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This paper provides asymptotic confidence intervals for the largest autoregressive root of a time 
series when this root is close to one. The intervals are readily constructed either graphically or 
using tables in the appendix. When applied to the Nelson-Plosser (1982) data set, the main 
conclusion is that the confidence intervals typically are wide. The conventional emphasis on 
testing for whether the largest root equals one fails to convey the substantial sampling variability 
associated with this measure of persistence. 

1. Introduction 

A prominent problem in empirical macroeconomics during the past decade 
has been the measurement of the persistence of shocks to macroeconomic 
time series variables. Since Nelson and Plosser (19821, much of this literature 
has focused on the size of the largest autoregressive root (p) of a time series, 
and tests for whether p is one have played a central role in the empirical 
analysis. This emphasis on unit root tests, which in part is attributable to the 
availability of appropriate statistical theory, has been criticized on several 
grounds. While macroeconomic theories suggest substantial serial depen- 
dence in time series data, a unit root typically is predicted only as a special 
case. Moreover, reporting only unit root tests and point estimates of the 
largest root is unsatisfying as a description of the data: this fails to convey 
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information about the sampling uncertainty or, more precisely, the range of 
models (i.e., values of p) that are consistent with the observed data. While 
not new [see for example Campbell and Mankiw (1987) and Cochrane 
(1988)], these criticisms suggest that confidence intervals for p could provide 
a more useful summary measure of persistence than unit root tests alone. 

This paper reports asymptotic confidence intervals for p, calculated for the 
fourteen historical U.S. annual macroeconomic time series studied by Nelson 
and Plosser (1982). The methodological contribution of the paper is to 
provide a set of figures and tables for use in constructing confidence intervals 
for p when p is large. Because the distribution of the t-statistic testing p is 
nonnormal and depends strongly on p when p is nearly one, the usual 
approach of constructing asymptotic confidence intervals as the point esti- 
mate *2 standard errors is not appropriate here. Moreover, as Cavanagh 
(19851, Sims (19881, and Sims and Uhlig (1988) emphasized, the first-order 
asymptotic theory does not provide a suitable framework for the construction 
of confidence intervals because it is discontinuous at p = 1. Instead, the 
confidence intervals reported here are constructed using the local-to-unity 
asymptotic theory developed by Bobkoski (19831, Cavanagh (19851, Phillips 
(1987), and Chan and Wei (1987). In this theory, the true value of p is 
modeled as being in a decreasing neighborhood of one, specifically p = 1 + 
c/T, where c is a fixed constant (the Pitman drift) and T is the sample size. 
This device - nesting p as a function of the sample size - is analogous to the 
usual approach used to study the asymptotic power of econometric tests 
against local alternatives, except that in the conventional case the alternatives 
are in a l/v? rather than a l/T neighborhood of the null value. Cavanagh 
(1985) originally described how to use this theory to construct confidence 
intervals based on the t-statistic testing p = 1 + c/T for first-order autore- 
gressions with no intercept in the regression. This paper extends his ap- 
proach to the empirically more relevant case of higher-order autoregressions 
with an intercept, or an intercept and a time trend. Two sets of confidence 
intervals are studied here: one based on the augmented Dickey-Fuller (1979) 
(ADF) t-statistic testing p = 1, and one based on a modification of Sargan 
and Bhargava’s (1983) uniformly most powerful test statistic (the MSB 
statistic). 

The main new empirical result in this paper is that the confidence intervals 
for p for many of the annual Nelson-Plosser series are wide. As Nelson and 
Plosser emphasized, the ADF statistic rejects p = 1 against p < 1 at the 5% 
level only for the unemployment rate, so unemployment is the only series for 
which the 90% central confidence interval for p (based on Nelson and 
Plosser’s ADF statistics) falls below one. But these intervals also include 
values of p substantially different from one. The 90% intervals for real GNP 
and real per capita GNP, based on 62 years of data, are approximately 
(0.6,1.04) using the detrended ADF statistic. This provides additional empir- 
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ical content to the often-voiced view, recently expressed for example by 
Christian0 and Eichenbaum (1990), that either difference-stationary or 
trend-stationary models are capable of producing the autocorrelations ob- 
served in U.S. output data. Some series, however, have substantially tighter 
intervals than GNP. The series with the tightest interval estimates are 
industrial production, consumer prices, velocity, and stock prices - the series 
with the most observations - and the bond yield. For example, the 90% ADF 
interval for consumer prices, on which there are 111 annual observations, is 
(0.901,1.037) and it is (0.873,1.039) for stock prices (the S&P 500). These 
tighter intervals in part reflect the longer samples available for these series 
than for GNP. Reporting solely the results of unit root tests fails to convey 
the evident imprecision with which the largest root is estimated in many of 
these series, even with these long annual data. 

The paper is organized as follows. The method for constructing these 
confidence intervals is summarized in section 2. Section 3 reports a Monte 
Carlo experiment that examines the finite-sample performance of the inter- 
vals. The empirical results are reported and discussed in section 4, and some 
conclusions are summarized in section 5. Tables of central confidence inter- 
vals as a function of the ADF statistics are provided in the appendix. 

2. Local-to-unity asymptotic confidence intervals 

2.1. The model and statistics 

Let the univariate time series y, obey 

(1) 
a(L)q = Ed, a(L) =b(L)(l -PL), 

t= l,...,T, 

where b(L) = c;_objL’, where b, = 1 and L is the lag operator [so that the 
lag polynomial a(L) has order k + 11, 6(l) z 0, u. = 0, and E, is a martingale 
difference sequence with EE: = a* and supI E&f < 03, with ~~ and pcL1 nonzero 
in general. The factorization of a(L) is used to distinguish the largest root, 
p = 1 + c/T, from the fixed stable roots describing short-run dynamics in 
b(L).’ 

‘An alternative nesting for p, used by Phillips (19871, is p = expk/T). Because exp(c/T) = 
1 + c/T + 0(Tm2), the asymptotic representations obtained in this section are the same for 
either nesting. 



438 J.H. Stock, ‘Unit root’ confidence rntervals 

The representation (1) can be rearranged to yield the usual Dickey-Fuller 
regression, 

k 

~,=&,+iGt+41)~~-1+ &$-~Y+,+E~, 
J=l 

(2) 

where, with p = 1 + c/T, (Y(L) = L-‘(1 - a(L)) SO ~(1) = 1 + &(1)/T, /.I0 = 
-cb(l&/T - cb*(l)/.~t/T + pb(l)~~, fil = -cb(l)/~*,/T, 6: = - x:=1+16,, 
and (Y: = - Ck_ ,_-I+I~j. The ADF f-statistic, denoted by P, is the r-statistic 
testing the hypothesis that ~41) = 1 in (2). 

Sargan and Bhargava (1983) proposed a different test statistic, motivated 
as the uniformly most powerful test statistic for testing p = 1 against the 
stationary alternative using an approximation to the Gaussian likelihood 
when p1 = 0. Bhargava (1986) extended these results to the case of nonzero 
p0 and pt, showing the Sargan-Bhargava statistic to be locally most powerful 
invariant when computed using detrended y,, where the detrended data are 
y,B = yt - (t - l)/(T - l)y, - (T - t)/(T - l)y, - (Y - $(yT + yl>>. Although 
the Sargan-Bhargava statistic has these optimality properties in the first-order 
Gaussian case, the test is not similar when b(1) # 1. As is shown in Stock 
(1988), however, it is readily modified to provide an asymptotically similar 
test statistic. Let the spectral density of (1 -pL)v, at frequency zero be 
w2/2rr, so that w = a/b(l), and estimate w* by G2 = G2/(1 - ~?*(l))~, where 
CJ and a*(L) are estimated from the regression (2). When @a and p1 are 
possibly nonzero, the modified Sargan-Bhargava statistic (in logarithms), 
computed using y,!, is 

SA2T-* 5 (Y:)’ 
1=1 

(3) 

The regression (2) includes t as a regressor, and the detrended series y: is 
used to construct the JvM? statistic in (3). This is appropriate if ~a and it 
are not restricted a priori, and this will be referred to as the ‘detrended’ case. 
Alternatively it, but not necessarily pO, might be known to be zero. Then the 
appropriate ADF statistic is ? M, the t-statistic testing (~(1) = 1 in (2) exclud- 
ing the time trend, and the MSB statistic is computed using y,’ = yI - jj 
(rather than yp> and is denoted MSBw. This will be referred to as the 
‘demeaned’ case. 

2.2. Asymptotic distributions 

One approach to constructing confidence intervals for p would be to 
assume a distribution for Ed and to derive the exact finite-sample confidence 
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intervals based on an appropriate test statistic. Because any specific distribu- 
tional assumption typically would not be satisfied in practice, the justification 
for such an approach would be that, in large samples, it might nonetheless 
provide a good approximation under more general conditions. This suggests 
instead computing confidence intervals with an explicit asymptotic justifica- 
tion, which is the approach taken here. 

Limiting representations for the statistics at hand are obtained using the 
local-to-unity asymptotic distribution theory given in Bobkoski (1983), 
Cavanagh (1985), Chan (1988), Chan and Wei (1987), and Phillips (1987) [for 
a different approach, see Ahtola and Tiao (198411. For a technical review of 
this literature, see Nabeya and Tanaka (1990, sect. 1). The basic result in this 
literature is that the process U, in (1) obeys a functional limit theorem, in 
which V,(h) = T-‘/‘v ITA1 converges to a diffusion process as T -+ 00, where 
[ -1 is the greatest lesser integer function. Specifically, Vr( .> d wJ( * >, where 
J( - > satisfies dJ(s) = cJ(s) ds + dW(s), where W( * 1 is a standard Brownian 
motion and ‘ 2 ’ denotes weak convergence in D[O, 11. If c = 0 so p = 1, this 
specializes to the more familiar limit, Vr( - > - wW( - 1. These results are 
extended here to include additional regressors using the techniques of Sims, 
Stock, and Watson (1990). 

For pa and pI possibly nonzero, the appropriate statistics involve detrend- 
ing. It is shown in appendix A that, when p = 1 + c/T and (2) includes a 
constant and a time trend, 

T(&(l) - 1) *6(l){ (~1~T(~)2ds)-1~1,T(s)dW(s) +c), (4) 

+‘a (/a1J’(s)2ds)i/2( ( k1JT(s)2 ds) -1/o11T(s) dW(s) + c}, (5) 

where .Y(A) =1(h) - /:(4 - 6sMs)ds - Ajd(l2s - 6)J(s)ds and JB(A) = 

J(A) - (A - +)J(l) - j,,?(s) ds. 
The limiting representations (4)-(6) are the same in the demeaned case, 

except that J“(e) replaces Jr(.) and JB(*), where J”(A) =.l(A) - /,‘J(s)ds. 

2.3. Construction of asymptotic confidence intervals 

The distributions corresponding to (4H6) are nonnormal and the depen- 
dence on c is not a simple location shift, so confidence intervals for p cannot 
be formed using a simple ‘+2 standard error’ rule. Still, because the 
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representations (5) and (6) depend only on c and are continuous in c, the 
ADF and MSB test statistics can be used as the basis for interval estimation. 

Recall that a lOO(1 - (~1% confidence set for c, S(y,, . . . , yT), is a set-val- 
ued function of the data with the property that Pr[c E NY,, . . . , yT)] = 1 - (Y 
for all values of c. In general, a confidence set can be constructed by 
‘inverting’ the acceptance region of a test statistic that has a distribution 
which depends on c but not on the nuisance parameters. To be concrete, 
consider confidence sets based on fl. If A,(c,) is the (l- or 2-sided) 
asymptotic acceptance region for a level cy test of the null of c = cO, then 
S(?‘) = {c: ?’ E AJc)) is a lOO(1 - (Y)% confidence set. Because f’ is a 
scalar, a lOO(1 - (~1% closed confidence set can be constructed as SC?) = {c: 
f,;,,<c> I +’ ~f,;,,(c>l, w h ere f,,,,(c) and f,,,,(c) are respectively the lower 
and upper (Y, and 1 - (Y, percentiles of ?’ as a function of c, where 
(Y, + (Y, = (Y. If f,;,$c> and fUia,(c> are strictly monotone increasing in c, the 
critical values can be inverted to yield the more familiar representation, 
S(?) = (c: f&G’> -< c S&&W)}. H ere, we construct central confidence 
intervals, so that cy, = (Y, = &. 

A simple way to construct these intervals is to use the graphical device 
described by Kendall and Stuart (1967, ch. 20). Asymptotic local-to-unity 
central confidence belts (the graph of (f,; t,(c), f,; ;,(cN> are plotted in figs. 
l-4 for, respectively, the demeaned ADF f-statistic ?, the detrended ADF 
t-statistic ?‘, the demeaned MSB statistic MSBw, and the detrended MSB 
statistic MSBB. The computation of these belts by Monte Carlo simulation is 
described in appendix B. In each figure, the four bands describe the 95% (the 
widest band), 90%, 80%, and 70% confidence belts. The central line plots the 
median of the local-to-unity distribution of the test statistic. The lOO(1 - (~1% 
confidence set is given by those values of c falling within the 1 - a belt for a 
given value of the statistic. Each 1 - (Y confidence belt has the property that, 
for a given value of c, the asymptotic probability of realizing a value of the 
statistic inside the belt is 1 - (Y. For any true value of c, the confidence 
intervals constructed using the belt will contain c if and only if the realized 
statistic falls within the belt. Thus, the asymptotic probability that the 
confidence interval contains the true value of c is 1 - (Y.* 

As an example, suppose ?p = -3.0 is calculated from a series with 
T = 100. The 95% confidence interval is the c in the 95% belt in fig. 1, read 

‘The -iP and i’ statistics used here are centered around one rather than p (the conventional 
approach). The reason for centering around one is to eliminate the dependence of the 
distribution of the t-statistic on the nuisance parameters in the higher-order case. Cavanagh 
(1985), who focused on the first-order case [so that b(l) = 11, described the construction of 
confidence intervals based on the r-statistic centered around (~(1) =p, that is, based on 
7(p) = c&(l) - p)/.SE(&(l)), where &cl) and X(&(l)) are computed using (2). In general the 
distribution of 7(p) depends not only on c but also on b(l), so its critical values cannot be 
inverted to obtain confidence intervals without adjusting for b(l). 
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‘-6 -5 -4 -3 -2 -I 0 1 2 

Value of test statistic 

Fig. 1. Confidence belt for local-to-unity parameter c based on demeaned ADF f-statistic; bands 
in order of decreasing width: 95%. 90%, 80%, 70%, central line: median. 

vertically for P = - 3.0 (or alternatively taken from table A.l, part A), which 
is -27.9 s c I 0.8. The 95% confidence interval for p is (1 - 27.9/100, 
1 + 0.8/100) = (0.721,1.008). Because the medians in figs. 1 and 3 are mono- 
tone increasing in c, an asymptotically median-unbiased estimator is obtained 
using the central line in fig. 1 (or the final column of table A.l, part A). 
Because the median of 4’ is -3.0 when c = - 14.9, ?med = - 14.9 is an 
asymptotically median-unbiased estimate of c, corresponding to bmed = 1 - 
14.9/100 = 0.851. Based on the level of numerical accuracy used to produce 
figs. l-4, it appears that the medians of ?’ and MSBB bend backwards for c 
between zero and one, so estimators thus constructed using ?’ and MSBB 
are not median unbiased. However, because the range of values of ? and 
MSBB over which these curves bend backwards is very small [specifically, 
+’ E ( - 1.346, - 1.334) and MSBB E ( - 2.193, - 2.18411, the bias introduced 
by using this estimator with the detrended statistics appears to be negligible. 
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I-6 -5 -4 -3 -2 -1 0 1 2 

Value of test statistic 

Fig. 2. Confidence belt for local-to-unity parameter c based on detrended ADF t-statistic; bands 
in order of decreasing width: 95%, 90%, 80%, 70%, central line: median. 

2.4. Discussion 

Six aspects of these results are noteworthy. First, the confidence belts are 
nonlinear, exhibiting a sharp bend for c just above zero. For positive values 
of ?’ or ?’ the confidence intervals are tight, for large negative values they 
are wide. Large positive values of P are unlikely to be realized unless c is 
positive, but negative values of i’ are likely to be realized whether c is 
positive or negative. A simple calculation demonstrates how different are the 
widths of the interval estimates for different realizations of the test statistic: 
if, for example, ?’ = 0, the sample must have T = 75 for the 95% interval to 
have width 0.05, but if 4’ = -3.5 is observed, T must be 725 to produce this 
short an interval. 

Second, the detrended belts do not increase monotonically, so for some 
values of +’ the central confidence set will be disjoint. Cavanagh (1985) 
pointed out that disjoint sets are theoretically possible in the local-to-unity 
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i-3 -2 -1 0 1 

Value of test statistic 

Fig. 3. Confidence belt for local-to-unity parameter c based on demeaned modified 
Sargan-Bhargava statistic; bands in order of decreasing width: 95%, 90%, 80%, TO%, central 

line: median. 

setting, but his computations did not uncover any in the nondemeaned 
first-order case. Sims (19881 found disjoint confidence sets for p in the 
nondemeaned first-order model using first-order asymptotic theory, which is 
discontinuous in p, and conjectured that exact finite-sample distributions 
(which are continuous in p> also might result in disjoint confidence sets. 
Using the asymptotic local-to-unity confidence intervals, the Cavanagh-Sims 
conjecture is not borne out in the demeaned case, although it is in the 
detrended case. This is, however, of little practical importance. The largest 
range of discoutinuities is for the 95% belt, in which case disjoint confidence 
sets obtain when 4’ falls between C- 3.66, - 3.69) and (-0.66, -0.71). In 
table A.l, this issue is addressed by reporting only the outer bounds of the 
confidence intervals in these ranges, so that the intervals actually have 
asymptotic confidence coefficients slightly greater than 1 - a. Note that this 



444 J.H. Stock, ‘Unrt root’ confidence mtervals 

‘-3 -2 -1 0 1 

Value of test statistic 

Fig. 4. Confidence belt for local-to-unity parameter c based on detrended modified 
Sargan-Bhargava statistic; bands in order of decreasing width: 95%, 90%, 80%, 70%, central 

line: median. 

results in a discontinuous jump in the confidence interval (as a function of 
?) in these regions. 

Third, because the local-to-unity distribution of T(&(l) - 1) is skewed and 
moreover depends on the nuisance parameters b(l), the relation between 
6(l) and the confidence interval constructed by inverting the ADF t-statistic 
is complicated. The point estimate generally will not be at the center of the 
confidence interval. 

Fourth, the confidence intervals based on the detrended statistics are 
larger than for the demeaned statistics. To be concrete, consider the median 
confidence interval, taken to be the confidence interval computed for the 
median value of the ADF statistic for a given value of c. For c between - 20 
and 2, the median 90% interval based on C’ is uniformly longer than the 
median 90% interval based on P’, assuming pI = 0. For example, for 
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c = -5, the median P is -2.06, with a 90% confidence interval for c of 
(- 13.6,2.4), whereas the median ?’ is -2.45, with 90% confidence interval 
(- 16.2,3.4). 

Fifth, the MSB confidence belts have the same general properties as the 
ADF confidence belts. Intervals are wider for large negative values of 
the statistic. Like the 7 intervals, there is a small range of MSBB for which 
the confidence set is disjoint. 

Sixth, an alternative to the asymptotic approach used here is to construct 
confidence intervals and median-unbiased estimators for p using finite-sam- 
ple techniques. This approach has recently been adopted by Andrews 
(1990), who used exact distribution theory to construct confidence inter- 
vals and median-unbiased estimators in the Gaussian AR(l) model, 
and by Rudebusch (1990), who used Monte Carlo techniques to construct 
median-unbiased estimators in the Gaussian AR(k) model. The principal 
advantages of the asymptotic approach relative to the finite-sample ap- 
proaches are the simplifications that arise in handling the nuisance parame- 
ters and its validity under a wide range of assumptions on the distribution 
of Et. 

3. Monte Carlo analysis 

The asymptotic analysis of section 2 serves two main purposes: to show 
that in large samples the local power functions of the ADF and MSB 
statistics depend only on c so that they can be used to construct asymptotic 
confidence intervals, and to provide large-sample approximations to the 
finite-sample distributions of these statistics when p is near one. It is well 
known [Schwert (1989)] that unit root tests statistics can have finite-sample 
distributions that differ markedly from their asymptotic approximations un- 
der the unit root null when there are nuisance parameters, specifically when 
there is a moving average error. A Monte Carlo analysis of the local-to-unity 
confidence intervals was therefore performed to assess the finite sample 
performance of these asymptotic approximations when p is near one. The 
probability model examined was the nearly-integrated moving average model, 

(1 -pL)y,= (1 +@L)E,, E, i.i.d. N(O,l), (7) 

where p = 1 + c/T. The ADF and MSB statistics were computed in both the 
demeaned and detrended cases. For T = 100, k in (2) was set to 4, and for 
T = 200, k was set to 5. The experiment examined c = (2,0, - 2, - 5, - 10) 
and 8 = (0.5,0, -0.5). Note that, for 8 # 0, the finite-order autoregressive 
approximation is misspecified so that in these cases the experiment examines 
both specification error and the effect of having a finite sample. 
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Table 1 reports the fraction of times that the calculated central confidence 
interval contains the true value of c for different experiments. Because this is 
just the fraction of times that the computed statistic falls within the upper 

and lower +(Y percentiles for that value of c, the coverage rates in table 1 
were computed from the fraction of pseudo-random test statistics that reject 
the null hypothesis that p = 1 + c/T in a two-sided level (Y test, where the 
critical values for each c are those used to construct figs. 1-4. 

For ADF intervals, the asymptotic approximations perform well. For both 
7 “* and 7^@ with T = 100, in all cases the empirical coverage rates of the 
asymptotic 90% confidence interval are between 82% and 91%. The perfor- 
mance of the ADF interval estimator is insensitive to 0 but deteriorates 
somewhat as c becomes large and negative. The performance of the MSB 
intervals, particularly the MSBB intervals, is less satisfactory than the ADF 
intervals. For example, for c = -5, 8 = 0, and T = 100, the Monte Carlo 
coverage rate of the asymptotic 90% MSBB interval is 72.2%, compared with 
86.7% for the corresponding ? interval; for T = 200, this MSBB coverage 
rate remains under 80%.3 Overall, these results suggest that the ADF 
intervals will be more reliable in empirical applications. 

4. Empirical results 

Table 2 presents 90% and 80% confidence intervals for the largest autore- 
gressive root p for the fourteen annual series studied by Nelson and Plosser 
(1982). Because of the poor Monte Carlo performance of the MSB intervals, 

the empirical intervals were computed using the detrended ADF statistic. 
Panel A reports estimates based on Nelson and Plosser’s choice of the 
number of lags (k) included in (2). The 90% central confidence interval for p 
(based on ?) is below one for the unemployment rate and above one for the 
bond yield, while p = 1 is included in all the other intervals. 

The calculations were repeated using k = 5 for each of the series; the 
results are reported in panel B of table 2. The primary qualitative conclusion 
from panel A - the striking width of the confidence intervals - remains 
unchanged, although several estimated intervals shift. The main differences 
occur for the three GNP series, the unemployment rate, real wages, velocity, 
and the S&P 500; each of these intervals is shifted up. 

As was noted in the introduction, the series with the tightest confidence 
intervals are the bond yield, industrial production, consumer prices, stock 
prices, and velocity. The confidence intervals for the bond yield are tight 
because the test statistics are relatively positive, suggesting a root greater 

3Additional Monte Carlo experiments (not reported) suggest that the poor performance of the 
MSB intervals when t is included in (2) and for large negative c arises from the imprecision of 
O;*(l), which is used to construct &. This suggests investigating alternative spectral density 
estimators in the local-to-unity model, a topic left for future research. 
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Table 2 

Asymptotic confidence intervals for p for the Nelson-Plosser data seta 

Series 
- 

N k ADF ;’ -- 90% intervals 80% intervals 
- 

Part A. Nelson-Plosser lag lengths 

Real GNP 62 
Nominal GNP 62 
Real per capita GNP 62 
Industrial production 111 
Employment 81 
Unemployment rate 81 
GNP deflator 82 
Consumer prices 111 
Wages 71 
Real wages 71 
Money stock 82 
Velocity 102 
Bond yield 71 
S&P 500 100 

1 - 2.994 (0.604, 1.042) (0.646, 1.031) 
1 - 2.321 (0.757, 1.060) (0.793, 1.049) 
1 - 3.045 (0.591, 1.041) (0.634, 1.029) 

- 2.529 (0.836, 1.031) (0.857, 1.026) 
: - 2.655 (0.757, 1.039) (0.787, 1.032) 
3 - 3.552 (0.577, 0.950) (0.615, 0.893) 

-2.516 (0.787, 1.041) (0.815, 1.034) 
: - 1.972 (0.901, 1.037) (0.922, 1.031) 
2 - 2.236 (0.800, 1.054) (0.833, 1.045) 
1 - 3.049 (0.644, 1.035) (0.681, 1.025) 
1 - 3.078 (0.687, 1.030) (0.719, 1.020) 
0 - 1.663 (0.929, 1.042) (0.950, 1.035) 
2 0.686 (1.032, 1.075) (1.034, 1.067) 
2 - 2.122 (0.873, 1.039) (0.896, 1.033) 

Part B. Uniform lag lengths 

Real GNP 62 
: 

-2.123 (0.780, 1.068) (0.820, 1.057) 
Nominal GNP 62 - 1.788 (0.847, 1.074) (0.886, 1.062) 
Real per capita GNP 62 5 - 2.222 (0.760, 1.066) (0.800, 1.055) 
Industrial production 111 5 - 2.529 (0.836, 1.031) (0.857, 1.026) 
Emplo~ent 81 - 2.565 (0.764, 1.043) (0.794, 1.035) 
Unemployment rate 81 : - 2.835 (0.715, 1.037) (0.746, 1.029) 
GNP deflator 82 

: 
- 2.466 (0.784, 1.044) (0.813, 1.036) 

Consumer prices 111 - 2.369 (0.855, 1.033) (0.876, 1.028) 
Wage5 71 -2.124 (0.811, 1.059) (0.845, 1.049) 
Real wages 71 : - 2.564 (0.728, 1.049) (0.762, 1.041) 
Money stock 82 - 3.005 (0.685, 1.033) (0.718, 1.024) 
Velocity 102 : - 0.741 (1.015, 1.049) (1.018, 1.042) 
Bond yield 71 0.597 (1.033, 1.078) (1.035, 1.069) 
S&P 500 100 : - 1.062 (0.982, 1.048) (1.016, 1.042) 

‘The detrended ADF statistic (ir) was obtained by estimating the regression (21, including a 
constant, a time tend, and k lags of Ay,. The data are annual, with all series ending in 1970. N 
denotes the total number of obsentations on each series, including observations used for initial 
conditions, so that, in the notation of the paper, T= N - k - 1. The 90% and 80% asymptotic 
confidence intervals were computed using appendix table A.l, linearly interpolated, as described 
in section 2. 

than one. As is evident from figs. 1-4, positive values of the test statistic 
produce much tighter intervals than do large negative values. The relatively 
tight intervaIs for industrial production, consumer prices, stock prices, and 
velocity arise from the greater number of observations on these series. 

The width of the intervals in table 2 raises the question of whether tighter 
intervals could be obtained using more frequent observations over the same 
span of years, say quarterly rather than annual data were they availabie. A 
calculation, simplest for the MSB statistic, indicates that the answer is no. 
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Suppose that T years of data are used to compute the MSBB statistic, first 
using quarterly data, then using the quarterly data aggregated to the annual 
level. Also suppose a sufficient number of lags are included in the quarterly 
and annual regressions to yield consistent estimators of w. With a root local 
to unity, the quarterly and annual MSBB statistics will be equal asymptoti- 
cally, so the confidence intervals for c will be the same, say Cc,, c,). The 
confidence interval for the quarterly root computed using the quarterly data 
is (1 + c,/4T, 1 + c,/4T). But this quarterly interval converted to an annual 
basis is (1 + co/T, 1 + cl/T) to order O(T-*), the same as computed using 
the annual data. 

Two caveats should be borne in mind when interpreting the width of these 
intervals. First, no attempt has been made to construct optimal inter- 
vals; rather only central intervals are given. Presumably, the reported 
intervals overstate somewhat the sampling variability relative to optimal 
intervals. Second, the finite-sample properties of these intervals have been 
studied only in the rarefied experimental design of section 3, and further 
simulation experiments are in order. 

5. Summary and discussion 

These procedures provide asymptotic confidence intervals for the largest 
autoregressive root of a nearly nonstationary time series variable. Because of 
the nonstandard distribution theory, the relation between the observed 
t-statistic (or p-value) and the confidence interval for p is complicated. Thus 
substantial additional information beyond whether or not a unit root test 
rejects is revealed by formally constructing these interval estimates. 

The classical confidence intervals developed here can be contrasted to 
recent Bayesian approaches to the unit root problem. In part in reaction to 
the discontinuity in the first-order asymptotic theory, Sims (1988) and Sims 
and Uhlig (1988) suggested computing Bayesian interval estimates for p. 
This has been implemented empirically by DeJong and Whiteman (1989), 
Schotman and van Dijk (1989), and Phillips (1990) using various priors. 

The classical analysis here has several advantages over these Bayesian 
approaches. First, it sidesteps the debate over priors. As Phillips (1990) 
emphasizes, the flat and Jeffreys priors differ most in their treatment of roots 
near and greater than one, and not surprisingly the posteriors - and thus 
inferences about p - differ sharply depending on the choice of prior. The 
choice of prior is further complicated in this problem because it must be 
specified over the nuisance parameters as well as over the parameter of 
interest, p. Second, the classical approach does not require the additional 
conceptual device of treating the unknown parameters as random. Third, and 
most important, the classical confidence intervals are precise expressions of a 
common form of reasoning in the ‘unit roots’ debate in empirical macroeco- 
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nomics: if a computed test statistic is a likely realization from some hypothe- 
sized model (value of p), then that model ought to be treated as possibly 
true. Christian0 and Eichenbaum (1990) can be interpreted as using this logic 
to argue that specific models of interest are within classical confidence sets of 
some reasonable but unspecified confidence coefficient. In contrast, the 
Bayesian posteriors can be interpreted only with reference to the priors, the 
appropriateness of which are inherently difficult to judge. Were econometri- 
cians able to agree on the best priors for reporting results to a general 
scientific readership, or were inferences on p framed as an explicit decision 
problem, then the Bayesian approach would have more appeal; but neither 
condition is satisfied here. 

The main empirical message of table 2 is that the confidence intervals for p 
are wide. For all series except unemployment and the bond yield, the 
intervals contain one, but they also contain values that could be substantially 
different from one in terms of their implications for quantities of interest to 
macroeconomists. This sampling uncertainty is large despite having more 
than a century of observations on several of the series. A next step in this 
research is to calculate confidence intervals for the several-year-ahead im- 
pulse response function analyzed by Campbell and Mankiw (1987) and 
subsequent researchers, allowing for a root that is nearly, but not exactly, 
one. Although that calculation is beyond the scope of this paper, the findings 
here [and those in Christian0 and Eichenbaum (1990) and Rudebusch (1990)] 
suggest that the resulting confidence intervals would be wide relative to ones 
calculated under a maintained unit root assumption. 

Appendix A: Derivation of eqs. (4), (59, and (6) 

The results provided here apply to the ‘detrended’ case. The results for the 
‘demeaned’ statistics are obtained by dropping the deterministic time trend 
terms in these derivations. The approach used to derive (4)-(6) is to rewrite 
the regression (1) in ‘canonical form’ as defined by Sims, Stock, and Watson 
(1990), in which the regressors are transformed so that their limiting moment 
matrix is nonsingular. The distribution of statistics from the canonical regres- 
sion is then used to obtain the distribution of the statistics of interest in the 
original regression (2). 

Write the regression (2) as 

Yt=P’X+l +c,, (A.1) 

where X,-r =(Ay,_,,..., Ay,_,, 1, yr_ 1, t) and P = (Pi, P2, 6% Pd’, where 

p1 = (a:, . . . , a;)), p2 = &, p3 = a(l), and p4 = br. Because a constant and I 
are included in the regression, without loss of generality set PO = PI = 0, so 
& = fi, = 0. Also set X0 = 0. 
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The canonical regression is obtained by rewriting (A.l) so that all but three 
of the regressors have mean zero and are stationary. Let d = (1 - pL) and let 
U, = b(L)-r~,, so that hy, = U, and E dy, = 0. The canonical regression is 

k 

yr=&+&t- Cb,dY,_,+PY,-1+&,, (A-2) 
J=l 

where b(L) is defined in (1). Written more compactly, this is 

yt=6’Z,_, +E*, (A-3) 

where Z,_l=(Z:I.l,Z:_l,Z)_l,Zp_,)l, where Z:_,=(~“Y,_,,...,~Y,_,)‘, 
z:_, = 1, 2:-r =y,_,, and Zp_., = t. 

The transformation from the original regressors X,-r to the canonical 
regressors Z,_, is 

z,_, = 

0 -* 

-(l?p) p * * 

* 0 0 l-p 0 AY,-I 
* 0 0 l-p 0 AY,-2 

* . . . . . . 
. . . . . . . . . . 

-(I -P) -(l-p) * * - p 0 l-p 0 AY,-, 
0 0 I- -01 0 0 1 
0 0 . . * 0 0 1 0 y,_, 

0 0 ** so0 0 1 t 

= DX,_,. (A4 

Let T, = diag(T’/‘Ik, T Ii2 T T3j2), where Z, is the k x k identity matrix, 

and let s^ be the OLS estimator of S, ~=(c~~lZ,-lZ:_I)-l(c~=lZI_I~,). 
The results of Bobkoski (1983), Chan and Wei (1987, lemma 2.1), and Phillips 
(1987, lemma l(a)) show that Vr(*)* WI(*), where o2 = ~‘/b(l)‘= 27r 
times the spectral density of U, at frequency zero, Y,(h) = T-“2uITAl and 
J(m) satisfies dJ(h) = cJ(h) + dW(h), where W(h) is a standard Brownian 
motion and J(0) = 0. This result, combined with Sims, Stock, and Watson 
(1990, theorem l), yields 

r&-s) * {(~ll’41y,(G_*~2)ljlr (A.9 

where r,, = EZ:Z:’ [so that (r,,),, = Eu,u,_~+,], $r is distributed 
N(0, rrr~‘), d1 is independent of (rz2, +2), r,, is a symmetric 3 X 3 matrix 
with elements (rz2)r1 = 1, (I;,),, = w/,“J(s)ds, (fz2)r3 = f, (r22)22 = 
~‘/dJ(s)’ ds, (rz2>23 = w_/,‘~(s) ds, and (P;2)33 = f, and where cb2 = 

?{W(l), oj$(s)dW(s), Jars dW(s))‘. Note that p^ = LI’s^, so (A.5) implies that 
@-pZO. 
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A. 1. Derivation of (4) 

From p” = D’s” and the definition of D in (A.4), p3 = (1 - p)c;= rs^r,, + &. 
Because & = i(l), T(&(l) - 1) = T(1 - p>Ck_ s^, j + T(i, - 1). Direct c&u- 
Iation shows that T(& - 6,) j (o/wX~~.d~)~ d~>-‘(~,‘.Ws)dW(~)>, where 
J’ is defined in section 2. From (A.21 and (A.31, 6, = p and cf_,&, = 

- c;= 1 bj = 1 - b(l). Thus, 

T@(l)-l)=-~~6^~,,+T(g,-~,)+T(p-l) 
j=l 

A.2. Derivation of (5) 

Using the device in Sims, Stock, and Watson (1990, theorem 2), one 
obtains 

-l/2 

T(G(l) - 1) + o,(l), (A-6) 

where y: is the residual from regressing yr on (1, t). Because E&f < 03 and L1 
p-pzo, g2z:a ‘. The result (5) follows from (41, (A.6), and V;(* ) * 
wJ’(.), where V,‘(A) = T-1/2y&~1. 

A.3. Derivation of (6) 

From p^ = LYs^ and (A.41, C:_,p^,,j =~C:,r6^r,j - (1 - p)c:=r(j - 1)$1,1’ 
1 - b(1). Thus, 

2 

&2=&Z 1:a2/b(l)‘=w2. (A-7) 

Let V,B(A) = T-“2y,B,. Then V,“(e) = wJB(.), where Ja(A) = J(A) - 
(A - +)J(l) - @(s)d 1 h’ f 11 s t 1s o ows from Vr( - ) * oJ( - > and by straightfor- 
ward calculations]. The desired expression (6) obtains from these results and 
the definition of the MsBB statistic in (3). 
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Appendix B: Numerical issues in the tabulation and computation of the 
confidence belts 

Table A.1 summarizes the central confidence intervals obtained by invert- 
ing the ADF statistic as discussed in section 2. The tables report the minimal 
and maximal limits of the confidence set, so in the small ranges for which the 
confidence set is disjoint, the tabulated interval joins the outer limits of the 
set. Confidence intervals for observed values of the statistics can be obtained 
by linear interpolation. (This introduces some numerical inaccuracy in the 
neighborhood of ?“s or MSBB’s for which the confidence sets are disjoint.) 
In some cases bounds are omitted because the lower bound falls outside the 
range of c used for the calculations. If so, the confidence interval constructed 
from the table is a 1 - $LY open interval. 

Various procedures are available for the evaluation of the limiting distribu- 
tion of the ADF + and b statistics. The literature has focused on the case 
with no deterministic regressors (with p1 = t.+ = 0). Dickey and Fuller (1979) 
provide representations in terms of infinite sums of independent normal 
variates when c = 0; Cavanagh (1985) and Chan (1988) generalize these to 
nonzero c. Bobkoski (1983) and Perron (1989) numerically invert moment 
generating functions, and Nabeya and Tanaka (1990) compute limiting distri- 
butions using the theory of Fredholm determinants. Results in Chan (1988), 
Nabeya and Tanaka (19901, and Perron (1989) suggest that the asymptotic 
approximations work well for Gaussian AR(l) models in finite samples, even 
for T = 50 and certainly for T = 500. These latter results imply that suitable 
approximations to the limiting distribution can be obtained by Monte Carlo 
simulation with T = 500, where the number of replications is sufficiently large 
to provide the desired numerical accuracy. Indeed, Chan’s (1988) comparison 
of several numerical procedures in the nondemeaned CL, = pz = 0 case led 
him to conclude that direct Monte Carlo simulation with T large produced 
the most reliable approximations. 

Chan’s (1988) recommendation is adopted here, and the limiting distribu- 
tions were evaluated by Monte Carlo simulation for T = 500 with 20,000 
replications. The pseudo-data were generated according to y, = py,_ 1 + et, E, 
i.i.d. N(0, 11, with p = 1 + c/T and y0 = 0. The distributions were evaluated 
on a grid of 87 values of c for - 38 < c 5 6, with the grid most dense on 
c--5,6). For each c, the percentiles of ?“, f’, MSZ?“‘, and M,SBB (computed 
with k = 0) were recorded. The 0.025, 0.05, 0.10, 0.15, 0.50, 0.85, 0.90, 0.95, 
and 0.975 percentiles are plotted in figs. l-4. The intervals in table A.1 were 
computed by linear interpolation of the ADF-based confidence belt as a 
function of the statistic, using the outer bounds of the belt in the disjoint 
cases. Computer procedures in RATS and GAUSS to calculate these inter- 
vals are available from the author on request. 
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Table A.1 

Confidence belts for p based on ADF statistics. 

Stat 

95% 90% 80% 70% 

co c1 co c1 co cl co Cl Median 

-5.70 
- 5.60 
-5.50 
- 5.40 
- 5.30 
-5.20 
-5.10 
- 5.00 
- 4.90 
-4.80 
- 4.70 
- 4.60 
- 4.50 
- 4.40 
- 4.30 
- 4.20 
-4.10 
-4.00 
- 3.90 
- 3.80 
-3.70 
- 3.60 
- 3.50 
- 3.40 
- 3.30 
- 3.20 
-3.10 
- 3.00 
- 2.90 
- 2.80 
- 2.70 
- 2.60 
- 2.50 
- 2.40 
- 2.30 
- 2.20 
-2.10 
-2.00 
- 1.90 
- 1.80 
- 1.70 
- 1.60 
- 1.50 
- 1.40 
- 1.30 
- 1.20 
- 1.10 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 37.46 
- 35.79 
- 34.13 
- 32.51 
- 30.93 
- 29.39 
- 27.86 
- 26.39 
- 24.86 
- 23.41 
- 22.03 
- 20.69 
- 19.41 
- 18.13 
- 16.93 
- 15.76 
- 14.65 
- 13.52 
- 12.43 
- 11.37 
- 10.36 
- 9.41 
- 8.53 
- 7.71 
-6.91 
- 6.13 

- 1.00 -5.43 

- 37.12 - - - - 
- 35.41 - - - - - - 
- 33.70 - - 37.17 - - - - 
- 32.04 - - 35.50 - - - - 
- 30.47 - - 33.84 - - 37.57 - - 
- 28.88 - - 32.17 - - 35.87 - - 
- 27.30 - - 30.60 - -34.17 - - 36.73 
- 25.81 - - 28.98 - - 32.52 - - 35.05 
- 24.32 - - 27.41 - - 30.88 - - 33.42 
- 22.87 - - 25.94 - - 29.26 - -31.77 
-21.35 - 24.46 - - 27.70 - -30.15 
- 19.93 - - 22.97 - - 26.19 - - 28.58 
- 18.56 - -21.53 - - 24.71 - - 27.02 
- 17.21 - -20.11 - - 23.26 - - 25.55 
- 15.88 - 18.72 - - 21.84 - - 24.08 
- 14.51 - - 17.35 - - 20.44 - - 22.62 
- 13.23 - - 15.98 - - 19.09 - -21.19 
- 11.96 - - 14.68 - - 17.78 - 37.07 - 19.83 
- 10.70 - - 13.39 - 37.43 - 16.48 - 35.38 - 18.49 
- 9.45 - - 12.10 - 35.72 - 15.19 - 33.74 - 17.17 
-8.19 - 36.79 - 10.89 - 34.06 - 13.97 -32.13 - 15.89 
- 7.00 -35.11 - 9.74 - 32.44 - 12.77 - 30.55 - 14.63 
- 5.87 - 33.47 - 8.57 - 30.86 - 11.58 - 28.99 - 13.43 
- 4.74 -31.86 - 7.45 - 29.31 - 10.42 - 27.48 - 12.25 
-3.48 - 30.27 -6.31 - 27.78 - 9.30 - 26.01 - 11.06 
- 1.57 - 28.72 -5.19 - 26.29 -8.15 - 24.56 - 9.96 

0.32 - 27.20 - 3.98 - 24.83 - 7.03 -23.15 - 8.86 
0.80 - 25.71 - 2.55 - 23.39 - 5.91 - 21.77 - 7.78 
1.09 - 24.25 - 0.71 - 22.00 -4.77 - 20.45 - 6.67 
1.39 - 22.85 0.43 - 20.64 - 3.59 - 19.13 -5.61 
1.74 - 21.54 0.88 - 19.32 - 2.39 - 17.85 - 4.54 
1.97 - 20.19 1.16 - 18.03 - 0.56 - 16.61 -3.36 
2.26 - 18.86 1.44 - 16.79 0.40 - 15.41 -2.10 
2.55 - 17.60 1.69 - 15.60 0.81 - 14.26 - 0.30 
2.75 - 16.38 1.94 - 14.43 1.12 - 13.12 0.43 
2.91 - 15.23 2.16 - 13.30 1.35 - 12.05 0.79 
3.08 - 14.08 2.35 - 12.21 1.55 - 11.00 1.06 
3.28 - 13.00 2.56 - 11.15 1.74 - 9.99 1.30 
3.51 - 11.96 2.72 - 10.15 1.92 - 9.02 1.49 
3.67 - 10.91 2.87 -9.19 2.09 - 8.06 1.64 
3.80 - 9.91 3.02 - 8.24 2.24 -7.14 1.80 
3.93 - 8.96 3.13 - 7.33 2.38 - 6.25 1.92 
4.06 - 8.05 3.25 - 6.46 2.49 - 5.38 2.05 
4.18 - 7.21 3.36 - 5.60 2.61 - 4.55 2.17 
4.28 - 6.38 3.45 - 4.82 2.71 - 3.71 2.26 
4.35 -5.61 3.54 - 4.03 2.80 - 2.86 2.35 
4.42 - 4.90 3.62 - 3.30 2.87 - 2.06 2.43 
4.49 -4.17 3.69 - 2.61 2.94 - 1.37 2.51 

Part A. Based on demeaned ADF t-statistic 7^* 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 36.49 
- 34.82 
- 33.21 
- 31.63 
- 30.05 
- 28.52 
- 27.02 
- 25.53 
- 24.09 
- 22.67 
-21.28 
- 19.93 
- 18.63 
- 17.35 
- 16.11 
- 14.90 
- 13.72 
- 12.57 
- 11.46 
- 10.39 

- 9.33 
- 8.29 
- 7.29 
- 6.32 
- 5.35 
- 4.38 
- 3.37 
- 2.29 
- 1.15 
- 0.24 

0.26 
0.59 
0.80 
0.96 
1.09 
1.21 
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Table A.1 (continued) 

95% 90% 80% 70% 

Stat co cl co Cl co Cl CO Cl Median 

- 0.90 - 4.81 4.55 

- 0.80 - 4.22 4.61 
- 0.70 - 3.66 4.68 
-0.60 - 3.12 4.74 
- 0.50 - 2.61 4.77 
- 0.40 -2.16 4.80 
- 0.30 - 1.59 4.83 
- 0.20 - 1.18 4.86 
-0.10 - 0.85 4.89 

0.00 - 0.54 4.92 
0.10 - 0.28 4.95 
0.20 - 0.06 4.98 
0.30 0.12 5.01 
0.40 0.28 5.04 
0.50 0.42 5.07 
0.60 0.56 5.10 
0.70 0.68 5.13 
0.80 0.79 5.16 
0.90 0.87 5.19 
1.00 0.96 5.22 
1.10 1.03 5.25 
1.20 1.10 5.28 
1.30 1.16 5.31 
1.40 1.22 5.34 
1 so 1.28 5.36 
1.60 1.33 5.39 
1.70 1.38 5.42 
1.80 1.43 5.45 
1.90 1.47 5.48 
2.00 1.51 5.50 

- 3.52 3.75 - 1.93 3.00 - 0.78 2.58 1.29 
- 2.90 3.81 - 1.31 3.06 - 0.35 2.64 1.38 
- 2.35 3.87 - 0.78 3.12 - 0.05 2.70 1.46 
- 1.81 3.92 - 0.42 3.18 0.19 2.76 1.53 
- 1.32 3.98 -0.13 3.24 0.38 2.82 1.61 
-0.89 4.03 0.10 3.28 0.54 2.87 1.67 
- 0.55 4.07 0.29 3.33 0.68 2.92 1.73 
- 0.28 4.12 0.44 3.38 0.80 2.98 1.79 
- 0.05 4.17 0.58 3.43 0.89 3.02 1.84 

0.15 4.21 0.70 3.47 0.98 3.07 1.89 
0.32 4.26 0.81 3.51 1.06 3.11 1.94 
0.46 4.30 0.90 3.56 1.14 3.16 1.99 
0.59 4.34 1 .oo 3.60 1.22 3.20 2.03 
0.71 4.38 1.07 3.64 1.28 3.24 2.07 
0.82 4.41 1.15 3.68 1.34 3.27 2.12 
0.91 4.45 1.22 3.72 1.40 3.31 2.16 
1.00 4.49 1.28 3.76 1.45 3.35 2.20 
1.07 4.52 1.34 3.80 1.50 3.38 2.24 
1.14 4.55 1.40 3.84 1.56 3.42 2.27 
1.21 4.58 1.44 3.87 1.61 3.45 2.31 
1.27 4.61 1.49 3.91 1.65 3.49 2.35 
1.32 4.64 1.54 3.94 1.69 3.52 2.38 
1.38 4.67 1.59 3.98 1.72 3.56 2.42 
1.43 4.70 1.63 4.01 1.76 3.59 2.45 
1.47 4.73 1.66 4.04 1.80 3.62 2.48 
1.51 4.76 1.70 4.07 1.84 3.65 2.51 
1.56 4.78 1.74 4.09 1.87 3.69 2.54 
1.60 4.81 1.78 4.12 1.90 3.72 2.57 
1.63 4.83 1.81 4.15 1.93 3.75 2.60 
1.67 4.86 1.84 4.18 1.97 3.78 2.63 

-5.90 
- 5.80 
-5.70 
- 5.60 
- 5.50 
- 5.40 
-5.30 
- 5.20 
-5.10 
-5.00 
- 4.90 
- 4.80 
- 4.70 
-4.60 
- 4.50 
- 4.40 
- 4.30 
- 4.20 
-4.10 

Part B. Based on detrended ADF t-statistic ;’ 

- -37.94 - 
- -36.20 - 
- -34.42 - 
- -32.70 - 
- -31.00 - 
- -29.25 - 
- -27.55 - 
- -25.86 - 
- -24.24 - 
- -22.62 - 
- -21.02 - 
- - 19.44 - 
- - 17.91 - 
- - 16.34 - 
- -14.87 - 
- - 13.31 - 
- -11.73 - 
- - 10.25 - 
- -8.81 - 

- - 
- - 

-36.30 1 
-34.56 - 
-32.80 - 
-31.08 - 
-29.36 - 
-27.72 - 
-26.07 - 
-24.53 - 
-22.95 - 
-21.38 - 
-19.81 - 
- 18.29 - 
- 16.75 - 
- 15.22 - 
-13.75 - 
-12.26 - 

- 
- 
- 
- 
- 

- 37.01 
- 35.25 
- 33.51 
- 31.78 
- 30.10 
- 28.45 
- 26.77 
- 25.15 
- 23.59 
- 22.02 
- 20.49 
- 18.97 
- 17.51 
- 16.07 

- - 
- 
- - 
- - 
- - 
- - 
- - 37.89 
- - 36.09 
- - 34.36 
- - 32.64 
- - 30.91 
- - 29.24 
- - 27.57 
- - 25.99 
- - 24.41 
- - 22.89 
- - 21.37 
- - 19.86 

36.82 - 18.41 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 37.84 
- 36.07 
- 34.39 
- 32.70 
-31.05 
- 29.41 
- 27.81 
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Table A.1 (continued) 

457 

Stat 

95% 90% 80% 70% 

co c1 co cl co cl co cl Median 

- 4.00 - -7.17 - - 10.81 
-3.90 - -5.57 - - 9.29 
-3.80 - - 3.60 - 36.83 - 7.79 
-3.70 - 37.63 1.42 -35.11 - 6.31 
- 3.60 - 35.87 1.80 - 33.39 - 4.65 
-3.50 -34.13 2.07 -31.71 - 2.85 
- 3.40 - 32.44 2.32 - 30.08 1.49 
- 3.30 - 30.76 2.53 - 28.48 1.87 
- 3.20 - 29.15 2.72 - 26.90 2.11 
-3.10 - 27.55 2.91 - 25.35 2.34 
- 3.00 - 26.05 3.11 - 23.86 2.53 
- 2.90 - 24.54 3.36 - 22.35 2.69 
- 2.80 - 23.04 3.57 - 20.90 2.85 
- 2.70 - 21.64 3.73 - 19.53 3.01 
- 2.60 - 20.29 3.87 - 18.18 3.16 
- 2.50 - 18.93 4.01 - 16.87 3.31 
- 2.40 - 17.58 4.15 - 15.59 3.46 
- 2.30 - 16.26 4.27 - 14.36 3.61 
- 2.20 - 15.01 4.38 - 13.18 3.73 
-2.10 - 13.79 4.49 - 12.03 3.85 
- 2.00 - 12.61 4.57 - 10.91 3.96 
- 1.90 - 11.49 4.65 - 9.77 4.05 
- 1.80 - 10.44 4.74 - 8.67 4.13 
- 1.70 - 9.41 4.80 -7.61 4.20 
- 1.60 - 8.38 4.85 - 6.58 4.27 
- 1.50 - 7.38 4.90 - 5.61 4.32 
- 1.40 - 6.42 4.96 - 4.66 4.37 
- 1.30 - 5.50 5.01 - 3.78 4.42 
- 1.20 - 4.68 5.05 - 2.85 4.47 
- 1.10 - 3.85 5.09 - 2.00 4.51 
- 1.00 -3.10 5.14 - 1.18 4.56 
- 0.90 - 2.36 5.18 1.22 4.60 
- 0.80 - 1.60 5.22 1.40 4.64 
- 0.70 - 0.64 5.26 1.50 4.68 
- 0.60 1.26 5.30 1.60 4.72 
- 0.50 1.41 5.34 1.66 4.76 
- 0.40 1.50 5.38 1.71 4.79 
- 0.30 1.58 5.43 1.77 4.83 
- 0.20 1.64 5.47 1.82 4.86 
-0.10 1.69 5.51 1.86 4.89 

0.00 1.74 5.54 1.90 4.92 
0.10 1.79 5.58 1.95 4.96 
0.20 1.83 5.61 1.99 4.99 
0.30 1.87 5.65 2.02 5.02 
0.40 1.91 5.68 2.06 5.04 
0.50 1.95 5.72 2.09 5.07 
0.60 1.99 5.75 2.13 5.09 
0.70 2.02 5.78 2.16 5.12 
0.80 2.05 5.81 2.20 5.15 
0.90 2.08 5.84 2.23 5.17 
1.00 2.12 5.86 2.26 5.20 

- 37.08 
- 35.36 
- 33.67 
- 32.03 
- 30.40 
- 28.81 
- 27.25 
- 25.75 
- 24.26 
- 22.77 
-21.34 
- 19.94 
- 18.59 
- 17.24 
- 15.93 
- 14.62 
- 13.38 
- 12.15 
- 10.97 
- 9.82 
- 8.67 
- 7.56 
- 6.51 
- 5.48 
- 4.44 
-3.44 
- 2.39 
- 1.14 

1.27 
1.44 
1.55 
1.64 
1.71 
1.78 
1.83 
1.88 
1.93 
1.98 
2.02 
2.06 
2.10 
2.13 
2.17 
2.21 
2.24 
2.27 
2.30 
2.34 
2.37 
2.40 
2.43 

- 14.62 - 35.10 - 16.97 - 26.25 
- 13.18 - 33.40 - 15.56 - 24.72 
- 11.73 - 31.74 - 14.12 - 23.23 
- 10.32 -30.11 - 12.72 -21.73 
- 8.86 - 28.49 - 11.36 - 20.27 
- 7.39 - 26.90 - 9.99 - 18.87 
-5.89 - 25.37 - 8.58 - 17.50 
- 4.34 - 23.88 -7.17 - 16.14 
- 2.37 - 22.44 - 5.70 - 14.78 

1.51 - 21.00 -4.11 - 13.44 
1.84 - 19.60 - 2.28 - 12.13 
2.07 - 18.24 1.50 - 10.83 
2.26 - 16.90 1.83 - 9.56 
2.44 - 15.56 2.03 - 8.30 
2.59 - 14.30 2.20 - 7.01 
2.73 - 13.04 2.36 -5.70 
2.86 - 11.78 2.50 - 4.35 
2.99 - 10.60 2.63 - 2.87 
3.10 - 9.43 2.74 - 0.97 
3.20 - 8.29 2.84 1.53 
3.30 -7.17 2.94 1.75 
3.40 - 6.07 3.03 1.89 
3.47 - 5.02 3.11 2.01 
3.55 -3.86 3.19 2.09 
3.62 - 2.73 3.25 2.18 
3.68 - 1.47 3.30 2.24 
3.74 1.27 3.36 2.30 
3.80 1.47 3.41 2.36 
3.85 1.61 3.46 2.42 
3.90 1.69 3.51 2.46 
3.95 1.77 3.55 2.51 
3.99 1.83 3.60 2.55 
4.03 1.88 3.64 2.60 
4.07 1.94 3.68 2.63 
4.11 1.99 3.72 2.67 
4.14 2.03 3.76 2.71 
4.18 2.07 3.80 2.75 
4.22 2.12 3.83 2.79 
4.25 2.16 3.87 2.82 
4.29 2.20 3.90 2.85 
4.32 2.23 3.94 2.88 
4.35 2.27 3.97 2.91 
4.38 2.30 4.01 2.95 
4.41 2.33 4.04 2.98 
4.44 2.37 4.07 3.01 
4.47 2.40 4.10 3.04 
4.50 2.43 4.13 3.07 
4.53 2.46 4.16 3.09 
4.56 2.49 4.19 3.12 
4.58 2.52 4.22 3.15 
4.61 2.55 4.25 3.18 
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Table A.1 (continued) 

Stat 

95% 90% 80% 70% 

CO Cl co Cl co Cl co Cl Median 

1.10 2.15 5.89 2.28 5.23 2.46 4.64 2.51 4.27 3.21 
1.20 2.18 5.92 2.31 5.25 2.48 4.66 2.60 4.30 3.23 
1.30 2.21 5.95 2.34 5.28 2.51 4.69 2.63 4.32 3.25 
1.40 2.24 5.98 2.37 5.30 2.54 4.72 2.65 4.35 3.28 
1.50 2.27 - 2.40 5.32 2.57 4.14 2.68 4.37 3.30 
1.60 2.29 - 2.43 5.34 2.59 4.77 2.70 4.39 3.33 
1.70 2.32 - 2.45 5.31 2.62 4.79 2.73 4.42 3.35 
1.80 2.35 - 2.48 5.39 2.64 4.81 2.75 4.44 3.38 
1.90 2.38 - 2.50 5.41 2.66 4.83 2.78 4.47 3.40 
2.00 2.40 - 2.53 5.43 2.69 4.85 2.80 4.49 3.42 
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