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EFFICIENT TESTS FOR AN AUTOREGRESSIVE UNIT ROOT 

BY GRAHwA ELLIOrr, THOMAS J. ROTHENBERG, AND JAMES H. STOCK1 

The asymptotic power envelope is derived for point-optimal tests of a unit root in the 
autoregressive representation of a Gaussian time series under various trend specifications. 
We propose a family of tests whose asymptotic power functions are tangent to the power 
envelope at one point and are never far below the envelope. When the series has no 
deterministic component, some previously proposed tests are shown to be asymptotically 
equivalent to members of this family. When the series has an unknown mean or linear 
trend, commonly used tests are found to be dominated by members of the family of 
point-optimal invariant tests. We propose a modified version of the Dickey-Fuller t test 
which has substantially improved power when an unknown mean or trend is present. A 
Monte Carlo experiment indicates that the modified test works well in small samples. 

KEYWORDS: Power envelope, point optimal tests, nonstationarity, Ornstein-Uhlenbeck 
processes. 

1. INTRODUCTION 

FOLLOWING THE SEMINAL WORK of Fuller (1976) and Dickey and Fuller (1979), 
econometricians have developed numerous alternative procedures for testing 
the hypothesis that a univariate time series is integrated of order one against the 
hypothesis that it is integrated of order zero. The procedures typically are based 
on second-order sample moments, but employ various testing principles and a 
variety ofmethods to eliminate nuisance parameters. Banerjee et al. (1993) and 
Stock (1994) survey many of the most popular of these tests. Although numerical 
calculations (e.g., Nabeya and Tanaka (1990)) suggest that the power functions 
for the tests can differ substantially, no general optimality theory has been 
developed. In particular, there are few general results (even asymptotic) con- 
cerning the relative merits of the competing testing principles and of the various 
methods for eliminating trend parameters. 

Employing a model common in the previous literature, we assume that the 
data Yl1 ... , YT were generated as 

(1) Yt dt + ut (t = 1, T), 
ut= aut1 + Vt 

where {dt} is a deterministic component and {vt} is an unobserved stationary 
zero-mean error process whose spectral density function is positive at zero 
frequency. Our interest is in the null hypothesis a = 1 (which implies the yt are 
integrated of order one) versus I a I < 1 (which implies the Yt are integrated of 

1 The authors thank Jushan Bai, Maxwell King, Sastry Pantula, Pierre Perron, and Mark Watson 
for helpful discussions. This research was supported in part by National Science Foundation Grant 
SES-91-22463. 
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order zero). Standard asymptotic testing theory, as surveyed for example in 
Engle (1984), is inapplicable since the data do not give rise to a locally 
asymptotic normal likelihood.2 Nevertheless, it is possible to develop an asymp- 
totic framework for comparing alternative tests for a unit root in this model. If 
the distribution of the data were otherwise known, the Neyman-Pearson Lemma 
gives us the best test against any given point alternative c. The power of this 
optimal test at alternative -a, when plotted against -a, defines the power 
envelope which is an upper bound for the power function of any test based on 
the same likelihood. Using large-sample approximations to simplify the analysis, 
we can then compare the asymptotic power functions of existing tests with this 
asymptotic bound. In practice, of course, the likelihood function will depend on 
additional nuisance parameters determining dt, u0, and the distribution of {v,}. 
If there exist feasible tests with the same asymptotic power as the Neyman-Pear- 
son point-optimal tests, the comparison will be appropriate in the nuisance 
parameter case as well. 

When the observed time series is Gaussian with constant or slowly evolving 
deterministic component, we find that, although no test uniformly attains the 
asymptotic power bound, there exist tests with asymptotic power functions very 
close to the bound. Furthermore, these tests can be constructed without knowl- 
edge of any nuisance parameters. When the deterministic component contains a 
polynomial trend, no feasible test comes close to attaining the power bound 
derived under the assumption the trend parameters are known. Nevertheless, 
the Neyman-Pearson Lemma can still be employed to derive an asymptotic 
power bound for the natural family of tests that are invariant to the trend 
parameters. Again, there exist feasible invariant tests with asymptotic power 
functions very close to this bound, even when there are additional nuisance 
parameters determining the autocovariances of the v,. 

Our asymptotic power results have implications for tests commonly used in 
practice. In the case where there is no deterministic component, we find that the 
asymptotic power curve of the Dickey-Fuller t test virtually equals the bound 
when power is one-half and is never very far below. In the more relevant case 
where a deterministic mean or trend is present, power can be improved 
considerably over the standard Dickey-Fuller test by modifying the method 
employed to estimate the parameters characterizing the deterministic term. 

Our approach is similar to that employed by Dufour and King (1991) in their 
analysis of exact point-optimal invariant tests in the normal AR(1) model. 
However, by employing local-to-unity asymptotic approximations, we are able to 
obtain simpler and more interpretable results that cover a much broader class of 
models. Saikkonen and Luukkonen (1993) apply a similar analysis in their study 
of asymptotically point-optimal invariant tests for a unit moving-average root. 

2 
Using a different maintained model, Robinson (1994) develops a "standard" asymptotic theory 

of efficient tests for a unit root. This requires dropping the familiar autoregression framework and 
assuming, for example, a fractionally differenced process for the data. 
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2. THE ASYMPTOTIC GAUSSIAN POWER ENVELOPE 

In this section we derive an upper bound to the asymptotic power function for 
tests of the hypothesis a = 1 when the data are generated by (1) and the 
following condition is satisfied. 

CONDITION A: The stationary sequence {v,} has a strictly positive spectral density 
function; it has a moving average representation v, = EJ_O 8j7m-j where the mt are 
independent standard normal random variables and Ej%= oil j l < o. The initial u0 is 
0 and the 6's are known. 

The unrealistic assumption of known u0, 5's and error distribution is made so 
we may employ the Neyman-Pearson theory; in Section 3 we show that it may be 
dropped without any essential change. Our results, however, are quite sensitive 
to the nature of the deterministic components dt. Section 2.1 considers the 
simplest case where the dt are known. Section 2.2 examines the case where the 
d are "slowly evolving" and Section 2.3 examines the case where dt is a linear 
combination of nonrandom trending regressors. Our purpose here is to derive 
the power bound; tests that might be used in practice are discussed later in the 
paper. All proofs are given in the Appendix. 

2.1. Known Deterministic Component 

When the dt are known, u, is observable and minus two times the log 
likelihood is (except for an additive constant) given by 

(2) L(a) = [u-(ax-1)u_1 ]',-'[u-(a -1)u_ 

where Au = (ul, U2 -U1, .. I UT - UT-1) X U-1 = (0, 1,.. ., UT-), and X is the 
non-singular variance-covariance matrix for v1, .. ., VT. By the Neyman-Pearson 
Lemma, the most powerful test of the null hypothesis that a = 1 against the 
alternative that a = -a rejects for small values of the likelihood ratio statistic 
L(a) - L(1). 

When the sample size is large, any reasonable test will have high power unless 
a is close to one. Thus, in obtaining large-sample approximations, it is natural 
to employ local-to-unity asymptotics where the parameter space is a shrinking 
neighborhood of unity as the sample size grows. In our case the appropriate rate 
to get nondegenerate distributions is T-1 so we reparameterize the model 
writing c = T(a - 1) and take c to be a constant when making limiting argu- 
ments. Cf. Chan and Wei (1987), Phillips and Perron (1988). Setting c- T(a - 1), 
we can then write the likelihood ratio test statistic as 

(3) L(cx)-L(1) =2T2u1, u1-2cT1uQ1Z1Au. 

For any given c-, rejecting when the linear combination (3) is small yields the 
most powerful test against the alternative that c = c. 
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Note that (T- 2uQ1 luX T lu,T l.-1 Au) is a pair of minimally sufficient 
statistics for inference about a when the nuisance parameters are known. 
Furthermore, since the pair has a nondegenerate joint limiting distribution 
under local alternatives, the asymptotic minimal sufficient statistic also has 
dimension two. As a consequence, there exists no uniformly most powerful test 
of a = 1 even in large samples. There is an infinite family of asymptotically 
admissible tests, indexed by c, no one dominating the others for all c. 

The limiting power functions for the family of Neyman-Pearson tests can be 
expressed conveniently in terms of stochastic integrals. Let WO(O) represent 
standard Brownian motion defined on [0, 1] and let Wc(-) be the related diffusion 
process Wc(t) = fJoexp{c(t - s)} dWO(s) which satisfies the stochastic differential 
equation dWc(t) = cWc(t) dt + dWO(t) with initial condition Wc(O) = 0. In the 
Appendix we show that the local asymptotic power function for the test indexed 
by c when the significance level is e is given by 

(4) 7T (c, c) = Pr c1c2 cW(1 < b(c)] 

where JJ'2 fJWc2(t) dt and b(c) satisfies Pr[c2fWo - CWo(1) <b(c)] = s. Be- 
cause the test indexed by c is optimal against the alternative c = c, the envelope 
power function for this family of point-optimal tests is H(c) = 7T(c, c). 

2.2. Slowly Evolving Deterministic Component 

Suppose the deterministic components satisfy the following condition. 

CONDITION B (Slowly evolving trend): The Adt are bounded with 
T-1tT 1(Adt)2 -O0 and T- 112maxIdt I> 0 as T-* oo. 

This will automatically be satisfied if the dt are constant. It will also be 
satisfied by a variety of smooth functions of time. These include low frequency 
sinusoids (e.g., dt = cos(2ifkt/T) for finite k); slowly increasing time trends 
(e.g., dt = ln(t) or dt t '= for 8 < 1/2); and step functions with finitely many 
jumps (e.g., dt = 80 when t < to and dt = 81 when t ? to). In the slowly evolving 
trend case, the random component of Yt dominates the deterministic component 
when t is large. It is tempting therefore to ignore the deterministic term when 
constructing the test statistic. In the Appendix we show that, if the dt evolve 
slowly, replacing ut by Yt when forming (3) has no effect on the asymptotic size 
or power of the Neyman-Pearson tests. Under Condition B, there is no effi- 
ciency loss from dt being unknown. 

2.3. Trending Regressors 

The construction of a useful asymptotic power bound when the dt are 
unknown and not slowly evolving is more complicated. Suppose, for example, the 
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dt are modeled as a linear combination of a set of nonrandom regressors so that 
dt =,B'zt where /3 is a q-dimensional unknown parameter vector and the zt are 
observed q-dimensional data vectors. Unless 3'zt happens to satisfy Condition 
B, the power functions r(c, 5) derived in Section 2.1 will not be attainable by 
any feasible critical region. 

In most applications, /3 is unrelated to a and the testing problem would be 
unchanged if Yt were replaced by yt + 3'zt for arbitrary ,X. It is therefore 
natural to restrict attention to the family of tests which are themselves invariant 
to this group of transformations. This approach is taken by Dufour and King 
(1991) who build on previous results in King (1980, 1988). (Their additional 
restriction of scale invariance is ignored here since the tests proposed in Section 
3 satisfy this invariance automatically.) Defining the T-dimensional column 
vector Ya and the T x q matrix Za by 

(5) Ya = (Yl, Y2 - ayl, ..., YTaYT- 1)'a 

Za = (Zl,Z2a-aZl, ZTaZTl) J 

we can rewrite (2) as 

L(a,f,) = (ya _ Za/,)'YL- 1(Ya _ Za/,). 

From the development in Lehmann (1959, p. 249), the most powerful invariant 
test of a = 1 vs. a = 

- 
rejects for large values of f exp{ - 1/2L(-a, /)} d/3/ 

f exp{ - 1/2L(1, /3 )} d,/. For our normal likelihood, this is equivalent to reject- 
ing for small values of 

(6) L* = minL(-a, /) - minL(1, /8). 

The test statistic is the difference in (weighted) sum of squared residuals from 
two constrained GLS regressions, one imposing a = -a and the other imposing 
a= 1. 

Asymptotic representations in terms of stochastic integrals can be found for 
this family of statistics but they depend on the specific zt. When there is no 
deterministic term (z, = 0), LT is identical to the statistic defined in (3). Some 
general results for polynomial trend are given in the Appendix. We present 
explicit formulas for a constant mean where Zt = 1 and a linear trend where 
zt = (1, t)'. Let A = (1 - c)7(1 - c ? c2/3). Defining the process 

(7) vc(t, ) = Jy(t) -t[xWc (1) + 3(1 - x)fs Wc (s) dsj, 

we can summarize our results as follows. 

THEOREM 1: Suppose {yt} is generated by the Gaussian model (1) under Condi- 
tion A. Consider unit-root tests of size e under local-to-unity asymptotics where both 
c = T(a - 1) and c- = T(a - 1) are fixed as T tends to infinity. 
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a. When dt is known or satisfies Condition B, the Neyman-Pearson most power- 
ful test against the alterative c = c has asymptotic power function ir(c, c) defined in 
(4). An upper bound to the asymptotic power of any unit-root test is given by the 
power envelope H(c) -T(c, c). 

b. When dt = IB3' the most powerful invariant test against the alternative c = c has 
asymptotic power function wr(c, c). The asymptotic power envelope for this family of 
point-optimal invariant tests is H(c). 

c. When dt = I30 + ,81t, the most powerful invariant test against the alternative 
c = c has asymptotic power function 

(8) IT7(c, IC-) = Pr c| ZF(tC) dt + (1 -C-)C( - < bT() 

where b(c) satisfies Pr[A2fVJ(t c) + (1 - )Vc(1, c) <b(c)] = s. An upper 
bound to the asymptotic power of any unit-root test invariant to the trend parameters 
I30 and I31 is given by the power envelope Hl(c)-T(c, c). 

Our primary interest is in alternatives c < 0, but the theorem is valid for 
positive c and c as well. There are no simple analytic expressions for the power 
envelopes H(c) and HT(c), but simulations indicate that they are monotonically 
increasing functions of Icl. Some plots and calculations are given in Section 4 
where a number of alternative tests are discussed. 

3. FEASIBLE POINT-OPTIMAL TESTS 

Although the point-optimal test statistics defined in (3) and (6) require V and 
u0 to be knowr;, it is possible to construct tests having the same large-sample 
properties even in the absence of this knowledge. Furthermore, the asymptotic 
theory is valid under less stringent assumptions than those made in Theorem 1. 
In this section, we continue to assume that equation (1) describes the data 
generating process but we drop Condition A and consider the properties of 
some feasible tests under weaker assumptions. For 0 < s < 1, let [sT] be the 
greatest integer less than or equal to sT and let > denote weak convergence of 
the underlying probability measures as T tends to infinity. 

CONDITION C: The initial error uo has a distribution with bounded second 
moment for all a in a neighborhood of unity. The zero mean process {vt} is 
stationary and ergodic with finite autocovariances y(k) Evtvtvk such that 

(a) wo2 = E'k= y(k) is finite and nonzero; 
(b) the scaled partial-sum process T- '12 = 27Vt => wo(s). 

The assumptions on {vt} are satisfied by stationary and invertible ARMA 
models under moment conditions and are standard in the literature. The 
stationary assumption can be relaxed at the cost of a more complex notation. 
Specific assumptions on vt which imply (b) are discussed in Phillips (1987) and 
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Phillips and Solo (1992). When a = 1 + T-lc and Condition C is satisfied, 
T- 1/2U[tT] w> JW(t) and sample moments of the data have limiting representa- 
tions in terms of stochastic integrals involving W,. 

To generate a convenient family of tests, we note that, when uo = 0 and the vt 
are iid N(O, 1), the likelihood ratio statistic LT takes a very simple form. Let 
S(a) be the sum of squared residuals from a least squares regression of Ya on 
Za, where Ya and Za are defined in (5). Then the test statistic is equal to 
S(ca) - S(1). If L is not in fact the identity matrix, this difference in sum of 
squared residuals will in general have a limiting distribution depending on the 
error variances and covariances and thus will not produce a test of the correct 
size. However, it is easy to construct a modified statistic that does produce a 
valid large-sample test. For the general problem of testing a = 1 vs. a = a 
where dt =/3'zt and the vt have unknown covariances, consider the feasible 
statistic 

(9) PT [S() -O 

where co2 is an estimator for co2. If /3 is known, no regression is needed and 
S(a) is given by (Ya - Za P1Y(Ya - Za 3). 

THEOREM 2: Suppose {Yt} is generated by (1) where dt is a (possibly constant) 
polynomial time trend. Then, if Condition C is satisfied and c2 is a consistent 
estimator of co2 when c = T(ca - 1) is fixed, PT has the same limiting distribution 
under local-to-unity asymptotics as L*T- C. Specifically, PT converges in distribution 
to W2J'J-2 _-W 2(i) in the zero mean and constant mean cases and to c2J"c2(t, c) ? 

(1 - -)V2(1 -) in the linear trend case. 

Thus the power functions ir(c, 5) and 7r'(c, 5) derived in Theorem 1 for 
point-optimal tests in the Gaussian model with L known can be attained by the 
simple PT family of statistics under the much weaker assumptions of this 
section. This is important, because, in practice, X will generally contain un- 
known parameters and there is often no compelling reason to believe that the 
data are normally distributed. If the errors are non-normal, tests exploiting the 
form of the actual likelihood and possessing power higher than HI(c) and HT(c) 
could be constructed. In the absence of such information, quasi-likelihood tests 
based on least-squares regressions are likely to be used in practice. The power 
bounds derived under normality are still valid when comparing such tests. 

Although our analysis is based oil relatively weak assumptions, two interesting 
models considered elsewhere in the literature are ruled out. A problem closely 
related to ours is to test the null hypothesis that {ut} is an integrated process 
against the alternative that it is a strictly stationary process. Under that 
alternative, uo will have a variance proportional to (1 - a 2)- , a violation of 
Condition C. The tests studied in Section 2 are not point optimal under this 
specification and the asymptotic power bounds are no longer valid. Our PT 
statistics, however, still have simple local-to-unity limiting representations under 
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the stationary alternative. Suppose, for example, u0 is normal with mean zero 
and variance (1 - a2)-1 and that the vt are serially uncorrelated with unit 
variance. Then T-'/2u[tT] =* W*(t) = Wc(t) + 7qoect where mo is a normal vari- 
ate, independent of WcJ(), with mean zero and variance (-2c)-1. The PT 
statistics can then be written as functionals of the WJ*(t) process. Further 
analysis of the stationary alternative testing problem can be found in Elliott 
(1993). 

A second, closely related approach to modeling unit roots is also ruled out 
here. One way to avoid making an assumption about the initial error u0 is to 
base the entire statistical analysis on the conditional distribution of the data 
given the first observation Yl. When dt is known, there is no difference 
asymptotically between our analysis based on the full likelihood and analysis 
based on the conditional likelihood. But when dt is unknown, the point-optimal 
invariant test based on the full likelihood is not asymptotically equivalent to the 
point-optimal test based on the conditional likelihood. Invariance under the 
transformation Yt - Yt + f3'zt is often justified by the argument that adding a 
constant to the data should not change the analysis. But that argument is not 
compelling once one has conditioned on the first observation. There appears to 
be no convincing way to avoid making an assumption about the initial observa- 
tion when there are unknown nuisance parameters in dt. 

Although our analysis has been based on local-to-unity asymptotics, our tests 
have good properties when judged by standard fixed parameter asymptotics as 
well. Specifically, since the power functions for the PT tests have nondegenerate 
limits under sequences of local alternatives a approaching unity, one would also 
expect power to approach one as T tends to infinity for any fixed a < 1. This is 
indeed the case if the estimate c2 is not only consistent for local alternatives 
but also well behaved globally. 

THEOREM 3: Suppose the conditions of Theorem 2 hold except that a is fixed 
and less than one in absolute value. If Pr[ c22> , ] 1 for some positive constant 
,u, then the tests which reject for small values of PT (with c = T(-a - 1) held fixed) 
have power functions tending to one as T tends to infinity. 

Estimators c2 that are consistent under local alternatives and have nonzero 
probability limits under fixed alternatives clearly satisfy this condition. Some 
examples of such estimators are given in Section 5. 

4. SOME NEARLY EFFICIENT INVARIANT TESTS 

Theorems 1 and 2 imply that, among tests based on second-order sample 
moments, those that reject for small values of [SGa) - wS(1)]/c2 are asymptoti- 
cally point optimal invariant; each has an asymptotic power curve tangent to the 
power envelope at one point. It will be convenient to index the test by its power 
rather than by the value ci. That is, by inverting the envelope power function 
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= H[T(a - 1)] for a < 1, we can find that alternative c(s, T, s) which yields 
(approximate) power X when using the point optimal test of level e with a 
sample of size T. Then, for e < 7r < 1, the family of test statistics can be written 
as 

(10) PT(l) = S[a(7r,T, e)] -a (r,T, s)S(1) (10) PT('W) A2~~~~~~~~~~~(1 

(We suppress the dependence of P on s.) Although every member of this family 
is admissible, past research suggests that values of XT near one-half often yield 
tests whose power functions lie close to the power envelope over a considerable 
range. Cf. King (1988). 

For the remainder of the paper we restrict attention to the three standard 
cases discussed in the literature where dt is either zero, a constant, or a linear 
trend. To distinguish the cases, we follow Dickey and Fuller (1979) and use a 
superscript ,u when dt is constant and a superscript T when it is a linear trend. 
Since commonly used test statistics have distributions not depending on the 
parameters determining the dt, we shall also restrict attention to invariant tests. 

When there is no deterministic term, our family of PT tests includes as special 
cases many tests previously proposed. Recall that PT(G) has the asymptotic 
representation c2Gr)Wc2 - c(r)W2(1) where j(0r) is a monotonically decreas- 
ing function taking the value zero when 7r is equal to e (the size of the test) and 
tending to minus infinity as 7r approaches one. Sargan and Bhargava (1983) 
suggest S(0)/S(1) as a test statistic when the vt are white noise; asymptotically it 
behaves like fWc2 and corresponds to PT(1). The locally most powerful test 
described by Dufour and King (1991) behaves asymptotically like WC2(1) and 
corresponds to PT(e). The Dickey-Fuller estimator test (based on their statistic 
p) is also a member, since its rejection region is determined, asymptotically, by a 
linear combination of fWc2 and WC2(1); computations indicate that it has the 
same limiting distribution as our PT(1 - e). The Dickey-Fuller t statistic (de- 
noted by T) is a nonlinear function of fWc2 and Wc2(1) Nonetheless, computa- 
tions indicate that the asymptotic power function of their t test is tangent to the 
power envelope when power is about one-half and behaves like the PT(O5) test. 
Likewise, the Za and Zt tests examined in Phillips (1987) and Phillips and 
Perron (1988) behave like members of the PT family since they are asymptoti- 
cally equivalent to the p and T tests, respectively. 

Figure 1 graphs the asymptotic power functions of these tests along with the 
power envelope when the tests have size 0.05. These are based on 20,000 Monte 
Carlo replications where Wc was approximated by its discrete realization from a 
sample of size 500; simulation standard errors are less than 0.0013. The power 
envelope is monotonic and equals one-half when c = -7. With the exception of 
the locally most powerful test which puts all the weight on Jc4(1), all the tests 
have power functions very close to the power envelope. Indeed, it is hard to 
distinguish them without vastly changing the scale of the figure. Although none 
of these tests is uniformly most powerful even asymptotically, our numerical 
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FIGURE 1-Asymptotic power functions of selected unit root tests: no deterministic component. 

calculations indicate that, for .25 < n- < .95, the PT(Or) tests are, for all practical 
purposes, equivalent in large samples and have power functions essentially 
identical to the power bound. Other calculations not reported here demonstrate 
that this conclusion carries over to tests at the 1% and 10% significance levels as 
well. 

Things are rather different, however, when d, contains parameters that have 
to be estimated. The Sargan-Bhargava (1983) test for the constant mean case, 
Bhargava's (1986) extension for the linear trend case, the Dickey-Fuller estima- 
tor tests (based on their statistics j ' and p), the Dickey-Fuller t tests (based 
on their T '4 and T ), and the Phillips-Perron Z tests are no longer asymptoti- 
cally equivalent to members of the PT family since they employ OLS estimates 
of the 83's instead of constrained local-to-unity estimates. The power functions 
for the PT (1r) and PT(wr) tests remain very close to the relevant power 
envelopes H(c) and 17T(c) for a broad range of n- values. The power functions 
for the tests which use OLS estimates of /8 are well below the power envelopes. 
Some results for tests at the 5% level are presented in Figure 2 for the constant 
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FIGURE 2-Asymptotic power functions of selected unit root tests: constant mean (zt = 1) 

mean case and in Figure 3 for the linear trend case. The envelope power curve 
H1(c) has the same shape as H(c), but now takes the value one-half when 
c = - 13.5. The power loss of the commonly used tests is particularly dramatic in 
the constant mean case. The same pattern is found for tests at the 1% and 10% 
significance levels. 

A measure of the difference between two tests is Pitman asymptotic relative 
efficiency (ARE), defined as the ratio of the values of c at which the tests 
achieve a specified power. Evaluating efficiency at power one-half and using 5% 
level tests, we find in the constant mean case the ARE's of the Sargan-Bhargava, 
P/ and T' tests relative to the power envelope are, respectively, 1.40, 1.53, and 
1.91. Since c is proportional to T, this implies that using the Dickey-Fuller t test 
instead of the Pt(.5) test is equivalent in large samples to discarding almost half 
of the observations. The corresponding ARE's for the linear trend case are 1.07, 
1.13, and 1.25. 

Since the difficulties with the standard tests are associated with inefficient 
estimates of the trend parameters, it is reasonable to expect that modified 



824 G. ELLIOTr, T. J. ROTHENBERG, AND J. H. STOCK 

I 

?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 r , 
0.9 

0.8 

0.7 

0.6-/ ' 

0.5 

0.4 

0.3 - " Solid line: Gaussian Power Envelope 

)z; / ~~A: PT'(-5) 

0.2 B: DF-GLST(.5) 
/ .#' ^C: Bhargava 

-00 D: Dickey-Fuller p" 
0.1 E: Dickey-Fullerirl 

0 1 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 

-C 

FIGURE 3-Asymptotic power functions of selected unit root tests: linear trend (zt = (1, t'). 

estimates could improve their performance. Because of their relatively good size 
properties found in small-sample Monte Carlo studies (e.g., Schwert (1989)), 
natural tests to modify are those based on the Dickey-Fuller t statistics T IL and 
T . Choosing c to be that alternative where maximal power is approximately 
one-half, we propose regressing y, on Z,, to obtain the estimate f8. Then one 
can perform the usual augmented Dickey-Fuller t test (without deterministic 
regressors) using the residual series yt -yt -,'zt in place of Yt. Thus the 
modified test statistic (denoted by DF-GLS(OT-) in the tables and figures) is the t 
statistic for testing ao = 0 in the regression 

( 1) Ay d = a0yd- 1 + al AYd- 1 + * * +a Ay d + error. 

When dt =,8, the estimate ,80 is stochastically bounded and T- 12(Y[sT]- 

,80) wt Wc(s); the t statistic calculated from the demeaned data has the limiting 
representation O.5(fW2) 112[W2(1) - 1], which is identical to that of T^. Critical 
values and asymptotic power are those of the conventional Dickey-Fuller t 
statistic when there is no intercept. In the linear trend case, the detrended series 
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TABLE I 

CRITICAL VALUESa 

Level 

T 1% 2.5% 5% 10% 

A. Constant Mean: PT with c =-7 

50 1.87 2.39 2.97 3.91 
100 1.95 2.47 3.11 4.17 
200 1.91 2.47 3.17 4.33 
?? 1.99 2.55 3.26 4.48 

B. Linear Trend: PT with c = - 13.5 

50 4.22 4.94 5.72 6.77 
100 4.26 4.90 5.64 6.79 
200 4.05 4.83 5.66 6.86 
00 3.96 4.78 5.62 6.89 

C. Linear Trend: DF-GLST with c =-13.5 

50 -3.77 -3.46 -3.19 -2.89 
100 - 3.58 - 3.29 - 3.03 -2.74 
200 - 3.46 -3.18 - 2.93 - 2.64 
00 -3.48 -3.15 - 2.89 - 2.57 

a Entries are based on 20,000 Monte Carlo replications. Data were 
generated by (1) with a = 1 and Gaussian white noise {v,}. The PT 
statistic is given by (9) with 02 = S(1)/T; DF-GLS' is the t statistic 
calculated from (11) with p = 0 and y =y - Z/3 where f3 is obtained 
by regressing y, on Z,. In both cases, a = 1 + C/T. The line T - was 
calculated using a discrete approximation to the relevant stochastic 
integrals. 

Yt/ 1-0- fl1t plays the role of yte. It is shown in the Appendix that 
T- 1/2 [T ] - JIV(s, C) when -a = 1 + c/T is used for the estimation of f8; the t 
statistic then has the limiting representation 0.5[ fV2(SC )] 1/2[V12(l, C) - 1]. 
Figure 3 graphs the asymptotic power function of the locally detrended t test 
when c =-13.5. It is indistinguishable from the power envelope. 

The -a that produces a given asymptotic power XT depends on the size of the 
test, so critical values for the PT(T) tests and for the Dickey-Fuller t test 
applied to locally detrended data depend on e. This is inconvenient as it 
requires an extensive set of tables and, if marginal significance levels are 
calculated, recomputing the test statistic for different e. Since the power curves 
of the tests are not sensitive to a(O-) in the range .25 < - < .95, a simpler 
approach is to fix -a = 1 + C/T independently of e. Our calculations indicate 
that, if c- = -7 is chosen for the constant mean case and c = - 13.5 for the 
linear trend case, the limiting power functions of the resulting PT tests and for 
the Dickey-Fuller t test applied to locally detrended data are within 0.01 of the 
power envelope for .01 < e < .10. Some critical values for this choice of c are 
given in Table I. Note that, although the small-sample values are valid only for 
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Gaussian white noise {v[}, the large-sample critical values do not depend on . 
or normality. 

5. FINITE SAMPLE PERFORMANCE 

A Monte Carlo experiment was conducted to see how well the asymptotic 
theory describes the small-sample properties of our tests. We investigated tests 
based on PT1(.5), the standard Dickey-Fuller t statistic (denoted DF-1 IL), and 
the modified Dickey-Fuller t statistic (denoted DF-GLS ) for the constant 
mean case and the corresponding three tests (based on PT(.5), DF-FT, and 
DF-GLST) in the linear trend case. Data generating processes considered 
elsewhere in the literature (e.g., Phillips and Perron (1988), Schwert (1989), 
DeJong et al. (1992), and Lumsdaine (1994)) were employed. Specifically, letting 

{m,q} be a set of independent standard normal variables, we used the following 
three models for the {vj process: 

I . MA(1: Vt= 1t - 1t- 1 (O = .8,.59,0,-.5, -.8), 

II. AR(1: vt= ovt- 1 + 71t (o .5' -5)' 

III. GARCH MA(1: v = ~t-'Kt- 1 t = h12qt 71 

ht = 1 + .65h_1 + .25 t2 1, ho = O 

(0 = .5, O, -.5). 

In each of these models the initial condition was u0 = 0. Although the null 
distribution of the test statistics considered here are invariant to the initial 
condition, small-sample power typically depends on u0. This dependence is 
investigated by considering a variant of the first model where the {utj are strictly 
stationary under the alternative hypothesis. That is, u0 is normal with mean zero 
and variance equal to (1 + 02 - 20a)/(1 - a2), a = 1. This design violates our 
Condition C and is intended to shed light on the importance of that assumption. 

The autocorrelation structure of {vtj was assumed to be unknown to the 
investigator, so two types of loosely parameterized estimators, autoregressive 
(AR) and sum-of-covariances (SC), were used for co2. The AR estimators are 
given by 

// p \2 

(13) 2A = j(R ai- 

where O2 and the ai are OLS estimates from the regression 

(14) Ayt = aoyt-1 + al jYt-1 + *t +ap Ayt-p + ap+1 + 7t 
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Two choices of lag length were employed: the AR(8) estimator used p = 8 and 
the AR(BIC) estimator used p chosen by the Schwarz (1978) Bayesian informa- 
tion criterion constrained so 3 ?p < 8. The SC estimators are given by 

IT 

A2= E K(m/ll)d(m) 

where K(*) is the Parzen kernel, A (m) = T- ET- metet+m, and et is the residual 
from an OLS regression of yt on (Yt z). Two variants were employed: SC(12) 
using 'T = 12 and SC(auto) using Andrews' (1991) optimal automatic procedure 
(his equations (6.2) and (6.4)). 

The results are summarized in Table II for a constant mean and in Table III 
for a linear trend. Tests were at the 5% asymptotic significance level and the 
sample size T was 100. For a = 1, the tables report the observed rejection rates 
from 5000 Monte Carlo replications when critical values were based on the 
limiting distributions. For a < 1, the tables report size-adjusted power; this is the 
rejection rate when critical values are estimated from the a = 1 Monte Carlo 
trials. 

The results suggest three conclusions. First, the predicted superiority of the 
tests using local-to-unity estimates of the mean and trend parameters is borne 
out by the Monte Carlo study. The PT and modified Dickey-Fuller tests have 
higher size-adjusted power than the standard Dickey-Fuller t test for almost all 
of the data generating processes and all choices of c22. The improvement is 
largest in the constant mean case. Although the observed power curves tend to 
be somewhat below the asymptotic power curves, the results are generally 
consistent with the predictions of the asymptotic theory. The main exception is 
the poor performance of the point-optimal tests using SC estimates of c2 when 
the MA parameter 0 is large. 

Second, the choice of estimator for w 2 has a large effect on the size of the PT 
tests, with the AR estimator exhibiting much smaller distortions than the SC 
estimator. This mirrors similar results found for other unit-root statistics; see, 
for example, DeJong et al. (1992) and Perron (1996). The AR(8) and AR(BIC) 
tests have moderate size distortion except in the MA model with large 0. The 
modified Dickey-Fuller tests have notably smaller size distortions than those 
based on PT. In addition, the tests based on the AR(BIC) estimator have better 
size-adjusted power than those based on the AR(8) estimator, which typically 
estimates more nuisance parameters. Other experiments not reported in Tables 
II or III indicate that the AR(BIC) tests also dominate the ones based on the 
AR(4) estimator for w 2. Lag length selection based on sequential likelihood 
ratio statistics was also tried; no general improvement over AR(BIC) was found, 
although the LR selector appears to improve the size-adjusted power of the 
modified Dickey-Fuller test relative to BIC in the linear trend case, at least for 
small values of 0. 

Third, the powers of the PT and modified Dickey-Fuller tests deteriorate 
substantially when the ut are stationary. Even so, in the linear trend case with 
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TABLE II 

SIZE AND SIZE-ADJUSTED POWER OF SELECTED TESTS OF THE I(1) NULL: MONTE CARLO RESULTS 

5% LEVEL TESTS, CONSTANT MEAN (Zt = 1), T = 100 

Test Asymptotic MA(1), 6= AR(1), 4 = GARCH MA(1), 6= Stationary MA(1), 6= 
Statistic a Power -0.8 -0.5 0.0 0.5 0.8 0.5 -0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

P '1N.5) 1.00 .05 0.18 0.20 0.20 0.18 0.20 0.22 0.20 0.21 0.20 0.18 0.20 0.20 0.18 
AR(8 .95 .32 0.18 0.18 0.19 0.18 0.15 0.18 0.17 0.18 0.18 0.17 0.13 0.13 0.13 

.90 .76 0.31 0.31 0.32 0.32 0.30 0.31 0.29 0.30 0.30 0.30 0.24 0.25 0.25 

.80 1.00 0.47 0.48 0.50 0.51 0.51 0.46 0.46 0.48 0.48 0.49 0.40 0.42 0.43 

.70 1.00 0.56 0.57 0.59 0.60 0.47 0.55 0.53 0.56 0.57 0.58 0.49 0.51 0.52 

P '1(.5) 1.00 .05 0.14 0.11 0.10 0.11 0.42 0.11 0.10 0.13 0.11 0.12 0.11 0.10 0.11 

AR(BIC) .95 .32 0.24 0.27 0.28 0.28 0.19 0.26 0.27 0.26 0.26 0.27 0.17 0.17 0.17 
.90 .76 0.50 0.57 0.59 0.59 0.41 0.52 0.56 0.54 0.56 0.57 0.37 0.37 0.36 
.80 1.00 0.82 0.89 0.91 0.92 0.79 0.83 0.88 0.86 0.88 0.89 0.67 0.69 0.69 
.70 1.00 0.92 0.97 0.98 0.98 0.94 0.93 0.96 0.95 0.96 0.96 0.81 0.83 0.84 

P '1N.5) 1.00 .05 0.02 0.02 0.07 0.50 0.98 0.01 0.33 0.03 0.08 0.51 0.02 0.07 0.50 

SC(12) .95 .32 0.29 0.29 0.29 0.27 0.15 0.29 0.29 0.29 0.30 0.28 0.17 0.17 0.15 
.90 .76 0.64 0.65 0.70 0.62 0.09 0.59 0.68 0.64 0.68 0.59 0.36 0.40 0.33 
.80 1.00 0.96 0.97 0.99 0.84 0.01 0.92 0.97 0.95 0.98 0.80 0.63 0.73 0.49 
.70 1.00 1.00 1.00 1.00 0.78 0.00 0.98 0.99 0.99 1.00 0.74 0.76 0.85 0.46 

P 'L(.5) 1.00 .05 0.04 0.04 0.06 0.31 0.88 0.03 0.18 0.04 0.07 0.34 0.04 0.06 0.31 

SC(auto) .95 .32 0.30 0.30 0.32 0.31 0.30 0.29 0.31 0.30 0.31 0.31 0.17 0.19 0.18 
.90 .76 0.67 0.68 0.74 0.73 0.59 0.64 0.73 0.68 0.69 0.70 0.39 0.44 0.41 
.80 1.00 0.97 0.98 0.99 0.99 0.72 0.96 0.99 0.97 0.98 0.98 0.72 0.80 0.70 
.70 1.00 1.00 1.00 1.00 1.00 0.71 0.99 1.00 1.00 1.00 1.00 0.85 0.91 0.79 

DF-GLS 90C) 1.00 .05 0.05 0.06 0.06 0.06 0.12 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 
AR(8 .95 .32 0.21 0.23 0.23 0.23 0.30 0.23 0.24 0.22 0.22 0.23 0.14 0.14 0.13 

.90 .75 0.42 0.43 0.45 0.47 0.62 0.42 0.46 0.43 0.44 0.47 0.25 0.25 0.24 

.80 1.00 0.68 0.70 0.72 0.79 0.92 0.66 0.74 0.69 0.71 0.78 0.40 0.40 0.37 

.70 1.00 0.80 0.82 0.84 0.91 0.98 0.77 0.87 0.82 0.83 0.90 0.46 0.47 0.42 

DF-GLS 9(.) 1.00 .05 0.10 0.08 0.07 0.11 0.45 0.07 0.08 0.09 0.08 0.11 0.08 0.07 0.11 
AR(BIC) .95 .32 0.26 0.27 0.28 0.30 0.30 0.26 0.28 0.26 0.27 0.26 0.17 0.16 0.17 

.90 .75 0.56 0.59 0.60 0.67 0.68 0.54 0.62 0.57 0.59 0.61 0.37 0.37 0.37 

.80 1.00 0.87 0.92 0.93 0.97 0.98 0.86 0.95 0.90 0.92 0.95 0.66 0.68 0.68 

.70 1.00 0.96 0.98 0.99 1.00 1.00 0.95 1.00 0.98 0.98 1.00 0.79 0.80 0.76 

DF -,r 1.00 .05 0.08 0.06 0.06 0.08 0.46 0.06 0.05 0.07 0.06 0.08 0.06 0.06 0.08 
AR(BIC) .95 .12 0.11 0.10 0.10 0.13 0.13 0.10 0.11 0.10 0.10 0.13 0.11 0.11 0.13 

.90 .31 0.23 0.22 0.22 0.31 0.31 0.20 0.25 0.23 0.23 0.29 0.24 0.24 0.32 

.80 .85 0.55 0.56 0.59 0.77 0.78 0.46 0.65 0.54 0.58 0.73 0.57 0.60 0.77 

.70 1.00 0.76 0.79 0.83 0.96 0.96 0.67 0.89 0.77 0.82 0.93 0.80 0.84 0.96 

Notes: For each statistic, entries in the first row are the empirical rejection rate under the null (the size). The remaining entries are the 
size-adjusted power under the model described in the column heading. The column, "Asymptotic Power," is the local-to-unity asymptotic 
power for each statistic. The entry below the name of each statistic indicates the estimator of w 2 used (see Section 5). For the lalI < 1 cases 
in the final three columns, uo was drawn from its stationary distribution. Based on 5000 Monte Carlo replications. 
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TABLE III 

SIZE AND SIZE-ADJUSTED POWER OF SELECTED TESTS OF THE I(1) NULL: MONTE CARLO RESULTS 
5% LEVEL TESTS, LINEAR TREND (Zt = (1, t)'), T = 100 

Test Asymptotic MA(1), = AR(1), 4= GARCH MA(1), 6= Stationary MA(1), 6= 
Statistic a Power - 0.8 - 0.5 0.0 0.5 0.8 0.5 -0.5 - 0.5 0.0 0.5 - 0.5 0.0 0.5 

PT(.5) 1.00 .05 0.16 0.18 0.18 0.14 0.13 0.21 0.17 0.19 0.19 0.13 0.18 0.18 0.14 
AR(8) .95 .10 0.15 0.16 0.16 0.16 0.13 0.15 0.15 0.14 0.15 0.15 0.13 0.13 0.13 

.90 .27 0.26 0.26 0.26 0.27 0.25 0.25 0.24 0.23 0.25 0.25 0.23 0.24 0.25 

.80 .81 0.40 0.41 0.41 0.44 0.45 0.38 0.38 0.37 0.40 0.42 0.38 0.39 0.42 

.70 .99 0.48 0.49 0.50 0.53 0.42 0.45 0.46 0.46 0.48 0.51 0.46 0.48 0.50 

PT(.5) 1.00 .05 0.13 0.10 0.07 0.05 0.29 0.10 0.05 0.11 0.08 0.06 0.10 0.07 0.05 
AR(BIC) .95 .10 0.18 0.17 0.17 0.18 0.15 0.16 0.16 0.17 0.16 0.17 0.14 0.14 0.14 

.90 .27 0.36 0.36 0.36 0.39 0.32 0.31 0.35 0.34 0.34 0.37 0.29 0.30 0.32 

.80 .81 0.65 0.69 0.72 0.77 0.70 0.60 0.68 0.66 0.68 0.73 0.61 0.63 0.68 

.70 .99 0.82 0.86 0.88 0.92 0.90 0.76 0.84 0.83 0.84 0.89 0.78 0.81 0.86 

PT(-5) 1.00 .05 0.00 0.00 0.03 0.77 1.00 0.00 0.57 0.00 0.03 0.77 0.00 0.03 0.77 
SC(12) .95 .10 0.10 0.11 0.12 0.11 0.05 0.11 0.11 0.11 0.12 0.11 0.09 0.10 0.09 

.90 .27 0.25 0.26 0.32 0.22 0.02 0.24 0.26 0.27 0.29 0.20 0.21 0.25 0.16 

.80 .81 0.65 0.69 0.81 0.35 0.00 0.57 0.61 0.68 0.74 0.31 0.51 0.64 0.25 

.70 .99 0.87 0.91 0.96 0.29 0.00 0.83 0.71 0.89 0.93 0.25 0.73 0.85 0.20 

PT(.5) 1.00 .05 0.01 0.01 0.04 0.49 0.99 0.00 0.26 0.01 0.05 0.51 0.01 0.04 0.49 
SC(auto) .95 .10 0.12 0.11 0.12 0.12 0.10 0.11 0.12 0.11 0.11 0.11 0.10 0.10 0.10 

.90 .27 0.30 0.30 0.32 0.33 0.22 0.27 0.32 0.30 0.30 0.30 0.23 0.25 0.24 

.80 .81 0.77 0.79 0.85 0.85 0.41 0.69 0.86 0.76 0.81 0.80 0.62 0.70 0.63 

.70 .99 0.97 0.97 0.99 0.98 0.39 0.93 0.99 0.97 0.98 0.97 0.87 0.93 0.82 

DF-GLST(.5) 1.00 .05 0.04 0.05 0.05 0.04 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 
AR(8) .95 .10 0.08 0.09 0.09 0.10 0.11 0.09 0.09 0.08 0.09 0.09 0.08 0.08 0.09 

.90 .27 0.16 0.17 0.17 0.20 0.25 0.15 0.18 0.15 0.16 0.18 0.13 0.13 0.15 

.80 .81 0.30 0.31 0.33 0.40 0.53 0.28 0.35 0.31 0.32 0.38 0.22 0.23 0.26 

.70 .99 0.41 0.42 0.45 0.56 0.68 0.37 0.48 0.43 0.45 0.53 0.30 0.31 0.33 

DF-GLST(.5) 1.00 .05 0.11 0.08 0.07 0.11 0.58 0.06 0.07 0.08 0.06 0.11 0.08 0.07 0.11 
AR(BIC) .95 .10 0.11 0.10 0.10 0.11 0.12 0.10 0.10 0.10 0.10 0.11 0.09 0.09 0.09 

.90 .27 0.23 0.23 0.24 0.28 0.27 0.22 0.25 0.23 0.24 0.26 0.19 0.19 0.21 

.80 .81 0.53 0.57 0.61 0.72 0.70 0.48 0.63 0.56 0.59 0.69 0.46 0.49 0.54 

.70 .99 0.75 0.80 0.84 0.94 0.91 0.69 0.88 0.78 0.82 0.91 0.67 0.71 0.76 

DF-,r'r 1.00 .05 0.10 0.07 0.05 0.09 0.58 0.05 0.06 0.07 0.06 0.09 0.07 0.05 0.09 
AR(BIC) .95 .09 0.09 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.09 

.90 .19 0.16 0.14 0.15 0.18 0.17 0.14 0.15 0.14 0.14 0.18 0.15 0.15 0.18 

.80 .61 0.36 0.36 0.39 0.51 0.50 0.30 0.42 0.34 0.37 0.48 0.36 0.39 0.52 

.70 .94 0.57 0.58 0.64 0.81 0.80 0.48 0.69 0.55 0.60 0.78 0.58 0.64 0.81 

Notes: See the notes to Table II. 
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0= 0, the size-adjusted powers of the tests using local detrending exceed that of 
DF-_T. In the constant mean case, the size-adjusted powers of tests using local 
demeaning exceed that of DF- I for close but not distant alternatives. The 
gains from employing local-to-unit estimates of the intercept appear to depend 
crucially on the assumption that, under both the null and the alternative 
hypotheses, only the early observations are informative about that parameter. 

6. CONCLUSIONS 

The PT and modified Dickey-Fuller t statistics are easily computed from least 
squares regressions. If the sample size is large enough so the effects of residual 
autocorrelation are captured by co2 and the asymptotic approximations are 
accurate, these tests are essentially optimal among tests based on second-order 
sample moments and should perform considerably better than tests which 
employ OLS estimates of the parameters determining d. Our Monte Carlo 
results suggest that the Dickey-Fuller t test applied to a locally demeaned or 
detrended time series, using a data-dependent lag length selection procedure, 
has the best overall performance in terms of small-sample size and power. 

The numerical finding that, as a practical matter, the asymptotic power 
functions of the PT(O) and the modified Dickey-Fuller t tests effectively lie on 
the Gaussian power envelope indicates that, in large samples, there is little 
room for improvement under the stochastic specification made here. Of course, 
if the errors have a known non-normal distribution or if the initial error u0 is 
large compared to co, better tests could be constructed. Furthermore, the Monte 
Carlo evidence suggests that autocorrelation in the v, can have very substantial 
effects in small samples. Nevertheless, it appears that, when parameters in the 
deterministic component of a series have to be estimated, the proposed tests for 
a unit root dominate those currently in common use. 
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APPENDIX A: PRELIMINARY LEMMAS 

Let y(k) be the autocovariance function and f(A) the spectral density function for the stationary 
process {v,} satisfying Condition A. The rs element of the T x T covariance matrix X is 'y(r - s) = 

Jf ,r ei(r-s)Af(A) d A. We shall approximate 1 by the T x T matrix IF with rs element p(r - s) 
J- ei( )A[47r2f(A)L dA. The rs element of D - ITf- is given by Davies (1973) and Dzha- 
paridze (1985) as 

s-1-T X 

drs = , y(k)p(s - r - k) + E y(k)p(s - r - k). 
k=-oo k=s 
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For real p x q matrix B = [bij], let r(B) be the square root of the largest characteristic root of B'B, 
let IIBIIJ =1E =1bj 1, and let IBI=tr 12(B'B). Then, r(B)<IBI<IIBII and, if B and C are 
conformable, Itr(BC)l < IBIICI and IBCI < lBlr(C). Cf. Davies (1973). Since Ej= - 1Ijil < oo implies 

-k= jy (k)ki < o and (by Theorem 5.2 in Zygmund (1968, p. 245)) E'.= I p(i)l < 0, we find 

T T 0 0 

(Al) IDII = E E Idrsl < 2 E Iy(k)lk E I p(j)l <-. 
r=1 s=1 k=1 j=1-c 

As a consequence, we have the following four lemmas. 

LEMMA Al: Let X and IF be T x T Toeplitz matrices formed from y(k) and p(k), the Fourier 
coefficients of 27rf(A) and [2rf( A)]-1, respectively. Let x be a T x 1 vector such that hiMT _ T- lxl = 
O. If the elements of the T x 1 vector z and of the T x T matrix A are bounded in absolute value, then, 
under Condition A, 

(A2) lim T-1x'(Y71 - l_f)z = lim T-2tr[A'(X1 - _IF)AI = 0. 

PROOF: Since f(A) is continuous and positive on [- v-, - I, there exist positive m and M such that 
m f(A) M; hence, r(X) < 2vrM and r(YJ 1) < (2vm)- . For some constant K, ID'zI KIIDII, 
ID'AI ?KT112IID I, and IAl KT. Using (Al), we find 

T- 1 1x'(-1 - IF)zI = T'1 x''- 'D'zI < T'1 x'$I- 1 D'zI < T'1 IxIr( -)KIIDII --.0, 

T- 2 Itr[A'(1-1 - I)AII= T-2Jtr[A'X-1D'AII < T-2r(X>-1)AIID'Aj 

< T 1'/2K2r(X 1)DII -. 0. 

LEMMA A2: Suppose the data are generated by (1) under Condition A. Then w2 k= -y(k) is 
positive and, if c = T(a - 1) is fixed as T-- oo, 

T-2u1 1.u-1 2T-2u1u2 -O, 

2T- 'u'1- Au + 1- c 2[2T- 'u'1 1 Au + y(0)] 0. 

PROOF: Since 27Tf(A) = E-?y(k)eikA and [2Tf(A)]-1 = E7 p(k)eikA, we find that W2 = 2 f(O) 
> 0 and EU . p(k)=c-2. As Au = v + cT-1u-1, it will suffice to show that S1 = T2u'1(Y- 

- IU p p(X -2) 2 
r 2 I)u1_-.0 and S2 2T- 

1 u' 
- o1-v 
_ 2y () - 1. When u0 = 0, u - 1 = Av, where 

A = [ars] is a Tx T matrix with ars equal to a r-s-1 when r>s and zero otherwise. Note that 
larsil eli and, for nonrandom square matrix B, E(v'Bv) = tr(BX) and var(v'Bv) = tr(BVBV + 
BXB'X). Defining R = (c - 1/2 - c X 1S/2) we find 

IE(Sj)I = T-2c- 'Itr[A'R '112A ]I1 < T-l- lr( )r1/2( -1)e1c1jRAj, 

Var(Sd) = T 4c&-22tr[A'R '-112A IA'X-11/2RA p ] < 2T-2c-2r2( X)r(.-l )e21cilRA12, 

E(S2) = 2T- 1 [tr(A) - c-2 tr( XA)] 

= -2w- 2T-lET_ ly(k)(T-k)ak- 
1 -. 2y(o)-1, 

Var(S2) = T-2oY- 24 tr[ A'R X 1/2A'R X 1/2 + RAXATRI < 8T 22 r( )IRA12. 

To complete the proof, we need to show that T- 1 1RAI - 0 as T -. oo. Define 

T-k T T-k 

aT(k) T E a, E sa +k S = T 2(l + cT- 1)k E (1 + cT- 1)2(r- 1)(T k- ). 
t=1 s=1 r=1 

Note that, for fixed k, aT(k) -. (e2c - 1 - 2c)/(2c)2 when c # 0 and aT(k) -p 1/2 when c = 0, 
where the limits are independent of k. Moreover, the aT(k) are bounded by e12cl and the sequences 
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y(k) and p(k) are absolutely summable. Since ST k T+ (k) 2 and rT-= k T+ 1 p(k) 
-. 2, it follows that 

T- 1 

T-2tr[A'(. -sTI)AI = 2 , y(k[ aT(k) - aT(O)] 0, 
k= 1 

T- 1 

T-2tr[A'(1I- rTI)AI = 2 , p(k)[aT(k) - aT(O)I 0. 
k= 1 

Cf. Anderson (1971, 10.2.3). Using (A2), we have 

(A3) T-2IRAI2 = T-2trA'R2A = T-2tr[ w2A'-'A + c -2A'XA-2A'AI 0. 

LEMMA A3: If the data are generated by (1) under Conditions A and B, then 

(A4) lim T-2d'_l X- ld< = lim T-1 Ad'.X- ld- 1 = 0, 

(A5) plim T-2dd' 1 1- lu 1 = plim T- ld' 11 Au = plim T- 1 AdY1u_1 = 0, 

where d-1 = (0,dl,...,dT l-Y and Ad = (dl,d2-dl,..,dT-dTl-Y - 

PROOF: Under Condition B, T-2dd'1 1X- ld- 1 < r( - X)T-2d' ld- 1 < r( X-l)max, < TId/T-+ 0. 

By Lemmna Al, lim T-1 Ad'(7 S- _ ')d1 = 0. But, defining do 0, we have 

(A6) 12T-1 Ad'!d1I = T-1Id'Id-d'_1Id-1- Ad' !AdI 

T 

I p(O)T-1E [d 2- d 2 
1] 

t=1 

T-1 T-k 

+ 2 , p(k)T-1 , [dtdt+k-d dtdt,l+k]-T-7 Ad' d AdI 
k=1 t=1 

< max T-1d, 2 I p(k)I +r(')T-1Ad' Ad - 0. 
t? tT k=-oo 

Using the notation developed in the proof of Lemma A2, we have 

E[T -2d' 1 lu-1] 
= T 4d'_ -1 A XA'y-dl < -e1c1r( X)r2 1-)jd-1 

which implies that plimT-2d'_1 S-1u1 =0. For the second part of (A5), note that Au = v + 

cT- 1 u_ so it suffices to verify that var[T- d' 1d 
- 1 v]= T-2d'11 d1 -p 0. Finally, T-1 Ad' Ad 

0 and ID'AI < T /2elclllDll imply T- 1Ad'(1 - 'I')u1 0 since 

Var[ T-1 Ad'( 1 - _IP)u1] = T-2 Ad' - '1DA IA'DY-1 Ad 

< T-lr(.Y)r2(V- 1 )jAdj2IIDI112e2lcl 0. 

But T-1 Ad'Iu_1 u T- 1[d'"I'u - d'_ 1P'u T]- 71d'"IAu. The last term tends to zero by the same 
argument used for T- 1d'1 .- 1 Au. Since max T- 1/2ut is stochastically bounded, the algebra of (A6) 
shows that 

T-1Id'"Iu-d'd11'u1I <T?1 maxldtlmaxlutI E l p(k) 1-0, 
ttT tcT t proof. 

thus completing the proof. 
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Define 

(A7) QT(a) = U'aZa[Z'ZaZ] Zau QT (a) = U' I-'Za[Z'a I-'Z I 1zY -ua 

where ua = (Ul, U2 - au,,. UT - auT- 1Y and Za is given in (5). 

LEMMA A4: Suppose the data are generated by (1) under Condition A and dt = /3'zt, where 
z, = (1, t, t2,..., tq -1). Then QT(Zi) - QT(1) has a limiting distribution when c = T(a - 1) and c = Vc 
- 1) are fixed as T tends to infinity. Furthermore, 

(A8) QT(W ? QT(1) T QT[Q( ? QTM Q(1)] O0. 

PROOF: Define the q x q diagonal matrix NT = diag(T1/2, 1,T . T-q-2) and the TX q 
matrix Z=ZaNT. Then, setting 6=Au-ET-lu_1=v+(c-)T-lu_1 we have QT(O)= 
6'Z(Z'Z)- 1Z-' and Qm(7) = 6-1Z7(Z'- 1Z)- 1Z'5-.1. Write Z = [x, X], where x is the first 
column of Z and X = [xtj] consists of the other q - 1 columns. Defining e1 to be the first column of 
IT and t to be a vector of T ones, we can write x = (T1l2 + ET- 1/2)e1 - T- 1/2t; hence, T- 1x'x -* 1 
and T- 1 -2X, = U1 + op(1). For j = 1.q - 1, x1l = 1 and xt= T-J(TAtJ - etj) when t > 1. For all 
t and j, IxtjI < q + e and hence T- 1X'x -O 0. Define the continuous function hj(s, c) = (j - cs)sj-1 
for 0 < s < 1. Then T-1X'X converges to the matrix G(c) = [gi] = [fo hi(s, E)hj(s, c) ds]. 

The identity X'u - X' 1 u - 1 = X' Au + AX'u - 1 implies 

(A9) T- 112X' _ T- 1/2Xt (AU - ET _u1) = T- 1/2XTUT - T /2 (TAX+ eX)u1 

where XT is the last column of X'. Under Condition A, T- 1/2U[sTj c)WW(s). By the continuous 
mapping theorem and the Ito calculus, 

1T- 1T-X,62X' h(1, c)W1(1) - f1[H(s, c) + ch(s, c)]W,(s) ds = f h(c)[dW, - cW, 
0 

where h(s, c) is the vector consisting of the q - 1 functions hj(s, e), H(s, c) is the vector of first 
derivatives dhj(s, c)/ds, and the time index is dropped in the final term for notational convenience. 
Since lim T- lZ'Z is block diagonal, we find that QT(O) Z uO + w2Q(C ) where 

(A10) Q() = 
fh(OWW,- eW,)] fh(F)h'(J) fth(E)(dW - EWc)] 

Setting cY to one, the same argument shows that QT(O) - QT(1) w )2[Q(E) - Q(O)]. 
The argument now follows the proof of Lemma A2. Because the elements :tj of Z are 

polynomials in t, for all k and for all (i, j) pairs except i =j = 1, the terms 

T-k 

bAjk)=-1 [t,i2t+k,j +2t,j2t+k,i] 
t= 1 

are uniformly bounded and tend to constants independent of k. The ij element of T- 1(Z''Z - 

TZ'Z) is given by EIT- p(k)[b1.(k) - bTI(0)] and hence tends to zero except when i =j = 1. Since 
T- 'X'(,V- - 1F)X -0 and T-1X'(V- - W)x -0 by Lemma Al, we conclude that T-1X'- lx 
-0 and wi 2T- 1X'- 1X -G(c-). Similarly, T- 1(X',X- -w2X'X) O0, so T-1IRXI 2 -O0, where R 
is defined in the proof of Lemma A2. It follows that 

S3 = T- o -2I)U1 0, S4 = T-1/2X'( 0>1 _-2f)V 0, 

since tr[E(S3S3)] = &) 2T 3tr[X'R 1/2A IA'- 1/22RX] < c&)-2T- lr(,)r( -)e21c11RX 2-0 and 

tr[E(S4S4)] = oF -2T-ttr[X'R2X] = &2T-1RK12 0. This implies T-/2X'( S- o I)r O. 
By teseaue,T'- 0 1e?T1p 

By the same argument, T- 2tJXV \ -*>0, T- YV 'el -*>0, T- lti/V 16 -*>0, and T- 'e 1u< -0. 
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Defining the chi-square variate x2(v)=(e'1 - Iv)2/el-e1, we find that (x'.,- 1f )2/x'- x - 

x2(v) 0. Since lim T- 1zX- IZ is block diagonal, we have 

(All) QM(Zi) = C- 2QT(O) + X2(V) - ar2u2 + op(l). 

Since (All) holds for all ci in a neighborhood of unity and x2(v) - w -2u2 does not depend on cY, 

(A8) follows. 

APPENDIX B: PROOFS OF THEOREMS 1-3 

The statistical theory underlying Theorem 1 can be found in Lehmann (1959, Chapter 6). The 
limiting representations for the test statistics are derived as follows: 

(a) Under Condition A, T- 1/2U[T] =wW (s) and hence - 
2(T-2u'_ lu 1, T- u2) 

(JWC2,J4'C2(1)). Lemma A2 implies that (T2uQ 1E1u1,2T1u11?Y1 au) converges in probability 
to or-2(T-2u'_1u_I,2T-1u'_ J1u + y(O)-w2). But 

(Bl) 2T-1Lu' au a T- [UT - Au' Au] = T-1U -Ty(O) +op(l) 

since T-1 Au' Au = T- 1v'v + c2T3 1u- 1 + 2cT 2u 1v -. y(O). Thus, 

(B2) 2T 2U-1 1- 1U - 2ET- 1uA- 1 Au C2f WC2 _ C-[WV2(l)-11. 

If y is used in place of u in the slowly evolving trend case, we must add 

-2 T-2 (d' ,V l-1d_+2d'_ -u)-cT (d -d+d_ - +' - _) 

to the statistic on the left of (B2). But, from Lemma A3, these terms converge in probability to zero 
under Condition B, so the limiting distribution is unchanged. 

(b) From standard GLS projection theory and (A7) 

minL(a,,6)=y'[ 1- S -lZa(a lZa iZa l]=1 lU -QTm(a). 
f3 

Recalling that eT = min 0L(Z, ) -min 3L(O, ,3) and a = 1 + T- le, we find 

eT = c2T 2U 2 T 1 u lU 12cT lu + 1 1 Au + QmM (Z) 

For the polynomial trend of Lemma A4, we have from the continuous mapping theorem, 

(B3) (T 2U'u1,T T,QT(Z)-QT0)) c c 

where Q is defined in (A10). Thus, from (A8) and the argument leading to (B2), 

(B4 L*T L* = C2JWC2 _ EWC2(1) + Q(0)-_Q(c-) + E. 

For polynomial trend, L* is a function of c, E and q; it does not depend on I at all. When q = 1 so 

zt = 1, Q(c) = 0 and the result is the same as in part (a). 
(c) When Yt = /3o + 631t + ut, the function h(s, cF) in (A10) is given by (1 - Zs) so fh(0)2 = 1 - E + 

c2/3 and Jh(Z!XdWc - EWc) = (1 - E)Wc(l) + E2fsWc(s). After considerable algebraic manipulation, 
we find the following alternative expressions for (B4): 

(B5) L*-c = .E2f W2 + (1 -_ )W2(1) - (1 - + 2/3) [(1 - )Wc(l) + f2fsw(s)J 

=-c [ Af[w~ -c( sWc(l)]2 ds + (1 - A) [ Wc(s) -53 dsj 

= c-2f([Wc(s) - sb1 ]2 ds + (1- -)[Wc(l)-b ]2 = E2f V2(S, C) + (1 - E)V2(l, C) 
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where A = (1 - c)/(l - e + c2/3), b, = AWj(l) + (1 - A)3fsW,(s), and VJ(s, c) = Wi(s) - sbl. The 
process Vc(s, e) has a simple interpretation. Let yt1 be the detrended series 

y,L Yt - ,81- 1It = ut (- , - 1-0)-( - M - 1)t 

where 13M' and f3 M are the estimates that minimize L(i, f) when a = 1 + T- 'E. From the algebra 
leading to (All), we find that 'm is stochastically bounded and T'/2( /, '1 - =*) cob,. Hence, 
Vc(s,E) is the limiting representation of the standardized detrended series T- 1/2C -1YgT]. By Lemma 
A4, OLS estimates of f3 in the polynomial trend case are asymptotically equivalent to GLS 
estimates. Thus the same interpretation holds when detrending is done with OLS. 

PROOF OF THEOREM 2: From (B1) and the fact that S(a) = u Ua - QT(a), 

(1B6) ~ 02pT = S(i _f )-(1)(1 + ET- 1) 

= 2T2U 1U 1-C 1T + QT (1)(1 + cT- l) -QT (Z) 

The limiting results (A10) and (B3) follow from the fact that T-1/2U[ST] oWc(s) and that 
p 

T- 1 v'v -_ y(O). Since these limits also follow from Condition C, we have 

(B7) P T 
--2w2 kJ w2 - EW2(l) + Q(O) - Q(C)]. 

Comparing (B4) and (B7), we see that PT + C L* as long as plim Oi2 = 

PROOF OF THEOREM 3: It suffices to show that W -_* 0 when T -. oo with I a I < 1 and fixed. 
Since the initial condition is asymptotically negligible, {ut) behaves like a stationary process. Cf. 

Anderson (1971, Section 5.5.2). Thus T- 2u'_ l_ 0 and T-1UJ 0. From (A9), T- 112X'= 
T- 12XTUT -T 32(TAX + CXY U_ 0, so both QT(1) and QT(c) converge to u1. It follows from 

(B6) that (A)PT 0. 
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