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1. Introduction 

Macroeconometricians face a peculiar data structure.  On the one hand, the 

number of years for which there is reliable and relevant data is limited and cannot readily 

be increased other than by the passage of time.  On the other hand, for much of the 

postwar period statistical agencies have collected monthly or quarterly data on a great 

many related macroeconomic, financial, and sectoral variables.  Thus 

macroeconometricians face data sets that have hundreds or even thousands of series, but 

the number of observations on each series is relatively short, for example 20 to 40 years 

of quarterly data. 

This chapter surveys work on a class of models, dynamic factor models (DFMs), 

which has received considerable attention in the past decade because of their ability to 

model simultaneously and consistently data sets in which the number of series exceeds 

the number of time series observations.  Dynamic factor models were originally proposed 

by Geweke (1977) as a time-series extension of factor models previously developed for 

cross-sectional data.  In early influential work, Sargent and Sims (1977) showed that two 

dynamic factors could explain a large fraction of the variance of important U.S. quarterly 

macroeconomic variables, including output, employment, and prices.  This central 

empirical finding that a few factors can explain a large fraction of the variance of many 

macroeconomic series has been confirmed by many studies; see for example Giannone, 

Reichlin, and Sala (2004) and Watson (2004). 

The aim of this survey is to describe, at a level that is specific enough to be useful 

to researchers new to the area, the key theoretical results, applications, and empirical 

findings in the recent literature on DFMs.  Bai and Ng (2008) and Stock and Watson 
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(2006) provide complementary surveys of this literature.  Bai and Ng’s (2008) survey is 

more technical than this one and focuses on the econometric theory and conditions; Stock 

and Watson (2006) focus on DFM-based forecasts in the context of other methods for 

forecasting with many predictors. 

The premise of a dynamic factor model is that a few latent dynamic factors, ft, 

drive the comovements of a high-dimensional vector of time-series variables, Xt, which is 

also affected by a vector of mean-zero idiosyncratic disturbances, et.  These idiosyncratic 

disturbances arise from measurement error and from special features that are specific to 

an individual series (the effect of a Salmonella scare on restaurant employment, for 

example).  The latent factors follow a time series process, which is commonly taken to be 

a vector autoregression (VAR).  In equations, the dynamic factor model is, 

Xt = (L)ft + et      (1) 

ft = (L)ft–1 + t     (2) 

where there are N series, so Xt and et are N1, there are q dynamic factors so ft and t are 

q1, L is the lag operator, and the lag polynomial matrices (L) and (L) are Nq and 

qq, respectively.  The i
th

 lag polynomial i(L) is called the dynamic factor loading for 

the i
th

 series, Xit, and i(L)ft is called the common component of the i
th

 series.  We assume 

that all the processes in (1) and (2) are stationary (nonstationarity is discussed in the final 

section of this chapter).  The idiosyncratic disturbances are assumed to be uncorrelated 

with the factor innovations at all leads and lags, that is, Eett–k = 0 for all k.  In the so-

called exact dynamic factor model, the idiosyncratic disturbances are assumed to be 

mutually uncorrelated at all leads and lags, that is, Eeitejs = 0 for all s if i  j. 
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An important motivation for considering DFMs is that, if one knew the factors ft 

and if (et, t) are Gaussian, then one can make efficient forecasts for an individual 

variable using the population regression of that variable on the lagged factors and lags of 

that variable.  Thus the forecaster gets the benefit of using all N variables by using only q 

factors, where q is typically much smaller than N.  Specifically, under squared error loss, 

the optimal one-step ahead forecast of the i
th

 variable is, 

E[Xit+1| Xt, ft, Xt–1, ft–1,…] = E[i(L)ft+1 + eit+1| Xt, ft, Xt–1, ft–1,…]  

       = E[i(L)ft+1| Xt, ft, Xt–1, ft–1,…] + E[eit+1| Xt, ft, Xt–1, ft–1,…] 

       = E[i(L)ft+1| ft,  ft–1,…] + E[eit+1| eit, eit–1, …] 

= (L)ft + (L)Xit,      (3) 

where the third line follows from (2) and the final line follows from (1) and the exact 

DFM assumptions.  Thus the dimension of the efficient population forecasting regression 

does not increase as one adds variables to the system. 

The first issue at hand for the econometrician is to estimate the factors (or, more 

precisely, to estimate the space spanned by the factors) and to ascertain how many factors 

there are; these two topics are covered in the Sections 2 and 3 of this survey.  Once one 

has reliable estimates of the factors in hand, there are a number of things one can do with 

them beyond using them for forecasting, including using them as instrumental variables, 

estimating factor-augmented vector autoregressions (FAVARs), and estimating dynamic 

stochastic general equilibrium models (DSGEs);  these applications are covered in 

Section 4.  Section 5 discusses some extensions. 
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2. Factor Estimation 

The seminal work of Geweke (1977) and Sargent and Sims (1977) used frequency 

domain methods to look for evidence of a dynamic factor structure and to estimate the 

importance of the factor.  Those methods, however, could not estimate ft directly and thus 

could not be used for forecasting.  Therefore subsequent work on DFMs focused on time-

domain methods in which ft could be estimated directly.   

Work on time-domain estimation of DFMs can be divided into three generations.  

The first generation consisted of low-dimensional (small N) parametric models estimated 

in the time domain using Gaussian maximum likelihood estimation (MLE) and the 

Kalman filter.  This method provides optimal estimates of f (and optimal forecasts) under 

the model assumptions and parameters.  However, estimation of those parameters entails 

nonlinear optimization, which historically had the effect of restricting the number of 

parameters, and thus the number of series, that could be handled.  The second generation 

of estimators entailed nonparametric estimation with large N using cross-sectional 

averaging methods, primarily principal components and related methods.  The key result 

in this second generation is that the principal components estimator of the space spanned 

by the factors is consistent and moreover, if N is sufficiently large, then the factors are 

estimated precisely enough to be treated as data in subsequent regressions.  The third 

generation uses these consistent nonparametric estimates of the factors to estimate the 

parameters of the state space model used in the first generation and thereby solves the 

dimensionality problem associated encountered by first-generation models.  A different 

solution to the problem of the very many unknown parameters in the state space model is 

to use Bayesian methods, that is, to specify a prior and integrate instead of maximize, and 
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a small number of papers took this approach contemporaneously with the work on the 

second and third generation (classical) estimators.  

The expressions in this chapter omit intercepts, and all the methods assume that 

the data have been transformed to eliminate unit roots and trends.  Typically this is 

accomplished by differencing series as needed, then by standardizing the differenced 

series; for example, a typical element of Xit might be the one-period growth rate of a real 

activity indicator, standardized to have mean zero and unit standard deviation. 

2.1 First generation:  time-domain maximum likelihood via the Kalman filter 

Early time-domain estimation of dynamic factor models used the Kalman filter to 

compute the Gaussian likelihood, estimated the parameters by maximum likelihood, then 

used the Kalman filter and smoother to obtain efficient estimates of the factors (Engle 

and Watson (1981,1983), Stock and Watson (1989), Sargent (1989), and Quah and 

Sargent (1993)).  The first step in implementing this approach is to write the DFM as a 

linear state space model.  Let p be the degree of the lag polynomial matrix (L), let Ft = 

(ft, ft–1,…, ft–p) denote an r×1 vector, and let  = (0, 1,…, p), where i is the Nq 

matrix of coefficients on the i
th

 lag in (L).  Similarly, let (L) be the matrix consisting 

of 1’s, 0’s, and the elements of (L) such that the vector autoregression in (2) is 

rewritten in terms of Ft.  With this notation the DFM (1) and (2) can be rewritten, 

Xt = Ft + et       (4) 

(L)Ft = Gt,       (5) 

where G is a matrix of 1’s and 0’s chosen so that (5) and (2) are equivalent.  Equations 

(4) and (5) are referred to as the “static form” of the DFM because the factors appear to 

enter only contemporaneously, although this is just a notational artifact since the static 
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factors Ft contain current and past values of the dynamic factors ft.  The linear state space 

model is completed by specifying a process for et and for the errors t.  Typically the 

errors et are assumed to follow univariate autoregressions, 

di(L)et = it, i = 1,…, N.     (6) 

With the further assumptions that it is i.i.d. N(0, 2

i
 ), i = 1,…, N, jt is i.i.d. N(0, 2

j ), j= 

1,…, q, and {t} and {t} are independent, equations (4) – (6) constitute a complete 

linear state space model.  Given the parameters, the Kalman filter can be used to compute 

the likelihood and to estimate filtered values of Ft and thus of ft. 

An advantage of this parametric state space formulation is that it can handle data 

irregularities.  For example, if some series are observed weekly and some are observed 

monthly, the latent process for the factor (5) can be formulated as evolving on a weekly 

time scale, but the dimension of the measurement equation (4) depends on which series 

are actually observed, that is, the row dimension of  would change depending on the 

variables actually observed at a given date; see Harvey (1989, p. 325) for a general 

discussion.  Angelini, Bańbura, and Rünstler (2008) implement a DFM-based model with 

mixed monthly and quarterly data for the purpose of monthly distribution of Euro-area 

GDP, that is, for estimating and forecasting unobserved monthly GDP.  In a closely 

related application to U.S. data, Aruoba, Diebold, and Scotti (2009) implement a DFM 

with a single dynamic factor and a weekly variable, four monthly variables, and a 

quarterly variable to produce an index of economic activity that can be updated weekly.  

If some series are available for only a subset of the sample, the dimension of the 

measurement equation can change as time series become available. 
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The EM algorithm can be used to compute the MLEs of the parameters.  

Nevertheless, the number of parameters is proportional to N, so direct estimation of the 

coefficients by MLE is cumbersome and historically was prohibitive for large systems. 

2.2 Second generation:  nonparametric averaging methods 

Why cross-sectional averaging works.  The motivation for considering factor 

estimation by cross-sectional averaging of Xt is that weighted averages of the 

idiosyncratic disturbances will converge to zero by the weak law of large numbers, so 

that only linear combinations of the factors remain.  The cross-sectional averaging 

estimators are based on the static representation of the DFM (4). 

The cross-sectional averaging estimators are nonparametric, in the sense that they 

do not require a parametric model for the factors Ft as in (5) or for the idiosyncratic 

dynamics as in (6).  Instead, Ft is treated as a r-dimensional parameter to be estimated 

using a N-dimensional data vector Xt.  Instead of parametric assumptions, weaker 

assumptions along the lines of Chamberlain and Rothschild’s (1983) approximate factor 

model are made about the factor structure.  In particular, consider the conditions, 

N
-1
  D, where the rr matrix D has full rank, and  (7) 

maxeval(e)  c <  for all N ,     (8) 

where maxeval denotes the maximum eigenvalue, e = Eetet, and the limit in (7) is taken 

as N → ∞  Condition (7) assures that the factors are pervasive (they affect most or all of 

the series) and that the factor loadings are heterogeneous (so that the columns of  are 

not too similar).  Condition (8) ensures that the idiosyncratic disturbances have limited 

correlation across series. 
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To develop intuition for why cross-sectional averaging works, consider the 

estimator of Ft constructed as the weighted average of Xt using a nonrandom Nr matrix 

of weights W, where W is normalized so that WW/N = Ir: 

1ˆ ( )tF N W  =   N
–1

WXt.      (9) 

If N
–1

W  H as N   where the rr matrix H has full rank, and if conditions (7) and 

(8) hold, then 1ˆ ( )tF N W  is consistent for the space spanned by Ft: 

1ˆ ( )tF N W  =   N
–1

W(Ft + et) = N
–1

WFt  + N
–1

Wet  
p

  HFt as N   (10) 

because N
–1

W  H by assumption and because N
–1

Wet 
p

  0 by the weak law of large 

numbers.
1
  Because H is full rank, 1ˆ ( )tF N W  consistently estimates the space spanned by 

the factors. 

The key to the consistency result (10) is having a weight matrix W such that N
–

1
W  H.  In some special cases it is possible to use postulated structure of the DFM to 

construct such a W.  An example that draws on Forni and Reichlin (1998) is the 

estimation of a single factor (r=1) that enters only contemporaneously in conceptually 

related series such as employment by sector.  In this case, Ft is a scalar (in terms of (1), 

i(L) has degree zero and q=1).  Further suppose that 0 < min  i   max <  for all i 

and N (this assumption implies (7)) and that (8) holds.   Then W =  (where  is the vector 

of 1’s) satisfies both the normalization condition N
–1

WW = 1 and the spanning condition 

N
–1

W    > 0, so (10) holds.  Note that there are many W’s that produce a consistent 

                                                 

1
 The result N

–1
Wet 

p

  0 follows from Chebyschev’s inequality.  Let Wj be the j
th

 column of W.  Then 

var(N
–1

Wjet)  maxeval(e)/N  c/N  0, where the first inequality follows because W is normalized so 

that N
–1

WW = Ir and the second inequality follows from (8). 
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estimator of Ft in this example, including random W’s.  For example, Wi = (1 + zi)/ 2 , 

where zi is i.i.d. N(0,1), satisfies N
–1

WW 
p

  1 and N
–1

W 
p

  2  > 0, so that (10) 

holds with H = 2 .  Thus many different cross sectional weighting schemes can yield 

a consistent estimator of Ft. 

In general, there will be insufficient structure on  to posit a weight matrix W that 

does not depend on the data, which is where principal components analysis comes in. 

Principal components estimation.  The principal components estimator of Ft is 

the weighted averaging estimator (9), with W = ̂ , where ̂  is the matrix of 

eigenvectors of the sample variance matrix of Xt, ˆ
X  = 1

1

T

t tt
T X X


 , associated with 

the r largest eigenvalues of ˆ
X .  The principal components estimator can be derived as 

the solution to the least squares problem, 

1 ,..., ,min ( , )
TF F rV F  , where Vr(,F) = 

1

1
( ) ( )

T

t t t t

t

X F X F
NT 

   , (11) 

subject to the normalization N
–1
 = Ir.  To solve (11), first minimize over Ft given  to 

obtain   1ˆ
tF


    =  

1

tX


    , then concentrate the objective function so that 

(11) becomes min 1 1

1
[ ( ) ]

T

t tt
T X I X 


    .  This minimization problem is 

equivalent to max tr{()
–1/2

   1

1

T

t tt
T X X


 ()

–1/2
}, which is in turn 

equivalent to max  ˆ
XX  subject to N

–1
 = Ir.  The solution to this final problem is 

to set ̂  equal to the scaled eigenvectors of ˆ
XX  corresponding to its r largest 
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eigenvalues.  Because ˆ ˆ   = NIr , it follow that the least squares estimator of Ft is  ˆ
tF  = 

1ˆ ˆ( )tF N    = 1 ˆ
tN X  , which are the scaled first r principal components of Xt. 

Consistency of the principal components estimator of Ft was first shown for T 

fixed and N   in the exact static factor model by Connor and Korajczyk (1986).  Stock 

and Watson (2002a) proved uniform consistency of the factors under weaker conditions 

along the lines of Chamberlain and Rothschild’s (1983) approximate factor model, 

allowing for weak serial and cross-correlation in the idiosyncratic errors.  Stock and 

Watson (2002a) also provided rate conditions on N and T under which ˆ
tF  can be treated 

as data for the purposes of a second stage least squares regression (that is, in which the 

estimation error in ˆ
tF  does not affect the asymptotic distribution of the OLS coefficients 

with ˆ
tF  as a regressor).  Bai (2003) provides limiting distributions for the estimated 

factors and common components  Bai and Ng (2006a) provide improved rates, 

specifically N  , T  , and N
2
/T  , under which ˆ

tF  is consistent and can be 

treated as data in subsequent regressions; they also provide results for construction of 

confidence intervals for common components estimated using ˆ
tF . 

Generalized principal components estimation.  Generalized principal 

components is to principal components as generalized least squares is to least squares.  If 

the idiosyncratic error variance matrix e is not proportional to the identity matrix, then 

the analogy to least squares regression suggests that Ft and  solve a weighted version of 

(11), where the weighting matrix is 1

e

 : 

1

1 1

,..., ,

1

min ( ) ( )
T

T

F F t t e t t

t

T X F X F 





   .    (12) 
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The logic following (11) leads to the infeasible generalized principal components 

estimator, 1ˆ ( )tF N   , where   are the scaled eigenvectors corresponding to the r largest 

eigenvalues of 1/2 1/2ˆ
e X e

     . 

The generalized principal components estimator 1ˆ ( )tF N    is infeasible because 

e is unknown.  The challenge in making this estimator feasible is finding a well-behaved 

estimator of e.  In applications in which N is comparable to or larger than T, the usual 

estimator of e based on the residuals is poorly behaved (if N>T, it is singular). 

At least three versions of feasible generalized principal components estimation 

have been proposed for the DFM.  First, Forni, Hallin, Lippi, and Reichlin (2005) 

rearrange the decomposition, X = F  + e, where F is the variance of the common 

component Ft (this decomposition follows from (4)) to obtain ˆ
e  = ˆ

X  – ˆ
F .  They 

propose estimating ˆ
F  by dynamic principal components (discussed below).  Second, 

Boivin and Ng (2003) suggest a two-step approach using the estimator ˆ
e  = diag({ 2

ies }), 

where 2

ies  is the usual estimator of the error variance of the regression of Xit onto the 

principal components estimator ˆ
tF ; by setting the off-diagonal terms in e to zero, their 

weight matrix  has only N estimated elements.  Neither of these approaches address 

possible serial correlation in et.  To take this into account, Stock and Watson (2005) 

suggest a three-step approach, akin to the Cochrane-Orcutt estimator, in which Ft is first 

estimated by principal components, N separate autoregressions are fit to the residuals of 

the regression of Xit on ˆ
tF , Xit is quasi-differenced using the coefficients of the i

th
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autoregression, and the Boivin-Ng (2003) diagonal e method is then applied to these 

quasi-differences. 

Dynamic principal components.  Dynamic principal components is the frequency 

domain analog of principal components developed by Brillinger (1964, 1981).  Forni, 

Hallin, Lippi, and Reichlin (2000, 2004) prove the consistency, and provide rates of 

convergence, of the common component estimated by dynamic principal components.  

Their method for estimation of ft by dynamic principal components requires two-sided 

smoothing, so estimates of ft at the end of the sample are not available.  Consequently 

dynamic principal components cannot be used directly for forecasting, instrumental 

variables regression, FAVAR, or other applications that require estimates of ft for the full 

sample, and we do not discuss this method further in this survey. 

2.3 Third generation:  hybrid principal components and state space methods 

The third generation of methods for estimating the factors merges the statistical 

efficiency of the state space approach with the robustness and convenience of the 

principal components approach.  This merger is of particular value for real time 

applications since the Kalman filter readily handles missing data and can be implemented 

in real time as individual data are released; for further discussion see Giannone, Reichlin, 

and Small (2008) and Reichlin’s chapter on “Nowcasting” in this Handbook.  

Additionally, the Kalman filter and smoother average across both series and time, not just 

across series as in the principal components estimators.  As a result, state space/Kalman 

filter estimates can produce substantial improvements in estimates of the factors and 

common components if the “signal” of the common component is persistent (so time 
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averaging helps) and small (so substantial noise remains after cross-series averaging); for 

an empirical example see Reiss and Watson (2010). 

This merged estimation procedure occurs in two steps, which are described in 

more detail in Giannone, Reichlin, and Small (2008) and Doz, Giannone, and Reichlin 

(2006).  First, the factors are estimated by principal components or generalized principal 

components.  In the second step, these estimated factors ˆ
tF  are used to estimate the 

unknown parameters of the state space representation.  The specifics of how to do this 

depend on whether the state vector is specified in terms of the static or dynamic factors. 

State space model with static factors.  In this case, the state space model is given 

by (4) – (6).  Given estimates ˆ
tF ,  is estimated by a regression of Xt on ˆ

tF , and the 

residuals from this regression are used to estimate the univariate autoregressions in (6).  

The VAR coefficients (L) can be estimated by a regression of ˆ
tF  onto its lags, and the 

variance of Gt can be estimated by the residuals from this VAR. 

State space model with dynamic factors.  In this case, the state space model is 

given by (1), (2), and (6), where now ft and its lags explicitly enter the state vector instead 

of Ft.  Because the dimension q of ft is less than the dimension r of Ft, the number of 

parameters is reduced by formulating the state space model in terms of ft; that is, the 

VAR for ft given in (2) leads to constraints on the lag polynomial (L) in (5).  Given 

estimates ˆ
tf  of the dynamic factors, computed as described above, the coefficients of (1) 

can be estimated by regressions of Xt onto ˆ
tf  and its lags; the coefficients of (2) can be 

estimated by estimating a VAR for ˆ
tf ; and the coefficients of (6) can be estimated using 

the residuals from the regression of Xt onto ˆ
tf . 
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These estimated parameters fully populate the state space model so that an 

improved estimate of Ft or ft, which now invokes time-series averaging, can be computed 

using the Kalman smoother. 

It is also possible to use these estimated coefficients as consistent starting values 

for maximum likelihood estimation of the coefficients.  The MLEs can be computed 

using the EM algorithm, see for example Engle and Watson (1983), Quah and Sargent 

(1993) and Doz, Giannone, and Reichlin (2006).  Jungbacker and Koopman (2008) show 

how to speed up the evaluation of the Kalman filter in the DFM by transforming the Xt 

into an r×1 vector.  Jungbacker, Koopman, and van der Wel (2009) provide additional 

computational devices that can be used when there are missing data. 

2.4 Comparisons of estimators 

Several studies have compared the performance of principal components 

estimators and various feasible generalized principal components estimators in Monte 

Carlo exercises and in forecast comparisons with actual data.  The studies reach 

somewhat different conclusions when N is small, presumably because the study designs 

differ.  Forni, Hallin, Lippi, and Reichlin (2005) find, in a Monte Carlo study, that their 

generalized principal components estimator is substantially more precise than the 

principal components estimator of the common component when there are persistent 

dynamics in the factors and in the idiosyncratic disturbances, although these differences 

disappear for large N and T.  In contrast, Boivin and Ng (2005), using a Monte Carlo 

design calibrated to U.S. data, find only minor differences between the principal 

components and Forni et. al. (2005) generalized principal components estimators. 
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Boivin and Ng (2005) and D’Agostino and Giannone (2006) also compare the 

forecasting performance of the principal components estimator to various feasible 

generalized principal components estimators.  Although there are nuances, the 

overarching conclusion of these comparisons is that the forecasts produced using the 

various estimators of the factors are highly collinear (holding constant the forecast 

specification and changing only the factor estimator), and produce very similar R
2
s.  

There is some evidence that the generalized principal components estimators produce 

more variable forecasts (sometimes better, sometimes worse) than principal components 

when N is small, but for values of N and T typical of applied work there is negligible 

difference in the performance, as measured by pseudo out-of-sample mean squared error, 

among the forecasts based on the various estimators.  This result reassuringly accords 

with the intuition provided at the beginning of this section, that there is no unique weight 

matrix W that produces a consistent estimator of the factors, ˆ ( )tF W ; rather, sufficient 

conditions for consistency are that W  H, where H is full rank, and that WeW  0. 

2.5 Bayes estimation 

The DFM parameters and factors also can be estimated using Bayesian methods.  

Historically, there are three main motivations for using Bayes methods to estimate 

DFMs:  first, integration to compute the posterior can be numerically easier and more 

stable than maximizing the likelihood when there are very many unknown parameters;  

second, Markov Chain Monte Carlo methods can be used to compute posteriors in 

nonlinear/nonGaussian latent variable models in which it is exceedingly difficult to 

compute the likelihood directly; and third, some analysts might wish to impose a-priori 

information on the model in the form of a prior distribution.  The first two of these 
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motivations, however, are less relevant today, at least for DFM applications with large N 

and relatively few factors:  the second-generation nonparametric estimators sidestep the 

numerical challenges of brute-force MLE and allow the factors and idiosyncratic terms to 

follow nonlinear and/or nonGaussian processes, and the third-generation methods refine 

these nonparametric estimates using a high-dimensional parametric state-space model. 

Bayes estimation of the DFM parameters and the factor are based on Markov 

Chain Monte Carlo methods.  Chib and Greenberg (1996) lay out the basics of Gibbs 

sampling applied to linear/Gaussian state space models.  Otrok and Whiteman (1996) 

provide an early implementation of these methods to a linear/Gaussian DFM in state 

space, in which they estimate a single dynamic factor using four variables.  Kose, Otrok, 

and Whiteman (2003, 2008) use these methods to characterize international 

comovements and to study international transmission of economic shocks;  Kose, Otrok, 

and Whiteman’s (2008) model has 7 common factors among 60 countries, with 3 series 

per country (so N = 180) and T = 30 annual observations.  Bernanke, Boivin, and Eliasz 

(2005) use Gibbs sampling to estimate a state-space version of a Factor Augmented 

Vector Autoregression (FAVAR, discussed below), but they report that doing so provides 

only modest changes relative to a second-generation estimation approach in which 

principle components estimates of the factors are treated as data.  Boivin and Giannoni 

(2006) use Markov Chain Monte Carlo methods to estimate the parameters of a dynamic 

stochastic general equilibrium (DSGE) model for the latent factors, that is, a model for 

(L) and var(t) in (2), which are measured by observable series, thus imposing structure 

on (L) to identify the factors.  In Boivin and Giannoni’s (2006) application, and in the 
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DSGE literature more generally, the priors serve to overcome what appears to be a lack 

of identification or weak identification of some of the DSGE parameters. 

Although the focus of this chapter is the linear DFM, with Gaussian errors when 

treated parametrically, Bayesian methods are particularly useful when the model contains 

nonlinear and/or nonGaussian elements.  For example, Kim and Nelson (1998) estimate a 

four-variable DFM in which a single latent factor has a mean that follows a latent 

Hamilton (1989) Markov switching (regime switching) process.  The Hamilton (1989) 

filter does not extend to this case, that is, for this model, closed-form expressions for the 

integrals in the general nonlinear/nonGaussian filter in Kitagawa (1987) are not known.  

The hierarchical nature of this model, however, lends itself to Gibbs sampling and thus to 

computation of the posterior distribution of the model parameters and the dynamic factor.    

Carlin, Polson and Stoffer (1992) lay out the general MCMC approach for 

nonlinear/nonGaussian state space models.  It should be noted, however, that in a large-N 

context, the difficulties posed by the nonlinear/nonGaussian structure for the factors in 

Kim and Nelson (1998) are also handled by second-generation classical methods.  For 

example, if N is large then ˆ
tF  can be treated as data and the original Hamilton (1989) 

switching model can be applied instead of using the Kim and Nelson (1998) method, 

although we are not aware of an application that does so. 

A practical motivation for using Bayes methods would be that they produce better 

forecasts than second- or third-generation classical methods, however we are not aware 

of a study that undertakes such a comparison. 
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3. Determining the Number of Factors 

Several methods are available for estimating the number of static factors r and the 

number of dynamic factors q. 

3.1 Estimating the number of static factors r 

The number of static factors r can be determined by a combination of a-priori 

knowledge, visual inspection of a scree plot, and the use of information criteria 

developed by Bai and Ng (2002).   

Scree plots as a visual diagnostic.  A scree plot, introduced by Catell (1966), is a 

plot of the ordered eigenvalues of ˆ
X  against the rank of that eigenvalues.  Scree plots 

are useful diagnostic measures that allow one to assess visually the marginal contribution 

of the i
th

  principal component to the (trace) R
2
 of the regression of Xt against the first i 

principal components.  The scree plot is a useful visual diagnostic; formal tests based on 

scree plots are discussed below. 

Estimation of r based on information criteria.  Bai and Ng (2002) developed a 

family of estimators of r that are motivated by information criteria used in model 

selection.  Information criteria trade off the benefit of including an additional factor (or, 

more generally, an additional parameter in a model) against the cost of increased 

sampling variability arising from estimating another parameter.  This is done by 

minimizing a penalized likelihood or log sum of squares, where the penalty factor 

increases linearly in the number of factors (or parameters).  In the DFM case, Bai and Ng 

(2002) propose minimizing the penalized sum of squares, 

IC(r) = lnVr( ̂ , F̂ ) + rg(N,T),     (13) 
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where Vr( ̂ , F̂ ) is the least squares objective function in (11), evaluated at the principal 

components estimators ( ̂ , F̂ ), and where g(N,T) is a penalty factor such that g(N,T)  

0 and min(N,T)g(N,T)   as N, T  .  These latter conditions are the generalizations 

to N, T   of the standard conditions for the consistency of information criteria in 

regression, see for example Geweke and Meese (1981).  Bai and Ng (2002, 2006b) show 

that, under the conditions of the approximate DFM, the value of r, r̂ , that minimizes an 

information criterion with g(N,T) satisfying these conditions is consistent for the true 

value of r, assuming that value of r is finite and does not increase with (N, T). 

A specific choice for g(N,T) that does well in simulations (e.g. Bai and Ng 

(2002)) is g(N,T) = (N+T)ln(min(N,T))/(NT).  In the special case N = T  this g(N,T) 

simplifies to two times the familiar BIC penalty factor, that is,  g(T, T) = 2T
–1

lnT.  Bai 

and Ng (2002) refer to the information criterion as ICp2. 

Ahn and Horenstein (2009) build on the theoretical results in Bai-Ng (2002) and 

propose estimating r as the maximizer of the ratio of adjoining eigenvalues; intuitively, 

this corresponds to finding the edge of the cliff in the scree plot.  Their Monte Carlo 

simulation suggests that this might be a promising new approach that sidesteps a 

somewhat arbitrary choice about which penalty factor to use in the Bai-Ng (2002) 

information criterion approach. 

Formal tests based on scree plots.   Formal distribution theory for the scree plot, 

and in particular for how to test for whether a seemingly large eigenvalue is in fact large 

enough to indicate the presence of latent factors, is well known for the special case that, 

under the null hypothesis, Xit is i.i.d. N(0,1); however a general theory of scree plots has 

only recently been developed.  In the special case that Xit is i.i.d. standard normal, then 
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the eigenvalues are those of a Wishart distribution (see Anderson (1984)).  If in addition 

N, T  , the largest (centered and rescaled) eigenvalue has the Tracy-Widom (1994) 

distribution (Johnstone (2001)); this finding means that one need not use the exact 

Wishart distribution, which depends on (N, T).  El Karoui (2007) generalizes Johnstone 

(2001) to the case that {Xit, t = 1,…, T} is serially correlated but independent over i, 

subject to the condition that all series i = 1,…, N have the same spectrum which satisfies 

certain smoothness conditions.  Onatski (2008) extends El Karoui (2007) to provide a 

joint limit (a vector Tracy-Widom law) for the centered and rescaled first several 

eigenvalues.  Because the problem is symmetric in N and T, this result applies equally to 

panels with cross-sectional correlation but no time series dependence.  Onatski (2009) 

uses the results in Onatski (2008) to develop a pivotal statistic that can be used to test the 

hypothesis that q = q0 against the hypothesis that q > q0.  Onatski’s (2009) test is in the 

spirit of Brillinger’s generalized principal components analysis in that it looks at a 

function of the eigenvalues of the smoothed spectral density matrix at a given frequency, 

where the function is chosen so that the test statistic is pivotal. 

3.2 Estimating the number of dynamic factors q 

Three methods have been proposed for formal estimation of the number of 

dynamic factors.  Hallin and Liška (2007) propose a frequency-domain procedure based 

on the observation that the rank of the spectrum of the common component of Xt is q.  

Bai and Ng (2007) propose an estimator based on the observation that the innovation 

variance matrix in the population VAR (5) has rank q.  Their procedure entails first 

estimating the sample VAR by regressing the principal components estimator ˆ
tF  on its 

lags, then comparing the eigenvalues of the residual variance matrix from this VAR to a 
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shrinking bound that depends on (N, T).  Amenguel and Watson’s (2007) estimator is 

based on noting that, in a regression of Xt on past values of Ft, the residuals have a factor 

structure with rank q; they show that the Bai-Ng (2002) information criterion, applied to 

the sample variance matrix of these residuals, yields a consistent estimate of the number 

of dynamic factors.  Our own limited Monte Carlo experiments suggest that the Bai-Ng 

(2007) has somewhat better finite sample performance than the Amenguel-Watson (2007) 

procedure.  We are not aware of a third-party evaluation and comparison of these 

competing procedures, and such a study is in order. 

 

4. Uses of the Estimated Factors 

The estimated factors can be used as data in second-stage regressions and they 

can be used to estimate structural models, both structural factor-augmented vector 

autoregressions and DSGEs. 

4.1 Use of factors in second stage regressions 

Forecasting.  As motivated by (3), one step ahead forecasts of a variable yt 

(which may or may not be an element of Xt used to estimate the factors) can be computed 

by regressing yt+1 on ˆ
tF , yt, lags of yt, and (optionally) additional lags of ˆ

tF .  Multistep 

(that is, h-step ahead) forecasts can be computed in two ways.  Direct multistep forecasts 

are computed by regressing yt+h on ˆ
tF , yt, and their lags.  Alternatively, iterated multistep 

forecasts can be computed by first estimating a VAR for ˆ
tF , then using this VAR in 

conjunction with the one-step ahead forecasting equation to iterate forward h periods.  In 

theory, either direct or iterated forecasts could be better, direct because they avoid 

potential misspecification error in the VAR for y and F, indirect because they are more 
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efficient if the VAR model is correctly specified.  Empirical evidence provided by Boivin 

and Ng (2005) for U.S. macro data suggests that the direct method outperforms the 

iterated method, perhaps (they suggest) because the direct method avoids the risk of 

misspecification of the process driving the factors.  Interestingly, this stands in contrast to 

Marcellino, Stock, and Watson’s (2006) finding that iterated forecasts tend to outperform 

direct forecasts for models (univariate autoregressions and bivariate ARs) estimated using 

U.S. macro data.  An alternative method for computing iterated forecasts is to iterating 

forward the state space model, estimated using a hybrid method and the Kalman filter.  

This has potential advantages over iterating forward a VAR estimated with ˆ
tF  because 

the dimension of ft is typically less than Ft which imposes constraints on the VAR that, if 

correct, reduce sampling error.  However we are unaware of systematic empirical 

evidence comparing iterated forecasts in state space with iterated or direct forecasts based 

on ˆ
tF . 

Starting with Stock and Watson (1999, 2002b), there is now a very large literature 

on empirical results of macroeconomic forecasting with high-dimensional DFMs.  

Eickmeier and Ziegler (2008) conducted a meta-study of 46 distinct forecasting exercises 

in which DFM forecasts were compared to a variety of benchmarks.  The challenges of 

such a study are considerable, because different studies use different methods, studies 

vary in quality of execution, the benchmarks differ across studies, and there are other 

differences.  With these caveats, Eickmeier and Ziegler (2008) find mixed results for 

factor model forecasts, with factor forecasts outperforming competitors in some instances 

but not others.  Some of their findings accord with the econometric theory, for example 
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the size of the data set positively influences the quality of the factor forecasts, while other 

findings seem to represent variations across series.   

One common finding of pseudo out-of-sample forecasting exercises is that the 

gains of factor models for forecasting real series tend to be larger than for nominal series, 

at least for U.S. data.  For example, Boivin and Ng (2005) report pseudo out-of-sample 

relative mean squared forecast errors for factor forecasts, relative to a univariate 

autoregression benchmark, of 0.55 to 0.83 at the 6-month horizon, and of .49 to .88 at the 

12-month horizon, for four major real monthly U.S. macro series (industrial production, 

employment, real manufacturing and trade sales, and real personal income less transfers), 

with the range depending on the series and the method for estimating the factors and for 

computing the multistep forecast.  In contrast, they report typical relative mean squared 

errors of approximately 0.9 for four monthly inflation series at the 6-month horizon,  and 

widely varying results at the 12-month horizon that indicate an undesirable sensitivity of 

performance to forecast details and to how one measures inflation.  The finding that U.S. 

inflation, and nominal series more generally, can be forecasted by factor models appears 

to hinge on using data prior to the mid-1980s; it is quite difficult to improve upon simple 

benchmark models for forecasting U.S. inflation subsequent to the 1990s (e.g. Stock and 

Watson (2009b)).  Eickmeier and Ziegler’s (2008) study suggests that the quantitative 

and even qualitative findings about factor forecast performance in the U.S. do not 

necessarily generalize to European data. 

Stock and Watson (2009c) compare factor forecasts to other high-dimensional 

forecasts in U.S. data and also find mixed results.  For some series, such as real economic 

activity variables, factor forecasts provide substantial improvements over a range of 
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small- and large-dimensional competitors, and for these series factor forecasts constitute 

a success and a significant step forward.  But for other series, for example real wage 

growth, there appears to be valuable forecasting information in principal components 

beyond the first few used in standard factor model forecasts; for these series, large-model 

forecasting approaches are valuable compared with small models, but those approaches 

need to go beyond factor models.  There are also some series, such as inflation and 

exchange rates, which defy all forecasting attempts. 

Factors as instrumental variables.  Kapetanios and Marcellino (2008) and Bai 

and Ng (2010) consider the use of estimated factors as instrumental variables.  The 

motivation for so doing is that the factors condense the information in a large number of 

series, so that one can conduct instrumental variables or generalized method of moments 

(GMM) analysis using fewer and potentially stronger instruments than if one were to use 

the original data.  The proposal of using the principal components of a large number of 

series as instruments dates to Kloek and Mennes (1960) and Amemiya (1966), however 

early treatments required strict exogeneity of the instruments.  The requirement of strict 

exogeneity can be weakened if there is a factor structure and if Ft is a valid instrument; 

for details see Kapetanios and Marcellino (2008) and Bai and Ng (2010). 

The main result of Kapetanios and Marcellino (2008) and Bai and Ng (2010) is 

that, if Ft constitutes a strong instrument and ˆ ( )TSLS F  is the two stage least squares 

estimator based on the instruments F, then under the Bai-Ng (2006a) conditions (in 

particular, N
2
/T  ), ˆ ˆ ˆ( ) ( )TSLS TSLST F F  

 
 

p

  0, that is, the principal components 

estimator can be treated as data for the purpose of instrumental variables regression with 
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strong instruments.  Extensions of this result include the irrelevance of estimation of F 

even if Ft is a weak instrument, assuming there is a factor structure. 

Empirical applications in which estimated factors are used as instruments include 

Favero, Marcellino, and Neglia (2005) and Beyer, Farmer, Henry, and Marcellino (2008). 

4.2 Factor-Augmented Vector Autoregression (FAVAR) 

Bernanke, Boivin and Eliasz (2005) introduced the FAVAR as a way to get 

around two related problems in structural VAR modeling.  First, in a conventional 

(unrestricted) VAR with N variables, the number of parameters per grows with N
2
, so that 

unrestricted VARs are infeasible when N/T is large.  One solution to this problem is to 

impose structure in the form of a prior distribution on the parameters but that requires 

formulating a prior distribution.  Second, a consequence of using low-dimensional VARs 

is the possibility that the space of VAR innovations might not span the space of structural 

shocks, that is, the VAR innovations cannot be inverted to obtain the structural shocks, in 

which case structural VAR modeling will fail; this failure is called the invertibility or 

nonfundamentalness problem of SVARs. 

The key insight of Bernanke, Boivin, and Eliasz (2005) was that the 

dimensionality problem could be solved by imposing restrictions derived from the DFM.  

To see this, it is useful to write the static DFM (4) – (6) in VAR form.  The result, 

derived in Stock and Watson (2005), is 

t
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X
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   (14) 

where D(L) = diag(d1(L),…, dN(L)).  Inspection of the coefficient matrices in (14) makes 

the dimension reduction evident: the number of free parameters is O(N + r
2
) but the 

number of elements of the (unrestricted) VAR matrix is O((N + r)
2
).  Moreover, all the 
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parameters of (14) can be estimated by regressions involving Xt, ˆ
tF , and the residuals 

from the regression of Xt on ˆ
tF .  In particular, the (population) impulse response function 

with respect to the innovations t is given by (L) in Xt = (L)t + et, where (L) = 

(L)
−1

G (this is obtained by substituting (5) into (4)).  The factor loadings  can be 

estimated by a regression of Xt on ˆ
tF , the lag polynomial (L) can be obtained from a 

VAR estimated using ˆ
tF , the matrix G can be estimated as the eigenvectors 

corresponding to the q largest eigenvalues of the rr variance matrix of the residuals 

from the ˆ
tF  VAR (in population this variance matrix has only q nonzero eigenvalues) , 

and t can be estimated by ˆ
t  = 1

ˆ ˆ ˆˆ ( )t tG F L F 
  
 

 (for details see Stock and Watson 

(2005)).  This provides sample counterparts to the population innovations t, with an 

arbitrary normalization, and to the impulse response function based on these innovations.  

The SVAR modeling exercise now entails imposing sufficient identification 

restrictions so that the structural shocks (or a single structural shock) can be identified as 

a linear combination of t; that is, so that a qq matrix R (or a row of R) can be identified 

such that Rt = t, where t are the q structural shocks.  Forni, Giannone, Lippi, and 

Reichlin (2009) show that, under plausible heterogeneity conditions on impulse response 

functions, such a matrix R will in general exist and will be full rank, that is, the DFM 

innovations will span the space of structural shocks so a FAVAR will solve the 

invertibility problem.  The matrix R (or individual rows of the matrix) can be identified 

using extensions of the usual SVAR identification toolkit, including imposing short run 

restrictions (see for example Bernanke, Boivin, and Eliasz (2005)); imposing long run 

restrictions akin to those in Blanchard and Quah (1989) and King, Plosser, Stock, and 
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Watson (1991); identifying shocks by maximizing the fraction of the variance of common 

components of one or more variables (Giannone, Reichlin, and Sala (2004)); and 

imposing sign restrictions (Ahmadi and Uhlig (2009)). 

4.3 DSGE estimation using DFMs 

Sargent (1989) showed that the DFM can be interpreted as relating multiple 

indicators to a latent low-dimensional model of the economy.  Bovin and Giannoni 

(2006) extend this concept by associating the dynamic factor evolution equation (2) with 

a log-linearized DSGE.  Accordingly, the elements of ft correspond to latent economic 

concepts such as inflation and the output gap.  The statistical agencies do not observe 

these latent concepts, but instead produce multiple measures of them, for example 

different rates of inflation derived from different price indexes.  Similarly, 

econometricians can produce multiple measures of the unobserved output gap.  These 

observable series constitute Xt, and the elements of ft are identified by exclusion 

restrictions in the factor loadings (for example, the multiple observed measures of 

inflation depend directly on the latent inflation factor but not on the other factors). 

By introducing multiple indicators of these latent processes, Boivin and Giannoni 

(2006) bring additional information to bear on the difficult task of estimation of DSGE 

parameters.  In principle this estimation could be done by MLE, however Boivin and 

Giannoni (2006) use the Bayesian/Markov Chain Monte Carlo methods common in the 

DSGE estimation literature. 
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5. Selected Extensions 

This section briefly reviews three extensions of DFM research: DFMs with 

breaks; DFMs that incorporate cointegration and error correction; and structured DFMs 

such as hierarchical DFMs. 

5.1  Breaks and time-varying parameters  

Few papers have considered DFMs with breaks or time-varying parameters.  

Stock and Watson (2002a) showed that the principal components estimator of the factors 

is consistent even with certain types of breaks or time variation in the factor loadings.  

The intuition for this result returns to the idea, introduced in Section 2.l, that the cross-

sectional averaging estimator 1ˆ ( )tF N W  is consistent for the space spanned by the factors 

under relatively weak conditions on W, specifically N
–1

W  H; it stands to reason, 

then, that  can break or evolve in some limited fashion and the principal components 

estimator will remain consistent. 

Stock and Watson (2009a) considered the case of a single large break with one set 

of factors and loadings before the break and another set after.  They showed that the full-

sample principal components estimator of the factor asymptotically spans the space of the 

two combined factors.  Specifically, the factors for the pre-break subsample will be 

estimated by one linear combination of the principal components, and the post-break 

factors will be estimated by another linear combination.  The break date need not be 

known or estimated for this to hold.  Accordingly, with a break, the number of full-

sample factors can exceed the number of subsample factors both before and after the 

break.  In an empirical application to U.S. macroeconomic data, they find that forecasts 
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based on full-sample factors can outperform those based on subsample factors, even 

though a break is found empirically. 

Breitung and Eickmeier (2009) propose a test for a single structural break in the 

factor loadings at an unknown date in a DFM, in the i
th

 equation of the static DFM (4).  

For example, this can be done by regressing Xit on ˆ
tF  and ˆ

tF  interacted with the binary 

variable that equals 1 for t > , (where  is a hypothesized break date), then computing 

the Wald statistic testing whether the coefficients on the interacted variables equal zero.  

Breitung and Eickmeier (2009) find evidence of a change in the factor space in the U.S. 

in the mid-1980s. 

Banerjee, Marcellino, and Masten (2009a) provide Monte Carlo results on factor-

based forecasting with instability in the factor loadings, and find that large breaks, if 

undetected, can substantially reduce the performance of full-sample factor-based 

forecasts.  This is consistent with the forecast function changing when the factor loadings 

change, despite the space being spanned by the factors being consistently estimated.  In 

their setting, it is desirable to estimate the forecasting equation using the post-break 

sample.  They also report an application to data from the EU and from Slovenia, which 

investigates split-sample instability in the factor forecasts (but not the factor estimates 

themselves). 

5.2  Incorporating cointegration and error correction  

All the work discussed until now has assumed that all elements of Xt are 

integrated of order 0 (I(0)).  Typically this involves taking first differences of logarithms 

for real variables, for example.  Elements of Xt can also include other stationary 
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transformations, including error correction terms; for example it is common for interest 

rate spreads to be included in Xt. 

The econometric theory of principal components estimation of the factors requires 

modification to cover integrated and cointegrated variables.  The basic difficulty can be 

seen by imagining that the original series are all independent random walks, so that Xt is a 

vector of standardized independent random walks.  These independent walks will be 

subject to the spurious regression problem (Granger and Newbold (1974)) so without 

further modification ˆ
X  will have a limiting expression (as T  , N fixed) in terms of a 

N-dimensional demeaned Brownian motion, and ˆ
X  will have many large eigenvalues 

even though the elements of Xt are independent. 

Some recent papers propose techniques designed to estimate and exploit factor 

structure in the presence of nonstationary factors.  Bai (2004) shows that if the factors are 

I(1) and the idiosyncratic disturbances are I(0) – that is, if the Stock-Watson (1988) 

common trends representation of cointegrated variables holds –  then the space spanned 

by the factors can be estimated consistently, as can the number of factors.  Bai and Ng 

(2004) provide a procedure for estimating the number of nonstationary factors even if 

some of the idiosyncratic disturbances are integrated of order one (I(1)).  Banerjee and 

Marcellino (2008) use the common trends representation to introduce a factor error 

correction model.  Banerjee, Marcellino, and Masten (2009b) provide empirical evidence 

suggesting that forecasts based on the factor error correction model outperform standard 

DFM forecasts.  A premise of this research is that there is large-scale cointegration in the 

levels variables or, equivalently, that the spectral density of the transformed variables (Xt 

as defined for the previous sections) has a rank of only r << N at frequency zero. 
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5.3  Hierarchical DFMs 

In certain specialized cases, hierarchical structures arise naturally and can be 

incorporated into DFMs.  Kose, Otrok, and Whiteman (2003) provide an early example 

of such a model, in which both regional and global factors affect the evolution of output, 

investment, and consumption in 60 countries.  Ng and Moench (2009) provide an 

application to regional housing prices and Stock and Watson (2010) provide a related 

application to state-level housing starts.  Moench, Ng, and Potter (2009) provide a 

general formulation of multilevel hierarchical DFMs including extensive discussion of 

computational issues. 

5.4  Outlook 

Dynamic factor models have the twin appeals of being grounded in dynamic 

macroeconomic theory (Sargent (1989), Boivin and Giannoni (2006)) and providing a 

good first-order description of empirical macroeconomic data, in the sense that a small 

number of factors explain a large fraction of the variance of many macroeconomic series 

(Sargent and Sims (1977), Giannone, Reichlin, and Sala (2004), Watson (2004)).  

Theoretical econometric research on DFMs over the past decade has made a great deal of 

progress, and a variety of methods are now available for the estimation of the factors and 

of the number of factors.  Theoretical work is ongoing in many related areas, including 

weak factor structures, tests for the number of factors, and factor models with instability 

and breaks. 

The bulk of empirical work to date has focused on forecasting.  A great deal is 

now known about the performance of factor forecasts and about best practices for 

forecasting using factors.  Broadly speaking, this research has found that linear factor 



 33 

forecasts perform well to very well relative to competitors for many, but not all, 

macroeconomic series.  For U.S. real activity series, reductions in pseudo out-of-sample 

mean squared forecast errors at the two- to four-quarter horizon are often in the range of 

20%-40%, although smaller or no improvements are seen for other series, such as U.S. 

inflation post-1990.  Parametric (third-generation) DFMs are also particularly well suited 

for nowcasting.  Work on other empirical applications of DFMs, such as structural VARs 

and estimation of parameters of DSGEs, is newer and while there are relatively few such 

applications to date, these constitute promising directions for future empirical research. 
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