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ABSTRACT

Small deviations from exact unit roots can produce large coverage rate distortions for
conventional confidence sets for cointegrating coefficients (Elliott [1994]). We therefore
propose new methods for constructing confidence sets for long-run coefficients with highly
serially correlated regressors which do not necessarily have a unit root. Although the standard
bootstrap is shown to be asymptotically invalid, a modified, valid bootstrap is developed.
Invariant confidence sets that are optimal (highest average accuracy) are obtained but are
difficult to implement in practice. An approximately optimal invariant method is proposed;

this works almost as well as the optimal method, at least for a single persistent regressor.
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1. Introduction

Asymptotically efficient estimators of cointegrating coefficients are widely used in empirical
work to perform inference about long-run relations. These estimators are appropriate when some
of the roots of the system are exactly equal to one and the others are well within the range of
stationarity. However, Elliott (1994) showed that inferences based on these procedures depend
delicately on the largest roots being exactly rather than nearly one. Indeed, in large samples,
values of the largest autoregressive roots that can be distinguished from one by unit root tests only
with small asymptotic probability can result in tests of hypotheses on cointegrating coefficients
having sizes far in excess of their nominal levels. Similarly, confidence sets for the coefficients of
long-run relations can have coverage rates far from their nominal coverage rate if the regressors
are highly serially correlated but do not have an exact unit root.

This problem is of empirical relevance. For example, numerous authors have considered the
problem of estimating long-run income and interest elasticities of money demand, and the recent
literature has focused overwhelmingly on the use of cointegrating techniques (cf. Baba, Hendry,
and Starr [1992], Hafer and Jansen (1991), Hoffman and Rasche [1991], Miller (1991), and Stock
and Watson [1993]). However, the debate about whether real GDP has an exact unit root remains
unresolved, and a 90% confidence interval for the largest root root in quarterly U.S. real GDP
from 1970 to 1994 is (0.744, 1.029) (Stock [1996]). Additionally, the exact unit root model must
be an imperfect characterization of interest rate dynamics, because the exact unit root model
implies that the nominal interest rate can (and will) go below zero and grow without bound. At
best, the exact unit root assumption, upon which this long run money demand literature literature
is predicated, is questionable.

In this paper we consider a variety of possible methods for constructing confidence regions for
the coefficients in a single cointegrating equation when there are two asymptotically important
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vectors of nuisance parameters: the largest autoregressive roots and the drift parameters of the
regressor process. The presence of a small deterministic trend adds an additional layer of
complication to this problem: with no deterministic trend, unit-root type distribution theory
applies; with a large deterministic trend, some coefficients can have asymptotic normal
distributions (West [1988]); and with a small deterministic trend, the distributions fall somewhere
in between (Stock and West [1988]). To focus on the problematic values of these parameters, we

model them as falling in, respectively, a Tl

region of unity (Elliott’s [1994] approach, cf. Phillips
[1987], Chan and Wei [1987], and Cavanagh, Elliott and Stock [1995]) and a T‘l/2 region of zero.
These neighborhoods are chosen so that tests of a unit root, or of zero time trend, are not
consistent against these alternatives. These nestings are designed capture the circumstance in
which the applied researcher is faced with data that appear to have large roots and/or a small

trend component, but the empirical evidence on these assumptions is ambiguous.

The bootstrap provides one way to construct confidence regions when the performance of
confidence sets based on first order asymptotics is poor. We show, however, that the bootstrap
(more precisely, the parametric bootstrap percentile-t interval in Hall’s (1992) terminology) is
invalid in this application in the sense that its asymptotic coverage rate differs from its nominal
coverage rate.

We therefore consider alternative confidence regions that have controlled asymptotic coverage
rates. One of these is a modification of the bootstrap, where the nominal coverage rate is
adjusted so that the actual coverage rate is controlled. A second is a sup-bound confidence
region. Although these alternative procedures achieve the desired asymptotic coverage rate, both
are found to produce wide confidence sets (and tests with low power) for some values of the
nuisance parameters.

We then turn to the problem of producing optimal confidence sets, where optimality is defined

in terms of best average accuracy among invariant tests. There is no evident analytic solution to



this problem, but it can be solved numerically (with some approximations) and we do so for the
case of a single right hand variable. Because these optimal tests are difficult to implement, we
develop a simpler version based on the same principle. This simpler, approximately optimal test is
found to perform almost as well as as the optimal test.

There is a small literature on this problem, which is reviewed by Stock (1996). If the joint
model has a finite-order autoregressive representation of order p, then one approach is to augment
the model by additional lags which are known to have zero coefficients; inference on the
coefficients with unknown values is now X2- Choi (1993) proposed this approach in the univariate
AR(1) model (a test for a unit root), and Toda and Yamamoto (1995) and Dolado and Lutkepohl
(1995) extend it to a general VAR(p). This approach can produce wide confidence sets in Monte
Carlo simulations, however, and indeed the confidence sets have width that is Op(TJ/2 ) rather than
the optimal rate Tl Campbell and Dufour (1995) propose a nonparametric approach to this
problem in the case of a known intercept and a scalar regressor, but the extension to an unknown
intercept and especially to multiple regressors is unclear. The only general approach that achieves
the optimal T'1 rate is the method proposed by Wright (1996a). All the procedures considered in
this paper achieve the optimal rate.

The paper is organized as follows. The model and preliminary asymptotic results are presented
in section 2. Bootstrap and related confidence sets are examined in section 3. Optimal and
approximately optimal invariant confidence sets are developed in section 4. Numerical results are
presented in section 5, and section 6 contains an application to long run money demand in the

U.S. Section 7 concludes.



2. The Model and Asymptotic Framework

2.1. The Model

The model considered is the n-dimensional cointegrated VAR, written in triangular form:

(2.2) Y= ay + 0%, +uy

where Yt is a scalar and Xt is kX1 (so n=k+1). The error process VX t evolves as:

(2.3) VX,t = AVX,t—l +ux g

Let Ut = (uX,t” uy,t)’ denote the n dimensional error vector. Ut is assumed to be a second order
stationary stochastic process. We work with the two-sided triangular representation, U, = H(L)e;,
where € is a white noise sequence with E(etet’)=l (cf. Watson [1994, sec. 3.2]). Partition H(L)
and € conformably with (uX,[’, uy,l)’; then, in the obvious notation, € = (el’l’, ez’l)’. Without
loss of generality, let Hl I(L) and H22(L) be one-sided, H12(L)=O, H21(L) be two sided in general,
Hl 1(0) be lower triangular, and the diagonal elements of H(0) be non-negative. It is further
assumed that Hl I(L) and H22(L) are invertible. These assumptions uniquely determine H(L) from
the autocovariances of U.

It will be convenient to use two alternative representations of this model. The first takes
advantage of the lower triangular representation of H(L) to reexpress the cointegrating equation
(2.2) with an error that is uncorrelated with the right hand side variables at all leads and lags.

Let d(L)=H21(L)H11(L)'1 and 7]t=H22(L)€2’t, and substitute (2.3) into (2.1). The model can then

be expressed as,



(2.5) Vi = &y + 0'X; + dL)(Xpoxt-AX ) + my
where oy = (I—A)yO+A71, pX=(I—A)yl, and &y = ay—d(l)aX. We will assume that the error ux ¢
follows a VAR(q), and it will be convenient to reexpress (2.4) explicitly as a VAR. Obtained by

multiplying (2.4) by H, l(L)'1 and rearranging, the VAR representation of X is,
(2.6) AX, = VX, | + Vot + ¥ + ¥ (D)AX | + glt

where 7, =H;;(0)e;,. \Plell(O)Hll(l)'l(A-l), \I/2=H11(0)H11(1)“1px, Vs =
HyOH (D) e +H (o], and W, =H ;O @711 D +H=)a), where
sy = £9_ ulL where 1l = -y i 1HJ11, and where H}l is the jth lag
coefficient matrix in Hy;(L)™.

A second, equivalent representation of the model is in a coordinate system chosen so that the
key parameters are unitless. Let 6y denote a particular value of 6; in the subsequent discussion

of hypothesis tests, 0 will denote the value of § under the null hypothesis. Define Z =

Hy (D7 1X, and w,=H,o(1) Ly -0'X)). Then the system can be rewritten,

-1 -1 -1 -1

vy t:Hl 1(1)‘1ux t- Similarly, in these transformed coordinates (2.4) and (2.2) become,



(2.9) Wy = oy, (B—BO)’Zt + V.t

where o, =(I-B)d+Bd;, o =(-B)d aW=H22(1)'1ay, B=H,(1)'0Hy, (1)L, By=H,{(1)'05H,y (1)1,
and Vw,t=H22(1)'1uy,t. The errors v = (VZ,t’ Vw,t)' in the transformed model obey F(L)yt = €,
where F(L)=H(L) ldiag(H, {(1),Hy,(1)) s0 Fy(L)=H (LY TH{{(1), F{,(1)=0,

Fo (L) =-Hoo (L) TH,y (H (L) TH| (1), and Fy(L)=H,,(L) TH,,(1), where F(L) is partitioned

conformably with »,.

2.2. Asymptotic Framework and Assumptions

This paper considers the possibilities that the matrix of largest autoregressive roots of X; 18
nearly but not necessarily the identity matrix, and that X, has a small, possibly nonzero time trend
component. The assumptions are made in the transformed coordinates (2.7)-(2.9). Specifically, B
is modeled as being sufficiently close to I) that a test of the hypothesis B =1, would fail to reject
the null with positive probability, even asymptotically. Similarly, 61 is modeled as being
sufficiently small that a test of 61 =0 would fail to reject the null with positive probability

asymptotically. Accordingly, a local reparameterization is adopted for the asymptotic analysis:

Assumption A. B = 1+C/T, 8] = /T, and 8 = By + b/T, where C is a fixed k xk matrix and

w and b are fixed kX1 vectors. Letr = -Cow.

The nesting B=1+C/T is the familiar multivariate local-to-unity model for large autoregressive
roots, cf. Phillips (1987).
Several additional technical assumptions are made for the asymptotic analysis. These are

collected as assumption B.



Assumption B.

(i) ¢ is a martingale difference sequence with maxisuptEe?t< o and Eeep = 1.

(i) Ty o 20

(iii) Sample first and second moments of I(0) variables are consistent for their
expectations.

@iv) Hl I(L)~1 and HZZ(L)‘1 have maximum order q and fixed roots that are outside the

unit circle, and d(L.) = ¥, p:_pdij, where p and q are known.

The asymptotic results involve representations in terms of functionals of Brownian motion.

Under assumption B,

(2.10) 1%y Tle = W)

where W is a n-dimensional standard Brownian motion, = denotes weak convergence on D[0, 1]n,
and [*] denotes the greatest lesser integer. Partition W as W=(W1’ W2)’ conformably with €

Let] C w(s) be the continuous time sum of a deterministic trend and the diffusion process | C(s):

2.11) To (8 = ws + 109,

(2.12) dJo(s) = Cl(s)ds + dW(s).
Under assumptions A and B,

-1/2
(2.13) T Z[Ts] = JC,w(S)

where this limit is joint with (2.10).



Most of the statistics in sections 3 and 4 involve estimators of functions of H(L), and for some
. 1 ) . 1 . .
of the results these estimators must be T /2~c0n51stent. It is assumed thata T /Z—cons1stent estimator

of HL)™L, ALy, is available:
Assumption C. Under assumptions A and B, ﬁ(Z)_l-H(Z)_l = Op(T'l/Z) for fixed z, | z| <1.

Because H(L)'1 is finitely parameterized (assumption B(iv)), there are several such estimators.
One which is readily computed is obtained by imposing the restrictions C=0 and w=0. Under these
restrictions, the VAR lag coefficients in (2.6) simplify to ¥ 4(L) = L'l(I—Hl I(O)Hl l(L)_l).
Because E(e 1tE 1t,) = Hl 1(O)H11(O)’ and Hl 1(0) is assumed to be lower triangular, let ﬁl 1(0)
be the Cholesky factor of the residual covariance matrix from (2.6), and set ﬁl 1(L)°1 =
A1) [1-L¥,, (1)1, where ¥ (L) is the OLS estimator of ¥ (L) from (2.6). Similarly, imposing
pX=0 and A =I and estimating (2.5) by OLS, where d(L) has q leads and lags, produces an
estimator d(L), and 1, (L)=d(L)f{{(L) serves an estimator of H,(L). Estimation of an
AR(p) using the residuals from that regression produces the estimator flzz(L)'l. Estimators of
other functions of H(L.) can in turn be constructed from these estimators; for example, an
estimator of F(L) is F(L) = A(L) diag(fl; (1), A,(1)). Under assumption A these
estimators are based on mispecified models. Nonetheless, calculations like those in Elliott (1994)
show that they satisfy assumption C. In practice, other estimators of H(L) might be preferred,
particularly if C and w are far from zero. We therefore do not specify a particular set of such
estimators for the theoretical development but rather require only that they satifisfy assumption C.

Finally, it is useful to adopt some additional notation. Let Jé,w(s)=J C. w(s)— il C.w’ st=s-1,
and JEE 0= [Jé, © s*]. Unless explicit limits are given, summations of sample variables are
over p+1<t<T-p, so for example ¥ ;F':I)p 11Z4¢ s denoted Y Z,. Let the superscript u on sample

variables denote demeaning, for example Z‘{ =Zt—(T—2p)~l LZ.



3. Bootstrap and Related Confidence Intervals

3.1. Test Statistics and Preliminary Asymptotics

This section examines the performance of confidence intervals constructed using the bootstrap,
a size-adjusted bootstrap, and a sup-bound approach. The versions of these intervals considered
here are based on statistics obtained from the system (2.5) and (2.6), and these statistics and their
asymptotic distributions are presented before turning to the confidence intervals.

The parameters of (2.5) cannot be estimated in a single equation because A and py are
unknown. However, a family of feasible estimators is obtained by using hypothesized or
estimated values of A and Px- Specifically, let Cr and r denote hypothesized or estimated
sequences that relate to C and r. The sequences C and ry can be either stochastic or
nonstocastic (examples are discussed below). Let A=I+T'1H1 l(l)CTHl 1(1)‘1, ;’XZ

T"2H, (D, and iy =X-5xt-AX, . Then (2.5) can be written,
(3.1) v, = &y + /X + d(L)ﬁX’l + 1,
where {7t = + d(L)(uX,t—ﬁX,t).
Let @(CT,rT) denote the OLS estimator of # from the regression (3.1). The autocorrelation-
consistent Wald statistic testing the null hypothesis R§ =R from this regression is,

(3.2) S(Cp.rp) = [RACT, 1Ryl [RY(C T rpRT RAC T, )Ry

where V(CT,wT) = Meeﬁzz(l)z, where M is the moment matrix of the regressors, and M00

denotes the elements of M. corresponding to 0.



One special case is when CT=O and rT=0 for all T. The estimator 9(0,0) is the dynamic OLS
(DOLS) estimator of Stock and Watson (1993) (also see Phillips and Loretan [1991], Saikkonen
[1991]). This is an efficient estimator of the cointegrating coefficients under the standard
definition of cointegration, C=0 and w=0 (so r=0), and in this case the Wald statistic S(0,0) has a
limiting X2 distribution. However, in the case w=0 and C#0 Elliot (1994) showed that the DOLS

2 distribution and that critical values for S(0,0) depend on C.

Wald statistic no longer has a x
Another special case is when Cp and rp are the OLS estimators of these parameters obtained
from estimation of the VAR (2.6). Let ¥ 1 and @2 denote the estimators of \Ifl and \Ifz from OLS

estimation of (2.6). The estimators C and T based on \f/l and <I>2 are,

A A -1a A
(3.3a) ¢ =Th O ¥ 0

A 320 orlé
(3.3b) =T 40,07,

The resulting estimator of 6, 9(@,?), is asymptotically the Gaussian MLLE when no a-priori
information is available regarding C and w.

The asymptotic behavior of S is given in the following theorem.

Theorem 1. Suppose that (2.4), (2.5), and assumptions A-C hold. Then:

(a) Let (Cp, ) equal the fixed values (C, r). Then
S(Cp.rp) = [( § J&wlé’w’)’l fJE AW, +el'K’

XIK( [ IE JE OV TKTIKICTIE JB )7 I dW,y+e]

= S¥C,1)
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where g = b-[( § J&wl&w’)'l § J&ws"(?—r)’+(C—C)’]F21(l)’ and K=RH11(1)"1’.
Conditional on {J~ 1, this is distributed as a noncentral X%ank(R)’ with noncentrality
parameter g'K'[K( [ J& J& " hHKTIKe.

(b) Let (Cp.ry) equal the VAR estimates (C,1) given in (3.3). Then
[E-C T-r]= (| J&dei)’( { J&wJ&w’)‘l = [C* 1¥]
and S(C.1) = S*(C*+C.r* +1).

All proofs are contained in the appendix.

The essential idea of this theorem is due to Elliott (1994), who obtained the limit S(0,0) =
S*(0,0) when w=0; this theorem extends his result to tests that use nonzero (CT,rT) and to nonzero
w. Elliott (1994) showed that if le(l) #0, that is, if Xt is not long-run exogenous, then the
distribution of $*(0,0) depends on C. Theorem 1 shows that this remains true for general
S(CT,rT). The exception is when (CT,rT) equals (C,r), in which case the expression in part (a)
simplifies because g=b, and S(C,r) has a X2 null distribution, just as the DOLS Wald statistic S(0,0)
has a X2 null distribution when C and r are exactly zero. Of course, a-priori knowledge of the
precise values of (C,r) is rarely available in practice.

The dependence of the limiting distribution of S on the nuisance parameters (C,r) is the

essential feature that complicates the problem of inference on 6.
3.2. Bootstrap regions

Let «(a;C,w) denote the 100 % critical values of the distribution of S*(C*+C,r*+r) for

population parameters (C,w), and let
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A 14 A 1A
(3.4) Gy = T2 ()71,

where %\/1 is the OLS estimator of y{ in (2.1). Consider the following four algorithms:

Algorithm B1 (parametric percentile-t bootstrap, version 1).

(1) Estimate (2.6) by OLS, construct CandT using (3.3), and let 2)1 =—é'1’r\. Let f:ll
be the OLS estimator of the error variance covariance matrix in (2.6).

(2) Using (CT,rT)=(é,?), estimate (3.1) by OLS to obtain 9(@,?). Estimate an AR(p)
model for the residual from this regression, with estimated innovation variance 222 and
estimated long run variance ﬁ22(1)2.

(3) Compute S(é,?).

(4) Use the estimated models from steps (1) and (2) to construct artificial samples (Xt’ yt),
where € are pseudorandom i.i.d. N(O,diag(f)l 1,f322)) draws. For each realization, let
(é}) be the OLS estimates of (C,r), and compute S(é,?). Compute the 1000 %

A A

critical value of the bootstrap distribution of S(é,?); denote this KBl(a;é,fol) .

Algorithm B2 (asymptotic percentile-t distribution, version 1).

(1) - (3) Same as in B1, except also compute ﬁll(l) and 1521(1).
(4) Evaluate the asymptotic distribution in theorem 1(b) substituting (C, &y, F,,(1),
ﬁll(l)) for (C, w, F51(1), H{{(1)), and compute the 1000 % critical value of this

asymptotic distribution; denote this KB2(a;é,al).

Algorithm B3 (parametric percentile-t bootstrap, version 2).

(1)-(3) Same as B1, except also compute 2)2.
(4) Same as Bl except that the pseudo realizations of x; are constructed using the estimated
version of (2.1) with VX t generated from the estimated VAR (2.6) with the constant and
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time trend term suppresed. Compute the 100a% critical value of the bootstrap

distribution of S(C,T); denote this xg3(e;C.05).

Aleorithm B2 (asymptotic percentile-t distribution, version 2).

(1)-(4) Same as B2 except that 3)2 is used in place of 3)1. Denote the critical value

Algorithm B1 is a multivariate version of what Hall (1992) calls the parametric percentile-t
method for computing confidence regions. The standard nonparametric bootstrap used in the
VAR literature is due to Runkle (1987). lts implementation here differs from algorithm B1 in
two ways: in step (4), the bootstrap draws are constructed using resampled estimated residuals
rather than pseudorandom normal variates, and the other percentile method (in Hall's [1992]
terminology) based on bootstrap realizations of 5(6}) is used to compute the confidence
interval, rather than the percentile-t method (cf. Kilian [1996], Sims and Zha [1995], and Wright
[1996D]).

Algorithm B2 typically would be implemented using a Monte Carlo simulation of the
asymptotic distribution, evaluated at the estimated parameter values. In this sense this algorithm
might not normally be considered a bootstrap.

Algorithms B3 and B4 differ from B1 and B2 in the estimated value of w used to generate
pseudo realizations of X and to evaluate the asymptotic critical value, respectively. They are

introduced because :"1 is a poor estimator of w when C is close to 0, which may lead to poor

performance of the bootstrap. Canjels and Watson (1997) consider the case k=1 and find that @

[\

is better behaved, and the numerical results in section 5 are based on this estimator.

The percentile-t bootstrap confidence region for R region is computed by inverting the
quadratic form of the test statistic. For simplicity, consider the case R=I. Then for algorithm
B1, the parametric percentile-t region with nominal coverage rate 100(1-o) % is,
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3.5 Igy = {0y &0, 9C N BC D0, < rp(a:C.op)

The confidence region based on algorithm B2 is computed as in (3.5), except that KBl(a;é,fol) is
replaced by KBz(a;é,fbl), and the confidence intervals for algorithms B3 and B4 are computed
analogously with :"2 replacing :"1'

The next theorem characterizes the critical values from these algorithms in large samples.

Theorem 2. Under the conditions of theorem 1
(D) xp1(:C.07) - k(e C.iop) B 0 and kpy(:C67) - (s Coop) B 0.

(i) kp3(:C.0y) - k(e C.iy) B 0 and kps(enC.6,) - k(e:C.iop) B0

It is inessential for these results that pseudonormal errors be used in step (4) of B1 or B3;
theorem 2 obtains under the weaker assumption that these errors are a homoskedastic martingale
difference sequence with at least four moments.

A consequence of theorems 1 and 2 is that the bootstrap critical values are random variables,
even asymptotically. For concreteness consider algorithm B3. Although the resulting critical
values approach those based on the asymptotic distribution in theorem 1(b), evaluated at (é,foz),
C and 2)2 are themselves Op(l) random variables. From theorem 1, C=C*x+C and, by a
straightforward calculation, 3)2 = w’zk, where w’zk =12 s“Jé’ w0 where the limits are joint.

Thus the critical values have the limiting representation, KB3(a;é,3)2) = k(a;C* +C,w§). The

asymptotic rejection rate under the null of the test based on B3 thus has the limit,

(3.6)  Prob[S(C.1) > kp3(c:C.&5) [b=0,C,w] = Prob[(k(c;C,w)/kg(ct;C.07))S(C.7) > k(et:C,w) [b=0,C, ]

~ Prob[(x(e;C,w)/ k(e C* +C,w%))S*(C*+C,r¥* +1) > k(a;C,0)) [b=0,C, 0]

- 14 -



Because C* and w§ are Op(l) random variables, the distribution of
(k(a;C,w)/ k(a;C* +C,w§))S*(C* +C,r*+7r) differs from the distribution of S*(C*+C,r*+r), and in
general x(a;C,w) is not its 100« % critical value. Thus, for any C,w, the limiting rejection rate in
(3.6) in general is not «. The asymptotic size of the test is the supremum over (C,w) of the
limiting expression in (3.6). The magnitude of the size distortion depends on the distribution of
(C*,w’) and on the curvature of «. In general, unless X is long-run exogenous, the asymptotic
size of the test based on B3, or equivalently on B4, does not equal its nominal level.

Analogous arguments apply to algorithms B1 and B2, with the modification that 3)1 = wf,
where w} = —(C*+C)'1(r*+r).

The failure of the bootstrap here accords with and extends Basawa et. al.’s (1991) finding that
the bootstrap is invalid in the univariate unit root model.

These results were developed for the OLS estimator of (3.1). Because Nt is serially correlated,
an alternative is to estimate (3.1) by GL.S. It is readily shown that one-step GLS estimation of 6
is asymptotically equivalent to OLS because the regressor X, is growing stochastically (this is
shown in Stock and Watson (1993) for the case C=0, w=0). The GLS version of the Wald statistic
S also is asymptotically equivalent to the autocorrelation-consistent OLS Wald statistic considered
here. Thus theorem 2 and the discussion of this section also applies to bootstrap tests and

confidence regions based on the GLS Wald statistic.

3.3. Size-adjusted bootstrap regions

Although the bootstrap tests outlined above have size distortions, it is possible to compute a
size adjusted bootstrap test which is asymptotically valid. To be concrete, consider the bootstrap
test based on algorithm B3 with nominal level «', that is, with critical value KB3(O(';C,(:)2).
Then a size-adjusted parametric bootstrap percentile-t region based on the OLS statistic can be
computed by finding the value of «’ that solves,
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3.7 supc , Prob[S(C*+C,r* +1) > k(o' ;C*+C,w%) [b=0,C,0] = «

The value of «' that solves (3.7) will be no greater than « and will depend on F21(1) and, if
rank(R)#k, on RHI 1(1)'1 '; it equals « in the special case that Xt is long run exogenous (so that
Fy 1 (D=0). This produces a feasible test, which in general has rejection rate less than o« for most
parameter values. Equation (3.7) can be solved numerically, and values of «' for various values

of the estimable and/or known nuisance parameters are tabulated in section 5.

3.4. Sup-bound regions
An alternative to the bootstrap is to use confidence regions based on an asymptotically
conservative test. This was explored in the k=1, w=0 case in Cavanagh, Elliott, and Stock (1995).

The sup-bound test rejects when S(é,?) > KSB(O{), where KSB(a) solves,
(3.8) supc  Prob[S(C*+C,1* +1) > kgp(a) |b=0,C,w] = a.

By construction the size of the sup-bound test equals its nominal level.

An advantage of the sup-bound test is that the critical values kgp(e) can be summarized in a
response surface that depends on F21(1) and, if rank(R) <k, on RHl 1(1)'1 . A disadvantage of
this test is that it is asymptotically conservative in the sense that, for most values of C and w, the

rejection rate will be less than o.

3.5. Other Methods
Methods other than those discussed so far are available for constructing asymptotically valid

confidence sets; these include Bonferroni and Scheffe methods. These are discussed by
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Cavanagh, Elliott and Stock (1995) in the related problem of Granger causality tests with nearly
unit roots. Looking ahead, however, we find that the relatively simple approximately optimal
regions proposed in section 4 work nearly as well as the optimal regions, so these other approaches

are not pursued here.

4. Efficient and Nearly Efficient Tests and Confidence Regions

This section investigates efficient tests and confidence regions for b. The first step is to
obtain a set Q of maximal invariant asymptotically minimal sufficient statistics for (C,w,b), which
are derived under the assumption of i.i.d. Gaussian errors. Under Gaussianity, asymptotically
efficient invariant tests of (C,w,b) = (0,0,0) will be functions of only these statistics. The
dimension of Q exceeds the dimension of (C,w,b), and there is no uniformly most powerful
invariant test of (C,w,b) = (0,0,0). Neither is there an asymptotic pivot for testing b=0 by which
the dependence of the distribution of Q on C and w can be eliminated.

In the absence of analytical results on the construction of optimal tests in this context, two
numerical solutions are proposed. The first is to construct tests and confidence regions that are
efficient in the sense of maximizing weighted average power (or weighted average accuracy) using
all statistics in Q. The second approach is to construct approximately efficient confidence

intervals based on a subset of the statistics in Q

4.1 Maximal Invariant Asymptotically Minimal Sufficient Statistics for (C,w,b)

Consider the null and alternative hypotheses,

“4.1) HO: B=I, 51 =0, and BzBO Vs. le B#I1, 61#0, or ,6’9&,6’0.
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This testing problem is invariant to the following tranformations:

“4.2) GI: Zt+Zt+aZ, W= Wi ta, t=>tt+a
4.3) G2: Zt—> DZ,[, DD’ =1
4.4) G3: Wi = =W,

where ay is a kX1 vector of constants, a_ and a are fixed scalars, and D is a k Xk matrix.

w
The tests commonly used for empirical cointegration analysis, for example tests of restrictions
on ¢ based on Johansen’s (1988) method, are invariant to Gl’ G2 and G3. The transformation Gl
is a location shift; for example, invariance to Gl means that inference does not depend on
whether the data are in logarithms of thousands or millions of dollars. The transformation G2 is
designed to resolve the ambiguity associated with writing the model in the (Z;, w,) coordinate
system. Recall that (2.8) and (2.9) were obtained by defining Zt=H1 1(1)_1Xt, where
Hl 1(1)H11(1)’ is 27 times the spectral density of uy ¢ at frequency zero. Because Hl 1(1)H1 1(1)’
= Hl 1(1)DD’H1 1(1)’ for D satisfying (4.3), the definition of Hl 1(1) is unique only up to this
orthonormal rotation, and this nonuniqueness was resolved arbitrarily by taking Hy;(0) to be lower
triangular with non-negative diagonal elements. To be more concrete, invariance to G2 means for
example that in a case with two regressors, inference about 8 should not depend on which
regressor is labeled "Z," and which is labeled "Z,.". The transformation G5 says that inference
should not depend on the sign of w; for example, if w, is the (scaled) log of a real bilateral
exchange rate, then inference should not depend on which country is chosen as the basis for
measuring the log spread.
The invariant statistics are formed by constructing canonical versions of Z and w, that are

invariant to G, G, and G3. The general strategy is to subject {Xt’ yt} to a series of
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transformations that leave them invariant under Gl’ G, and Gj. Invariance with respect to Gl is
achieved by subtracting sample means. Achieving (maximal) invariance with respect to G, is
somewhat more involved, and this is accomplished by first premultiplying X, _; by ﬁl 1(1)"1 and
yt~00’Xt by ﬁzz(l)'l; this produces feasible counterparts of Z; and w. This feasible
counterpart of Z, is premultiplied by a particular orthonormal matrix P that leaves the result
invariant under GZ' Invariance with respect to G is achieved by normalizing the sign of Wi SO
that the regression coefficient on the first canonical regressor is positive.

Let 2, = B, ()X, W, = Ay () iy -6, and §, =

diag(®, DALY [AX, y,0,'X,]", where P=D,P . where

I

4.5) Py = eveelfl (DT 2y xPxM A (1)1

diagl{sgnlP A1} ()7 (XX | PLbi=1,...Kl,

i

(4.6) P,

where evec(M) denotes the eigenvectors of the square matrix M. The matrix P; diagonalizes the
regressor cross-product matrix, while P, normalizes the sign of these orthogonalized regressors.

The invariant statistics can be computed from the following regressions:

4.7) b= g rwT¥?) + C2yT) + o

4.8) Wy = oy, QD + LY (A2 C2 ) ey
4.9) 2, =8y + wUT?) + &3

(4.10) Wy = oy, +EUTD) ey

where €] »---» €4 ¢ ATC CITOT terms, and r and C denote the OLS estimators of r and C from
(4.7). Let b denote the OLS estimator of b in (4.8), let Eb be the k-vector of t statistics testing

bi =0in (4.8), i=1,...,k, with each element divided by sgn(ﬁl), and let SEb denote the vector of
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standard errors of b. Let w be the OLS estimator of w in (4.9). Let £ be the OLS estimator of

¢ in (4.10), divided by sgn(f)l). Let
4.11) Q={C. 1.y, SEp, w, &}
Because Zt has been orthogonalized, the F-statistic testing b=0 in (4.8) is Fb = Eblfb'

Theorem 3. Suppose that assumptions A-C hold and that {Et} is i.i.d. N(0,J). Then Qis a
set of maximal invariant asymptotic minimum sufficient statistics for (C,w,b) under G, G,

and G3.

Theorem 4. Under assumptions A-C,
(@) [C r]= P*[C*+C r*+r]diag(P*',1),
~ _1 .
(b) SEy = SEji, where SE{’;,i = (P*{ Jé’w (“:’w’P*’) {21 i=1,....k,
©) fb = tﬁ, where tﬁ,i = bT/[SEﬁ,isgn(bT)], i=1,....k,
(d) w=12P* [ HIEL
(e) £€=12{§ s'“Jé w0 T [FFy (1) 1] ) s'“dW}/sgn(bik),
where C* and r* are defined in theorem 1, P*=P§PT, where PT = evec( § Jg“: ng“: w’), Pﬁ =
diag[sgn(PTJé’w(l))], and b* = P*{b + (| J(’in’é’w')'l[ ) J’é’de2 -( Jé,wJé’w’)C*’le(l)’

- [ sHIG r*'Fy1(1)']}. These limits are joint with those in theorems 1 and 2.

Although the construction outlined here is different, f:b is asymptotically equivalent to the

Wald statistic S(é,?) in section 3 when R=1.
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4.2. Efficient Tests and Confidence Regions

The dimension of the statistics in Q exceeds the dimension of (C,w,b), and there is no
uniformly most powerful test of the null hypothesis 33=0. Moreover, the distribution of Q
depends on (C,w,b) (as well as consistently estimable nuisance parameters). Under this local
nesting, there appears to be no pivot for constructing tests of 3=0, even asymptotically. This
complicates significantly the development of efficient tests and confidence sets.

We therefore set out the general problem of constructing efficient tests that maximize power
against a weighted average of alternatives. Let (bT denote a test of 3 ='80 against the alternative
B8 #BO, so that ¢T=1 if and only if the null is rejected. Let 7 be the asymptotic rejection rate of

that test:
4.12) 7(b;C,w,0) = limTeooProbM)T: 1|B=1 +C/T,61 =T'1/2w,;8 =6O+b/T].

The test of asymptotic level « that has the highest weighted average power, as determined by

the weighting function dG(b,C,w), solves:
(4.13) max g | 7(b;C,w,¢)dG(b,C,w) subject to supc ww(O;C,w,du)éa.

Among all tests that are invariant to G|, G, and G5, the solution to (4.13) will depend only on the
maximal invariant asymptotically minimal sufficient statistic Q, that is, the rejection region of

this test can be written,
(4.14) Q) > 0.
Numerical solutions to the problem of finding the function f(Q) that solves (4.13), that is, that

yields the efficient invariant test, are examined in the next section.
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A confidence region for 8 can be constructed by inverting the acceptance region of this
efficient test. The confidence regions maximize the average accuracy in the sense that the test on

which they are based maximize the average power in (4.13).

4.3. Approximately Efficient Tests and Confidence Regions

Because of the high dimension of Q, the approach described in the previous subsection is
numerically cumbersome. We therefore consider tests that are approximately efficient, in the
sense that they solve (4.13) among functions ¢ that depend on a subset of Q. Because the key
nuisance parameters entering the limiting distribution of Eb and Fb are C and w, a natural choice
for the subset of Q is {Fb, C, 5)}. Specifically, we consider functions such that the test rejects

if

(4.15) f(Fy,,C,w) > 0.

5. Numerical Results

5.1. Model Used for Numerical Analysis

All calculations are carried out using the model:

(5.1) 7 = (Tt + V

' t 7.t

(5.2) AV, = (CITWVy (f + vz,
(5.3) wy = OT)Z, + vy

where (VZ t’ Y t)’ is NIID with mean zero, E(VZ 7 t’)zI, E(vw 7 t’)=F21(1),
E(szv t)= 1 +F21(1)F21(1)’, and VZ O=O. The intercepts are set to zero in (5.1) and (5.3) without
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loss of generality because all the statistics considered are invariant to the location shift G-
Because of computational constraints, the discussion focuses primarily on the model with k=1,
although at the end of this section size adjustments for the bootstrap are given for k=2. Because
the Wald statistic for testing b=0 in (5.3) is invariant to the sign of the regressor, size adjustments
for the bootstrap and sup-bound critical values depends only on | F21(1)| , and we parameterize this
dependence using the parameter )\=F21(1)2/ (1 +F21(1)2), which is the squared correlation between
vzt and Vit
5.2. Size Adjustments for the Bootstrap and Sup-bound Critical Values

The asymptotic rejection rates under the null for algorithm B3/B4 bootstrap tests with a
nominal size of 10% are plotted in Figure 1 for A=0.5 as a function of C and w. (The results in
this section are approximations based on 4000 draws of data from (5.1)-(5.3) with T=400.)
Lvidently there is a large size distortion, and the actual size of the test (the peak of this function)
is 24%. Panel A of Table 1 shows the sizes for other value of values of N\, for bootstrap tests with
nominal sizes of 5% and 10%. The size distortions are large, even for values of A as low as 0.25.

Panel B of Table 1 presents the size adjustments -- the values of the nominal size for the
bootstrap -- that yield tests with actual 5% and 10% sizes, for five different values of N\. For
example, when A =.50 a nominal size of 3% will yield an actual size of 10%, and to achieve a size
of 5%, the bootstrap must be carried out with a nominal size of 1.3%.

Figure 2 shows 10% critical values for S*(C*+C,r*+r) when A=0.50 as a function of C and w.
For extreme values of C and w these approach the X% critical value of 2.7. However, the
critical value is much larger for values of (C,w) near (0,0). The sup-bound critical value is the
peak of this function, 5.46 in this case, and occurs near C=1 and w=0. Table 2 shows the 5% and

10% sup-bound critical values for a range of values of A.
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5.3. Efficient and Nearly Efficient Tests

As discussed in section 4, the efficient invariant tests that solve (4.13) have critical regions
determined by f(Q) >0. We approximated f(Q) by a polynomial expansion, modified so that
standard X2 critical regions obtain when |C| or |w| are large. Let Fb = fb’fb. The specific

approximation used is,

(5.4) PQ = Fy-x] o~ Iy + QF) + Q6 Q1 xexpm C + m o)
where X%, o denotes the 1-«'th quantile of the X% distribution, and (fO, fl, f2, m,, m c0) are

parameters. 'The scale of the statistic f(Q) is fixed by setting f2 11=O. When m,=m w=0, fa(Q)
is just a quadratic approximation of f(Q). Whenm <0 and m < 0, the critical regions approach

15b>x% o 3 |C| or |w| approach co. The parameters were chosen to solve,
(5.5 max | 7(b;C,w)dG(b,C,w), subject to supc wr(O;C,w) <«

where 7(b;C,w)=Prob[f*(Q)>0| C,w,b].

The weighting function dG(b,C,w) was chosen as uniform on -30<b <30, -25<C<35, and 0<w <10,
where the restriction to positive values of w is without of generality because the test is invariant
the sign of the regressors and the weighting function is symmetric in b. The solution to (5.5) was
approximated as follows. First G(b,C,w) was approximated by a step function using 20 values of
b, 16 values of C and 7 values of w. Then for each of the 2240 grid points of (b,C,w),
independent draws of Q were constructed from (5.1)-(5.3) using T=400. For each value of the
parameter vector, fO was chosen to satisfy the sample analogue of the size constraint constructed
from 1000 draws of Q for each value of (C,w). The sample analogue of | 7(b;C,w)dG(b,C,w) was

then constructed using 100 draws of Q for each value of (b,C,w). (Fewer draws were necessary

-24 -



to evaluate the average power function because of the additional averaging.) This function
evaluation algorithm together with a simulated annealing algorithm was used to determine an
approximate solution to (5.5). At the resulting optimized parameter values, a more accurate size
adjustment was then calculated by choosing fj to satisfy the sample analogue of the size constraint
constructed from 4000 independent draws of Q for each value of (C,w) in the descrete grid. The
test functions fa(Q) were calculated for two different sizes (5% and 10%) and four values of A
(0.25, 0.50, 0.75 and 1.0). The resulting power function depends only on |A| (equivalently,
|F21(1) |) because of the invariance of the statistics with respect to sign changes in Zt and the
symmetry of G(b,C,w) in b.

Analogous calculations were performed using a restricted set of statistics QRz(Fb, C, 5)).

These will be denoted as the restricted optimal tests.

5.4. Comparison of the procedures when k=1

Figure 3 compares the power of the various tests with size of 5% (equivalently, the accuracy
of confidence intervals with confidence level 95%) when A=0.5. Panels (a) and (b) show power as
a function of b for two specific values of (C,w). Panel (c) shows power as a function of b
averaged over C and w using the uniform weighting function used to solve (5.5). Panel (d) shows
averages of the values in panel (c) over both positive and negative values of b. Panels (a)-(c)
were calculated under the assumption that F, | (1) was positive. Changing the sign of F, (1)
results in a change in the sign of b, so that results for negative values of Fy (1) are mirror images
of the results shown.

Panel (a) shows that when C=0 and w=0 (as in the benchmark cointegrated regression) the sup-
bound and bootstrap tests are badly biased. This bias arises because bis negatively biased when
F21(1) >0 (as is the estimated regression coefficient in the unit-root AR(1) regression). The

optimal tests essentially eliminates this bias and have power functions more symmetric around 0.
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Similar results obtain in panel (b), when C=-10 and w=1, and in panel (c), which shows power
averaged over all values of C and w. Evidently there is little loss in power in moving from the
fully optimal tests to the restricted optimal tests.

Panels (a) and (b) show that the optimal tests do not uniformly dominate the other procedures
over all values of b. However, from panel (c), this is nearly the case for the power averaged over
C and w: there are small power differences across the procedures for positive values of b and there
are large power gains for the optimal procedures when b is negative.

The use of invariant testing procedures suggests indifference about the sign of b, and panel (d)
compares the power of the procedures averaged over C, w and positive and negative values of b.
(These are averages of the results in panel (¢) over +b.) One way to compare the powers of the
different procedures is to use panel (d) to compare the values of b where each procedure achieves
a given power, say 50%. The ratio of these values of b corresponds to the ratio of sample sizes
necessary to achieve 50% power (again, averaged over both positive and negative values of ,8—,6’0
and all C and w), which is the asymptotic relative efficiency of the test at 50% power.

Values of these ratios are shown in Table 3, where efficiencies are shown relative to the
optimal test. Results are shown for 5% and 10% tests, for different values of \, and for powers of
50% and 80%. In many cases, the efficiency losses for the bootstrap and sup-bound procedures
are large. In most cases, the restricted optimal test performs nearly as well as the optimal test. In
all cases, the restricted optimal test is more efficient asymptotically than the bootstrap or sup-

bound tests, often substantially so.

5.5. Extensions to k=2

As in the case with k=1, confidence regions in higher dimensions are calculated by inverting
tests of the hypothesis Rb=0 using the model (5.1)-(5.3). The computational problems associated
with solving the optimal problem (5.5) when k> 1 are demanding, and our discussion is limited to
the bootstrap and sup-bound procedures.
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To begin, it is useful to simplify the dependence of the confidence region on Fy1 (D), which is
now a 1 X2 vector. When rank(R)=2, the Wald statistic used for both the bootstrap and sup-bound
procedures is invariant to transformations of the form Z; - DZ; with D non-singular (group G,).
Thus we can choose D without loss of generality so that DD’ =1 (so that the errors in (5.1) still
have an identity covariance matrix), but F21(1)=[F21,1 0]. As in the model with k=1, the
dependence of the confidence region on F5 (1) can then be parameterized as
)\=F%1,1/[1 +F21(1)’F21(1)], the R2 from the regression of Vit onto vz When rank(R)=1, the
problem is more complicated. Begin by transforming Z, - DZ;, with DD’ =I so that the resulting
R=[1 0]. The Wald statistic is now invariant to multiplying each of the columns of Z, by £1, and
s0 we can, without of generality, assume F21(1) has non-negative elements. The dependence of
the confidence region on F21(1) can now be characterized by )\1 :F%I ’ 1/ [1 +F21(1)’F21(1)] and
)\2=F%1,2/ [1 +F21(1)’F21(1)]. Note, )\1 is the squared correlation between V.t and the first
element of vzt (in the transformed model with R=[1 0]), )\2 is the squared correlation between
Vet and the second element of vz 1 in this model, and Aj +\, is the R from the regression of
V.t onto vyt With the dependence of the distribution on F, (1) parameterized by A, A; and >\2
we now turn to a discussion of the sup-bound and bootstrap procedures.

Sup-bound critical values are very large for this model with k=2. This arises because the
critical value surface for the Wald statistics, as a function of the elements of C, has a steep
upward sloping ridge along C;;=C,,, for C{,=C, ;=0 with w=0. This ridge has a peak near
C1=Cyp =40 where the 10% critical value is approximately 70. (This can be compared to the X%
critical value of 4.61). The case C;;=C,, =40 is extremely explosive and is of little or no practical
interest for economic time series. Thus, inference based on sup-bound critical values will be
extremely conservative for values of C of practical interest, and this will lead to poor test power
and poor accuracy of confidence intervals. For this reason, detailed values of the sup-bound

critical values are not tabulated.
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A modification of the bootstrap procedure protects it from this drawback. Essentially, larger
critical values need to be used when it is likely that the data were generated by a model with C
diagonal and Cll and C,, large. There are many ways to do this; the procedure used here was
to calculate the maximum eigenvalue of C, and to use the standard bootstrap critical value if
maxeval(é) <2, and to use the critical value from the C =diag[maxeval(é)] distribution otherwise.
Since maxeval(C) is only rarely greater than 2 for models with unit or stationary roots, this has
little effect on the properties of the bootstrap for these models, which are the cases of primary
practical interest.

Table 4 summarizes the size adjustments necessary for this modified bootstrap (algorithms
B3/B4). Panel A shows the required adjustments when rank(R)=2, so that adjustments depend
only of A. Panel B shows the results when rank(R) =1, so that the adjustments depend on )\1 and
A,. These adjustments can be quite large. For example, when rank(R)=1 and A=\, =.25, the

bootstrap must be carried out using a nominal size of 0.5% to achieve an actual size of 5%.

6. Long-Run Money Demand

There is a large literature on long-run money demand functions in OECD countries. A typical

specification relates real balances to log income and an interest rate, and the coefficients to be

estimated are the long run income elastiticy '8y and interest semielasticity BR:

6.1 mep; = o + Byyt + ,GRRt + u,

where m,-p, denotes the logarithm of real balances, y, denotes the logarithm of aggregate output

and Ry is the nominal short term interest rate. In this section we examine estimates of this system
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based on 90 years of annual data for the United States. The data are M1, real net national
product, the net national product price deflator, and the commercial paper rate, 1900-1989; see
Stock and Watson (1993) for a definitions and data sources.

Unit root tests fail to reject the null hypothesis of two unit roots in the joint (y;, R,) process
and in the joint (m-p,, y,, Ry) process. These results suggest that (6.1) might be viewed as a
cointegration relation, so that By and BR can be estimated using an efficient cointegration
estimator. Results for this exercise using 9(0,0) and S(0,0), that is, the DOLS estimator and
confidence regions, are shown in the first row of Table 5, panel A. The estimated income
elasticity is close to unity and the interest rate semi-elasticity is -.10. The corresponding
confidence intervals suggest that the coefficients are estimated reasonably precisely.

However, these results are of dubious validity because they are predicated on two exact unit
roots in the joint income and interest rate process. The VAR(1) for 2 and Rt ((2.6) with one lag
estimated by OLS) is shown in Panel B of the figure. Also shown are the derived estimates A
(=1+¥)), C (eq. (3.3a)), T (eq. (3.3b)), and &, (eq. (3.4)). A has two roots of 0.86, and the
elements of C matrix are large and negative. While unit root pre-tests do not reject the null
hypothesis that both of the roots are unity (equivalently that C=0), neither do they reject many
other values for the roots that imply large negative values of C. This reinforces the a-priori
concern that the confidence intervals constructed from the efficient cointegrating estimates and
their standard errors are unreliable.

The second row of Panel A shows the results from estimating the coefficients without
imposing unit roots in the system. The estimated income elasticity is changed slightly, but the
estimated interest rate semielasticity is the same to three digits. Also shown are confidence
intervals constructed using the bootstrap, with size adjustments interpolated from Table 4. Not
surprisingly, these confidence intervals are somewhat wider than the DOLS intervals, because they

do not use the extra (possibly incorrect) information that C=0. However, for these data, there is
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only a small increase in the width of the intervals. One reason for this is that the estimated value
of \ is small (.03) so that there little loss of power from using the size adjusted bootstrap.
Confidence ellipses constructed using both DOLS estimators are presented in figure 4. The
modified, size-adjusted bootstrap confidence elipse is larger than the DOLS elipse and is centered
at a slightly different point. From a substantive standpoint, however, the size-adjusted bootstrap
elipse still produces fairly precise inference. Some have argued, for example, that an income
elasticity of one-half is consistent with these or similar data (cf. Baba, Hendry and Starr (1992)),

but this value is clearly inconsistent with the evidence reported here.

7. Conclusions

With the exception of the bootstrap, this paper has not dwelled on demonstrating the invalidity
of standard methods for construction of confidence intervals in this model. Still, it is worth
noting that other methods which might initially appear valid for this problem are not. An
example is confidence intervals based on a two step procedure, where the initial step is a pretest
for an exact unit root and, based on the pretest, either an I1(0) or I(1) (cointegration) strategy is
adopted. If the size of the pretest is fixed and there is a root local to unity, then this procedure
will randomly choose between these two incorrect models, with the probability of choosing 1(0)
equal to the local asymptotic power of the pretest. If the size tends to zero suitably as the number
of observations increases, so that the pretest is consistent, then this method will asymptotically
choose the incorrect I(1) model. In either case, the coverage rates of the resulting confidence sets
will in general be distorted. Similar remarks apply to procedures based on consistent model
selection algorithms that choose between 1(0) and I(1) or cointegration specifications.

In contrast, the size-adjusted bootstrap, sup-bound, approximately optimal and optimal
methods for construction of confidence sets developed here are all asymptotically valid when there
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are roots nearly but not necessarily exactly unity, and when there might be a time trend in the
regressor process. All these procedures achieve the optimal rate: the resulting confidence sets are
Op(T"l). Considerable differences were found in the asymptotic accuracy of the various
confidence sets. Although the bootstrap and sup-bound methods can produce considerable losses
in asymptotic accuracy, the approximately optimal procedure was found to work nearly as well as

the optimal procedure.
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Appendix

Proof of theorem 1

(a) By standard rate arguments and the algebra of OLS,

TI(Cprp-0] = (T2 L xExby Iy xpab o op(1)

where ﬁ‘t‘ = n‘tL + [d(L)(;)X—pX)t + d(L)(A—A)Xt_l]“ . Neglecting terms that are asymptotically
negligible and changing to the coordinates of the transformed model using Xk = Hy{(1)Z¥, C4-C

= Hy (D TA-MH (D), tpr=17"2

Hy1 (1) oy-03), and d(1)=Hy (DH{ (1)L, we have,
TI(Cr.rp-0g] = Hy (112 g 7R7#y !
AT L ZPey Hyn(1) + T2 3 2B TP rpn)H, (1)
+ T2LZRZR(Cp-0) By ('} + Hy (1 bHy(1) + o (1)
= Hy (VI8 B IR 0w,

-1 J&ws“(?—r)’ + jJ&wJ&w'(C-C)']FZI(l)}HZZ(l) +H,; 1(1)“1'bH22(1)

where Fyq(1) = -Hyq(1)/Hyp(D). Now, T2MP = (12 p xbxb 1 4 op(l)zHll(l)'l’

@2y zhzy 7+ o= TR E )R Also gy R
H,(1)* by assumption C. Define K=RH;{(1"1". Then S(Cp,rp) = D;'D5'Dy, where D; =
K[ § Jé, wJ& w’)”1 ) J& dWo + gl, where g is defined in the statement of the theorem, and D) =
K(§ Jé, w é, w’)_lK’. The conditional noncentral X2 limiting distribution follows from noting that

Ic o is independent of W, (because W and W, are independent).

(b) Define X] = [T"2X¥" (T)*)’ and Z] = [T"Z¥ @TY]', and note that X| =
diag(Hl 1(1),1)ZI. By standard rate arguments and the algebra of OLS,
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[T ¥y T2 wy)1 = (T g Hy e X oxTx] ) + o .

Also note that f1; (0 T, {1} (1) = € + o (1) and T*f1} 0¥, = 1 + o (1). Thus, using the

definitions in (3.3), we have,

(&C 1 = (P2l patyzi izl 0+ o)
1

= (g W) (IE e

The limit S(é,?) = S*(C*+C,r*+r) follows because the previous limits in this theorem are all joint. []

Proof of theorem 2

By construction the pseudorandom data from algorithm B1 satisfy the conditions of theorem 1, where
the population values of C and w are the empirical estimates of C and 3)1. It follows that,
conditional on (é,&l), S(é,'r\) = S*(C*+é,r* +’r\), with critical values K(a;é,fol) (where C and

2)1 are treated as fixed). Thus KBl(a;é,al)—K(a;é,a l)peO. The same argument applies to

KBz(a;(AZ,cAol). The proof for KB3(a;é,2)2) and KR 4(a;é,3)2) follows the same argument.

Proof of Theorem 3.

The maximal invariant asymptotically minimum sufficient statistics Q are derived in six steps. Let T
= {’YO’ ay9 H(L)}'

(a) A set of statistics Ql is obtained which is asymptotically minimum sufficient for (C,w,b) in the
case that I" is known.

(b) The invariance group G is applied to reduce Q to the maximal invariant Q,.

(c) The invariance group G, is applied to reduce Q, to the maximal invariant Q5.
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(d) When I' is unknown, Q3 is infeasible. A feasible set of statistics Q3 is proposed and it is shown
that Q3-Q; B 0.

(e) 63 is reexpressed in a more convenient form, Q 4

(f) Itis shown that Q is a maximal invariant of Q 4 under G3. It follows that Q is a set of

feasible statistics that is maximal invariant (under G, G, and G3) asymptotically minimum sufficient

for (C,w,b).
(a) Let & denote the Gaussian log-likelihood, parameterized by (B,(Sl ,3,I'). Now

;P(Zl,...,ZT,Wl,...,WT;B,(Sl,B,I‘) = SB(Zl,,Zp) + g(Zp+1”ZT°p|Z1”Z )

P
+ Ly oo 7| 2y Zp ) + LW oW | 2 Zp)

+ SE(wp+1,...,wT_p|Wl,...,wp,wT_p+1,...,WT,ZI,...,ZT)
+ g(WT_p+1,,WT‘Wl,,Wp,Zl,,ZT)

and the log-likelihood ratio statistic of the test of the null B=1, 61 =0, 8= ,80 is
LR(B,BI,B;I‘) = 2[58(21,...,ZT,wl,...,wT;B,(Sl,ﬁ,I‘) - 58(21,...,ZT,WI,...,WT;I,O,,BO,I‘)].

This can be written in terms of the difference of the six components in the expression for the log
likelihood under the null and alternative. Of these, all but the second and fifth term involve p
observations on terms with Op(l) stochastic components. Because of the local parameterization, it can
be shown that the differences between the relevant quadratic forms for these four terms are op(l). In
addition, when I' is known, the remaining two terms in the likelihood ratio have simple forms. Let $
= H(L)'l[AXt’ (yt—GO’Xt—ay)]’ = F(LIAZ," (wiag)l’, so that under (2.8) and (2.9), { = p;Tey,

where p, = F(L)[(cy +p t+B-DZ, )" (B-Bp)'Z]'. Thus
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(A.1) LR(B,51,B;F) = tr{ ) [(Sblt"“lt)(sblt"l‘lt)"g‘ltg'ltl]} + X [(;2'[‘/*2'[)({2'[‘/*2'[)I“§‘2t§2tl] + Op(l)-

Recall that Fy;(1)=I and F5,(1)=1, and define F*(L) = (I—L)_1 [F(L)-F(1)]. Let F*(L) be partitioned

conformably with F(L). Now

(A22)  ppp =T %0 + T2 + T2, 1% + TR (Lcaz, | + o),
(A2b)  pyy = T 2Fy (Do + T 2Fy  (DX(UT) + T~ A[Fy(NC+b'1(Z /T

+ TN E§ (LLC+(1 + B3, (L)b']AZ, + O(TD),
where the O(T"l) terms are uniform in t. Tedious calculations now show that

SLG ) C 1) 6611 = AT 2L 8y de’ - [T 2WD8 I - [T 8,241
+ 1132 L Wnz, 1'C + CIT2Y 7, 17, 1C + T2 57! 1Cf

+ transposes of some of these terms + constant + op(l).

Similar terms obtain for ¥ [( §2t'“2t)( §2t’“2t)/‘ §2t§2t’]’ except that the coefficients are different and
St is replaced by S Collecting the Op(l) statistics, this yields the asymptotically minimum

sufficient statistic,

Q) = {T%Z1Z, 1 T 27,161 T 8248, T S 0MZ, ),

T ALY WD TS WD, T2 L e T2 b T2 37, ).

This can be reduced by recalling that {1, = Fy (L)AZ, so that T L ¢y = T (Zp_ 7 1) + o (D).

However, (T°l YZi 15145 = [T"l/2 (ZT_p—Zp I 1)1]2 + constant + op(l). Thus T~ 72 X §¢ Is redundant up
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to its sign, so it can be replaced by sgn(ZT_p—Zp +1- This yields the asymptotically minimum

sufficient statistic,

— "2 ! "]. ’ ‘]. ! ‘3/2
Q=T Y242 T XZ 46 s T X245, T 1°

_1 _1 _1 -
T2 L UDSy, T2 WD, seny , 7y ) T2 L8, TV L7, 1)

Y (UT)Z

(b) Under a location shift in Z, Z - Z,+a, the maximal invariant of {Z} is {Zt‘%\’O,GLS}’ where
%\/O,GLS is the GLS estimator of vo- However, {Zt_QO,GLS’ Wt} is not invariant to Wy = w,tag, and
a maximal invariant under w, = w,+ay, is, by standard arguments, {Z’f , W'liL }. This is also invariant
to Zt - Zt+aZ' Thus, under Gl a maximal invariant of {Zt’ W, th,t =p+1,...,T-pis {Z~, w’t‘,
t*}. It follows that Q, is maximal invariant asymptotically minimum sufficient for (C,w,b) under Gl ,

where

2 - - 32
Q = AT R Z{ 42y TR 248 TR 28 &b, TV PR WDFZY
_1 _1
T2y WP, T2 Y WD, sen(Zep 7oy 4 D}

(c) Let the eigenvector-eigenvalue decomposition of T2 y Z’tL~IZ’tL—1’ be T2 Y Z’tL~IZ’tL—1’ =
P{'A{P{, where P{'P;=Iand A is the k Xk matrix with the ordered eigenvalues on the diagonal.
From Lehmann [1959, pp. 298-9], A is a maximal invariant of T_ZZ Zlf-lzlf-ll under G,. Let
(1) _ 1

2y = P2y

The invariant version of the statistics in Q, are now computed using {Z(tl_)l, Wt}. The system
for {Z,El), w;} is given by (2.7), with every term premultiplied by P and with F (L) replaced by
P F|(L)P’, and by (2.9). Thus ;‘ft becomes PIF”(L)PI’(APIZt)V“ = PlFll(L)(AZt)V“. Note that
$5¢ 1s unaffected by G,.

Further reduction is possible because Zgl) is unique only up to its sign:
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1122221 1 = A for any kxk diagonal matrix T with L1 on the diagonal, but
112y wnFz{) £ 7325 w21 unless T=1. Therefore let P, =
diag[{sgn(Z%«lJ)rp g}r Dihi=1,..k], and let ZZ} = PyP,Z¥ | and
§§2)=diag(P2Pl D §“ Now {Z(tz—)l’ éz)} are maximal invariant under G and G,.

Because sgn(ZQ% Z%)_ ) =P usgn(Z(l) %14)—1) = 1, when Q2 is
reexpressed in terms of {2(221 , §§2)}, the sign statistic is nonrandom and may be omitted. It

follows that Q4 is the maximal invariant asymptotic minimum sufficient statistic under Gy and G,

where

Qy = (1125222 11y 7D c@ 11y D)o@ 32y D),

T2y ke, T4 L wrr ey,

For future reference, observe that Pl is a continuous functions of QZ' Let Q2 i refer to the i-th

statistic listed in Q2. Then Pl = evec(Q2 1).

(d) The next step is to obtain an asymptotically equivalent version of Q3 that is feasible when T is

unknown. This is constructed in three steps.

(i) First obtain a feasible version of Q). Let 2, = f1;;(11X,, W, =f5,(1) 1 (y,6,'X,), and
¢ = POz, w1 Now 2,=0,,() H;;()Z,, % =H,, (1) TH,yy(Dw,, and
ot = T(L)[AZP wh - A, where A depends on the data but not on t, and TI(L) =
-t = Tz wh] here A depends on the data b d II(L)
F(Ldiaglf (1 TH (1), Ayy(1) THyy(1)] - F(L). Note that, because (L) and A(L) are
Tl/z—consistent, Tl/zf[i = Op(l), i=-p,....p.

Define 02 as Qy with Z; and ¢ replaced by Zt and ?t‘ To show the asymptotic equivalence
of 62 and Q2, we show that Qz,i—Qz,iEO, i=1,....,7.
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62,1: 62,1”()2,1 .E 0 because I}:Ill(l)_lHll(l)_I 'E 0.

A . A . ,_1 : : , ,

Qo QoQ, =T Y2 T -7k ¥
el A , I N )
=T X @H 28 Dy + T L2 (e ey

Now T1y ¥ -zF peb = (A, (0 TH (DT L 7F # B 0 because
A0 H 1 R0, and TV 28 (5 = 0, (D). Also,

TR 2R sty = Ay P Tz ko Wil
Consider the i=0 term. Now
TUY 7P a7V = 1772y 728w + 122y 7t 78w TRz

which is Op(l) by standard arguments. Similarly, T_1 ¥ Z’f_ lwlf = T‘zz’f_ IZPLL_ 1o+

Tz ol = O,(1). Because 1,20, i =-p,....p, it follows that TR 28 (G4 -4 )Bo.

Q2 3¢ The argument parallels Q2 9

32y wnkzh Bo.

Q.40 Qg 4Qq 4 = Uy ' Hy ()-1IT

A A 1 N Vs

Q50 Qy5Qy 5 = TALOTHFR -ty = TP T s wmMazl yr why.
Consider the i=0 term. Now, TL ¥ @m#azt = 741 g [w#? + 12T 2y wnppzb | +
T‘1 Y (t/TYH V%,t B 0, where the limit follows by standard arguments. Similarly, T_1 Yt/ T)“w’f 2.
Because T 1L = O_(1), O, <-Q, < 20

i py 7 ¥2,57¢2.5 :
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62,6: The argument parallels (52’ 5
(32,7: Letv = ZT_p—ZPH and v = ZT—p‘Zp—H’ SO (32’7=sgn(3) and Q2’7=sgn(u). Let
AT = T]/Z[ﬁll(l)'lHll(l)—I] SO D-v = ATu/T]/Z. The strategy is to show that Gi and v; have the

same sign with asymptotic probability one if |v;| > T4 and that Probl |v; | <1l 4] Ro.

Prob[@2,7i + Q) 7l = Prob[sgn(v;) # sgn(v;)]

< Probf [ o-v; | > T4 v | > T4 Probf ;| > T4 + Proby |v; | < T4
A 1/4,

21
< Prob[zlj(:1|AT,ij| T /Zvj| >TV4) 4 probf v | <T!4.

< Prob] |i-v;| > T4 + Probl [v;| <T

%3

- _ _ . k o
Now T  “v= JC,w(l) = Op(l) and A = Op(l) by assumption C. Thus Ej 1 |AT,ij| |T vj| = Op(l)

and the probability this exceeds Tl/ 4 converges to zero. Similarly, because J C »(1) has no point mass

1/4

at zero, Prob[|T'l/2ui| <T '] -0. Thus Prob[Qz 7 #F Q 710, i=1,... k.

(ii)) Next construct 131 and 132 as in (4.5) and (4.6). It needs to be shown that IA’i—Pi Ro.

131: For the treatment of P2, the stronger result that f)l =P1 +Op(T_1/2) is used, and this is now

shown. Define AT as in the treatment of 62,7 above. Now 62,1 = (I+T‘V2AT)Q2,1(I+T'V2

AT’) -
15 _ B o . .
Q2,1 + Op(T ), because Ap = Op(l) and Q2,1 —Op(l). By the continuity of the eigenvector function,
it follows that ﬁl = evec(Q2 1) = evec(Q2 1) + 0 (T_l/l) = Pl +0 (T_l/z), as was to be shown.
5 > P p
b LetoD = 2D D _ A _p.h. h
Py Letvt'/ = ZT—p - Zp+1 = PI(ZT-p‘Zp+1) and v/ = PI(ZT—p‘Zp+1)’

so Py = diag({sgn(vi(l))}), 132 = diag({sgn(gi(l))}), and 5(1)—11(1) = A%l)u(l)/TVZ, where
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ALD = 1B 1,y TH ()P 1] The argument that P,-P, B 0 parallcs the argument that
62’7—Q2’7 20 in part (d)(1), with v replaced by v(l), etc. This argument requires that Ar}l) =

Op(l), which in turn follows from Assumption C and from 131 =P1 +Op(T'1/2), which was shown above.

(iii) Let Q3 be defined as Qj, constructed with {Z(t2—)1’ §<t2)} replaced by {th‘, ?ft‘} =
{152%, diag(ls, 1)?‘:}. Note that Q3 is a continuous function of QZ and P, for example
Q3 1 = PQ, |P". Because Qy-Q) B 0 and P-P B0, Q3-Q5 B 0. Thus Qs is feasible and is

asymptotically equivalent to Qs.

(e) Let

64 = {C9 f’ Eb) SEb9 w, 2}9
where Eb is the k-vector with i-th element Eb | = Bi/ SEb s where £ is the OLS estimator of £
in (4.10), and where the rest of the terms are defined preceding (4.11). We now show that Q 4 and
Q3 are equivalent.
Let Q] | be the (k+1)x (k+1) matrix with blocks (O} )1q = Q3 1. @} Dys =

(Qg,l)zl’ = (53, 4> and (0_1:,1)22 = = 1/12. Algebraic manipulations show that,

€ 71 = Q5105 Q351
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Evidently Q 4 is a continuous, one to one function of Q3 (up to op(l) terms; recall that (53,1 is
diagonal), so Q4 is asymptotically equivalent to 63.

(H) It remains to impose invariance to G3. Under G3, %b - '%b and é - -E; the remaining
statistics in Q4 are already invariant to G3 We impose the s1gn convention that tb 1 >0 (equality
occurs with probability Zero) Let tb = tb/ sgn(bl) and £ = é/ sgn(bl) Then (tb, £) are

maximal invariants of (tb, E), and it follows that Q is a maximal invariant asymptotic minimal

sufficient statistic under Gl’ G2, and G3. ]

Proof of theorem 4

LetQ = {C,, Tb’ SEb, w, £} denote the corresponding elements of Q, constructed using
{Z(t2~)1’ g§2)} instead of {2'5[‘_1, ?f[‘_l}. By the arguments of the proof of theorem 3, Q-
QR 0, so it suffices to find the limiting distribution of Q. Recall that Z(t2-)1 = PZ’tL_l and
&%) = diagP, 1)t

First we show that P = P*. Now P, = evec(T'2ZZ” ZH y=evec([I& TE Ny =P

: 1 t-1%%-1 C,’C,) = PT-
21

Also, Prob[P2,1= 1] = Prob[{P;T /Z(ZT_p—Zp+ Ph>01= Prob[{PTJC’w(l)}i>0], so Py =

diag[sgn(PTJc,w(l))] = Pi. Let P* = P§P>1k. Now turn to the elements of Q.
— — — -1 .
[C Tl LetZ] | = [T72Z3) WD’ = diagP,1)2] ;. Now,

(€1 =prydzl nha'lyzl zT !
= pr Ay 2t natyzl 73y diager
= PICP' 1] + P[T 2y e 2] ' + T2 FyLcaz, +ohyz] 1
x(1tyzl z1 v ldiage 1

= PHCP*' 1] + P*( [ aW Ik ) 13E JE  diagp 1)
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= PX[C*+C r*+r]diag(P*',1).

- . ‘2 (2) (2)/ —1 _— ‘2 7 _1 7 e 7 ‘1 Bl
SEy: (TYZY7ZY4)" =Pa Yz (Zi ()P =>P*(j]é’wlé’w) P,

which is diagonal. Thus SE, = SEf, where SE . = (P* [ Jf& T# 'P*)™2..
t,-  First consider b:

b=Pb+PT28z¥ 2% T gz ey + T2L 2 2P 1Oy a1y

+ TR ZE DDA + oy (1) = b%,

where b* is given in the theorem. Also, sgn(b) = sgn(b*) jointly with the other limits. Thus Yb =

tﬁ, where tﬁ is given in the theorem.

o: o = T2y P21 wmM? = 12px | 1L

% | -1 1 _ 32
£ letf = (T ' YWD*)'T 2z(t/T)“wl = 12{T

_1
SWTHZE b+ T /Z(t/T)V“vW,l} =
12{ § sMIE b + [-Fy (1) 11§ s*dW}. Tt follows that £=£/sgn(b;) has the limiting representation

given in the theorem. [
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Table 1
Results for Bootstrap Test (Algorithms B3/B4), k=1

A. Actual Asymptotic Size of Nominal 5% and 10% Bootstrap Tests

_____________________ N mmmmmm e

Nominal Size 0.00 0.25 0.50 0.75 1.0
10% 0.10 0.17 0.24 0.30 0.37

5% 0.05 0.10 0.14 0.19 0.23

_____________________ N mmmmm e

Size 0.0 0.25 0.50 0.75 1.0
10% 0.10 0.045 0.030 0.020 0.015
5% 0.05 0.018 0.013 0.008 0.005

Notes: Panel A gives the actual size of the bootstrap procedures (algorithms
B3 and B4) with nominal sizes given in the first column. Panel B gives the
required nominal sizes for the bootstrap procedures that lead to actual sizes
given in the first column. For example, to achieve a size of 5% when A=0.50,
Panel B shows that a bootstrap test with a nominal size of 1.3% should be

used.
Table 2
Wald Statistic Sup-Bound Critical Values, k=1
__________________ AN mm e
Size 0.25 0.50 0.75 1.0
10% 4.37 5.46 6.35 7.08
5% 5.95 7.12 8.04 8.66
1% 9.89 11.40 12.12 12.80
Notes: The entries in the table are the supremum of critical values for the

Wald statistics S* (C*+C,r*+r) over all values of C and w, for the sizes given
in the first column of the table.



Table 3
Asymptotic Relative Efficiencies of Tests Relative to Optimal Test

A. 50% Power

5% Size 10% Size
___________ )\ e = o o e o )\ [P
Test 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Restricted Optimal 0.95 0.84 0.98 0.97 0.97 0.84 0.84 0.91
Bootstrap 0.55 0.59 0.53 0.45 0.56 0.62 0.55 0.44
Sup-Bound 0.53 0.56 0.51 0.43 0.54 0.57 0.51 0.41

B. 80% Power

% Size 10% Size
___________ N e o U N P
Test 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Restricted Optimal 0.99 0.95 0.96 0.98 0.97 0.93 0.91 0.94
Bootstrap 0.62 0.59 0.57 0.51 0.61 0.62 0.59 0.53
Sup-Bound 0.60 0.57 0.54 0.49 0.60 0.60 0.56 0.50

Notes: Relative Efficiencies are calculated as the limiting ratio of sample
sizes necessary to achieve an average power of 50% (Panel A) and 80% (Panel B),
when averaged over all C, w and positive and negative wvalues of f§.

Efficiencies are relative to the fitted optimal test from Section 5, and
relative efficiencies less than 1 imply that the test requires a larger sample
size than the fitted optimal test.



Table 4

Size Adjustments for the Bootstrap (Algorithms B3/B4), k=2

A. Rank (R)=2

_____________________ AN cmmmm e

Size 0.0 0.25 0.50 0.75 1.0
10% 0.10 0.043 0.025 0.015 0.008
5% 0.05 0.018 0.010 0.005 0.003

B. Rank(R)=1

1
Size A 0.00 0.25 0.50 0.75 1.00
10% 0.00 0.100 0.0325 0.0150 0.0075 0.0050
5% 0.050 0.0125 0.0050 0.0025 <.0025
10% 0.25 0.0350 0.0125 0.0075 0.0050 S
5% 0.0150 0.0050 0.0025 <.0025
10% 0.50 0.0200 0.0075 0.0050 S S
5% 0.0050 0.0025 <.0025
10% 0.75 0.0125 0.0050 - S S
5% 0.0025 <.0025
10% 1.0 0.0075 S - S S
5% 0.0025

Noteg: The entries are gize adjustments for the (algorithms B3/B4) bootstrap
for Wald tests of the null hypothesis HO:RB=RO, where 8 is 2x1. The entries in
the table are the required nominal sizes for the bootstrap procedures that lead
to actual sizes given in the first column. See Section 5.5 for the definition

of A, Al and A2.



Table 5
Long-run Money Demand

Me

By + Byyt + B

r

r t *

Ye

A. Point Estimates and 95% Confidence Intervals
Estimator —Ey (Conf. Int.) ER (Conf. Int.)
@(0 0) (DOLS) 0.970 (0.880, 1.060) -0.101 (-0.126, -0.076)
8(C, 1) 0.983 (0.864, 1.102) -0.101 (-0.139, -0.063)
B. Estimated VAR for (yt, Rt)
fAth [ 0.161] [ 0.004] [-0.141 -o0. oo3]fyt 11
- |+ x| A R
LARtJ |-2.239] |-0.079] | 2.934 —0.144JLRt_1J '
) [ 0.859 -0.003] ) [ 4.89] ) [-14.3  14.2] ) [ 63.88]
A= | P N PR P |
| 2.934 0.856] [-0.94] | -5.9 -11.4] [-77.95]
Notes: Results are based on Annual U.S. Data from 1900-1989 as described in
the text. Panel A: 06(0,0) is the DOLS estimatgr, and the results are taken
from Stock and Watson (1993), table III. 6(C, r) is the OLS estimator from
equation (3.1) constructed using estlmates of C r from equation (2.6) and
(3.3). Confidence intervals based on G(C r) were constructed using the size

adjusted bootstrap and algorithm B4.
2 leads and lags of Uy (see equatio
shows the estimated values of ¥ ?2

W, was constructed using equation (3

Both § estimators were constructed using

n (3.1). Panel B: The first equation
and ?3 from equation (2.6). A=I+?l, and
.4) .
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Figure 1. Bootstrap Rejection Frequency

10%, k=1, A=0.5
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Figure 2. Wald Statistic 10% Critical Value

k=1, A=0.5
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Figure 3. Power of Alternative Tests
Size = 5%, k=1, A=0.5
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Figure 4. Long-Run Money Demand Coefficients
95% Confidence Ellipses
MLE Assuming C=0 (Thick Line and +)
MLE with C unknown (Thin Line and X)
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