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Abstract

This paper considers the estimation of approximate dynamic factor
models when there is temporal instability in the factor loadings. We
characterize the type and magnitude of instabilities under which the
principal components estimator of the factors is consistent, and find
that these instabilities can be larger than earlier theoretical calcula-
tions suggest. We further characterize the rate of convergence of the
estimated factors as a function of the magnitude of the time variation
in the factor loadings for general types of parameter instability, and
provide numerical evidence that this consistency rate is tight in the
special case of random walk parameter variation. We also discuss im-
plications of these results for the robustness of regressions based on
the estimated factors and of estimates of the number of factors in the
presence of parameter instability.

1 Introduction

Dynamic factor models (DFMs) provide a flexible framework for simultane-
ously modeling a large number of macroeconomic time series.1 In a DFM,

1The early work on DFMs considered a small number of time series. DFMs were
introduced by Geweke (1977), and early low-dimensional applications include Sargent and
Sims (1977), Engle and Watson (1981), Watson and Engle (1983), Sargent (1989) and
Stock and Watson (1989). Work over the past fifteen years has focused on methods that
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a potentially large number of observed time series variables are modeled as
depending on a small number of unobserved factors, which account for the
widespread co-movements of the observed series. Although there is now a
large body of theory for the analysis of high-dimensional DFMs, nearly all
of this theory has been developed for the case in which the DFM parameters
are stable, in particular, in which there are no changes in the factor load-
ings (the coefficients on the factors); among the few exceptions are Stock
and Watson (2002, 2009) and Breitung and Eickmeier (2011). This assump-
tion of parameter stability, however, is at odds with broad evidence of time
variation in many macroeconomic forecasting relations.

The goal of this paper is to characterize the type and magnitude of
parameter instability that can be tolerated by a standard estimator of the
factors, the principal components estimator, in a DFM when the coefficients
of the model are unstable. In so doing, this paper contributes to a larger
debate about how best to handle the instability that is widespread in macro-
economic forecasting relations. On the one hand, the conventional wisdom
is that time series forecasts deteriorate when there are undetected structural
breaks or unmodeled time-varying parameters, see for example Clements and
Hendry (1998). This view underlies the large literatures on the detection
of breaks and on models that incorporate breaks and time variation, for
example by modeling the breaks as following a Markov process (Hamilton,
1989; Pesaran et al., 2006). In the context of DFMs, Breitung and Eickmeier
(2011) show that a one-time structural break in the factor loadings has the
effect of introducing new factors, so that estimation of the factors ignoring
the break leads to estimating too many factors.

On the other hand, a few recent papers have provided evidence that
sometimes it can be better to ignore parameter instability when forecasting.
Pesaran and Timmermann (2005) point out that whether to use pre-break
data for estimating an autoregression trades off an increase in bias against
a reduction in estimator variance, and they provide empirical evidence sup-
porting the use of pre-break data for forecasting. Pesaran and Timmermann
(2007) go on to provide tools to help ascertain in practice whether pre-break
data should be used for estimation of single-equation time series forecasting
models. In DFMs, Stock and Watson (2009) provide empirical evidence us-
ing U.S. macroeconomic data from 1960-2007 that full-sample estimates of
the factors are preferable to subsample estimates, despite clear evidence of a

facilitate the analysis of a large number of time series, see Forni et al. (2000) and Stock
and Watson (2002) for early contributions. For recent contributions and discussions of
this large literature see Bai and Ng (2008a), Eickmeier and Ziegler (2008), Chudik and
Pesaran (2011) and Stock and Watson (2011).
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break in many factor loadings around the beginning of the Great Moderation
in 1984.

We therefore seek a precise theoretical understanding of the effect of
instability in the factor loadings on the performance of principal components
estimators of the factors. Specifically, we consider a DFM with N variables
observed for T time periods and r � N factors, where the N × r matrix of
dynamic factor loadings Λ can vary over time. We write this time variation
so that Λ at date t equals its value at date 0, plus a deviation; that is,
Λt = Λ0 + hNT ξt. The term ξt is a possibly random disturbance, and hNT
is a deterministic scalar sequence in N and T which sets the scale of the
deviation. Using this framework and standard assumptions in the literature
(Bai and Ng, 2002, 2006), we obtain general conditions on hNT under which
the principal components estimates are mean square consistent for the space
spanned by the true factors. We then specialize these general results to three
leading cases: i.i.d. deviations of Λt from Λ0, random walk deviations that
are independent across series, and an arbitrary one-time break that affects
some or all of the series.

For the case in which Λt is a vector of independent random walks, Stock
and Watson (2002) showed that the factor estimates are consistent if hNT =
T−1. By using a different method of proof (which builds on Bai and Ng,
2002), we are able to weaken this result considerably and show that the
estimated factors are consistent if hNT = o(T−1/2). We further show that, if
hNT = O(1/min{N1/4T 1/2, T 3/4}), the estimated factors achieve the mean
square consistency rate of 1/min{N,T}, a rate initially shown by Bai and
Ng (2002) in the case of no time variation. Because ξt in the random walk
case is itself O(t1/2), this means that deviations in the factor loadings on
the order of op(1) do not break the consistency of the principal components
estimator. These rates are remarkable: as a comparison, if the factors were
observed so an efficient test for time variation could be performed, the test
would have nontrivial power against random walk deviations in a hNT ∝
T−1 neighborhood of zero (e.g., Stock and Watson, 1998b) and would have
power of one against parameter deviations of the magnitude tolerated by the
principal components estimator. Intuitively, the reason that the principal
component estimator can handle such large changes in the coefficients is
that, if these shifts have limited dependence across series, their effect can
be reduced, and eliminated asymptotically, by averaging across series.

We further provide the rate of mean square consistency as a function of
hNT , both in general and specialized to the random walk case. The result-
ing consistency rate function is nonlinear and reflects the tradeoff between
the magnitude of the instability and, through the relative rate of N/T as
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T increases, the amount of cross-sectional information that can be used to
“average out” this instability. Although the bounds from which the con-
sistency rate function is derived are tight using our method of proof, we
cannot show that these rate function bounds provide necessary as well as
sufficient conditions for consistency. We find numerically, however, that our
theoretical consistency rate function matches Monte Carlo estimates of the
rate functions, which suggests that no other method of proof could improve
on these bounds (under our assumptions).

The rest of the paper proceeds as follows. Section 2 lays out the model,
the assumptions, and the three special cases. Asymptotic results are pro-
vided in Section 3. Section 4 provides Monte Carlo results, and Section 5
concludes.

2 Model and assumptions

2.1 Basic model and intuition

The model and notation follow Bai and Ng (2002) closely. Denote the ob-
served data by Xit for i = 1, . . . , N , t = 1, . . . , T . It is assumed that the
observed series are driven by a small number r of unobserved common fac-
tors Fpt, p = 1, . . . , r, such that

Xit = λ′itFt + eit.

Here λit ∈ Rr is the possibly time-varying factor loading of data series i at
time t, while eit is an idiosyncratic error. Define Xt = (X1t, . . . , XNt)

′, et =
(e1t, . . . , eNt)

′, Λt = (λ1t, . . . , λNt)
′ and data matrices X = (X1, . . . , XT )′,

F = (F1, . . . , FT )′. The initial factor loadings Λ0 are fixed. We write the
cumulative drift in the parameter loadings as

Λt − Λ0 = hNT ξt,

where hNT is a deterministic scalar that may depend on N and T , while
{ξt} is a possibly degenerate random process of dimension N × r (in fact, it
will be allowed to be a triangular array). Observe that

Xt = ΛtFt + et = Λ0Ft + et + wt, (1)

where wt = hNT ξtFt. Our proof technique will be to treat wt as another
error term in the factor model.

To establish some intuition for why estimation of the factors is possible
despite structural instability, consider an independent random walk model
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for the time variation in the factor loadings, so that ξit = ξi,t−1 + ζit, where
ζit is i.i.d. across i and t with mean 0 and variance σ2

ζ , and suppose that
Λ0 is known. In addition, we look ahead to Assumption 2 and assume that
Λ′0Λ0/N → D, where D has full rank. Because Λ0 is known, we can consider
the estimator F̂t(Λ0) = (Λ′0Λ0)−1Λ′0Xt. From (1),

F̂t(Λ0) = Ft + (Λ′0Λ0)−1Λ′0et + (Λ′0Λ0)−1Λ′0wt,

so

F̂t(Λ0)− Ft ≈ D−1N−1
N∑
i=1

λi0eit +D−1N−1
N∑
i=1

λi0wit.

The first term does not involve time-varying factor loadings and under lim-
ited cross-sectional dependence it is Op(N

−1/2). Using the definition of wt,
the second term can be written

D−1N−1
N∑
i=1

λi0wit = D−1

(
hNTN

−1
N∑
i=1

λi0ξit

)′
Ft.

Since Ft is Op(1), this second term is the same order as the first, Op(N
−1/2),

if hNTN
−1
∑N

i=1 λi0ξit is Op(N
−1/2). Under the independent random walk

model, ξit = Op(T
−1/2), so

hNTN
−1

N∑
i=1

λi0ξit = Op(hNT (T/N)1/2),

which in turn is Op(N
−1/2) if hNT = O(T−1/2). This informal reasoning

suggests that the estimator F̂t(Λ0) satisfies F̂t(Λ0) = Ft + Op(N
−1/2) if

hNT = cT−1/2.
In practice Λ0 is not known so F̂t(Λ0) is not feasible. The principal

components estimator of Ft is F̂t(Λ̂
r), where Λ̂r is the matrix of eigenvec-

tors corresponding to the first r eigenvalues of the sample second moment
matrix of Xt. The calculations below suggest that the estimation of Λ0 by
Λ̂r reduces the amount of time variation that can be tolerated in the inde-
pendent random walk case; setting hNT = cT−1/2 results in an op(1) mean
square discrepancy between F̂t(Λ̂

r) and Ft.

2.2 Examples of structural instability

For concreteness, we highlight three special cases that will receive extra
attention in the following analysis. In these examples, the scalar hNT is left
unspecified for now. We will set the number of factors r to 1 for ease of
exposition.
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Example 1 (white noise). All entries ξit are i.i.d. across i and t with
mean zero and E(ξ4

it) < ∞. The factor loadings Λt are then equal to the
initial loading matrix Λ0 plus uncorrelated noise.

Example 2 (random walk). Entries ξit are given by ξit =
∑t

s=1 ζis,
where {ζis} is a random process that is i.i.d. across i and s with mean
zero and E(ζ4

is) < ∞. In this example, the factor loadings evolve as cross-
sectionally uncorrelated random walks.2 Models of this type are often re-
ferred to as time-varying parameter models in the literature.

Example 3 (single deterministic break). Let τ̄ ∈ (0, 1) be fixed and
set κ = [τ̄T ], where [ · ] denotes the integer part. Let ∆ ∈ RN be a shift
parameter. We then define

ξt =

{
0 for t = 1, . . . , κ
∆ for t = κ+ 1, . . . , T

.

Such deterministic shifts have been extensively studied in the context of
structural break tests in the linear regression model.

2.3 Principal components estimation

We are interested in the properties of the principal components estimator
of the factors, where estimation is carried out as if the factor loadings were
constant over time. Let k denote the number of factors that are estimated.
The principal component estimators of the loadings and factors are obtained
by solving the minimization problem

V (k) = min
Λk,Fk

(NT )−1
N∑
i=1

T∑
t=1

(Xit − λk
′
i F

k
t )2,

where the supercripts on Λk and F k signify that there are k estimated fac-
tors. It is necessary to impose a normalization on the estimators to pin
down the minimizers (see Bai and Ng, 2008b, for a thorough treatment).
Such restrictions are innocuous since the unobserved true factors F are only
identifiable up to multiplication by a non-singular matrix. One estimator

2While conceptually clear, cross-sectional independence of the random walk innovations
ζit is a stricter assumption than necessary for the subsequent treatment. It is straight-
forward to modify the example to allow m-dependence or exponentially decreasing corre-
lation across i, and all the results below go through for these modifications.
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of F is obtained by first concentrating out Λk and imposing the normal-
ization F k

′
F k/T = Ik. The resulting estimator F̃ k is given by

√
T times

the matrix of eigenvectors corresponding to the largest k eigenvalues of the
matrix XX ′. A second estimator is obtained by first concentrating out
F k and imposing the normalization Λk

′
Λk/N = Ik. This estimator equals

F̄ k = XΛ̄k/N , where Λ̄k is
√
N times the eigenvectors corresponding to

the k largest eigenvalues of X ′X. Following Bai and Ng (2002), we use a
rescaled estimator

F̂ k = F̄ k(F̄ k
′
F̄ k/T )1/2

in the following.

2.4 Assumptions

Our assumptions on the factors, initial loadings and the idiosyncratic er-
rors are the same as in Bai and Ng (2002). The matrix norm is chosen to
be the Frobenius norm ‖A‖ = [tr(A′A)]1/2. The subscripts i, j will denote
cross-sectional indices, s, t will denote time indices and p, q will denote factor
indices. M ∈ (0,∞) is a constant that is common to all the assumptions
below. Finally, define CNT = min{N1/2, T 1/2}. The following are Assump-
tions A–C in Bai and Ng (2002).

Assumption 1 (Factors). E‖Ft‖4 ≤M and T−1
∑T

t=1 FtF
′
t → ΣF as T →

∞ for some positive definite matrix ΣF .

Assumption 2 (Initial factor loadings). ‖λi0‖ ≤ λ̄ < ∞, and ‖Λ′0Λ0/N −
D‖ → 0 as N →∞ for some positive definite matrix D ∈ Rr×r.

Assumption 3 (Idiosyncratic errors). The following conditions hold for all
N and T .

1. E(eit) = 0, E|eit|8 ≤M .

2. γN (s, t) = E(e′set/N) exists for all (s, t). |γN (s, s)| ≤M for all s, and
T−1

∑T
s,t=1 |γN (s, t)| ≤M .

3. τij,ts = E(eitejs) exists for all (i, j, s, t). |τij,tt| ≤ |τij | for some τij and

for all t, while N−1
∑N

i,j=1 |τij | ≤M . Additionally,

(NT )−1
N∑

i,j=1

T∑
s,t=1

|τij,ts| ≤M.
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4. For every (s, t), E|N−1/2
∑N

i=1[eiseit − E(eiseit)]|4 ≤M .

As mentioned by Bai and Ng (2002), the above assumptions allow for weak
cross-sectional and time dependence of the idiosyncratic errors. Note that
the factors do not need to be stationary to satisfy Assumption 1.

The assumptions we need on the factor loading innovations hNT ξt are
summarized below. For now we require the existence of three envelope
functions that bound the rates, in terms of N and T , at which certain sums
of higher moments diverge. As we later state in Theorem 1, these rates
determine the convergence rate of the principal components estimator of
the factors.

Assumption 4 (Factor loading innovations). There exist envelope functions
Q1(N,T ), Q2(N,T ) and Q3(N,T ) such that the following conditions hold
for all N , T and factor indices p1, q1, p2, q2 = 1, . . . , r.

1. sups,t≤T
∑N

i,j=1 |E(ξisp1ξjtq1Fsp1Ftq1)| ≤ Q1(N,T ).

2.
∑T

s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)| ≤ Q2(N,T ).

3.
∑T

s,t=1

∑N
i,j=1 |E(ξisp1ξjsq1ξitp2ξjtq2Fsp1Fsq1Ftp2Ftq2)| ≤ Q3(N,T ).

While consistency of the principal components estimator will require limited
dependence between the factor loading innovations and the factors them-
selves, full independence is not necessary. This is empirically appealing, as
it is reasonable to expect that breaks in the factor relationships may occur
at times when the factors deviate substantially from their long-run means.
That being said, we remark that if the processes {ξt} and {Ft} are assumed
to be independent (and given Assumption 1), two sufficient conditions for
Assumption 4 are that there exist envelope functions Q̃1(N,T ) and Q̃3(N,T )
such that for all factor indices,

sup
s,t≤T

N∑
i,j=1

|E(ξisp1ξjtq1)| ≤ Q̃1(N,T ) (2)

and
T∑

s,t=1

N∑
i,j=1

|E(ξisp1ξjsq1ξitp2ξjtq2)| ≤ Q̃3(N,T ). (3)

Under the above conditions, Assumption 4 holds with Q1(N,T ) ∝ Q̃1(N,T ),
Q2(N,T ) ∝ T 2Q̃1(N,T ) and Q3(N,T ) ∝ Q̃3(N,T ).
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Examples (continued). For Examples 1 and 2 (white noise and random
walk), assume that {ξt} and {Ft} are independent.

In Example 1 (white noise), the supremum on the left-hand side of
(2) reduces to NE(ξ2

it). By writing out terms, it may be verified that
the quadruple sum in condition (3) is bounded by an O(NT 2) + O(N2T )
expression. Consequently, Assumption 4 holds with Q1(N,T ) = O(N),
Q2(N,T ) = O(NT 2) and Q3(N,T ) = O(NT 2) +O(N2T ).

In Example 2 (random walk), due to cross-sectional i.i.d.-ness we obtain

sup
s,t≤T

N∑
i=1

N∑
j=1

|E(ξisξjt)| = N sup
s,t≤T

|E(ξisξit)|

= N sup
s,t≤T

∣∣∣∣∣
s∑

u=1

t∑
v=1

E(ζiuζiv)

∣∣∣∣∣
= N sup

s,t≤T
min{s, t}E(ζ2

i1)

= O(NT ),

so Assumptions 4.1–4.2 hold with Q1(N,T ) = O(NT ) and Q2(N,T ) =
O(NT 3). A somewhat lengthier calculation gives that the quadruple sum
in condition (3) is O(N2T 4) (a rate that cannot be improved upon), so
Assumption 4.3 holds with Q3(N,T ) = O(N2T 4).

In Example 3 (single deterministic break), the supremum in inequality
(2) evaluates as

N∑
i=1

|∆i|
N∑
j=1

|∆j |.

Assume that |∆i| ≤ M for some M ∈ (0,∞) that does not depend on N .
We note for later reference that if |∆i| > 0 for at most O(N1/2) values
of i, the expression above is O(N). The same condition ensures that the
left-hand side of condition (3) is O(NT 2). Consequently, we can choose
Q1(N,T ) = O(N) and Q2(N,T ) = Q3(N,T ) = O(NT 2) if at most O(N1/2)
series undergo a break.

Finally, rather than expanding the list of moment conditions in Assumption
4, we simply impose independence between the idiosyncratic errors and the
other variables. It is possible to relax this assumption at the cost of added
complexity.3

3Bai and Ng (2006) impose independence of {et} and {Ft} when providing inferential
theory for regressions involving estimated factors.
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Assumption 5 (Independence). For all (i, j, s, t), eit is independent of
(Fs, ξjs).

3 Asymptotic theory

3.1 Consistent estimation of factors

Our main result provides the mean square convergence rate of the usual
principal components estimator under Assumptions 1–5. After stating the
general theorem, we give sufficient conditions that ensure the same conver-
gence rate that Bai and Ng (2002) obtained in a setting with constant factor
loadings.

Theorem 1. Let Assumptions 1–5 hold. For any fixed k,

T−1
T∑
t=1

‖F̂ kt −Hk′Ft‖2 = Op(RNT )

as N,T →∞, where

RNT = max

{
1

C2
NT

,
h2
NT

N2
Q1(N,T ),

h2
NT

N2T 2
Q2(N,T ),

h4
NT

N2T 2
Q3(N,T )

}
,

and the r × k matrix Hk is given by

Hk = (Λ′0Λ0/N)(F ′F̃ k/T ).

See the appendix for the proof. If RNT → 0 as N,T → ∞, the theorem
implies that the r-dimensional space spanned by the true factors is estimated
consistently in mean square (averaging over time) as N,T →∞. While we
do not discuss it here, a similar statement concerning pointwise consistency
of the factors (Bai and Ng, 2002, p. 198) may be achieved by slightly
modifying Assumptions 3–4.

We now give sufficient conditions on the envelope functions in Assump-
tion 4 such that the principal components estimator achieves the same con-
vergence rate as in Theorem 1 of Bai and Ng (2002). This rate, C2

NT , turns
out to be central for other results in the literature on DFMs (Bai and Ng,
2002, 2006). The following corollary is a straight-forward consequence of
Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, and if additionally
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• h2
NTQ1(N,T ) = O(N),

• h2
NTQ2(N,T ) = O(NT 2),

• h4
NTC

2
NTQ3(N,T ) = O(N2T 2),

it follows that, as N,T →∞,

C2
NT

(
T−1

T∑
t=1

‖F̂ kt −Hk′Ft‖2
)

= Op(1).

Examples (continued). In Section 2.4 we computed the envelope func-
tions Q1(N,T ), Q2(N,T ) and Q3(N,T ) for our three examples. From these
calculations we get that if hNT = 1, the model in Example 1 (white noise)
satisfies the conditions of Corollary 1. Hence, uncorrelated order-Op(1)
white noise disturbances in the factor loadings do not affect the asymptotic
performance of the principal components estimator.

Likewise, it follows from our calculations that the structural break pro-
cess in Example 2 (random walk) satisfies the conditions of Corollary 1 if
hNT = O(1/min{N1/4T 1/2, T 3/4}). Moreover, a rate of hNT = o(T−1/2) is
sufficient to achieve RNT = o(1) in Theorem 1, i.e., that the factor space is
estimated consistently. This is a weaker rate requirement than the O(T−1)
scale factor imposed by Stock and Watson (2002).

For Example 3 (single deterministic break), Corollary 1 and our calcula-
tions in Section 2.4 yield that if we set hNT = 1, the principal components
estimator achieves the Bai and Ng (2002) convergence rate, provided at
most O(N1/2) series undergo a break. A fraction O(N−1/2) of the series
may therefore experience an order-O(1), perfectly correlated shift in their
factor loadings without affecting the asymptotic performance of the estima-
tor.

3.2 Estimating the number of factors

Bai and Ng (2002) introduced a class of information criteria that consistently
estimate the true number r of factors when the factor loadings are constant
through time. Lemma 2 of Amengual and Watson (2007) establishes that,
under essentially the same assumptions as used by Bai and Ng, these infor-
mation criteria remain consistent for r when the data X are measured with
an additive error, i.e., if the researcher instead observes X̃ = X + b for an
T ×N error matrix b that satisfies (NT )−1

∑N
i=1

∑T
t=1 b

2
it = Op(C

−2
NT ). By

our decomposition (1) of Xt, time variation in the factor loadings may be
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seen as contributing an extra error term wt to the usual terms Λ0Ft + et. It
therefore follows from the Amengual and Watson result that for an appro-
priate choice of the scale factor hNT , the information criteria will remain
consistent under time variation. For example, it may be verified that in
Example 2 (random walk), a scale factor hNT = O(T−1) will ensure that
the wt term satisfies Amengual and Watson’s condition. It is a topic for
future research to determine whether this rate can be improved upon.

3.3 Diffusion index forecasting

As an application of Corollary 1, consider the diffusion index model of Stock
and Watson (1998a, 2002) and Bai and Ng (2006). For ease of exposition
we assume that the factors are the only explanatory variables, so the model
is

yt+h = α′Ft + εt+h.

Here yt+h is the scalar random variable that we seek to forecast, while εt+h is
an idiosyncratic forecast error term that is independent of all other variables.
We shall assume that the true number of factors r is known. Because the
true factors Ft are not observable, one must forecast yt+h using the estimated
factors F̂t. Does the sampling variability in F̂ influence the precision and
asymptotic normality of the feasible estimates of α?

Let F̂ be the principal components estimator with k = r factors es-
timated and denote the r × r matrix Hr from Theorem 1 by H. Define
δ = H−1α (note that due to the factors being unobservable, α is only iden-
tified up to multiplication by a nonsingular matrix) and let δ̂ be the least
squares estimator in the feasible diffusion index regression of yt+h on F̂t.
Bai and Ng (2006) show that

√
T (δ̂ − δ) = (T−1F̂ ′F̂ )−1T−1/2F̂ ′ε

− (T−1F̂ ′F̂ )−1[T−1/2F̂ ′(F̂ − FH)]H−1α,
(4)

where ε = (ε1+h, . . . , εT+h)′. Under the assumptions of Corollary 1, the
Cauchy-Schwarz inequality yields

‖T−1/2F̂ ′(F̂ − FH)‖2 ≤ T

(
T−1

T∑
t=1

‖F̂t‖2
)(

T−1
T∑
t=1

‖F̂t −H ′Ft‖2
)

= TOp(1)Op(C
−2
NT )

= Op(1).
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Similarly,

T−1/2F̂ ′ε = T−1/2H ′F ′ε+ T−1/2(F̂ − FH)′ε = T−1/2H ′F ′ε+Op(1).

Suppose T−1/2F ′ε = Op(1), as implied by Assumption E in Bai and Ng
(2006). It is easy to show that H = Op(1). The preceding calculations

then suggest that δ̂ − δ = Op(T
−1/2), i.e., the feasible diffusion regression

estimator is consistent at the usual rate.
Going further, if α = 0, which is often an interesting null hypothesis in

applied work, the second term on the right-hand side of the decomposition
(4) vanishes. Assume that {εt+h} is independent of all other variables. Then,
conditional on F̂ , the first term on the right-hand side of (4) will (under
weak conditions) obey a central limit theorem, and so it seems reasonable to
expect that δ̂ should be unconditionally asymptotically normally distributed
under the null H0 : α = 0. Bai and Ng (2006) prove that if the factor loadings
are not subject to time variation, δ̂ will indeed be asymptotically normal,
regardless of the true value of α, as long as

√
T/N → 0. We expect that

a similar result can be proved formally in our framework but leave this for
future research.

4 Simulations

4.1 Design

To illustrate our results and assess their finite sample validity we conduct
a Monte Carlo simulation study. Stock and Watson (2002) assessed the
performance of the principal components estimator when the factor loadings
evolve as a random walk. We provide additional evidence on the necessary
scale factor hNT for the random walk case (our Example 2). Second, we
consider a different design in which a subset of the series undergo one large
break in their factor loadings (an analog of Example 3).

The design follows Stock and Watson (2002) where possible:

Xit = λ′itFt + eit,

Ftp = ρFt−1,p + utp,

(1− aL)eit = vit,

yt+1 =
r∑
q=1

Ftq + εt+1,
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where i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, and the variables {utp}, {vit}
and {εt+1} are mutually independent i.i.d. standard normally distributed.
The scalar ρ is the common AR(1) coefficient for the r factors, while a is
the AR(1) coefficient for the idiosyncratic errors.4

The initial values F0 and e0 for the factors and idiosyncratic errors are
drawn from their respective stationary distributions. The initial factor load-
ing matrix Λ0 was chosen based on the population R2 for the regression of
Xi0 = λ′i0F0+ei0 on F0. Specifically, for each i we draw a value R2

i uniformly
at random from the interval [0.1, 0.8]. We then set λi0p = λ∗(R2

i )λ̄i0j , where
λ̄i0j is i.i.d. standard normal and independent of all other disturbances.
The scalar λ∗(R2

i ) is given by the value for which E[(λ′0iF0)2]/E[X2
i0] = R2

i ,
given the draw of R2

i .
5

We consider two different specifications for the evolution of factor weights
over time. In the random walk model we set

λitp = λi,t−1,p + cT−3/4ζitp,

i = 1, . . . , N , t = 1, . . . , T , p = 1, . . . , r, where c is a constant and the
innovations ζitp are i.i.d. standard normal and independent of all other
disturbances. Note that the T 3/4 rate is different from the rate of T used
by Stock and Watson (2002). We consider the choices c = 0, 2, 5 for our
benchmark simulation. Observe that the standard deviation of λiTp − λi0p
is cT−1/4, which for T = 100 and c = 2 equals 0.63, of the same magnitude
as the standard deviation of λi0p (e.g., for a = ρ = 0 and r = 5, we have
λ∗(0.45) = 0.40).

In the large break model, we select a subset J of size [bN1/2] from the
integers {1, . . . , N}, where b is a constant. For i /∈ J , we simply let λitp =
λi0p for all t. For i ∈ J , we set

λitp =

{
λi0p for t ≤ [0.5T ]
λi0p + ∆p for t > [0.5T ]

.

The shift ∆p (which is the same for all i ∈ J) is distributed N (0, [λ∗(0.45)]2),
i.i.d. across p = 1, . . . , r, so that the shift is of the same magnitude as the
initial loading λi0p.

6 We set b = 0, 4, 8 in the benchmark simulations.

4We do not consider cross-sectional correlation of the idiosyncratic errors here.
5In this paper we have assumed that Λ0 is fixed for simplicity. It is not difficult to

verify that Λ0 could instead be random, provided that it is independent of all other random
variables, N−1Λ′0Λ0

p→ D for an r× r non-singular matrix D, and E‖λi‖4 < M , as in Bai
and Ng (2006).

6This shift process satisfies Assumption 4 by essentially the same argument as was used
for the deterministic break in Example 3.
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T 50 100 150 200 250 300 350 400

N 125 250 375 500 625 750 875 1000

N−1/2 0.089 0.063 0.052 0.045 0.040 0.037 0.034 0.032

Table 1: Combinations of T and N used in the simulations.

The free parameters are T , N , r, ρ, a, b, c. We let r = 5 throughout
and focus on sample sizes T = 50, 100, 150, . . . , 400. We set N = [dT ], with
d = 2.5 as in the baseline design of Stock and Watson (2002). Table 1 shows
the (T,N) combinations. Because the fraction of series that undergo a shift
in the large break model is [bN1/2]/N ≈ bN−1/2, the table also lists values
of N−1/2. For example, for T = 100, N = 250 and b = 4, about 25% of the
series undergo a large structural break in their factor loadings.

We use the principal components estimator F̂ described earlier to esti-
mate the factors, assuming that the true number of factors r is known. To
evaluate the estimator’s performance, we compute a trace R2 statistic for
the multivariate regression of F̂ onto F ,

R2
F̂ ,F

=
Ê‖PF F̂‖2

Ê‖F̂‖2
,

where Ê denotes averaging over Monte Carlo repetitions and the projection
matrix PF = F (F ′F )−1F ′. Corollary 1 states that this measure tends to 1 as
T → ∞. In each repetition we compute the feasible out-of-sample forecast
ŷT+1|T = δ̂′F̂T , where δ̂ are the OLS coefficients in the regression of yt+1

onto F̂t for t ≤ T −1, as well as the infeasible forecast ỹT+1|T = δ̃′FT , where

δ̃ is obtained by regressing yt+1 onto the true factors Ft, t ≤ T − 1. The
closeness of the feasible and infeasible forecasts is measured by the statistic

S2
ŷ,ỹ = 1−

Ê(ŷT+1|T − ỹT+1|T )2

Ê(ŷ2
T+1|T )

.

The measures R2
F̂ ,F

and S2
ŷ,ỹ were also used by Stock and Watson (2002).

4.2 Benchmark results

Our benchmark simulation sets a = ρ = 0 (no serial dependence for the
factors or idiosyncratic errors). We perform 10,000 Monte Carlo repetitions.
The results are summarized in Figure 1 (the random walk model) and Figure
2 (the large break model). Each figure has two panels. The top panel shows
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the R2
F̂ ,F

statistic as a function of the sample size T , for the three different

choices of c or b. Similarly, the bottom panel shows the S2
ŷ,ỹ statistic.

Figure 1 confirms that substantial random walk variation in the factor
loadings, vanishing at rate T 3/4, does impact the precision of the principal
components estimator, but the performance improves as T increases, as
suggested by Corollary 1. Both in terms of closeness of factor spaces and
out-of-sample forecasts, setting c = 2 impacts the performance to about the
same extent as introducing moderate serial correlation in the idiosyncratic
errors (Stock and Watson, 2002, cf.). The c = 5 simulations give much
worse results; however, c = 5 is extreme in sense that the time variation in
the factor loadings is of larger magnitude than the initial loadings for the
choices of T that we consider here.

In Figure 2 we observe that the principal components estimator is also
fairly robust to one-time, correlated large breaks. In fact, the feasible out-
of-sample forecast is very close to the infeasible one, even when the sample
size is small and about 50% of the series undergo a large shift in their factor
loadings.

The results for a = ρ = 0.5 are very similar to the ones depicted in
Figures 1–2. Because there does not appear to be any interesting interac-
tions between serial dependence and time variation, we do not report the
alternative simulations.

4.3 Rate of convergence

We now turn to the more detailed asymptotic rates stated in Theorem 1. Our
method of proof suggests that it may not in general be possible to improve
upon the RNT rate. To investigate this claim, we carry out two exercises.
First, we execute a separate set of simulations in which λitp − λi,t−1,p =
cT−1/2ζitp for the random walk model, and the number of shifting series in
the large break model is set to [bN ]. These two rates both (just) violate the
conditions for mean square consistency in Theorem 1. To make the results
comparable to Figures 1–2, we scale down our choices of b and c so that
the standard deviation of the random walk innovations and the number
of shifting series approximately match at T = 100 under the two (T,N)
sequences. All other parameter choices are unchanged. See Figures 3–4 for
the results. As hypothesized, for both models the trace R2 statistic does
not seem to improve systematically with the sample size.

Second, we construct a “rate frontier” that corresponds to the predictions
of Theorem 1 for the special case of the random walk model. To this end,
suppose we set N = [Tµ] and hNT = cT−γ . Using the formula for RNT and
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the random walk calculations in Section 2.4, we obtain

RNT = O(max{T−1, T−µ, T 1−2γ−µ, T 2−4γ}) = O(Tm(µ,γ)),

where
m(µ, γ) = max{−1,−µ, 1− 2γ − µ, 2− 4γ}.

This convergence rate exponent reflects the influence of the magnitude of
the random walk deviations, as measured by γ, and the relative sizes of the
cross-sectional and time dimensions, as measured by µ. Evidently, increas-
ing the number of available series relative to the sample size improves the
convergence rate, but only up to a point. In the following we set µ = 1 as
in the previous simulations. Denote

m(γ) = m(1, γ) = max{−1,−2γ, 2− 4γ} = max{−1, 2− 4γ}.

We see that the dependence of the convergence rate on γ is monotonic, as
expected, but nonlinear. The flat profile of the trace R2 statistic in Figure
3 is fully consistent with m(1/2) = 0.

These calculations have been carried out on the worst-case rate stated
in Theorem 1. We have not been able to prove that the convergence rate
RNT is sharp, in the sense that there exists a DFM satisfying Assumptions
1–5 that achieves the RNT rate. Instead, we provide simulation evidence
suggesting that the independent random walk model (Example 2) achieves
the stated bound. We maintain the simulation design described in Section
4.1 with a = ρ = 0 and N = [2.5T ], except that we set hNT = 5T−γ and
vary γ over the range 0.25, 0.30, 0.35, . . . , 1.50. For each value of γ and each
sample size T = 100, 200, 300, . . . , 700 we compute the statistic

M̂SE (γ, T ) = T−1(Ê‖F̂‖2 − Ê‖PF F̂‖2),

where Ê denotes the average over 500 Monte Carlo repetitions. This statistic
is a close analog of the mean square error that is the object of study in
Theorem 1. Our theoretical results suggest that M̂SE (γ, T ) should grow or
decay at rate Tm(γ). We verify this by regressing, for each γ,

log M̂SE (γ, T ) = constantγ +mγ log T,

using our seven observations T = 100, 200, . . . , 700. Figure 5 plots the esti-
mates m̂γ against γ along with the theoretical values m(γ). The estimated
rate frontier is strikingly close to the theoretical one, although some finite-
sample issues remain for intermediate values of γ. This corroborates our
conjecture that Theorem 1 provides sharp rates for the independent random
walk case.
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5 Discussion and conclusions

The theoretical results of Section 3 and the simulation study of Section 4
point towards a considerable amount of robustness of the principal compo-
nents estimator of the factors when the factor loading matrix varies over
time. Although we have not proved that the consistency rate function pre-
sented in Section 4 is tight, inspection of our proof does not suggest any
room for improvement and moreover the Monte Carlo estimate of the rate
function accords broadly with the theoretical rate function. This leads us to
suspect that the rate function is tight, and in this sense represents an upper
bound on the parameter instability that can be tolerated by the principal
components estimator. The amount of such instability is quite large when
calibrated for values of N and T typically used in applied work.

Our evidence concerning the robustness of the principal components es-
timator raise a tension with the results in Breitung and Eickmeier (2011),
who in contrast suggest that undetected breaks in the factor loadings have
the effect of increasing the dimension of the true factors. Indeed, we con-
jecture (but do not prove) that the principal components estimator will
be consistent even under sequences of breaks for which the Breitung and
Eickmeier (2011) test rejects. Pursuing this calculation would be of inde-
pendent interest and would also return the large-dimensional discussion here
to the bias-variance tradeoffs associated with ignoring breaks tackled in a
low-dimensional setting by Pesaran and Timmermann (2005, 2007).
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A Proof

To lighten the notation, we denote
∑

i =
∑N

i=1 (the same for j) and
∑

s =∑T
s=1 (the same for t). A double sum

∑N
i=1

∑N
j=1 is denoted

∑
i,j .

Proof of Theorem 1. We extend the proof of Theorem 1 in Bai and Ng
(2002). By the definition of the estimator F̂ k, we have F̂ k = (NT )−1XX ′F̃ k,
where F̃ k

′
F̃ k/T = Ik (Bai and Ng, 2008b). Define e = (e1, . . . , eT )′ and

w = (w1, . . . , wT )′. Since

XX ′ = FΛ′0Λ0F
′ + FΛ′0(e+ w)′ + (e+ w)Λ0F

′ + (e+ w)(e+ w)′,

we can write

F̂ kt −Hk′Ft = (NT )−1
{
F̃ k
′
FΛ′0et + F̃ k

′
eΛ0Ft + F̃ k

′
eet + F̃ k

′
FΛ′0wt

+ F̃ k
′
wΛ0Ft + F̃ k

′
wwt + F̃ k

′
ewt + F̃ k

′
wet

}
.

Label the eight terms on the right-hand side A1t, . . . , A8t, respectively. By
Loève’s inequality,

T−1
∑
t

‖F̂ kt −Hk′Ft‖2 ≤ 8
8∑

n=1

(
T−1

∑
t

‖Ant‖2
)
. (5)

Bai and Ng (2002) have shown that the terms corresponding to n = 1, 2, 3
are Op(C

−2
NT ) under Assumptions 1–3. We proceed to bound the remaining

terms in probability.
We have

‖A4t‖2 ≤

(
T−1

∑
s

‖F̃ ks ‖2
)(

T−1
∑
s

‖Fs‖2
)∥∥N−1Λ′0wt

∥∥2
.

The first factor equals tr(F̃ k
′
F̃ k/T ) = tr(Ik) = k. The second factor is

Op(1) by Assumption 1. Also,

E

∥∥∥∥Λ′0wt
N

∥∥∥∥2

≤ N−2
∑
i,j

|E(witwjt)λ
′
i0λj0|

≤ λ̄2h2
NTN

−2
∑
i,j

|E(ξitFtξitFt)|

≤ r2λ̄2 sup
p,q

h2
NTN

−2
∑
i,j

|E(ξitpFtpξitqFtq)|

= O(h2
NTN

−2Q1(N,T )),
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uniformly in t, by Assumption 4.1. Hence,

T−1
∑
t

‖A4t‖2 = Op(h
2
NTN

−2Q1(N,T )).

Similarly,

‖A5t‖2 ≤

(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(w′sΛ0Ft)
2

)
,

where the first term is O(1) and

(N2T )−1E
∑
s

(w′sΛ0Ft)
2 ≤ (N2T )−1

∑
s

∑
i,j

|E(wiswjsλ
′
i0Ftλ

′
j0Ft)|

≤ r4λ̄2 sup
p1,q1,p2,q2

h2
NT (N2T )−1

∑
s

∑
i,j

|E(ξisp1ξjsq1Fsp1Fsq1Ftp2Ftq2)|.

By summing over t, dividing by T and using Assumption 4.2 we obtain

T−1
∑
t

‖A5t‖2 = Op(h
2
NTN

−2T−2Q2(N,T )).

For the sixth term,

E‖A6t‖2 ≤ E

{(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(w′swt)
2

)}
= k(N2T )−1

∑
s

∑
i,j

E(wiswitwjswjt)

≤ kr4 sup
p1,q1,p2,q2

h4
NT

N2T

∑
s

∑
i,j

|E(ξisp1 · · · ξjtq2Fsp1 · · ·Ftq2)|,

where the last expectation contains the eight factors listed in Assumption
4.3. By Assumption 4.3, it follows that

T−1
∑
t

‖A6t‖2 = Op(h
4
NTN

−2T−2Q3(N,T )).
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Regarding the seventh term, using Assumption 5,

E‖A7t‖2 ≤ E

{(
T−1

∑
s

‖F̃ ks ‖2
)(

(N2T )−1
∑
s

(e′swt)
2

)}
= k(N2T )−1

∑
s

∑
i,j

E(eisejs)E(witwjt)

≤ k(N2T )−1
∑
s

∑
i,j

(E(e2
is)E(e2

js))
1/2|E(witwjt)|

≤ kr2M sup
p,q

h2
NT (N2T )−1

∑
s

∑
i,j

|E(ξitpξjtqFtpFtq)|

= O(h2
NTN

−2Q1(N,T )),

uniformly in t. The second-to-last line uses E(e2
it) ≤ M , whereas the last

follows from Assumption 4.1. We conclude that

T−1
∑
t

‖A7t‖2 = Op(h
2
NTN

−2Q1(N,T )).

A similar argument gives

T−1
∑
t

‖A8t‖2 = Op(h
2
NTN

−2Q1(N,T )).

We conclude that the right-hand side of inequality (5) is the sum of vari-
ables of four different stochastic orders: Op(C

−2
NT ), Op(h

2
NTN

−2Q1(N,T )),
Op(h

2
NTN

−2T−2Q2(N,T )) and Op(h
4
NTN

−2T−2Q3(N,T )). The statement
of the theorem follows. �
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Figure 1: Simulation results for the random walk model, benchmark param-
eter and rate choices. Actual observations are marked with “x.” The lines
are piecewise linear interpolations.
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Figure 2: Simulation results for the large break model, benchmark parameter
and rate choices.
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Figure 3: Simulation results for the random walk model, alternative rates.
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Figure 4: Simulation results for the large break model, alternative rates.
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Figure 5: Rate frontiers for the random walk model with N = O(T ) and
hNT = O(T−γ). The solid line interpolates between the finite-sample rate
exponent estimates m̂γ (observations are marked with “x”), while the dotted
line represents the theoretical rate exponent m(γ).
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