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Abstract 

A class of procedures that consistently classify the stochastic component of a time 
series as being integrated either of order zero [I(O)] or one [I(l)] are proposed for general 
I(0) or I(1) processes and polynomial or piecewise linear detrending. Large-sample 
Bayesian inference is free of nuisance parameters describing short-run dynamics and 
requires specifying priors only on the point hypotheses ‘I(0)’ and ‘I( 1)’ thereby avoiding 
problematic choices of parametric priors over roots and nuisance parameters. Applied to 
the Nelson-Plosser (1982) data with linear detrending, these procedures largely support 
Nelson and Plosser’s original inferences. With piecewise-linear detrending these data are 
typically uninformative, producing Bayes ratios close to one. 

K~,v words: Unit roots; Integration; Model selection 
JEL classijication: C22; Cl 1 

1. Introduction 

It is often desirable to know whether a univariate economic time series is 
better modeled as being integrated of order one [is I(l)] or of order zero [I(O)]. 
This distinction can be important when the series in question is subsequently 
used in multivariate analysis, such as Granger causality tests or cointegration 
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modeling. Alternatively, different economic theories can have different implica- 
tions for the long-run properties of certain series, in which case it might be 
desirable to assess the probability that one or the other of these implications is 
true (see the discussion in Christian0 and Eichenbaum, 1990). These two 
applications suggest the practical value of procedures that produce explicit 
posterior odds on whether the process that generated the observed data is I(1) or 
I(O). Such a procedure would permit the formal application of statistical decision 
theory to the 1(1)/I(O) classification problem, with a loss function defined solely 
in terms of whether the series is I(1) or I(0). 

This desire to compute posterior odds for the I(1) and I(0) hypotheses has led 
to considerable recent empirical and theoretical work on unit roots in economic 
time series from a Bayesian perspective; see DeJong and Whiteman (1991), Sims 
(1988), Sims and Uhlig (199 I), Sowell (199 l), Phillips (199 la), and the discussions 
of Phillips (1991a) in the October-December 1991 issue of the Journal ofApplied 
Econometrics.’ However, this work relies on finite-dimensional parameteriz- 
ations of the I(1) and I(0) hypotheses, which in turn requires formulating explicit 
priors over the values of these parameters. Although various authors have 
described their priors as llat or uninformative, different ‘uninformative’ priors 
yield different inferences, and in any event the geometry of I(1) and I(0) processes 
is sufficiently complicated that any prior restrictions on parametric approxima- 
tions are at best difficult to interpret. 

This paper proposes a class of Bayesian procedures for deciding whether 
a process is I( 1) or I(0) which avoids the problem of making explicit parametric 
assumptions about priors within the I(1) or I(0) models. These procedures are 
developed for two specifications of deterministic trends. The first is general 
polynomial trends, estimated by OLS, as have been considered elsewhere in the 
unit roots literature [see, for example, Ouliaris, Park, and Phillips, 1989; Perron, 
19911. Perron (1989) and Rappoport and Reichlin (1989) suggested an alterna- 
tive to the unit root model for many aggregate economic time series in which the 
series are stationary around a time trend with a growth rate that changes once 
during the sample. Although the empirical support for this model is weakened 
when the break date is treated as unknown (Banerjee, Lumsdaine, and Stock, 
1992; Zivot and Andrews, 1992), their results are sufficiently strong to suggest 
that this model be treated as a plausible specification. The second trend speci- 
fication therefore is the broken trend model in which the break date is unknown. 

The proposed procedures are based on a scaled cumulative sum process of the 
detrended data, VT. The process VT has the following properties: (i) NiTliz VT has 
a (classical) asymptotic distribution that depends on no unknown nuisance 

’ Since the original draft of this paper was written, three additional closely related papers have 

appeared, by Kwiatkowski, Phillips, Schmidt, and Shin (1992), Phillips and Ploberger (1992), and 

Perron (1991): these are discussed below. 



parameters, and (ii) for I(O), Nir = 1, while for I(l), Nir = Nr + CC . The first 
of these properties means that it is possible to compute the asymptotic likeli- 
hoods - and thus the likelihood ratio ~ of observing functionals of VT alterna- 
tively under the I(1) and I(O) hypotheses, and moreover, that in large samples 
this evaluation does not depend on the nuisance parameters. The second 
property implies that these asymptotic distributions diverge, so that in large 
samples the likelihood ratio will tend either to zero or to infinity, thereby 
providing a consistent procedure for distinguishing I( 1) from I(0) processes. The 
statistics based on the cumulative sum VT are closely related to statistics studied 
in three related literatures: tests for structural breaks, LM tests for a random 
walk drift under the null of stationarity, and recently developed tests of the I(0) 
null against the I( 1) alternative. These links are discussed, and references given, 
in Section 2. 

Because the procedures consistently classify a process as I(0) or I(l), they 
constitute model selection procedures where the ‘model’ is broadly interpreted 
to be one of these two classes. Viewed thus, a variety of simpler approaches 
already exist, at least in principle, although they are not used in practice. For 
example, comparing the Dickey-Fuller (1979) t-statistic to a sequence of critical 
values which tends to - x produces a consistent classifier. Similarly, using an 
existing test of the general I(0) null such as Park’s (1990) variable addition tests, 
or the tests of Bierens (1989) and Bierens and Guo (1993) with an appropriate 
sequence of critical values will result in consistent classification. However, 
without further modification these approaches leave unsolved the key practical 
problem of choosing the sequence of critical values. The procedure here thus can 
be interpreted from a classical perspective as specifying a data-dependent 
sequence of critical values, determined up to the choice of point priors. However, 
from the Bayesian perspective the procedure has the three additional advant- 
ages of producing posterior odds ratios, of permitting priors to be specified on 
the points I(0) and I(1) rather than parametrically, and (unlike parametric 
Bayesian treatments of the unit roots problem) of producing large-sample 
inferences which do not depend on the short-run nuisance parameters. 

In a paper closely related to this one, Phillips and Ploberger (1991) have also 
recently used Bayesian posterior odds ratios to construct an 1(1)/I(O) decision 
rule. Like the one proposed here, their procedure permits placing priors only 
on the I(1) and I(0) ‘point’ hypotheses. One difference between the Phillips- 
Ploberger (1991) approach and the approach in this paper is that they study 
posterior distributions of the data directly, while we consider posterior distribu- 
tions for a family of statistics whose asymptotic distribution does not depend on 
the nuisance parameters under the I(0) or I(1) hypothesis. 

The remainder of the paper is organized as follows. Theoretical results under 
general conditions on trends and detrending are presented in Section 2. These 
general conditions are examined for the leading cases of polynomial trends and 
piecewise linear trends, detrended by ordinary least squares (OLS), in Section 3. 



108 J.H. Stock / Journal of Econometrics 63 (1994) 105- 131 

Section 4 presents Monte Carlo results. Empirical results are given in Section 5, 
and conclusions are presented in Section 6. 

2. The proposed decision rules 

2.1. General results 

We consider time series which are the sum of a purely deterministic trend, d,, 
and a stochastic term, ut, 

y,=d,+u,. (1) 

The I(0) and I(1) hypotheses refer to the order of integration of the stochastic 
element u,. Here, the definitions of I(0) and I(1) follow recent convention: 
a purely stochastic process is said to be I(d) if the process formed from the partial 
sums of its dth difference, scaled by T-‘12, obeys a functional central limit 
theorem and converges to a constant times a standard Brownian motion. Let 
u,,(i) = T-II2 It’=“] s 1 u, and U,,(i) = T-‘12uLT11, where [.I denotes the greatest 
lesser integer function, and let yX(j) = COV(X~, x,-j) for a second-order stationary 
process x,. Also let ‘ *’ denote weak convergence of random elements of D [0, l] 
and let IV(.) denote a standard Brownian motion process restricted to the unit 
interval. The I(0) and I(1) hypotheses are given by 

Throughout it is assumed that second moments of I(0) random variables 
exist and that standard estimators of second moments are consistent; in 
particular, it is assumed that r-1C’, 

TplCT=ljl+l '4 

t I,I+1utur-j+'Yu(j) for ut I(O) and 

A U,_j -"yd,(j) for u, I(l), for all fixed j. In stating y,,(j) = 
COV(U,,U,~~) [I(O) case] or yd,,(j) = cov(du,, dU,_j) [I(l) case], we are further 
assuming that I(0) variables are second-order stationary. 

The proposed statistics are based on the scaled partial sum process of the 
detrended data. Let d^, denote the estimate of the trend component and let the 
detrended process be y:’ = y, - &. The decision rules studied are all functionals 
of the statistic, 

(4) 
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where 

m= -I= t=m+ 1 

where lT is an increasing sequence of integers and k(.) is a kernel satisfying 
k(x) = 0 for 1x1 3 1, k(x) = k( - x), 0 < k(x) < 1 for 1x1 < 1, k(0) = 1, and 
1- ’ CL= 1 k(Q) 2 k f or all 1 > 1, where k > 0 (see, for example, Andrews, 1991). 
It is assumed that the sequence IT is such that ~5’ is consistent for the spectral 
density of u, under the I(0) hypothesis. With the transformation (4) the task of 
distinguishing I(0) from I( 1) processes is shifted to distinguishing the cumulation 
of an I(0) process, now I(l), from the cumulation of an I(1) process, now I(2). 

The results are stated under general assumptions on the trend estimation 
error S, = & - d,. Let I]x,I] = T-‘C~zIx: for a time series x,, D,,(1) = 
T- “’ CL”; 6,, a nd Dir(n) = T-1’261TrI. The estimated trend is assumed to 
satisfy the following conditions: 

Detrending Conditions 

(A) If u, is I(O), then: 

(i) (U,,, &) *o,(I+‘, Do) where Do E CCO, 11. 
(ii) 1; 1/81II + pO. 

(B) If u, is I(l), then: 

(i) (UIT,DI~) =>~~i(w,Di) where D1 EC(O, 11. 
(ii) //~~,I) = O,(l). 

Specific examples of trends that satisfy these conditions are given in the 
next section. Because yp = y1 - d; = u, - 6,, these conditions lead to general 
definitions of limiting detrended processes. Let Y$&) = TF1”Czj y% 
= U,,(i) - DOT(A); for an I(0) process, it follows from condition A(i) that 
Y&c) *w. IV’;(.), where Wd,(.) = IV(.) - Do(.). Similarly, let Y?,(A) = 
T- 1’2y&i, = U,,(A) - DIT(;l); condition B(i) implies that, if u, is I(l), then 
Y?,(.) *ol IV;‘(.), where W;‘() = IV(.) - DI(.). 

Under these conditions, because lr + co, A(ii) implies that if u, is I(O), then the 
estimated trend is consistent (in the L2 norm). However, if ut is I(l), 
D1 T(.) = Tm 1’261T.I is O,(l), so the estimated trend is not consistent. In the 
specifications studied in Section 3, however, I]~&]] + pO in the I(1) case, so that 
the first difference of the estimated trend is consistent for the first difference of 
the true trend. 

Limiting representations for the statistic T-‘CT= 1 VT(t/T)’ under the general 
I(0) and I(1) hypotheses have been obtained by Kwiatkowski, Phillips, Schmidt, 
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and Shin (1992) (for OLS detrending with a constant or linear time trend) and by 
Perron (1991) (for general polynomial trends estimated by OLS). Their applica- 
tions differed from ours, however, respectively testing I(0) vs. I( 1) and testing for 
breaks in deterministic trends. The following theorem extends their results to 
general trends and provides limiting representations for the statistic 

V~EDCO, 11. Let NT = T/x$= _+_k(m/lT). 

Theorem 1. Suppose 1;ln T/T+ 0, 1, + cr3, and conditions A and B hold. 

(a) If‘ y, is I(O), then VT * W”,. 
(b) Zfyt is Z(1), then N, ‘I2 I/, * Vf, where V!(2) = j”,W~(s)d.s/{J~W~(~)~ds}~~~. 

Proofs of theorems are given in the Appendix. 

For the detrending procedures studied in Section 3 which satisfy conditions 
A and B, the distributions of Wd, and Wf depend on the type of detrending but 
typically do not depend on any unknown parameters [the exception, discussed 
in detail in the next section, is broken-trend detrending under the I(0) case with 
an unknown date]. Moreover, V, has different rates of convergence depending 
on whether U, is I(0) or I(1). Thus Vr can be used as the basis of an asymptotic 
decision rule for categorizing u, as I(0) or I(1). 

2.2. Decision rules bused on scalar ,fimctionnls qf‘ VT 

The statistical decision rules considered here are based on scalar functionals 
of VT. In particular, we consider functionals 4(.) that have the properties: (i) 4 is 
a continuous mapping from C[O, l] + 9’; (ii) 4(q) = 4(y) + 21nq where a is 
a scalar and g E D [0, 11;’ and (iii) +( W$ and 4( V;‘) respectively have continuous 
densities& andf, with support ( - zc , “c). Let $r = 4( V,). Then the asymp- 
totic approximation to the likelihood ratio (or Bayes factor) B, of 4T under the 
I(1) hypothesis, relative to the I(0) hypothesis, is 

BT =.fi($T - lnNT)hjf,(6Tb (5) 

It is readily seen that (5) provides a consistent rule for classifying U, as I(1) or 
I(0). If the I(0) hypothesis is true, then by the continuous mapping theorem 

d)T = I *b(Wi) = O,(l), sofb(~T) = O,(l) butfl(4T - 1nNJ + '0; thus 

BT + pO and I(0) is chosen with probability one. On the other hand, if U, is I(l), 

‘The additive property (ii) is achieved in practice by taking logarithmic transformations of a func- 

tional $( VT), for which $(ag) = a’&(q). Whether q5 or $ is used has no theoretical significance. The 
choice of transformation is instead driven by our computational experience that taking logarithms 

enhances the numerical stability of the calculations in Section 4. 
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then & - lnNT + +(V$ = O,(l), butfb(&r) + pO; thus l/B, + pO and I(1) is 

chosen with probability one. 
Although the focus here is consistent classification rules, we note in passing 

that the statistics $( VT) can be used to perform classical tests of the I(0) or I(1) 
null hypotheses. In particular, $(N$ ‘I2 V,) can be used to test the null hypothe- 
sis that u, is I(1) against the alternative that it is I(0). Critical values are obtained 
from the densityf,, and consistency of the test follows from the different rate of 
convergence under the I(0) alternative. Alternatively, &VT) could be used 
to construct a consistent test of the I(O) null against the I(1) alternative; see 
Park (1990), Park and Choi (1988), Saikkonen and Luukkonen (1993), and 
Kwiatkowski, Phillips, Schmidt, and Shin (1992). 

The likelihood ratio (5) permits performing Bayesian inference when priors 
are specified only on the point hypotheses I(0) and I(1). Let these priors 
respectively be TI,, and ni (so that x0 + 7c1 = 1). Then the posterior odds ratio is 
the product of these priors and the Bayes factor (5), 

The consistency of decision rules based on BT implies that decision rules based 
on the posterior odds ratio also are consistent. 

In the Monte Carlo investigation and empirical analysis of Sections 4 and 5, 
we will consider three specific functionals 4: 

42(9) = In i( 
2 

sup g(s) - inf g(s) 11 , 

scco. 1) st(O, 1) 

Vb) 

43(g) = In fi d g(s)e-‘*~j’ds~*] 
i I 

*. (7c) 

The statistic $iT and close variants have been studied in several related 
literatures. In terms of the original data, 4iT = $r( V,) = In {6- ’ T- ’ 
x CT= 1 (T- “*C:= 1 yf)“}. One moti_vation for using #iT comes from recognizing 

that, with no trend or detrending, 4iT = T- ‘CTz 1 (T- li2 If= I u,)*fi,(O) (which 
is appropriate if d, = 0 and u, is serially uncorrelated) is the SarganBhargava 
(1983)3 statistic testing the null that x, = X:=1 u, has a unit root, 
which in turn is motivated as being the DurbinWatson (1950) ratio for the 

3 Also see Bhargava (1986). 
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Gaussian random walk. If the rejection region is the right tail, $iT accordingly 
can be interpreted as testing the null that U, is I(0) against the I(1) alternative. 
The statistic $iT has also been studied by Nabeya and Tanaka (1988) (to test for 
random coefficients) and by Saikkonen and Luukkonen (1993) (to test for a unit 
MA root). Saikkonen and Luukkonen (1993) proposed a generalization of $iT 
to test I(0) vs. I(1) with ARMA errors, although their generalization differs from 
that Examined here. Kwiatkowski, Phillips, Schmidt, and Shin (1992) proposed 
exp(4i=) as a test of the general I(0) null against the I(1) alternative, and the 
statistic is closely related to Par_k’s (1990) variable addition test. Gardner (1969) 
and MacNeill (1978) studied 4iT as a test for a broken time trend (also see 
Brown, Durbin, and Evans, 1975); Perron_ (1991) extended their statistic to 
general error terms and proposed exp(4iT). Both Kwiatkowski, Phillips, 
Schmidt,_and Shin (1992) and Perron (199 1) derived asymptotic representations 
for exp(4iT) un_der the general I(0) and I(1) hypotheses. 

The statistic +2T is based on the range of the cumulative process, scaled by an 
estimator of the spectral density of y, at frequency zero. Scaled by its variance 
rather than &, this was proposed by Mandelbrot and Van Ness (1968) and 
Mandelbrot (1975); Lo (1991) studied the generalization (7b) and applied it to 
financial time series data. 

The statistic $a= has a somewhat different motivation: if y, is I(l), then the 
cumulative process will have more mass in its spectral density at low (but 
nonzero) frequencies than it will if y, is I(0). Although the population spectral 

density of V, is not well-defined for frequencies near zero, &3T nonetheless has 
a well-behaved asymptotic distribution for fixed integer J. 

3. Examples of estimated trends 

This section provides specific results for two types of trends and detrending 
procedures, polynomial time trends detrended by OLS and piecewise linear or 
broken trends, also with OLS detrending. Both are shown to satisfy the detrend- 
ing conditions A and B in Section 2. 

3.1. Polynomial detrending by OLS 

Consider the polynomial time trend, 

4 = z;P, (8) 

where zt = (1, t, t2, . . . , tq)’ and where the unknown parameters /I are estimated by 
regressing y, onto z, to obtain the OLS estimator $ of /3. Thus q = 0 corresponds 
to subtracting from y, its sample mean and q = 1 corresponds to linear detrend- 
ing by OLS. For general q, under (8) the detrended data are yp = yt - z;B 
=a, -6,, where 6, = z;(CT=, ztz~))‘C,‘=, z,u,. 
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To verify that Theorem 1 applies when this detrending procedure is used, it is 
sufficient to verify that condition A and B hold. The relevant properties of the 
detrending process are summarized in Theorem 2. 

Theorem 2. If d, is given by (8) and fl is estimated by OLS, then: 

(a) Zf y, is Z(O), then: 
(i) (UOT, DOT) 3 o,,(W,D,), where Do(A) = v(A)‘M-’ @, where @, M, and 

v are respectively (q + 1) x 1, (q + 1) x (q + l), and (q + 1) x 1, and 
Qji = W(1) - (i - 1) j:,&’ W(s)ds, Mij = l/(i +j - l), and Vi(~) = A’/i. 

(ii) T (( 6, (( - o& @‘A4 - ’ @. 

(b) Zf y, is I(I) then: 
(i) (UrT,DiT) *ul(W,D1), where Dl(A) = @A)‘M-‘$, where 5i(~) = Ai-l 

and $ = JA t(s) W(s)ds. 
(ii) TllA6,II *wi$‘M-’ MtM-I$, where Mlj = (i - l)(j - l)/max(l, 

i + j - 3). 

Parts a(i) and b(i) of Theorem 2 have previously been obtained by Ouliaris, 
Park, and Phillips (1989) and Perron (1991). Theorem 2 implies that conditions 
A and B hold when yt is detrended using a polynomial deterministic trend, 
estimated by OLS. Parts a(i) and b(i) verify conditions A(i) and B(i), respectively. 
Condition A(ii) follows from part a(ii) under the rate condition in Theorem 1 
(that is, l+InT/T+ 0 and TllS,II =z. CI.I$ @‘M-l @ implies I$IlS,]] -+ pO). Part b(ii) 
implies [Id &II + “0, which verifies condition B(ii). 

3.2. Piecewise-linear (‘broken-trend’) detrending 

The piecewise-linear trend consists of two connected linear time trends which 
break at the fraction z0 of the sample that corresponds to a break in period 
k0 = [ Tz,]. We assume that r0 is unknown within a range T,in < ~~ < r,,,. The 
trend term is 

d,(k,) = a + /It + yT(t - k,)l(t > k,) = z&JO, (9) 

where z,(k) = (1, t, (t - k)l(t > k))’ and 8 = (cq p,~r)‘, where l(.) is the indicator 
function. 

If the break coefficient yT is fixed, the break point will be estimated con- 
sistently. In practical applications, there is uncertainty about the break date, 
however, so we adopt a nesting for or under which the resealed estimator of 
T has asymptotic sampling uncertainty. We do this by adopting Picard’s (1985) 
conditions on the local-to-zero break model: 

F2 IYTI -+ 0, T3”lyTI -f cc, . (10) 
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The estimated trend is 

d;(L) = Z,(L)‘&@, (11) 
where 

8(k) = f z,(k)z,(k) 
( 

-1 T 

t;l zt (k) Y,> (12) 
L=l 

and where k^is the value of k that minimizes the sum of squared residuals, that is, 

k^ solves 

k=k “1”.4,,, i a,(k)2, (13) 
t=1 

where t?,(k) = y, - z,(k)‘g(k), kmin = [TZmin], and k,,, = [Tt,,,]. 
The asymptotic behavior of the trend estimation error, 6, = d;(k) - d,(k,), is 

summarized in Theorem 3 for the local break model. 

Theorem 3. Let d, be given by (9) where yT satisjes (IO), and let d,(i) be given by 
(ll)-(13). 

(a) 1f y, is I(O), then: 

(i) (UOT, DOT) + wO( W, Do), where Do(i) = ~(2, zO)I @(T,,), where v(A, t) = 
(- (i - z)l(A > T), A.,iA2, $(A - T)~ l(i > T))‘, and the 4 x 1 random vector 
@(TV) is a functional of W that is distributed N(O,.Q(T,)-I), where 

n,, = 1 - r, Q,* = - (1 - r), Qij = - &(l - r2), szi, = - f(1 - r2), 
RZ2 = 1, 5223 = i, 5224 = i(l - r)‘, Q,, = f, a34 = (2 - 32 + r3)/6, and 

!2,4 = (1 - 43/3. 

(ii) TllStll =S wi@(q,)‘{ jk <+(s, TO) tt (s, r,)‘ds} Q(Q), where t+(s, 7) = (- l(s > r), 

<(s,T)‘)‘, and where ~(s,T) = (l,s,(s - s)l(s > z))‘. 

(b) If y, is I(l), then: 

(i) (Uir,Dir) +wI(W,DI), where DI(i) = F,(A,z*), where F,(/Z,r)= 
((A, 7)‘M(z)- 1 Y(r), where Y(z) = jA<(s, z) W(s)ds, M(z) = Jh<(s, 7) x 
((s, r)‘ds, and ((2,~) is dejined in a(ii) of this theorem, and T* has the 

distribution, argmin,E,,,i,, rmax, Jh{ W(s) - FI(s, r)}2ds. 

(ii) Let VT@, r) = &-,.,(CT~l) - SU-+ I (CTzl). Then vT(‘,.) -, ‘0. 

It follows from Theorem 3 that the detrending error 6, satisfies conditions 
A and B. Parts a(i) and b(i) respectively verify conditions A(i) and B(i). Condition 
A(ii) follows from part a(ii) of the theorem as long as /t/T+ 0, which holds by 
assumption. Condition B(ii), the mean-square consistency for zero of qr, follows 
from the sup-norm consistency result in part b(ii). 

One possibility is that the series is detrended using the broken trend model (9) 
but in fact there is no break in the trend, that is, or = 0. In this case z0 is not 
identified, and the conditions of Theorem 3 no longer hold. The next theorem 
summarizes the properties of the trend estimation error when in fact 1/r = 0. 
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Theorem 4. Let d, he given by (9), let d,(c) be given by (II)-(13), and suppose that 
the true value of‘yT is zero. 

(a) [f y, is Z(O), then: 

(i) (IJOT, DOT) * w,,( IV, Do), where Do(A) = ?(A, T+)’ g(z+), where s(z) = JAt(s, z) 
x d W(s), ;(A, t) = (& +1L2, +(i - T)’ 1( A > T))', and 5+ has the distribution 

axmax TE[Tmin, r[max~ b(7)' M(T)- ' $(T), where t(& T) and M(T) are dejined in 

Theorem 3. 
(ii) T II&II =E- ~(T~)'M(T~)~'@(T~). 

(b) [f’ y1 is I(I), then the results of Theorem 3(b) continue to hold. 

In the I(1) case, the distribution of the detrended process does not depend on 
whether yr is zero or local to zero, an intuitively plausible result because the 
trend process and TV are not estimated consistently in the I(1) case even for 
nonzero yr. In the I(0) case, however, the detrended process has a different 
distribution if yr = 0 than if ;jT is local to zero. This differs from the results for 
polynomial detrending, and raises the practical problem that the distribution,fb 
in (5) will depend on y and, if ‘/ # O,, on zo. Our proposed solution is to estimate 
fo(x) by .fo(x; 6/G,, ;), where fo(x; b/6,, z*), is the density of I+‘“,(.; i/r?, <), where 
6 = F; is computed from the OLS estimator of T with sample size T. Then 
Wd,(.;$/&,z*), is computed as the limit of the partial sum process constructed 
from the residuals from the broken-trend detrending of a time series with an i.i.d. 
N(0, 1) stochastic component and with trend d, = (&/Tr?,)(t - [Tf])l(t > CT;]), 

where fi,~?,, and z* are held fixed. 
Assuming that u, is in fact I(O), this procedure is justified in two steps, first for 

11, local to zero, next for :(r = 0. First suppose that y is local to zero as in 
Theorem 3; to be concrete, let yr = b/T, where b is a constant, a sequence that 
satisfies (10). Under this local nesting 6 + Pb, 6, + IJ (T,,, and i -+ p TO (Picard, 
1985; Bai, 1992; see the proof to Theorem 3) W;‘(A;h, T) is continuous in T, and 
W”, does not depend explicitly on h beyond the maintained assumption that 
h # 0. Thus the distribution of W”, (., TV) in Theorem 3(a) can be approximated 
with an asymptotically negligible error by the distribution of Wi(.; b/G”, f). Next 
suppose that 7 = 0, so that 5. is unidentified and ? has the limiting distribution 
of rt given in Theorem 4(a). Then results in the proofs of Theorems 3 and 
4 suggest that the distribution of Do (and thus ofJo) is continuous in b as b + 0 
and moreover 6 + pO.4 It follows that Wf(.;fi/ c?,, z*) has the limiting distribution 
in Theorem 4, so that for b = 0 or h # 0 this procedure yields a consistent 
estimator ofJo. 

If u, is in fact I(l), then for this procedure to yield a consistent decision rule it 
is sufficient to show that the proposed procedure produces a limiting I(0) 

4 From Bai (1992). under the local nesting 1’ , T = h/T, T”‘(6 - h) has an asymptotic normal distribu- 
tion if h # 0, and from the proof of Theorem 4, T’.‘h^ = O,( 1) if h = 0, so h^- p h for general h. 
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distributionf, that has support on the real line. In fact, a stronger result holds, 
namely that if U, is I(1) and or is local to zero with the nesting or = b/T (where 
b might be zero), then the distribution of ~(W~(.;6/6,,<)) converges to the 
distribution resulting from Theorem 3(a), with the random variable z* [defined 
in Theorem 3(b)] replacing rO. This follows from the fact that, if u, is I(O), 
6 = O,(l) under the local assumption [an implication of the proofs of Theorems 
3(b) and 4(b)], so the coefficient on the trend used to generate W$ will with 
probability one satisfy (10) and therefore will satisfy the conditions of Theorem 
3(a). Althoughf,(x; 6/G,, <) for fixed x will asymptotically be a random variable 
in this case (because ? * r*), the posterior odds and Bayes ratios will still yield 
consistent decision procedures. 

4. Numerical issues and finite sample performance 

4.1. Computation of densities and likelihood ratios 

Because the limiting distributions of the statistics & are nonstandard,fi (4r), 
&($r), Br, and 17, were evaluated numerically using a kernel density estimator 
of the likelihood. The approach was first to produce a matrix of pseudo-random 
realizations of the limiting random variables 4( IV:) and +( V’$ and second to 
use these realizations to evaluate the likelihoodsf,(4,) andfi(&) for observed 
4r. Specifically, series of length 100 were drawn according to the I(O) model 
U, = E,, E, i.i.d. N(0, 1); these data were then used to construct I’r (imposing 
I, = 0) and 4r, and the realization of & was saved. This was repeated using the 
I(1) model du, = E,, E, i.i.d. N(0, l), T = 100, and 4(N, ‘j2 VT) was computed 
(with lr = 0) and saved. Both cases entailed 8000 Monte Carlo replications. 
Given a realization &-, the densities f,($r) andfi($r) were then computed by 
kernel density estimation.5 Five trend specifications are considered: no detrending, 
demeaning, linear detrending by OLS, and two versions of broken trends 

From Theorem 3(a) and its proof, for h # 0, Dar(l) = @5(&f)‘&?) + bh(l)r* + o&l) uniformly in i, 

where r* is an O&l) random variable that does not depend on 1. It follows that the limit as h + 0 of 

the distribution of Do is the distribution in Theorem 4(a) if the distribution of i is continuous in b. To 

argue this, note that for b # 0, t solves max, E t7.,., rm.,, &(r)‘M(r)) ’ O(T) + bQ(s), where Q(r) = O,(l) 
uniformly in a T- “’ neighborhood of rO. As b + 0, the objective function converges to the objective 

function in Theorem 4(a), suggesting the continuity of the distribution of ? as b + 0. 

5The Monte Carlo and empirical results were computed using a flat kernel with bandwidth KU~, 

where 0) is the standard deviation of the asymptotic distribution of the statistic in question and 
K = 0.1. Fig. 1 was computed using a Gaussian kernel with the same bandwidth. The density 

estimates and likelihood ratios are numerically stable in the sense that the 1(1)/l(O) decision rates are 
insensitive to the choice of bandwidth over the range K = 0.02-0.20. Programs in GAUSS to perform 

these evaluations are available from the author upon request. 
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estimated by OLS, first with y = 0 and second with y = 0.5 and r0 = 0.5. In this 

final case, the pseudo-data were generated using y, = ~(t - [Tr,]) l(t > [Tz,J) 
+ u, because of the dependence of the limiting I(0) distribution on r,, for or local 
to zero. Because T = 100 was used to generate the null distributions, in the 
nesting or = b/T this final trend specification corresponds to b = 50. (Looking 
ahead to the empirical results, this value of b is large relative to empirical 
estimates using annual time series data for the United States, so we would expect 
the y = 0 and yr = 50/T cases to bracket a wide range of cases of empirical 
interest.) This nesting is used to set y as a function of the sample size in the 
Monte Carlo simulations reported in the Section 4.2 below. The Monte Carlo 
and empirical work with the trend-break specifications all used Z,in = 0.15 and 
rmax = 0.85. 

The densities f0 and fi for 4r [that is, the densities of 4r( I&‘$) and 4r( Vf)] 
and the corresponding cdf’s are plotted in Fig. 1 for the demeaned case, which is 
typical of the five trend specifications. In each trend case, the I(1) distribution 
lies to the left of the I(0) distribution. Although the I(0) distribution does not 
change its shape substantially as the detrending procedure changes, the I(1) 
distribution does, becoming more bell-shaped the greater is the amount of 
detrending. 

0 

-2 -1 0 1 2 3 4 
6 

Fig. 1. Asymptotic cdf and pdf of 4 1T under I(0) (solid line) and I(1) (dashed line), demeaned 
case. 



118 J.H. Stock I Journul of Econometrics 63 (1994) IOS- 131 

4.2. Finite-sample peyformance: Monte Carlo results 

This subsection reports the results of a Monte Carlo experiment which 
studied the ability of the proposed procedure to classify correctly Gaussian 
ARMA (1,1) processes. The spectral density estimator is a truncated version of 
one recommended by Andrews (1991). Specifically, the Parzen kernel was used 
and IT was chosen as IT = min(l^,, Ir,,& where & is Andrews’ (1991) automatic 
bandwidth selector. Because rr is unbounded in the I( 1) case, it was truncated at 
lT,max = [10(7’/100)“.2], where the rate is taken from Andrews (1991) and satis- 
fies the condition of Theorem 1, and where 10 was picked arbitrarily. 

Monte Carlo rates at which the series are classified as I(0) based on the 
posterior odds ratios, for various prior odds, sample sizes, and nuisance para- 
meters, are summarized in Table 1 for the $ZT statistic. One way to make 
comparisons across panels is to consider the performance of the classifiers, 
standardized so that their error rate is constant for a certain model; this is 
analogous to comparing size-adjusted power of tests. Such a comparison shows 
that increasing the extent of detrending reduces the discriminatory power of the 
statistics. For example, for nr = rcO and T = 100 for +zr, the random walk error 
rates for the demeaned, detrended, and broken trend-detrended (7 = 0) cases are 
comparable, respectively 0.13,0.12, and 0.09, but the I(O) correct classification 
rates for p = 0.9, 0 = 0 drop sharply to 0.47,0.27, and 0.17, respectively. More- 
over, the IMA error rates increase with the extent of detrending, respectively 
rising from 0.36 to 0.57 to 0.73 for p = 1, 8 = -0.875 for the three detrending 
cases. In short, detrending leads to large-root I(0) AR models being increasingly 
classified as I(1) and large-root I(1) MA models being increasingly classified as 
I(O). This parallels the well-known result that the power of tests of a unit AR root 
against a given alternative declines with the extent of the detrending. Also, the 
classification rates are sensitive to the prior odds for moderate sample sizes. For 
example, for T = 100, p = 1, and 8 = 0, decreasing the prior odds ratio in favor 
of I(1) from 1 to 0.25 increases the false classification rate for 42T (linearly 
detrending) from 12% to 38%. 

These results, along with Monte Carlo results for 4 1 T and $3r reported in the 
working paper version of this paper (Stock, 1992) permit comparisons across the 

&T> 42T> and $3T statistics. First consider the leading case of linear detrending. 
Holding the random walk classification rate constant, 4ZT has higher correct 
classification rates than 4i T for the AR models with large roots, and it has 
comparable error rates for the IMA models. Similarly, holding constant the 
random walk correct classification rate, +Zr outperforms 43T for the I(0) AR( 1) 
models. The results for 43T indicate a large incorrect classification rate of the 
random walk with even prior odds (41% for T = 100) creating an additional 
difficulty with interpreting this statistic. In contrast, the T = 100 error rates for 

4 are 12% in the random walk case and 6% for the i.i.d. process. For linear 
dztrrending and typical macroeconomic sample sizes, this evidence suggests that, 
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Table 1 
Monte Carlo results: I(0) classification rates for the +ZT statistic 
Model: (1 - pL)x, = (1 + BL)e,, E, i.i.d.N(O, 1) 

o=o, p= p=l.O, o= 

T 7[1/% 0 0.6 0.8 0.9 0.95 0.975 1.0 -0.875 -0.75 PO.5 

(A) Demeaned 

100 1 .oo 0.96 0.78 0.67 0.47 0.29 0.25 0.13 0.36 0.17 0.13 
100 0.50 0.98 0.90 0.82 0.67 0.48 0.42 0.25 0.43 0.32 0.23 
100 0.25 0.99 0.96 0.9 1 0.81 0.64 0.55 0.36 0.51 0.42 0.33 
100 0.10 1.00 0.99 0.96 0.88 0.75 0.66 0.43 0.59 0.51 0.42 

200 1 .oo 0.98 0.86 0.74 0.6 1 0.39 0.26 0.09 0.15 0.10 0.09 
200 0.50 0.99 0.93 0.84 0.72 0.52 0.39 0. I6 0.20 0.15 0.17 
200 0.25 0.99 0.98 0.92 0.84 0.67 0.57 0.25 0.27 0.27 0.25 
200 0.10 0.99 0.99 0.97 0.92 0.78 0.68 0.3 1 0.34 0.35 0.33 

(B) Linear trend/OLS detrendiny 

100 1 .oo 0.94 0.72 0.45 
100 0.50 0.97 0.85 0.65 
100 0.25 0.98 0.95 0.83 
100 0.10 0.99 0.99 0.95 

200 1.00 0.99 0.8 I 0.66 
200 0.50 0.99 0.91 0.80 
200 0.25 0.99 0.96 0.86 
200 0.10 1 .oo 0.99 0.92 

0.27 0.15 0.14 0.12 0.57 0.25 0.15 
0.40 0.26 0.22 0.22 0.65 0.32 0.25 
0.69 0.50 0.49 0.38 0.71 0.43 0.44 
0.82 0.71 0.67 0.58 0.77 0.60 0.62 

0.40 0.23 0.11 0.07 0.29 0.11 0.06 
0.59 0.41 0.23 0.16 0.33 0.18 0.13 
0.68 0.49 0.32 0.20 0.41 0.25 0.17 
0.79 0.63 0.45 0.30 0.50 0.34 0.29 

(C) Broken trend/OLS detrending, y = 0 

100 
100 
100 
100 

200 
200 
200 
200 

1.00 0.9 I 0.39 0.25 0.17 0.13 0.10 
0.50 0.95 0.81 0.69 0.60 0.48 0.42 
0.25 0.98 0.97 0.92 0.87 0.82 0.76 
0.10 0.99 1.00 1 .oo 1 .oo 1.00 1.00 

1.00 0.97 0.63 0.44 0.24 0.12 0.08 
0.50 0.97 0.82 0.69 0.45 0.30 0.21 
0.25 0.99 0.92 0.84 0.68 0.51 0.38 
0.10 1.00 0.98 0.96 0.92 0.82 0.74 

0.09 0.73 0.38 0.14 
0.39 0.81 0.50 0.45 
0.77 0.86 0.65 0.77 
1 .oo 0.92 0.83 0.99 

0.07 0.54 0.17 0.09 
0.19 0.59 0.24 0.22 
0.38 0.66 0.35 0.40 
0.71 0.75 0.52 0.74 

(D) Broken trend/OLS detrending, y = 50/T, 1. = 0.5 

100 1.00 0.96 
100 0.50 0.98 
100 0.25 0.99 
100 0.10 1 .oo 

200 1.00 0.99 
200 0.50 1.00 
200 0.25 1 .oo 
200 0.10 1.00 

0.38 0.24 0.11 
0.93 0.85 0.68 
1.00 1 .oo 0.98 
1.00 1.00 1.00 

0.7 1 0.47 0.26 
0.86 0.73 0.45 
0.97 0.90 0.70 
0.99 0.96 0.84 

0.08 0.10 0.08 0.78 0.40 0.09 
0.61 0.59 0.55 0.85 0.54 0.54 
0.95 0.92 0.90 0.92 0.70 0.93 
0.99 0.99 0.97 0.95 0.85 0.99 

0.12 0.07 0.07 0.58 0.13 0.08 
0.28 0.17 0.15 0.63 0.19 0.18 
0.5 1 0.36 0.30 0.67 0.28 0.36 
0.68 0.52 0.46 0.73 0.40 0.56 

Entries are the fraction of times that the posterior odds ratio favors I(0) over l(1) for the indicated 
prior odds ratio x,/n,. The spectral density w2 was estimated using the Parzen kernel with 
bandwidth truncation parameter I T, computed using Andrews’ (1991) automatic procedure, trun- 
cated at 10(T/100)“-2, as discussed in the text. Based on 500 Monte Carlo replications for each entry. 
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of the three tests, $*r has the best performance, followed by $ir. Turning to the 
broken-trend case, 43T and especially $ir have large incorrect classification 
rates for the random walk with even prior odds. Thus posterior odds based on 
~$ir and 43T are likely to be misleading. Holding the random walk correct 
classification rate constant, &r generally exhibits the lowest error rates of the 
three statistics in the other (p,8) combinations. In summary, the 4ir and (P2r 
statistics exhibit the best overall performance in the linear trend case, while 42T 
is preferred in the broken trend case. These statistics are therefore used in the 
empirical analysis in the next section. 

5. Empirical results 

Table 2 reports posterior odds ratios for Nelson and Plosser’s (1982) annual 
data on 14 aggregate economic time series for the United States. First consider 
the results for linear detrending. The ~#~ir and ~$~r posterior odds ratios yield the 
same I( 1)/I(O) classifications of 13 of the 14 statistics; for these 13 series, 12 of the 
classifications agree with Nelson and Plosser’s (1982) results based on 
Dickey-Fuller t-statistics, that the series are consistent with the I(1) model. The 
only series on which the $rr and $2T statistics disagree is the unemployment 
rate, for which the ~$ir posterior odds ratio just favors I(1). Because the 
unemployment rate is bounded below and above, it is arguably more appropri- 
ate to demean than to linearly detrend this series. For demeaned unemployment, 
the posterior odds ratios (even prior odds) are 0.44 and 0.11 for the 4 1 T and $2T 
statistics, respectively, both favoring the I(0) hypothesis, with the evidence using 
the 42T statistic being rather strong. These two observations suggest classifying 
the unemployment rate as I(0). 

It is interesting to note that, at the level of the 1(0)/I(l) classification, the only 
difference between the posterior odds ratio results and conventional 
Dickey-Fuller tests is for the money stock. However, for this series neither the 
classical nor the Bayesian results are clear-cut: the classical 90% asymptotic 
confidence interval based on inverting the ADF statistic is wide (0.687,1.030), 
and barely contains 1, while the two ~$r posterior odds ratios exceed 0.8, 
providing only weak evidence in favor of the I(0) model. 

From a Bayesian perspective, the posterior odds ratios provide information 
about the relative likelihood of the I(1) and I(0) models. For some series, in 
particular industrial production, consumer prices and stock prices, the evidence 
strongly favors the I( 1) model. However, for most series the evidence is much less 
strong. For example, a researcher with a prior odds ratio of l/2 in favor of the 
I(0) hypothesis would reach the conclusion that the GNP deflator is I(0) using 
the $2T statistic, and that seven additional series are I(0) using the 4rr statistic. 

Posterior odds ratios for broken-trend detrended statistics are also presented 
in Table 2. As discussed in Section 3, in the I(0) case the asymptotic distribution 
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depends on the break parameters y and z (if y # 0), so the Bayes ratios are 
evaluated for y = 0, for c; = 50/T, z = 0.5), and for estimated y, r, where the 
limiting distribution under I(O) was approximated by the distribution of 
42( I+‘$((.; g/G,,<)) as described in Section 3. The likelihood ratio statistic for the 
estimated y, r case was computed as described in Section 4.1, except that the 
kernel density evaluations were based on 4000 Monte Carlo replications. 

The striking feature of the broken trend results is that most of the Bayes ratios 
are near one. In several cases, the 1(1)/I(O) classification is sensitive to which I(0) 
distribution is used to compute B. However, with the exception of the bond 
yield, in these cases the Bayes ratio typically ranges from 0.8 to 1.1, so that small 
shifts from even prior odds would change the classification. In this sense, for all 
series except industrial production, the GNP deflator, velocity and perhaps the 
bond yield, the data are uninformative about the I(O)/I( 1) classification under the 
broken trend model. For industrial production and velocity, the reported Bayes 
ratios favor the I(1) model. The Bayes ratios also provide moderately strong 
evidence in favor of the I(1) model for the GNP deflator. 

For 13 of the series, the Bayes ratio computed using thef,(.; g/(;,,,<) distribu- 
tion either falls within, or is close to, the range of B($,) in the b = 0 and b = 50 
cases. This is unsurprising, in the sense that in absolute values the estimates of 
b/o,, T;/c?“, are small and always less than 50. The one series for which inferen- 
ces differ is the bond yield. For this series, the likelihood ratios are also unstable 
to changes in the kernel density estimator and bandwidth used to evaluate& 
The source of this instability is that the point estimate of 42 for the bond yield 
falls in the tails of both the I(0) and I( 1) distributions; that is, after broken-trend 
detrending the empirical realization of 4Z for the bond yield is unlikely to have 
been generated by either an I(O) or I(1) process. This suggests exploring other 
characterizations of the long-run properties of the bond yield, such as fraction- 
ally integrated models. 

In summary, if linear detrending is used, the NelsonPlosser (1982) 1(1)/I(O) 
classifications are supported by the proposed decision-theoretic procedures, with 
the sole exception of the money supply for which the posterior odds slightly favor 
I(0). For several series the empirical evidence is weak, in the sense that moderately 
strong priors that a series is I(0) would change the posterior conclusion. When the 
series are detrended using piecewise-linear trends, the evidence in these data is 
much weaker, with most Bayes ratios in the range 0.8-1.3. 

6. Conclusions 

Although the procedures proposed here have an explicitly Bayesian motiva- 
tion, they alternatively can be given a classical interpretation, and indeed 
classical asymptotic arguments have been key to eliminating the dependence of 
the procedures on the short-run nuisance parameters. From a frequentist 
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perspective, the procedures are simply model selection techniques adapted to the 
I( 1)/I(O) classification problem, and the prior odds ratio rcl/rcO is a parameter to be 
chosen by the econometrician. This choice could, for example, be made by 
controlling the rejection rate (the ‘size’) for a specific leading case. Indeed, 
according to the Monte Carlo results, our use of even prior odds for the +2T statistic 
in the empirical analysis corresponds to sizes of just under 10% for the T = 100, 
random walk model, in both the linear and piecewise-linear trend specifications. 

These results suggest several directions for further theoretical development. 
Primary among these is the desirability of constructing optimal classifiers 
among the set considered here. Because the Bayes ratio is just the likelihood 
ratio, the construction of an optimal & is related to the existence of sufficient 
statistics for the I(0) and I(1) models. In the related problem of testing the 
Gaussian I( 1) null against the I(0) alternative, parameterized in terms of whether 
the largest autoregressive root is one or less than one, the asymptotic minimal 
sufficient statistic has dimension two, so no uniformly most powerful test of the 
unit AR root null exists (Elliott, Rothenberg, and Stock, 1992). Similarly, there 
does not exist a uniformly most powerful test of the I(0) null against the I(1) 
alternative, even in the simplest Gaussian parameterizations (e.g., Shively, 1988). 
This suggests that any single 4T will not be uniformly best for all true models. 
Whether a one-dimensional #T can come close to being uniformly optimal, as it 
can in the unit AR root testing problem, is a subject for future research. 

It would also be of interest to compare these classifiers to other approaches, 
such as I(0) or I(1) tests with critical values that depend on the sample size or the 
PhillipssPloberger (1991) posterior odds ratio approach. Another question is 
the calibration of this classifier in the context of specific loss functions, which 
presumably would depend on the application at hand. These problems are left 
for future research. 

Appendix A: Proofs of Theorems l-4 

The proofs are applications of the functional central limit theorem (FCLT); 
see, for example, Hall and Heyde (1980), Ethier and Kurtz (1986) or Herrndorf 
(1984). Throughout, set K,(m) = k(m/l,)/C;=_,, k(j/l,). 

Proof‘ of‘ Theorem I 

(a) By Assumption A(i), 

[T/l [TL] 

T-“2,F; L’; = T-“2 c (u, - 6,) 
f=l 

= u,,(l.) - DOT(i) * wO( w(n) - &,(A)) = w,, w;(n). 64.1) 
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Let Giz = 12 = _ I, k(m/l,)T- ’ CT= ,,,,, + 1 u, u,_ ,,,,, . Under the stated assumptions 
on lT and the kernel k, 6’ + p 0;. Thus it is sufficient to show that 
l&2 - G21 + pO. Now, 

lb2 - 6’) = 5 k(m/l,)T-’ (4&1,1 - UtsrPbl -u,-,,,&) 
In= -I, r=lml+l 

where 1[6,11 = T-lC?l 6:. Because I,+ cc and IIu,(I + “y,(O), 

16’ - 15~1 + pO if l+llS,(l -+ pO, which is assumed as condition A(ii). 

(b) Write 

N, “2f,7T(4 = N, l/2& ‘T- l/2 ,cl Y: = B?1'2AT(A)> 

where 

[Tal 

A,@) = T-3’2 1 yf, BT = T-’ 5 KT(m)fyd(imi). 

s=l m= -lT 

By Assumption B(i), 

In the case of no detrending, it was shown by Phillips (1991b, App.) that if u, is 

I(l), then BT * co: 1; W, (s)‘ds. This result was extended to linear trends (OLS 
detrending) by Kwiatkowski, Phillips, Schmidt, and Shin (1992) and to general 
polynomial trends (OLS detrending) by Perron (1991). Lemma A.1 (below) 
extends this result extended to the general trends satisfying conditions A and B. 
It is shown in the lemma that ZT = T-‘CT= i (yf)’ - BT + p 0, so that by 
Assumption B(i) and the continuous mapping theorem, BT * W: s; W”, (s)~ ds. 

Combining the limiting representations for AT(.) and BT yields the desired 
result. 0 

Lemma A.I. Let ET = T-‘CCI (yf)’ - BT, where BT = T-‘Ck= _,,K,(m) 

x i&ml). If y, is I(I), l$ln T/T+ 0, and Assumption B holds, then 2-T + pO. 
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Proof: Use Ck=_,, K,(m) = 1 and K,(m) =KT( - m) to write 

2T-1C4=1 K,(m)(Y^yd(0) - $,&I)). For m 3 1, 

&(O) - i&4 = Tm 1 f: yi’ A, y;’ + T- 1 2 (Y:)~, 
t=m+1 t=1 

where A, = 1 - L”. Thus, 

IETI d 2T-’ i K&n)IT-’ i y;A,y:l 
m=l t=m+l 

+ 2~’ c K,(m)lT-’ c (y:‘121 
In=1 r=1 

= AIT + AZT, 

say. These two terms are handled in turn. 

0) Al,. Note that (T-‘CT=,+, y:‘A,yal G 

C:=,+dAmy:)2)1’2. 

125 

z ‘T = 

{T-’ x 

The definition of K,(m) and the assumption, made following (4) in the text, that 
I- ‘I\= I k(u/A) 2 k, where k is a positive constant, imply that I, d 1, 1 kp l. 
Using this inequality and ?I2 < 1 + x for all x 3 0, we have 

AlTd 2T-’ $ K,(m){Tm’ $ (y:)2}1’2{T-1 ; (A,,,Y~)~}~‘~ 
m=l r=1 t=m+1 

d 2{T-2 i (Y:)~)“~ {G’k~’ ,;1’2m&K2t;$+l (A,,,Y:)~)“~} 
1=1 

G 2{Tm2 i (y;‘,2}“2{~-‘I,1q,“2 i [l +q~T-2~~~+l(A,y~)2,~ 
I=1 m=l 

=2{Tp2~(y;)2]‘!2(k-1q;1’2 +k-11r’q;‘2T-2 $ i (A,Y;)~) 
t=1 m=1t=m+1 

= ~D:IT~{D~T + kj, 

where DIT= T-2&(y;1)2, D2T=k-1q,“2, D,, = &m1/r1q;‘2T-2 x 

Ci=,C:=,+,(Arn~;1)~> and qT is a positive nonstochastic sequence such that 
qT + co. To be concrete, set qT = (ln T)2. 

Now D IT =m:j”; W’:(s)‘ds by A ssumption B(i). Also, DZT = l/(kln T) + 0. 
Thus AlT --) “0 if D3T + p 0. Also, D~T=(~~T/(~~TT))C~=~I~~,Y~II 6 



D3r d (lnTl(kI,T)) i {m(ldu,l11'2 + m(~A6,11'*2)2 
m = 1 

< (c/k)(IZ,InTiT) [lldull + lId411)1’2, (A.2) 

for some constant C. Under the I( 1) assumption, 11~1 II, 11 + Pi’ I,(O), and under 
Assumption B(ii) (/LIP, (I = O,( 1); with the rate condition /t In T/T-+ 0, it follows 
that D3r + pO. 

by Assumption B(i) and because IT/T+ 0. 0 

Proof‘ of‘ Theorem 2 

Throughout. let jr = diag(l, T, __. , Tq) and let MT = T- ’ 1; ‘If= 1z, 2,’ 1-F ‘. 
The nonstochastic (4 + 1) x (y + I) matrix MT has typical element MT,ij= 

T-’ C;=l(r/T)‘+.i~2, which has the limit MT.ij + l!(i +,j - 1) = Mij whether )I, 
is I(O) or I(1). 

(a)(i) Direct calculation shows that Dar(i) = T- “2 I,:?! 6, = vT(i)‘M+ ’ @T, 
where rr(i.) = T- ’ xi:/ 1; ’ z,, and @r = T- ‘.” CT:, 1‘; ‘z, u,. The (q + 1) x l- 
dimensional process ~~(1.) is nonstochastic and has the limit ~~(1) -+ r(i), where 
the ith element is r,(k) = i.‘!i. Under the I(0) assumption (2), the random 
(q + I)-vector @,. has the limit, Q7 *CO,@, where @, = W(1) and @i = W(l)- 
(i - 1)~~s’~’ W(.s)d.s for i = 2, . . ..q + 1. Thus (U,r,D,r(.)) *c~~,,(W(~),D,,(~)) 
where Do(L) = @‘M ‘v(i), which verifies condition A(i). 

(a)(ii) Similar calculations demonstrate that TllcS(l = @;. M, ‘Qr =s 

tu;@‘M-‘@ = O,,(l). 

(b)(i) D,r(j_) = T- ‘:26LT,l = <r(l.)‘M+ ’ YT, where <r(i) = I‘+ ‘ztr,, and 
yr = ~-3’2 

)-T_, 1.7 ‘~~14, = ~~&(.s)CJ1r(.s)d.s. The nonstochastic (q + 1) x 1 vec- 
tor has the limit CT(.) + <(.), where <,(A) = i.‘- ‘. As a consequence of this result, 
the I(O) assumption (2). and the continuous mapping theorem, ‘YT *[I)~ Y, 
where Y = ~~<(.s)W(.s)ds. Thus O,.,(.) atulY’M~‘;(.) = toID,( 

(b)(ii) Write d6, = (j? - p)‘dz, = @- /j)‘z~, where zfj = tj-’ - (1 ~ l)j-‘. 
Also define S,(i) = (T”2(6,T,l - ~3,~~,_ ,)i’. Then .S,(QT) = (T”‘LI(~,)~= 

/lf’Mr (t/T) /);, where MT (t.‘T) = T2 1.; ’ zfm z,-’ 1.; ’ and j$ = T- I” I;(/? - p). 

Using the results in the proof of part (b)(i), [j; = M;’ Yr +to,M-‘Y. In 
addition, let <r(i) = T 1-F ‘zLmTil; then <T(L)+ F(i) = (0, 1,2i., ,yi,Y- ‘) and 
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M,(i) = lf(,I)r+(;l)‘+ <-(/I)<-(i)‘, both uniformly in /1. It follows that 
11 T”2d6,1( = &&)d3, + o; ‘PM ~‘MtM-‘YY, where Mt = ~~<-(~)~-(~)‘dL 
Direct evaluation of M’ shows that Mt, = Mii = 0 and M~j = (i - 1) x 
(j-l)/(i+j-3),i,j>2. 0 

Proof‘of Theorem 3 

(a) The proof uses Corollary 1 in Bai (1992, Ch. 2). Under the conditions of 
Theorem 3(a), Bai (1992) shows that (T”‘y,(k - k), Tls2 Y,(t? - 0)‘)’ * wO@, 

where Yr = diag(1, T, T) and @ = (k*’ @*‘)’ is distributed N(0, Q(zO))‘), 
where Q(z) is given in the statement of Theorem 3(a). Under this nesting, 
k - k # O,(l), but ? = i/T is consistent for T,,: because T1”yT(k^ - k,) =j 
o,, k* = O,(l), T312yT(1^ - 7J =$ coo k*, but T312y, + cc by assumption, so 
z + Pto. 

(i) It is useful to express the trend estimation error as the sum of two 
components, a term arising from the error in estimating H and a term arising 
from the error in estimating k: 6,(i) = Jr(i) - d,(k,) = z,(k^)!(t? - 0)+ 

(z,(k) - z,(k,))‘8. Thus, 

&,r(&?) = T- ls2 2 &(k^) = ?T(&f)I&(t) + pT(i, t), 64.3) 
.s = 1 

where Fr(j”,r) = T-’ xi”i I‘,’ zs([T7]) = l;=O[T(.s,7)dS, where i;T(&7) = 
1-F’ z,~;]([T~]) = il, [TA],‘T, ([Ti] - [T7])1(3. > 7)/T)‘, ci,(;) = T1’2 Yr(d - O), 

and p&,7) = Tm ““Cb”i (z,([T7]) - z,([T7,]))‘0 = &,$T(S, r)dS, where 

eT(i.,7) = T”‘(z,~,.,([T~]) - zrTj.J([T70]))‘8. The three terms ;T, or, and pT are 
considered in turn. 

S,(1,7). This is a deterministic function of ,I and T. Note that tT is determin- 
istic and has the limit, 

lT(’ > .) -+ t(’ 3. ), ((2,~) = (l,i,,(i - s)l(A > 7))‘. (A.4) 

Because iT is a continuous functional of tT, it has the limit, Fr(. , .) --f ?(. , .), where 
;(A, 5) = (2, in2, f(3. - T)~ l(3, > r))‘. Because tr, and therefore CT, and their limits 
are continuous in T, and because < --+ pz,,, ?T(. ,?) + G(., z,,). 

o,(t). From Bai (1992), b,(F) * 8* as defined previously. 
pT(i,7). A direct calculation shows that 

er(t/T, k/T) 

= T “‘;‘rsign(kO - k)(t - min(k,kO))l(min(k,kO) < t < max(k,k,)) 

- T”’ jlT(k - k,)l(t 3 max(k, k,)). 64.5) 

Although e& ?) is discontinuous in L in the limit, St=,, e,(s, ?)d.s is continuous in i. 
The consistency of ?, the continuity of St= 0 eT(s, s)ds, and a straightforward calcu- 
lation imply that p&Z) = - rite, k*l(s > sO)ds = - tu,k*(i. - zo)l(i > 70). 
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Combining these three results, we have that D,r(. , t) a coo C(. , z,,)‘d* 

- ook*(A - ~,)1(3, > TV) = wov(. , T,-J’@, where ~(2, r) and @ are defined in the 
statement of the theorem. 

(ii) Define [,(A) = T1’261rj,,, so that TIJfi,J/ = jA[T(1)2d3,. Using previously 
defined expressions and results, we have jA[T(i)2d2 = [A {6$(,(2,?) - 
~(1, ?)}‘dI =j W; l:, {0*‘@, rO) - k* 1(/I > r,)j2dA = w;@‘{ I:, (‘(s, s,)<+(s, rO)’ 
X ds}@, where rt(s, T) = (-l(s > T),~(s,T)‘)‘, which is the desired result. 

(b)(i) Let FIT(L 4 = T- 1'2S~~,.l([T~l ), so that IIIT(,I) = FIT(;I,Q). The strat- 
egy of the proof is first to obtain a limiting representation for the process 
F, r(. , .), which will be continuous in its two arguments, next to obtain a limiting 
representation for ?, and then to use these two results and the continuous 
mapping theorem to obtain the desired limiting representation for DIT(.). 

Using terms defined in the proof of part (a), write FIT as 

F,,(&r) = <,(n,T)‘Tml d,(T) + T- ‘+(i,T). 

It was previously shown that rT + <. Next consider T- ’ eT(A, t). From (A.5) 

I~~‘~-(rl~,klT)l 

= (T- ‘12yT(t - min(k, k,))I l(min(k, k,) < t < max(k, k,)) 

+ IT-llZy,(k - k,)Jl(t 3 max(k,ko)) 

d lTp1i2.JT(k - k,)l < IT1”yTI, 

where the two inequalities are uniform in t and k and the second follows from 
lk - ko( < T. By assumption, T1’2yT --f 0; thus T- 1 eT(. , .) + 0. 

Next consider Tp’d,(r). Now T-‘&(z) = Tp’i2Y,(d([Tz]) - 0) = 

MT(T)-’ {NT(T) + Y,(T)), where NT(T) = Tm3’2C;= 1 1-F’ q([T~])(z~([Tz,]) 
- z,([Tr]))‘U, Y,(T) = T-312C?l l-F1 z,([Tr])u,, and MT(~) = Tml YF’ x 

CT= 1 z, ([ TT]) Z, ([ITT])’ I-; ‘. Direct calculation reveals that MT(.) + M(.), where 
M(.) = s; <(s, T) <(s, r)‘d s as defined in the statement of Theorem 3. NT can be 
rewritten NT(~) = lhtT(s, T) (T- ’ eT(s, z))ds; the results tr + t and T- ’ eT --) pO 
imply that N7 + pO. Under the I(1) assumption, the remaining term, Y,(T), has 
the limit Y,(.) = J~~T(~,~)LIIT(s)d s 3 w1 Jk<(s, .) W(s)ds = or Y(.). Combining 
these various expressions, we have Tm ‘o^,(.) s WOMB’ Y(.), so FIT(. , .) 
*OFFS, where F,().,r) = <(;.,r)‘M(z)-‘Y(T). 

The next step of the proof is to obtain a limiting representation for i-. By 
definition, t solves (13) which can be rewritten as the problem of minimiz_ing 
ST(r) over Tmin < T_< smax,, where ST(r) = Tm2CTz 1 &([TT])~. Let 6,(k) = d,(k) 
-d,(k,), where d,(k) = H(k)‘;,(k). Then S,(T) = T-2C~=I iyr - d,([T~])j~ 
= Tm2j-,T=1 (ut - S,([TT])}~ = TmlCf=, {U,,(t/T) - F,,(~/T,[TT]/T)}~= 

j,~=O(UIT(~) - F,r(s,[Tt]/~)j~2ds. It follows that S,(.) =S(.), where S(z)= 
w:J,~=~ ( W(s) - F, (s, s)}2d.s. Thus ? 3 T*, where T* has the distribution 
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wwh E ITm,n. r,,,] 1; { Ws) - FI (s> 7,)’ ds. B ecause F1 is continuous in r, it 

follows that Dir(.) = F,,(.,?) *olFl(.,z*) = olDI( 
(b) (ii) By direct calculation, 

= l&(k) - 6, - I (k) I 

=I(&+ Q’{z,V+z,~,WS + @{z,(k)-d’d- z,-I@) + zr-I&J)I 

d Ii%) - Bl + I%k) - ~+I10 > 4 + IyrlWW,kd < f < maxkh)). 
64.6) 

In the proof of part (b)(i) it was shown that T-‘d,(.) G-M(.)~’ Y(.), where 
T-$(T) = T-l" &(&[rT])- 6)= {T- 1'2(o;([7-7]) - cX),T"'(b([r7]) - p), 

T1'2(ljT([T7])- yT)}. Thus, in particular, supr$([T7])- fil + pO and 

~~Prl%C~71) - Yrl + pO, so the first two terms in (A.@ converge to zero 
uniformly in 2 = t/T, 7 = k/T. In addition, yT + 0 by assumption, so the final 
term in (A.6) vanishes. Thus sup,,,IqT(i,~)I + pO, so Y]~(.;) + pO as 
desired. q 

Proof of Theorem 4 

The proofs of parts (a) and (b) are, respectively, modifications of the proofs of 
Theorem 3(a) and 3(b), and notation and expressions refer to those proofs. 

(a)(i) In the notation of the proof of Theorem 3(a), because yT = 0, 
pT(/1,7) = 0 identically, so DoT(i, 7) = CT(i, T)'OT(S). As in the proof of Theorem 

3, GT(., .) + ;(. ) .). Because YT = 0, e,(f) = MT(?)_ l@T(z*), where 
@+(z) = T- 1/2 Y;‘CfT_ 1 z,([T~])u~. It follows from the FCLT that 
GT(.) *oO@(‘) as defined-in the statement of Theorem 4; thus 8,(.) ad*(.), 
where O*(7) = woM(7)m ' Q(z), from which it follows that D,,(., .) *a,, DO(. ;), 
where DO(i, 7) = 3(&7)'13*(7). 

Because Do(A,7) is continuous in 7, D,,T(.,t) a Do(.,7’), where 7+ is the 
limiting representation for Z (obtained jointly with the other expressions 
comprising Do). Because 11 u, 11 does not depend on 7, the solution to the problem 

mm, E [Trn,“~ Trn&” ,llti,([T7])ll is equivalent to the solution to the problem 

max, t [G”,“. Larl 

Y, - &(4. 

Hd4, where ffT(7) = T(ll~,ll - ll4(~~~l)l/), where 4(k) = 
A standard calculation reveals that, when 1/T = 0, 

HT(.) + H(.) = O*(.)'M(.)U*(.) = &.)tM(.)m '6(.). By the continuity of the 
distribution of the argmax, the limiting representation for ? as 

argmax, E tTmln. Tm*Xl H(7) follows. 

(a)(ii) By direct calculation, TllS,([Tz])ll = HT(7), so TllS, (I = HT(?) == H(z+), 
the desired result. 



(b)(i) The proof of Theorem 3b(i) applies directly, with the simplifications 
that eT = 0 and NT = 0. 

In particular, the key result that T- ‘OT_(.) - M(.)-’ u’(.) still holds. 
(b)(ii) This follows from the proof of Theorem 3b(ii), using 

T-lo*,(.) =a M(.)ml Y(.). 0 
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