernel weighting function (see Andrews (1991) for a
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discussion of kernel choice), and d,, = y, — 0x,, where § is a T-consistent
estimator of 8 uniformly in ¢, for example the static OLS estimator or one of

the many efficient estimators which impose « = 1. Then the suitably
modified L statistic is

L(0) = Ti0)*/®,,. (13)

Under suitable conditions on u,, and the truncation parameter I (cf.

. Kwiatkowski et al (1992), Stock (1994b)), if x, is local to unity then

@, B w,, uniformly in ¢. Thus, under the null hypothesis, Z(6,) = x3,and,
under the alternative, 8 =0, + b/T, L(f) has the limiting representation
(12). It is straightforward to extend these results to the case of an intercept in
(5b) using L*.

Evidently, when u, = 0, L(6) can be used to test the null that 8=0,isa
cointegrating vector, and confidence regions for 8 can be constructed as the
acceptance region of this test. Note that this test has a somewhat different
interpretation than the other tests discussed for problem B because the null
is the joint null that 8 = 0, and that the relation is cointegrating, whereas
the previous tests maintain the hypothesis that a cointegrating relation
exists for 8 = 0. In theory, confidence regions for 8, constructed using the
modified Nyblom-Maikeldinen statistic can be infinite or empty, either
because of a type I error or because no such cointegrating relation exists.' !

44 Variable augmentation schemes

Another approach to problem A is to augment the equation of interest (3b)
with additional lags of x, and then test the significance of the coefficients on
all but the final lag. Choi (1993) proposed this approach in the univariate
AR(1) model (a test for a unit root), and Toda and Yamamoto (1995) and
Dolado and Lutkepohl (1996) proposed it for a general VAR(p). The
theoretical justification of this approach is the result summarized in section
2.1 that standard t- and F-tests can be used to test restrictions on
coefficients which can be rewritten as coefficients on mean-zero stationary
regressors, which can be done for scalar x, if there are at most p — d linear
restrictions, where d is the maximum (integer) order of integration of the
regresser. Thus, Wald tests of all but one coefficient have the usual 72
asymptotic distribution. Although the results in Toda and Yamamoto
(1995) and Dolado and Lutkepohl (1996) are for the exact a =1 case,
calculations similar to those in Elliott (1994) can be used to extend this
asymptotic x? result to the case that variables are either I(1) or have a
local-to-unit root.

Although these variable augmentation tests have correct size for problem
A, they have poor power in the direction of a “levels effect,” specifically
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7 # 0 in (3b). Dolado and Lutkepohl (1996) show that the test has power
less than one against alternatives in a T~ * neighborhood of the null. The
procedures in the previous three sections all had non-trivial power against
1/T alternatives, so the asymptotic relative efficiency (ARE) of the variable-
augmentation test is zero. Of course, if deviations from the null are not in
the direction of a levels effect, variable augmentation tests could perform
satisfactorily. Currently there appears to be no finite sample study that
compares this approach to the previous three approaches.'?

5 POTENTIAL SOLUTIONS: PROBLEM C

The problem of forecasting in systems with possibly large roots has received
less attention than have problems A and B. The treatment here is
correspondingly brief and draws on Stock (1995). The discussion focuses on
the point forecasting problem, in which the objective is to produce point
forecasts which have desirable properties for a range of values of c. Precisely
what constitutes a desirable property of a point forecast arguably depends
on the application and, potentially, the ultimate user of the forecast. If the
forecast is to be the basis of a decision by a private party, then a desirable
forecast would be tailored to that individual’s loss function and would
incorporate the individual's prior beliefs, in accordance with decision
theory. Alternatively, if the forecasts are produced on an ongoing basis and
are used in general discussions of business plans and public policy, as is
typically the case with government forecasts, then it is arguably desirable

that the forecasts be unbiased and perform well under some standard loss .

function, for example squared error loss. This discussion will focus on this
second case and concentrate on unbiased forecasting. In the cointe’gratcd
VAR considered in section 3.4, the conditional distributions of X7, and
yr+xare O p(T*) but yr,x — 0xr4, is O (1). Moreover, the only parameter
entering the asymptotic distribution of T™*(x7 4, — X7+ xy) Which is not
consistently estimable is ¢. Therefore, little is lost by restricting attention to
a univariate AR(1) with a single large root, and this is done for the rest of
this section.

Consider the problem of unbiased long-run forecasting. If {x} is
symmetrically distributed around zero, then any odd function of the data is
unconditionally unbiased (cf. Magnus and Pesaran (1991)). Because the
forecaster knows x, however, it seems of little solace that a forecast of, say,
0.5x is unconditionally unbiased because the forecaster could equally well
have observed —x; as x;. We therefore adopt the view, enunciated in
Phillips (1979), that unconditional unbiasedness is of limited practical
interest in forecasting applications, and instead we focus on forecasts which
are unbiased conditional on x; > 0. In particular, we consider the con-
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struction of median unbiased forecasts conditional on x; > 0.

In principle, many median unbiased forecasts exist. Let 7, be a statistic
which has an asymptotic distribution that depends only on the true value c.
Most if not all asymptotically similar unit root test statistics have this
property; cf. Stock (1994a). Let m(c) denote the median of this distribution
as a function of ¢, and let m ! denote its inverse function. If m is monotone
then by definition é,, = m ™ (t;) will exceed ¢ one-half of the time and will be
less than ¢ one-half of the time; that is, ¢,, is a median unbiased estimator of
c. Sul_)pose 77 is an even function of the data. Because ¢** is non-negative
and is monotone in ¢, P[ef**x; > ¢*x,;|x; > 0] = P[é, >c] >3, so
e’~*x; is an asymptotically median unbiased long-run forecast of Xy 7
conditional on x; > 0 for k/T = A.

In practice this requires constructing the median function, a task which
can be computationally intensive. This has been done for the Dickey-Fuller
(}979) t-statistic and the Sargan—Bhargava (1983)/Bhargava (1986) statis-
tics by Stqck (1991) using local-to-unity asymptotics; for the OLS root
estimator in an AR(1) by Andrews (1993) using exact sampling results for
the Gaussian AR(1); and for Elliott, Rothenberg, and Stock’s (1996) family
of efficient unit root tests by Stock (1995). Here, we consider the perform-
ance of the median unbiased forecast based on one of these test statistics, the
Dickey-Fuller t-statistic. For comparison purposes we also consider a
levels OLS forecast and a pretest forecast (a 5 percent Dickey—Fuller test is
used to decide whether {x,} has a unit root; if it rejects, the levels OLS
forecast is used, otherwise a = 1 is imposed).

Numerical results are summarized in table 2.3 for a forecast horizon
equal to 25 percent of the sample size. The first three columns of results
report the fraction of forecasts which fall below the true conditional mean,
both as a function of J (1) and conditional only on J (1) being positive; the
final three columns report the root mean squared error (RMSE) around the
true conditional mean. Computations were performed using pseudo-
random realizations of J_ with 500 observations per draw. The results are
p'rw?nted both conditional on J(1)=j and on J(1) > 0. Results for
dlst_rlt)_utiqns conditional on J (1) were computed by writing the relevant

statistics in terms of J(1) and (independent) functionals of V,, where
V(s) = J(s) — b(s)J (1), where b(s) = e* e — 1)/(e* — 1) f01f ¢ non-
zero and b(s) = s for ¢ = 0, where V_ and J (1) are independent. Results for
fixed J (1) are based on 5,000 replications; results for J (1) > 0 are based on
20,000 replications.
. .These results reveal several features of these forecasts. The OLS forecast
1s.mcreasingly shifted toward zero as J (1) increases. While it is most often
biased for ¢ near zero, even for ¢ = — 10 it is biased toward zero nearly
three-quarters of the time. The bias of the pretest procedure is not
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Table 2.3. Performance of various long-term forecasts, univariate AR(1)

RMSE of forecast minus

% forecasts < Xryyr conditional mean
c J(1) OLS PRE MUF OLS PRE MUF
0 0.2 1.000  0.538  0.709 0.160 0055 0.123
04 1.000 0535 0.631 0.308 0.105 0.238
0.6 0997 0530 0542 0432 0143 0344
1.5 0.865 0511  0.281 0.711  0.195 0312

>0 0.96 0.52 0.50 0.50 014 054
-25 0.2 0977 0.087 0613 0077 0094 0.088
04 0935 0061 0485 0.142  0.187 © 0.202
0.6 0.844 0.036 0338 0.186 0280  0.359

>0 0.90 0.07 0.50 0.14 0.21 0.30
-5 0.2 0.888  0.137  0.570 0.040 0.134  0.078
04 0.783 0074 0379 0.072 0276 0219

>0 0.83 0.12 0.50 0.07 0.22 0.22
—10 0.2 0.770 0294  0.503 0.013 0.155  0.041
04 0.570 0099 0222 0033 0349 0.168

>0 0.74 0.29 0.50 0.03 0.19 0.11

Notes: The forecasting procedures are: OLS = levels OLS; PRE = pretest using 5
percent Dickey-Fuller (1979) demeaned t-statistic; MUF = forecast using median-
unbiased estimator & The procedures are described in the text. Entries are for the
distribution conditional on J(1) taking on the value in the second colump; >0
indicates the distribution is conditional on J (1) > 0.

monotone in ¢. For ¢ near zero, the unit root is rarely rejected and the
pretest procedure is biased up. As ¢ becomes more negative, the percent of
unit root forecasts decreases. The MUF is biased away from zero as J{1)
increases, a consequence of the positive shift in the conditional distribution
of the Dickey—~Fuller z-statistic as J (1) increases (the series appears more
non-stationary). Conditional only on J (1) > Q, these forecasts are of course
median unbiased (within simulation error), although they can have strong
conditional bias.

No single estimator has uniformly lowest RMSE. The OLS forecast
works well for ¢ « 0. The MUF is preferable to OLS for ¢ = 0 and small
terminal values, although it is worse than OLS unconditional on J, for allc
considered. The pretest forecast works well for ¢ nearly zero, but its RMSE
increases substantially as ¢ becomes more negative.
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Additional research is needed. Although the MUF forecast is median
unbiased on average, for certain terminal values it can be badly biased, and
it fails to have the smallest RMSE of the three procedures for all ¢
considered. Also, these results apply to point forecasts and do not address
prediction intervals.

6 DISCUSSION AND CONCLUSIONS

This chapter has two main points. First, despite important advances over
the past decade in our ability to model long-run economic relations,
commonly used techniques fail to provide satisfactory solutions to some
specific problems of long-run inference, in particular the construction of
confidence intervals for and tests of coefficients on regressors which have
large autoregressive roots, and to long-run point and interval forecasting.
In these applications, the satisfactory performance of existing techniques,
which are optimal for the unit root case, hinges critically on the untestable
assumption of an exact unit root. This is not to imply that the current unit
root and cointegration technology has no valid applications; indeed,
consistent point estimation and first-order short-run forecasting are
immune to the criticisms made here. However, departures from the unit
root assumption which are so small as to be detectable with only low
probability can nonetheless produce substantial distortions in inference
and forecasts, at least when a regressor is endogenous.

The second point of this chapter is that some new techniques are
emerging which are robust to whether the largest root is exactly one. This
research is, however, incomplete in several ways. The techniques are
disparate and in some cases ad hoc, and as yet there is not a unifying theory.
Some of the approaches are closely tied to the linear autoregressive model
with large roots, and it might be desirable to consider procedures valid
under broader concepts of persistence. This suggests that these and related
problems could prove fruitful areas for future research.

A natural question is what lessons for empirical practice arise from this
ongoing research. Although any answer is necessarily speculative, this
survey provides some clues. At a minimumn, researchers using current unit
root/cointegration methodology should be cognizant of the sensitivity of
long-run forecasts, and of tests and confidence intervals for long-run
coefficients, to the empirically untestable assumption of an exact unit root
when the regressor in question is endogenous. Unless there are compeling a
priori reasons for believing an exact unit root is present, certain empirical
conclusions, such as confidence intervals for cointegrating parameters, can

_ be delicate and in the end should be unconvincing to an appropriately

skeptical audience. The broader promise of this research is less reliance on
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unit root and cointegration econometrics as currently conceived, and more
credible statements of the uncertainty associated with long-run forecasts
and with the parameters in long-run relations. In some cases, this
uncertainty might actually be less than is implied by current techniques,
such as long-run forecasting using a VECM when roots are in fact (Just)
stationary, although one suspects it typically will exceed that estimated by
current procedures. More precise measures of uncertainty in turn should
facilitate achieving the ultimate goal of more reliable inference about
economic relations and policy choices.
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Bewley, Juan Dolado, Graham Elliott, Max King, Thomas Rothenberg, Victor
Solo, Herman van Dijk, Mark Watson, Kenneth Wallis, and workshop participants
at the University of New South Wales, Sydney, Australia for helpful suggestions
and/or comments on an earlier draft. Jeffrey Amato and Jonathan Wright provided
excellent research assistance. This research was supported in part by National
Science Foundation grant no. SBR-9409629.

1 A complete review of the literature is not attempted here; rather, the interested
reader is referred to the survey and/or textbook treatments of including Banerjee
et al. (1993), Hamilton (1994, chapters 18 and 19), Johansen (1995), and Watson
(1994). The theory of inference about cointegrating relations is developed in
{inter alia) Engle and Granger (1987), Phillips and Durlauf (1986), Stock (1987),

Johansen (1988, 1991), Ahn and Reinsel (1990), Stock and Watson (1988, 1993),

Engle and Yoo (1991), Phillips and Ouliaris (1990), Phillips (1991, 19953), and
Saikkonen (1991, 1992). The theory of testing for autoregressive unit roots in
univariate time series is well developed and is reviewed in Banerjee et al. (1993)
and Stock (1994a). Tests for cointegration are reviewed in Banerjee et al.{1993)
and Watson (1994). For recent Monte Carlo evidence on tests for cointegration,
see Gregory (1994), Haug (1993, 1996), and Ho and Serenson (1996).

2 Deviations of the pretest from this ideal can result in finite sample distortions
even if « = 1; cf. Elliott and Stock (1994) and Toda and Yamamoto (1995).

3 This survey focuses solely on classical {frequentist) methods. From a Bayesian
perspective, these problems are conceptually straightforward and simply require
integration over a with respect to a suitable prior, although in this model the
results can be highly sensitive to the choice of prior. Relevant readings can be
found in the special issues of the Journal of Applied Econometrics (Octo-
ber-December 1991) and Econometric Theory (August—October 1994); also see
Sims and Zha (1994).

4 Watson (1994) provides references for the case of higher orders of integration.

5 The remarks in this paragraph extend to the more general category of processes
for which 7~ ¥x;1,; converges weakly to Z(s),an O41) stochastic process which is
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not proportional to a Brownian motion. One example of a “local-to-I(1)” model
isanautoregressionwitha = 1 + ¢/T. Another example is the error components
model, A)_c, ={,, + hT™1{,,, where ({,,, Al,) are jointly stationary processes
var(A{,,) is fixed, and Ex} < oo; cf. Nyblom and Mikeldinen (1983). ’

6 The discussion here follows Cavanagh, Elliott, and Stock (1995).

7 The results in this section are taken from Stock (1995). The literature on
long-run forecasting with large roots is small. Phillips (1995b) considers forecast
errors from VARs specified in levels and estimated by OLS when there are
mulupl? unit or local-to-units roots, and generalizations of the levels of VAR
l‘%l.llts in this subsection can be found there. Remarks similar in spirit on the
topic of VAR impulse response functions can be found in Sims and Zha (1994).

8 Thtere can b'e, however, substantial finite problems for OLS forecasts from stable
autoregressions; see for example Breidt, Davis, and Dunsmuir (1995), Kemp
(slzz :,(igz% Maekawa (1987), Magnus and Pesaran (1991), Phillips (1979), and

9 One could alternatively include unit root and cointegration pretests and use the
(1) or I(0) rqethodology depending on the outcome. If howevera = 1 + ¢/Tand
tl.le pretest is a consistent decision rule, then for reasons which parallel the
dlscusm.o'n in section 2, the pretest will result in the I(1) methodology with
probability tending to one.

10 O.ne.might conjecture that another alternative would be to compute the
dlstnbutions‘in question using the bootstrap. However, in the AR(1) model with
a=1(a spccxal case of problems A and C), Basawa et al. (1991) showed that the
parametric bootstrap, based on the OLS estimate of a, is not consistent for the
dlStl‘{bU[lOl.'l of the OLS estimator of a. The bootstrap fails because it requires
consistent initial estimation of ¢, which is not possible.

11 Test§ related to these which test only for the existence of cointegration and do
not u;wolve a hypothesized value of 8 have been developed by Shin (1994) and
Harris -and Inder (1994). The approach in section 4.3 is due to Wright (1996)‘

12 Extension of this approach to the case of deterministic terms is straightforward;
cf. Toda and Yamamoto (1995) and Dolado and Lutkepohl (1995). ,

References

Ahn, S. K apd Reinsel, G. C (1990). “Estimation for partially nonstationary
multivariate autoregressive models.” Journal of the American Statistical
Association, 85: 813-23.

Andeﬁr:,on,. T. w.ban;ld Darling, D. (1952). “Asymptotic theory of certain ‘goodness of

criteria based on stochastic processes.” Annals of Math i isti
oy aweria b f Mathematical Statistics,

Andrews, .D. W.K. ('1991). “Heteroskedasticity and autocorrelation consistent
covariance matrix estimation.” Econometrica, 59: 817-58.

(1993). “Exactly median-unbiased estimation of first order autoregressive/unit
rqot model.” Econometrica, 61: 139-66.
Banerjee, A, Dolado, I., Galbraith, J. W, and Hendry, D. F. (1993). Co-Integration,



56 James H. Stock

Error Correction, and the Econometric Analysis of Non-Stationary Data.
Oxford: Oxford University Press.

Basawa, L V., Mallik, A.K., McCormick, W.P., Reeves, J..H., and Tayl,?r, R.L.
(1991). “Bootstrapping unstable first-order autoregressive processes. Annals
of Statistics, 19: 1098-101. . . ' .

Bhargava, A. (1986). “On the theory of testing for unit roots 1n observed time series.
Review of Economic Studies, 53: 369-84. . . . o

Bobkoski, M.J. (1983). “Hypothesis Testing in Nonstatxpnary Tlme. Sene§.
Unpublished Ph.D Thesis, Department of Statistics, University of Wisconsin.

Breidt, F.J., Davis, R. A, and Dunsmuir, W.T. M. (1995). “Imprpved boot'strap
prediction intervals for autoregression.” Journal of Time Series Analysis, 16:
177-200. . '

Campbell, B. and Dufour, J.-M. (1994). “Exact nonparametric tests of othogonahty
and random walk in the presence of a drift parameter.” Manuscript, CRDE,
University of Montreal. ) .

(1995). “Exact nonparametric orthogonality and random walk tests.” The Review

of Economics and Statistics, 78: 1-16. '

Campbell, J.Y. and Shiller, R.J. (1987). “Cointegration tests of present value
models.” Journal of Political Economy, 95: 1062-88. .

(1988). “Stock prices, earnings and expected dividends.” Journal of Finance, 43:

661-76. _

Cavanagh, C.L. (1985). “Roots local to unity.” Manuscript, Department of
Economics, Harvard University. _ .

Cavanagh, C. L., Elliott, G. and Stock,J. H. (1995). “Inference in models with nearly
integrated regressors.” Econometric Theory, 11: 1131-47. ' _

Chan, N.H. (1988). “On the parameter inference for nearly nonstationary time
series.” Journal of the American Statistical Association, 83: 857-62.

Chan, N. H. and Wei, C. Z. (1987). “Asymptotic inference for nearly nonstationary.

AR(1) processes.” Annals of Statistics, 15: 1050-63. .
(1988). “Limiting distributions of least squares estimates of unstable autoregres-
sive processes.” Annals of Statistics, 16: 367-401. . . .
Choi, 1. (1993). “Asymptotic normality of the least-squares f:StlI:llate,S, for, higher
order autoregressive integrated processes with some applications.” Economet-
ric Theory, 9: 263-82. .
Davidsbn, J1.E.H, Hendry, D.F, Srba, F., and Yeo, S. (1978). “Econometric
modelling of the aggregate time-series relationship between consumers’ expen-
diture and income in the United Kingdom.” Economic Journal, 88: 661-92.
Dickey, D. A. and Fuller, W. A. (1879). “Distribution of the estimators for aut.orf:g-
ressive time series with a unit root.” Journal of the American Statistical
Association, 74: 427-31.
Dolado, Juan J. and Lutkepohl, Helmut (1996). “Making Wald tests work for
cointegrated VAR systems.” Econometric Reviews, 15.‘ ' .
Dufour, J. M. (1990). “Exact tests and confidence sets in linear regressions with
autocorrelated errors.” Econometrica, 58: 475-94. _ .
Elliott, G. (1994). “Application of Local to Unity Asymptotic Theory to Time Series

Cointegration, long-run comovements 57

Regression.” Unpublished Ph.D. Dissertation, Department of Economics,
Harvard University.

Elliott, G., Rothenberg, T.J.,, and Stock, J.H. (1996). “Efficient tests for an
autoregressive unit root.” Econometrica, 64: 813-36.

Elliott, G. and Stock, J. H.(1994). “Inference in time series regression when the order
of integration of a regressor is unknown.” Econometric Theory, 10: 672-700.

Engle, R.F. and Granger, C. W.J. (1987). “Cointegration and error correction:
representation, estimation, and testing.” Econometrica, 55: 251-76.

Engle, R.F. and Yoo, B.S. (1987). “Forecasting and testing in co-integrated
systems.” Journal of Econometrics, 35: 143-59.

(1991). “Cointegrated economic time series: an overview with new results.” In
Engle, R.F. and Granger, C. W.J. (eds.), Long-Run Economic Relationships.
Oxford: Oxford University Press, pp. 237-66.

Fama, E. F. (1991). “Efficient capital markets IL.” Journal of Finance, 46: 1575-617.
Granger, C.W.J. (1981). “Some properties of time series data and their use in
econometric model specification.” Journal of Econometrics, 16: 121-30.
Granger, C. W.J. and Weiss, A. A. (1983). “Time series analysis of error correcting
models.” In Karlin, S., Amemiya, T., and Goodman, L. A. (eds.), Studies in
Econometrics, Time Series and Multivariate Statistics. New ‘York: Academic

Press.

Gregory, A.W. (1994). “Testing for cointegration in linear quadratic models.”
Journal of Business and Economic Statistics, 12: 347-60.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Applications. New
York: Academic Press.

Hamilton, J. D.(1994). Time Series Analysis. Princeton: Princeton University Press.

Hargreaves, C. P.(1994). “A review of methods of estimating cointegrating relation-
ships.” In Hargreaves, C.P. (ed.), Nonstationary Time Series Analysis and
Cointegration. Oxford: Oxford University Press, pp. 87-132.

Harris, D. and Inder, B. (1994). “A test of the null hypothesis of cointegration.” In
Hargreaves, C. P. (ed.), Nonstationary Time Series Analysis and Cointegration.
Oxford: Oxford University Press, pp. 133-52.

Haug, A. A. (1993). “Residual based tests for cointegration.” Economics Letters, 41:
345-51.

(1996). “Tests for cointegration: a Monte Carlo comparison.” Journal of
Econometrics, 71.
Herrndorf, N. A. (1984). “A functional central limit theorem for weakly dependent
sequences of random variables.” Annals of Probability, 12: 141-53.
Ho, M. S. and Serenson, B. (1996). “Finding cointegration rank in high dimensional
systems using the Johansen test.” The Review of Economics and Statistics.
Johansen, S. (1988). “Statistical analysis of cointegrating vectors.” Journal of
Economic Dynamics and Control, 12: 231-54.
(1991). “Estimation and hypothesis testing of cointegration vectors in Gaussian
vector autoregressive models.” Econometrica, 59: 1551-80.

(1995). Likelihood Based Inference in Cointegrated Vector Autoregressive Models.
Oxford: Oxford University Press.



58 James H. Stock

Kemp, G. C. R.(1991). “The joint distribution of forecast errors inthe AR(1)model.”
Econometric Theory, 7: 497-518.

(1992). “The distribution of forecast errors from an estimated random walk.”
Manuscript, University of Essex.

King, M. L. (1980). “Robust tests for spherical symmetry and their application to
least squares regression.” Annals of Statistics, 8: 1265-71.

King, M.L. and Hillier, H. (1985). “Locally best invariant tests of the error
covariance matrix of the linear regression model.” Journal of the Royal
Statistical Society, Series B, 47: 98—-102.

Kwiatkowski, D., Phillips, P.C. B., Schmidt, P., and Shin, Y. (1992). “Testing the
null hypothesis of stationarity against the alternatives of a unit root: how sure
are we that economic time series have a unit root?” Journal of Econometrics, 54:
159-78.

MacNeill, I B. (1978). “Properties of sequences of partial sums of polyomial
regression residuals with applications to tests for change of regression at
unknown times.” Annals of Statistics, 6: 422-33.

Maekawa, K. (1987). “Finite sample properties of several predictors from an
autoregressive model.” Econometric Theory, 3. 359-70.

Magnus, J.R. and Pesaran, B. (1991). “The bias of forecasts from a first-order
autoregression.” Econometric Theory, 7: 222-35.

Mankiw, N.G. and Shapiro, M. D. (1985). “Trends, random walks and tests of the
permanent income hypothesis.” Journal of Monetary Economics, 16: 165-74.

Nabeya, S. and Tanaka, K. (1988). “Asymptotic theory of a test for the constancy of
regression coefficients against the random walk alternative.” Annals of Statis-
tics, 16: 218-35.

Nyblom, J. (1986). “Testing for deterministic linear trend in time series.” Journal of
the American Statistical Association, 81: 545-9.

Nyblom, J. and Miikeliinen, T. (1983). “Comparisons of tests for the presence of «
random walk coefficients in a simple linear model.” Journal of the American
Statistical Association, 78: 856—-64.

Park, J. and Choi, C. (1988). “A new approach to testing for a unit root.” Working
Paper No. 88-23, Center for Analytical Economics, Cornell University.
Park, J.Y. and Phillips, P. C. B. (1988). “Statistical inference in regressions with

integrated processes: Part 1,” Econometric Theory, 4: 468-97.

Phillips, P. C. B. (1979). “The sampling distribution of forecasts from a first-order
autoregression.” Journal of Econometrics, 9: 241-61.

(1987). “Toward a unified asymptotic theory for autoregression.” Biometrika, 74:
535-47. '

(1991). “Optimal inference in co-integrated systems.” Econometrica, 59: 282-306.

(1995a). “Fully modified least squares and vector autoregression.” Econometrica,
63: 1023-79.

(1995b). “Impulse response and forecast error variance asymptotics in non-
stationary VARs.” Manuscript, Cowles Foundation, Yale University.

Phillips, P.C.B. and Durlauf, S.N. (1986). “Multiple time series regression with
integrated processes.” Review of Economic Studies, 53: 473-96.

Cointegration, long-run comovements 59

Phillips, P. C. B. and Loretan, M. (1991). “Estimating long-run economic equilib-
" ria.” Review of Economic Studies, 58: 407-36.

Phillips, P. C. B. and Ouliaris, S. (1990). “Asymptotic properties of residual based
tests for cointegration.” Econometrica, 58: 165-94.

Phillips, P.C. B. and Solo, V. (1992). “Asymptotic for linear processes.” Annals of
Statistics, 20(2): 971-1001.

Rothenberg, T.J. and Stock, J.H. (1995). “Inference in a nearly integrated
autoregressive model with nonnormal innovations.” Manuscript, University of
California, Berkeley.

Saikkonen, P. (1991). “Asymptotically efficient estimation of cointegrating re-
gressions.” Econometric Theory, 7. 1-21.

(1992). “Estimation and testing of cointegrated systems by an autoregressive
approximation.” Econometric Theory, 8: 1-27.

Saikkonen, P. and Luukkonen, R. (1993a). “Testing for moving average unit root in
autoregressive integrated moving average models.” Journal of the American
Statistical Association, 88 596-601.

(1993b). “Point optimal tests for the moving average unit root hypothesis.”
Econometric Theory, 9: 343-62.

Sampson, M. (1991). “The effect of parameter uncertainty on forecast variances and
confidence intervals for unit root and trend stationary time-series models.”
Journal of Applied Econometrics, 6: 67-76.

Sargan, J.D. (1964). “Wages and prices in the United Kingdom: a study in
econometricmethodology.” In Hart, P. E., Mills, G., and Whitaker, J. K. (eds.),
Econometric Analysis for National Economic Planning. London: Butterworth.
Reprinted in Hendry, D. F. and Wallis, K. F. (eds.), Econometrics and Quantitat-
ive Economics. Oxford: Basil Blackwell, 1984.

Sargan, J.D. and Bhargava, A. (1983). “Testing for residuals from least squares
regression for being generated by the Gaussian random walk.” Econometrica,
51:153-74.

Shin, Y. (1994). “A residual-based test of the null of cointegration against the
alternative of no cointegration.” Econometric Theory, 10: 91-116.

Shively, T.S. (1988). “An exact test for a stochastic coefficient in a time series
regression model.” Journal of Time Series Analysis, 9: 81-8.

Sims, C. A, Stock, J. H,, and Watson, M. W. (1990). “Inference in linear time series
models with some unit roots.” Econometrica, 58: 113—44.

Sims, Christopher A. and Zha, Tao (1994). “Error Bands for Impulse Responses.”
Manuscript, Cowles Foundation, Yale University. '

Stine, R. A. (1987). “Estimating properties of autoregressive forecasts.” Journal of
the American Statistical Association, 82: 1072-8.

Stoclf, J. H. (1987). “Asymptotic properties of least squares estimators of cointegrat-
ing vectors.” Econometrica, 55: 1035-56.

(1991). “Confidence intervals for the largest autoregressive root in U.S. economic
time series.” Journal of Monetary Economics, 28: 435-60.

(1994a). “Unit roots, structural breaks and trends.” In. Engle, R. F. and McFad-
den, D. (eds.), Handbook of Econometrics, Vol. 1V. Amsterdam: Elsevier,



60 James H. Stock

chapter 46.
(1994b). “Deciding between I(1) and 1(0).” Journal of Econometrics, 63: 105-31.
(1995). “Long Run Forecasting.” Manuscript, Kennedy School of Government,
Harvard University.

Stock, J. H. and Watson, M. W. (1988). “Testing for commeon trends.” Journal of the
American Statistical Association, 83: 1097-107.

(1993). “A sunple estimator of cointegrating vectors in higher-order mtegrated
systems.” Econometrica, 61: 783-820.

Tanaka, K. (1990). “Testing for a moving average unit root.” Econometric Theory, 6:
433-44.

Toda, Hiro Y. and Yamamoto, Taku (1995). “Statistical inference in vector
autoregressions with passibly integrated processes.” Journal of Econometrics,
66: 225-50.

Watson, M. W. (1994). “Vector autoregressions and cointegration.” In Engle, R.F.
and McFadden, D. (eds.), Handbook of Econometrics, Vol. 1V. Amsterdam
Elsevier, chapter 47.

Wright, J. H. (1996). “Confidence intervals in a cointegrative regression based on
stationarity tests.” Manuscript, Harvard University.



