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a b s t r a c t

As Nelson and Startz [Nelson, C.R., Startz, R., 1990a. The distribution of the instrumental variable
estimator and its t ratio when the instrument is a poor one. Journal of Business 63, S125–S140; Nelson,
C.R., Startz, R., 1990b. Some further results on the exact small sample properties of the instrumental
variables estimator. Econometrica 58, 967–976] dramatically demonstrated, standard hypothesis tests
and confidence intervals in instrumental variables regression are invalid when instruments are weak.
Recent work on hypothesis tests for the coefficient on a single included endogenous regressor when
instruments may be weak has focused on similar tests. This paper extends that work to nonsimilar
tests, of which similar tests are a subset. The power envelope for two-sided invariant (to rotations of
the instruments) nonsimilar tests is characterized theoretically, then evaluated numerically for five IVs.
The power envelopes for similar and nonsimilar tests differ theoretically, but are found to be very close
numerically. The nonsimilar test power envelope is effectively achieved by the Moreira [Moreira, M.J.,
2003. A conditional likelihood ratio test for structural models. Econometrica 71, 1027–1048] conditional
likelihood ratio test, so that test is effectively uniformly most powerful invariant (UMPI). We also
provide a new nonsimilar test, P∗, which has χ21 critical values, is asymptotically efficient under strong
instruments, involves only elementary functions, and is very nearly UMPI.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In a pair of highly influential papers, Nelson and Startz (1990a,b)
provided stark illustrations of the breakdown of the usual large-
sample approximation to the distribution of IV statistics, when
the instruments have a small correlation with the included
endogenous regressor, a case that has come to be known as weak
instruments. Nelson and Startz showed that, in this situation,
the distribution of the two-stage least squares (TSLS) estimator
can be bimodal and the TSLS t-statistic can have a highly
skewed distribution, resulting in large size distortions. Indeed, size
distortions when instruments are weak is a problem not just for
TSLS, but for all k-class estimators.
Spurred by the Nelson–Startz results, there has been a flurry

of research over the past decade on methods for inference in IV
regression that are robust to weak instruments, i.e., that are valid
even when instruments are weak; see Andrews and Stock (2006)
for a survey. One way to think about the testing problem is that
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the null hypothesis is in fact a compound hypothesis, involving
both the parameter of interest (the coefficient on the included
endogenous regressor) and a nuisance parameter, which governs
the strength of the instruments. Early work focused on tests that
are not similar, that is, tests that have rejection rates less than
the significance level for some values of the nuisance parameter
under the null hypothesis, and important contributions along these
lines were made by Nelson and coauthors (Wang and Zivot, 1998;
Nelson et al., 2006).
More recent work has focused on similar tests. Two test

statisticswith null distributions that do not depend on the strength
of the instrument are the Anderson and Rubin (1949) (AR) statistic,
and the LM statistic of Kleibergen (2002) and Moreira (2001).
Moreira (2003) provided a general way to conduct inference
in the IV regression model, by conducting inference conditional
on a complete sufficient statistic for the nuisance parameter
under the null. Andrews et al. (2006) (hereafter AMS) imposed
an additional condition that the test be invariant to rotations
of the matrix of instruments, and characterized (and computed)
the power envelope for two-sided invariant similar tests that
are asymptotically efficient if instruments are strong. Notably,
AMS found that one of the tests proposed by Moreira (2003),
the conditional likelihood ratio (CLR) test, effectively lies on this
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http://www.elsevier.com/locate/jeconom
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power envelope;while in theory the CLR test is not uniformlymost
powerful among two-sided invariant similar tests, as a numerical
matter it is. But these developments in the area of similar tests,
while useful, do not address the possibility that one could do better
yet, by considering nonsimilar tests, of which similar tests are a
subset.
The purpose of this paper is to assess whether there is a cost

to using similar tests and, if so, whether one can construct a
nonsimilar test that has often-better power than the best similar
test, the CLR test. Nonsimilar tests have null rejection probabilities
below the significance level α for some values of the nuisance
parameters. Because of the continuity of the power function, for
these values of the nuisance parameters, the power of a nonsimilar
test will be less than the power of a similar test for alternatives
close to the null hypothesis. However, for other values of the
nuisance parameters, or for more distant alternatives, nonsimilar
tests can have greater power than similar tests.
Specifically, in this paper we apply the theory of optimal

nonsimilar testing to the Gaussian IV regression model with
a single included endogenous regressor, for the compound
null hypothesis described above and a two-sided (two-point)
alternative.We characterize the two-sided point-optimal invariant
nonsimilar (POINS) tests. In some cases we find a closed-form
solution for the POINS test statistic, but, in general, it must
be found numerically. Our analysis focuses on Gaussian errors
with a known reduced-form error covariance matrix, a pair of
assumptions that permit developing exact most powerful tests.
These two assumptions are less restrictive than theymight initially
seem, because finite-sample distributions in theGaussian IVmodel
with a known error covariance matrix apply as asymptotic limits
when these assumptions are relaxed, using Staiger and Stock
(1997) weak instrument asymptotics, see AMS for the details.
We use a formulation of the IV regression model in which the

native parameters are transformed to polar coordinates following
Hillier (1990) and Chamberlain (2007). This transformation is one-
to-one and thus has no substantive effect on the testing problem,
however the polar coordinate representation has three advantages.
First, it results in symmetric power functions. Specifically, AMS
show that tests that, in native parameters, invariant similar tests
that place equal weight on symmetric positive and negative
point alternatives are not asymptotically efficient under strong
instruments, an undesirable property, and a two-sided test that is
asymptotically efficient does not have symmetric power functions
against negative and positive departures from the null. Said
differently, in native parameters, the testing problem is not
symmetric in a statistical sense because there is more information
about departures in one direction than in the other. In contrast
we show that, in polar coordinates, point optimal invariant
tests (nonsimilar and asymptotically efficient similar) have power
functions that are symmetric in the angular departure from the
null. Second, numerical analysis turns out to be easier in polar
coordinates than in the native parameters (surfaces are smoother).
Third, and least important, bymapping the native coordinates onto
the circle, the entire power function is more easily plotted because
its domain is [0, π/2] instead of the real line.
The theoretical and numerical work yields four main sub-

stantive conclusions. First, in the case that we examine exhaus-
tively (tests with five instruments and a 5% significance level),
the power envelope for two-sided invariant nonsimilar tests ef-
fectively equals the power envelope for asymptotically efficient
two-sided invariant similar tests. Thus, while something might
be gained in theory by considering nonsimilar tests, it turns out
that nothing is gained in practice, at least for the case we study
numerically.
Second, we propose a test statistic P∗B, which is a member of

the family of point optimal invariant nonsimilar tests with very
good overall power properties. In particular, P∗B is asymptotically
efficient under strong instruments and has a power function that is
numerically very close to the invariant nonsimilar power envelope.
Although a uniformlymost powerful invariant (UMPI) test does not
exist in this problem, in a numerical sense the P∗B test is very nearly
UMPI among nonsimilar tests.
Third, the P∗B test involves Bessel functions, so we also propose

a test, P∗, based on an approximation to the Bessel function
which uses only elementary functions. It turns out that the power
functions of the P∗B and P∗ tests are extremely close. Thus, in P∗we
have found a test that is very nearly UMPI, can be computed using
only elementary functions, and has an asymptotic χ21 distribution
under strong instruments.
Fourth, the CLR test is also found to be, in a numerical

sense, effectively UMPI among nonsimilar two-sided tests. This
strengthens the conclusion of AMS, who found the CLR test to be
effectively UMPI among similar two-sided tests.1
Because the P∗ and CLR tests are both nearly UMPI, the choice

between the two in practice is one of convenience. Both involve
only elementary functions. The CLR test requires conditional
critical values. The P∗ test usesχ21 critical values, however we have
not found an analytic formula for confidence intervals constructed
by inverting the P∗ test. Because fast and accurate software now
exists for the computation of CLR p-values (using the algorithm in
Andrews et al. (2007a)) and confidence intervals constructed by
inverting the CLR test (Mikusheva, 2006), the practical advice for
empirical work coming out of this research is the same as AMS,
that is, to use the CLR test when instruments are potentially weak.
The paper proceeds as follows. Section 2 lays out the model,

the maximal invariant statistic, and its distribution in native
parameters. Section 3 presents the testing problem in polar
coordinates. Section 4 develops the theory of POINS tests and the
nonsimilar power envelope. Section 5 presents the new P∗B and P∗
test statistics. Numerical results are presented in Section 6.

2. The model, statistics, and distributions in native parameters

We consider the linear IV regression model with a single
included endogenous regressor,
y1 = y2β + Xγ 1 + u, (1)

y2 = ZΠ + Xξ + v2, (2)
where y1 and y2 are n × 1 vectors of endogenous variables, X is a
n× pmatrix of exogenous regressors, and Z is a n× kmatrix of k
instrumental variables. It is assumed that Z is constructed so that
Z ′X = 0.
Our interest is in two-sided tests of the null hypothesis

H0 : β = β0 vs. H1 : β 6= β0. (3)
The reduced form of (1) and (2) is

Y = ZΠa′ + Xη + V , (4)
where Y = [y1 y2], V = [v1 v2], a = [β 1]′, and η = [γ ξ ],
where v1 = u + v2β and γ = γ1 + ξβ . The reduced-form errors
are assumed to be i.i.d. across observations, homoskedastic, and
normally distributed with covariance matrixΩ , that is,

1 One might wonder about the properties of the CLR test among tests that are
not invariant to rotations of the instruments, or as a one-sided test. On the former
point, the class of non-invariant tests is too large to be useful because the power
envelope is constructed using tests in which the population first-stage coefficients
are treated as known. (For example, a feasible test is the Neyman–Pearson test
constructed assuming that all the first-stage coefficients equal one. If, in fact, all
those coefficients are one, then this test is efficient, but if they are not, its power
could be quite poor.) As discussed in AMS, invariance to rotations of the instruments
is a natural additional condition to impose, one that is satisfied by all standard IV
tests. On the latter point, the one-sided and two-sided testing problems turn out
to be quite different when the instruments are weak, and conclusions in the two-
sided problemdonot necessarily carry over to the one-sided case, see Andrews et al.
(2007b).
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V |X, Z ∼ N(0, In ⊗Ω), (5)

where In is the n × n identity matrix. Throughout, Ω is treated as
known.

2.1. Maximal invariant

AMS restrict attention to tests that are invariant to orthonormal
transformations of the k IVs, that is, transformations Z → ZF ′,
where F is a k×k orthonormalmatrix. AMS show that themaximal
invariant is

Q ≡
[
QS QTS
QST QT

]
=

[
S ′S T ′S
S ′T T ′T

]
, (6)

where Q is 2× 2 and S and T are the k× 1 vectors

S = (Z ′Z)−1/2Z ′Yb0/(b′0Ωb0)
1/2, (7)

T = (Z ′Z)−1/2Z ′YΩ−1a0/(a′0Ω
−1a0)1/2, (8)

where b0 =
[
1 −β0

]′ and a0 = [
β0 1

]′. Three test statistics
that are functions of Q are the LM statistic of Kleibergen (2002)
and Moreira (2001), the Anderson and Rubin (1949) statistic (AR),
and the Moreira (2003) conditional likelihood ratio statistic (CLR).
Expressed in terms of Q , these test statistics respectively are,

LM = Q 2ST/QT (9)

AR = QS/k (10)

CLR =
1
2

(
QS − QT +

√
(QS − QT )2 + 4Q 2ST

)
. (11)

Under the null hypothesis, the LM statistic is distributed χ21 and
the AR statistic is distributed χ2k /k. The expressions (9)–(11) and
these distributions obtain becauseΩ is treated as known.

2.2. Distributions in native parameters

Under both the null and alternative, S and T are independent
and are normally distributed:(
S
T

)
∼ N(h⊗ µΠ , I2 ⊗ Ik), (12)

where h = [cβ dβ ]′, cβ = (β − β0)/(b′0Ωb0)
1/2, dβ =

a′Ω−1ao/(a′0Ω
−1a0)1/2, and µΠ = (Z ′Z)1/2Π . AMS show that

the distributions of Q and QT depend only on (β, λ), where λ =
ΠZ ′ZΠ = µ′ΠµΠ . Let ν = (k − 2)/2. The noncentral Wishart
distributions of Q and QT are,

fQ (q;β, λ) = K1e−
1
2 λh
′h det(q)(k−3)/2e−

1
2 (qS+qT )

(√
λh′qh

)−ν
× Iν

(√
λh′qh

)
(13)

fQT (qT ;β, λ) = K2e
−
1
2 λd

2
β q(k−3)/2T e−

1
2 qT
(√
λd2βqT

)−ν
× Iν

(√
λd2βqT

)
(14)

where K1 = [2(k+2)/2π1/2Γ ((k − 1)/2)]−1, K2 = 1/2, and Iν(z) is
the modified Bessel function of the first kind,

Iν(z) =
( z
2

)v ∞∑
j=0

(
z2/4

)j
j!Γ (ν + j+ 1)

. (15)

3. The testing problem in polar coordinates

The transformation from native parameters to polar coordi-
nates is obtained by letting r and θ be given by
r2 = λh′h (16)(
sin θ
cos θ

)
=

h
√
h′h
. (17)

The mapping from (λ, β) to (r, θ ) is one-to-one, so the
transformation does not change the testing problem. Under the
null hypothesis, cβ0 = 0 so β = β0 corresponds to θ = θ0 = 0.
Under the alternative, β > β0 corresponds to θ > 0, while β < β0
corresponds to θ < 0.
The transformation (16) and (17) has a natural interpretation:

r is the norm of the mean vector of (S, T ) and θ is the angular
departure of that mean vector from its value under the null
hypothesis. The radius r can be thought of as the amount of
information in the mean vector that is usable for testing the null
hypothesis, and θ governs how large the departure is from the null
hypothesis, cf. Hillier (1990), Chamberlain (2007).
Two useful reference values of θ correspond to the limits of the

range of β:

θ∞ = lim
β→∞

cos−1[dβ/(h′h)1/2] and θ−∞ = θ∞ − π. (18)

The range of θ corresponding to −∞ < β < ∞ thus is −π ≤
θ−∞ = θ∞ − π < θ < θ∞ ≤ π . When Ω =

[
1 ρ
ρ 1

]
,

θ∞ = cos−1(−ρ).

3.1. Distributions in polar coordinates

In the (r , θ ) coordinate system, the distributions of Q and QT in
(13) and (14) are

fQ (q; r, θ) = K1e−
1
2 r
2
det(q)(k−3)/2e−

1
2 (qS+qT )

(√
r2x′qx

)−ν
× Iν

(√
r2x′qx

)
(19)

fQT (qT ; r, θ) = K2e
−
1
2 r
2 cos2 θq(k−3)/2T e−

1
2 qT

(√
r2
(
cos2 θ

)
qT

)−ν
× Iν

(√
r2
(
cos2 θ

)
qT

)
(20)

where x = x(θ) = [sin θ cos θ ]′.
It is straightforward to verify that the distribution of Q satisfies

fQ (q; r, θ) = fQ (q; r, θ ± jπ), j = 1, 2, 3, . . . (21)

fQ (qS, qST , qT ; r, θ) = fQ (qS,−qST , qT ; r,−θ). (22)

An implication of (21) is that θ and θ ± jπ are observationally
equivalent.

3.2. Strong instrument local asymptotic nestings

AMS (section 7, Assumption SIV-LA) consider the strong
instrument local asymptotic (SIV-LA) sequence,

β = β0 + b̄/
√
n, (23)

where b̄, Π and Ω are fixed. Under (23), if Z ′Z/n→p DZ , then
λ/n = Π ′(Z ′Z/n)Π→pΠ ′DZΠ ≡ Λ∞ (the convergence in
probability can be replaced by nonrandom convergence if (X, Z)
are nonrandom).
In polar coordinates, the SIV-LA nesting corresponding to (23)

is,

θ = t/
√
n, (24)

where t = b̄/
√
b′0Ωb0a

′

0Ω
−1a0 and where r2/n→p R2

∞
=

Λ∞a′0Ω
−1a0. It is shown in the Appendix that the nestings (23) and

(24) are equivalent in a n−1/2 neighborhood of the null hypothesis.
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3.3. Asymptotically efficient POIS 2-sided tests in polar coordinates

AMS show that POIS tests against a two-point alternative are
asymptotically efficient (AE) under the SIV-LA nesting in native
parameters (23) if they are against two equally weighted points
(λ∗, β∗) and (λ∗2, β

∗

2 ) which satisfy
√
λ∗cβ∗ =

√
λ∗2cβ∗2 and√

λ∗dβ∗ =
√
λ∗2dβ∗2 . By (16) and (17), in polar coordinates

this corresponds to testing against the two points, (r∗, θ∗) and
(r∗,−θ∗). Thus the POIS test of the null and alternative

H0 : (r0, θ = 0)vs.H1 : (r1,±θ1), (25)

where equal weight is placed on (r1, θ1) and (r1,−θ1), is AE under
the SIV-LA nesting (24) (this is true for all r0 and r1 > 0).
The results in the previous paragraph provide a precise sense,

in which the two-sided testing problem is symmetric in polar
coordinates but not native coordinates. POIS tests that place
equal weight on (r1,±θ1) are asymptotically efficient, whereas
POIS tests that place equal weight on (λ,±β) are not. In native
coordinates, AE POIS tests have different power against (λ, β) and
(λ,−β), whereas in polar coordinates, they have the same power
against (r1, θ1) and (r1,−θ1). It is seen in the next section that
this symmetry in polar coordinates, but not in native parameters,
carries over to POI nonsimilar tests.
The POIS test against the symmetric two-sided alternative (25)

rejects for large values of

LRr1,|θ1| =
1
2
e−

1
2 r
2
1 sin

2 θ

[(√
z1
)−ν Iν (√z1)+ (√z̃1)−ν Iν (√z̃1)(√

z̄0
)−ν Iν (√z̄0)

]
(26)

where z1 = r21 x
′

1qx1, z̃1 = r21 x̃
′

1qx̃1, z̄0 = r21 (cos
2)θqT , x1 =

x(θ1) = [sin θ1 cos θ1]′ and x̃1 = x(−θ1) = [− sin θ1 cos θ1]′,
and where the critical value depends on QT . The statistic (26)
is the statistic LR* in AMS, Corollary 1, written here in polar
coordinates. Alternatively (26) can be derived directly as the POIS
test that maximizes weighted average power against the two
points (r1, θ1) and (r1,−θ1), with equal weights. Because the
conditional distribution of (QS,QST ) given QT does not depend
on r under the null, the statistic LRr1,|θ1| does not depend on r0.
The envelope of the power functions of the tests based on (26) is
the power envelope of 2-sided asymptotically efficient invariant
similar tests, derived originally in AMS in native parameters.

4. Point optimal invariant nonsimilar tests

Now consider the compound null hypothesis and two-sided
alternative,

H0 : 0 ≤ r <∞, θ = 0 vs. H1 : r = r1, θ = ±θ1 (27)

where without loss of generality we let θ1 be positive. Our
construction of point optimal invariant nonsimilar (POINS) tests
follows Lehmann (1986, Section 3.8). The strategy is to transform
the compound null and alternative (28) into simple hypotheses by
putting distributions over θ and r under the two hypotheses.
First consider the null hypothesis. Let Λ be a probability

distribution over {r : 0 ≤ r < ∞} and let hΛ be the weighted
pdf,

hΛ(q) =
∫
fQ (q; r, θ0)dΛ(r) (28)

where θ0 = 0 and fQ (q; r, θ) is given in (19).
Next consider the alternative hypothesis. We follow the

treatment of similar tests in AMS and place equal weight on the
alternatives (r1, θ1) and (r1,−θ1). The distribution of Q under this
equal-weighted alternative is

g(q) =
1
2

[
fQ (q; r1, θ1)+ fQ (q; r1,−θ1)

]
. (29)

The effect of the weighting is to turn the null and alternative
into point hypotheses, so the most powerful test is obtained using
the Neyman–Pearson Lemma. Specifically, let φΛ be the most
powerful level- α test of hΛ against g; this test rejects when

NPΛ,r1,|θ1|(q) =
g(q)
hΛ(q)

=
1
2
fQ (q; r, θ)+ fQ (q; r,−θ)

hΛ(q)
> κΛ,r1,|θ1|;α (30)

where κΛ,r1,|θ1|;α is the critical value of the test, chosen so
that NPΛ,r1,|θ1|(q) rejects the null with probability α under the
distribution hΛ.
If the test φΛ has size α for the null hypothesis H0 in (27), that

is, if

sup
0≤r<∞

Prr,θ=0
[
NPΛ,r1,|θ1|(q) > κΛ,r1,|θ1|;α

]
= α, (31)

then Λ is the least favorable distribution: because size is
controlled by (31), φΛ is a valid test of any other null hΛ′(q) =∫
fQ (q; r, θ0)dΛ′(r), where Λ′ is some other distribution over r ,
but the power of φΛ testing hΛ′ against g cannot exceed that of
the Neyman–Pearson test φΛ′ . Let ΛLF denote the least favorable
distribution. Because φΛLF is the most powerful test based on the
least favorable distribution over r , φΛLF is in fact most powerful for
testing H0 against H1 (see Lehmann (1986), Section 3.8, Theorem 7
and Corollary 5). Thus the POINS test of the null vs. alternative in
(28) rejects for large values of NPΛLF ,r1,|θ1|(q). The envelope of the
power functions of the tests based on NPΛLF ,r1,|θ1|(q) is the power
envelope of invariant nonsimilar tests of H0 against H1.
The drawback of this approach is the difficulty of finding the

least favorable distribution ΛLF . Given a candidate distribution
Λ, condition (31) is readily checked numerically to see if Λ is
least favorable. What proves more difficult, however, is searching
over Λ to find the distribution that satisfies (31). This difficulty
is mitigated by working in polar coordinates, because of the
symmetry of the testing problem in θ , which in turn facilitates
simple approximations to the least favorable distribution.

4.1. One-point distributions

For tractability, we consider distributions Λ that place unit
mass on a single point r0,Λ. In this case, the test statistic in (30)
becomes

NPr0,Λ,r1,|θ1|(q) =
1
2
e−

1
2

(
r21−r

2
0,Λ

)

×

[(√
z1
)−ν Iν (√z1)+ (√z̃1)−ν Iν (√z̃1)(√

z0
)−ν Iν (√z0)

]
(32)

where z1 = r21 x
′

1qx1, z̃1 = r
2
1 x̃
′

1qx̃1, and z0 = r
2
0,ΛqT . Eq. (32) is

derived by substituting (19) into (30) and simplifying.
Theorem 1 gives the SIV-LA limiting behavior of NPr0,Λ,r1,|θ1|(q).

Theorem 1. Under the SIV-LA sequence (24), if |θ1| 6= π/2,

(a) If r20,Λ > r
2
1 cos

2 θ1, then NPr0,Λ,r1,|θ1|(q) = Op(e
−
√
n).

(b) If r20,Λ = r21 cos
2 θ1, then NPr0,Λ,r1,|θ1|(q) = e−

1
2 r
2
1 sin

2 θ1

cosh
(
r1 sin θ1

QST√
QT

)
+ op(1).

(c) If r20,Λ < r21 cos
2 θ1, then n−1/2 ln

[
NPr0,Λ,r1,|θ1|(q)

]
=(

r1 |cos θ1| − r0,Λ
)√
QT/n+ op(1).
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Proofs of theorems are given in the Appendix.

Remarks 1. 1. Because cosh is an even and strictly increasing
function, in the case of part (b) that r20,Λ = r21 cos

2 θ1,
in the SIV-LA limit the NPr0,Λ,r1,|θ1|(q) statistic is a strictly
increasing function of LM = Q 2ST/QT . AMS showed that LM
is asymptotically efficient under SIV-LA asymptotics among
nonsimilar tests (and, because it is similar, also among similar
tests). If r20,Λ > r21 cos

2 θ1, NPr0,Λ,r1,|θ1|(q) = Op(1) for fixed
r and thus the nonsimilar test based on NPr0,Λ,r1,|θ1|(q) has a
critical value that is O(1), so part (a) implies that, in this case,
the test will have power zero under SIV-LA asymptotics and
thus will not be asymptotically efficient. Part (c) shows that, if
r20,Λ < r

2
1 cos

2 θ1, the test is asymptotically a function of onlyQT
(under SIV-LA asymptotics,QT/n = Op(1), see the Appendix), so
in this case the nonsimilar test based on NPr0,Λ,r1,|θ1|(q)will not
be SIV-LA asymptotically efficient. Thus a necessary condition
for NPr0,Λ,r1,|θ1|(q) to be efficient under SIV-LA asymptotics is
that r20,Λ = r

2
1 cos

2 θ1.
2. Because the test is nonsimilar, a necessary and sufficient
condition for asymptotic efficiency under SIV-LA asymptotics
is that r20,Λ = r21 cos

2 θ1 and that the α-level quantile of
NPr0,Λ,r1,|θ1|(q), when θ = 0, attains its maximum at a point,
say r∗n , such that r

∗
n →∞ as n→∞; the latter condition is not

implied by the former.

The next theorem provides some results about the least
favorable distribution.

Theorem 2. Let ΛLF denote the least favorable distribution.

(a) For general r1, if ΛLF places unit mass on r0,LF , then r20,LF ≥
r21 cos

2 θ1.
(b) For the alternative (θ1 = ±π/2, r1), where r1 is fixed, ΛLF is a
one-point distribution that places unit mass on r0,LF = 0, and the
AR test is POINS against (θ1 = ±π/2, r1) for all values of r1.

Remarks 2. 1. Theorem 2(a) differs from Theorem 1, which
pertains to the limit when the true value of r increases
proportionally to

√
n, whereas Theorem2describes the limit for

a fixed true r , as a function of the hypothesized alternative r1.
2. One might suspect that the least favorable distribution would
put point mass on the boundary of the parameter space
that corresponds to nonidentification, but this is not so:
Theorem 2(a) implies that, if a one-point least favorable
distribution exists, the point generally is interior and depends
on both the strength of the instruments under the alternative
and the magnitude of the departure from the null.

3. Part (b) implies that the condition in part (a) is satisfied with
equality when θ1 = ±π/2.

4. AMS showed (in native parameters) that the AR statistic is
admissible and most powerful among invariant similar tests
against θ1 = ±π/2, for all r1. Part (b) extends this result to
nonsimilar tests. The alternative θ1 = ±π/2 is special in the
sense that the POINS test against ±π/2 (i.e. the AR test) is not
asymptotically efficient under strong instruments.

5. Although Theorem2 does not show the existence of a one-point
ΛLF for general values of r1, it states that such a distribution
does exist for all values of r1 when θ1 = ±π/2. Additionally,
a calculation provided in the Appendix (and discussed further
below) suggests that a one-point least favorable distribution
will exist against alternatives for which r1 is large and θ1 is
small. This suggests that a one-point distribution forΛLF might
exist more generally and moreover provides a range of values
– specifically, values of r20,LF slightly exceeding r

2
1 cos

2 θ1 – in
which to search numerically for r0,LF .
4.2. Using the one-point distribution to bound the nonsimilar power
envelope

Although a least favorable distribution must exist, it might not
be a one-point distribution. Even so, it is possible to use tests based
on one-point distributions to provide upper and lower bounds on
the power envelope of nonsimilar tests. Let Λ∗ be a distribution
that places pointmass on r∗, letNPr∗,r1,|θ1|(Q )be themost powerful
test statistic (32) for testing hΛ∗ against g , let κr∗,r1,|θ1|;α(r) be the
1− α quantile of NPr∗,r1,|θ1|(Q ) under (r , θ0 = 0), let κ r∗,r1,|θ1|;α =
κr∗,r1,|θ1|;α(r

∗), and let κ̄r∗,r1,|θ1|;α = supr κr∗,r1,|θ1|;α(r). The test
that rejects when NPr∗,r1,|θ1|(Q ) > κ r∗,r1,|θ1|;α is the most pow-
erful test of hΛ∗ against g , however unless Λ∗ is least favor-
able, it is not a valid test of the compound null (θ0 = 0, 0 ≤
r < ∞) (if Λ∗ is not least favorable the test does not satisfy
the size condition (31). Thus Prr1,θ1

[
NPr∗,r1,|θ1|(q) > κ r∗,r1,|θ1|;α

]
≥

Prr1,θ1
[
NPΛLF ,r1,|θ1|(q) > κΛLF ,r1,|θ1|;α

]
, where the least favorable

distribution ΛLF need not be a one-point distribution (this
inequality follows from Lehmann (1986, Section 3.8, Theo-
rem 7 (iii)). On the other hand, the test that rejects when
NPr∗,r1,|θ1|(Q ) > κ̄r∗,r1,|θ1|;α is a valid test of the com-
pound null (θ0 = 0, 0 ≤ r < ∞) because it uses a
sup critical value, however unless Λ∗ is least favorable, this
test will not be the most powerful test of the compound
null against (r1, |θ1|); thus Prr1,θ1

[
NPr∗,r1,|θ1|(q) > κ̄r∗,r1,|θ1|;α

]
≤

Prr1,θ1
[
NPΛLF ,r1,|θ1|(q) > κΛLF ,r1,|θ1|;α

]
. Thus

Prr1,θ1
[
NPr∗,r1,|θ1|(q) > κ̄r∗,r1,|θ1|;α

]
≤ Prr1,θ1

[
NPΛLF ,r1,|θ1|(q) > κΛLF ,r1,|θ1|;α

]
≤ Prr1,θ1

[
NPr∗,r1,|θ1|(q) > κ r∗,r1,|θ1|;α

]
. (33)

If the least favorable distribution places point mass on r∗, then
the inequalities in (33) are equalities. Otherwise, (33) provides
a lower and upper bound on the power envelope. Whether
this bound is useful in practice depends on how close are the
two quantiles κ r∗,r1,|θ1|;α and κ̄r∗,r1,|θ1|;α . If these two quantiles
are close, then the one-point distribution Λ∗ provides a useful
approximation to the least favorable distribution in the sense that
it provides a tight bound (33) on the power envelope.
Because similar tests are a subset of nonsimilar tests, the power

envelope of invariant nonsimilar tests is also bounded belowby the
power envelope of AE similar tests.
As mentioned in Remark 2.5 following Theorem 2, additional

calculations (given in the Appendix) suggest that the limit of the
sequence of least-favorable distributions against the sequence of
alternatives (θ1 = t1/r1, r1), where t1 is a constant, is a one-
point distribution with point mass on r20,LF = r

2
1 cos

2 θ1. If, in fact,
r20,LF = r

2
1 cos

2 θ1, then the POINS test statistic NPr0,LF ,r1,|θ1|(q) in
(32) equals the AE POIS test statistic LRr1,|θ1| in (26). In addition, in
the Appendix it is shown that, in the limit θ1 = t1/r1, r1 → ∞
(holding fixed n and the true r and θ ), LRr1,|θ1| is equivalent to LM,
the distribution of which does not depend on r . Taken together,
these results suggest that in the limit θ1 = t1/r1, r1 → ∞, the
POINS test is similar and the POINS and AE POIS power envelopes
coincide.

5. An approximate POINS tests

One general approach to testing when there is not a uniformly
most powerful test, is to select from the family of point-optimal
tests a test that has a power function tangent to the power
envelope at some intermediate value of the alternative. This test
is optimal against that specific alternative and, it is hoped, might
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have a power function that is not too far from the power envelope
for other alternatives. See King (1988) for a general discussion of
this approach and some examples. In this section, we pursue this
approach, with three modifications.
The first modification is that the POINS tests in Section 4

need not be asymptotically efficient under strong instruments.
Asymptotic efficiency under strong instruments is a desirable
property, and we impose this as an additional side condition.
As stated in Remark 2 following Theorem 1, a necessary and
sufficient condition for asymptotic efficiency of a POINS test is
that (i) r20,LF = r

2
1 cos

2 θ1 and (ii) the α-level quantile of the test
statistic, as a function of r , must achieve its maximum in the limit
r → ∞. Condition (i) is imposed analytically and (ii) is imposed
numerically.
The second modification is that we rewrite the POINS test

statistic, and its approximation, so that their SIV-LA distribution
isχ21 under the null and a non-central chi-squared under the local
alternative.
The thirdmodification is that the POINS test involves the Bessel

function, which is not implemented in all statistical software. We
therefore provide an approximation to the POINS test statistic that
uses only elementary functions.

5.1. Transformed POINS test statistic

We now impose r20,LF = r21 cos
2 θ1 and rewrite the POINS

test statistic so that it has a χ21 SIV-LA null distribution. The
function cosh(x) is strictly increasing in |x| and has the inverse
function, cosh−1(y) = ln [y + (y2 − 1)1/2]. Accordingly, upon
imposing r20,LF = r

2
1 cos

2 θ1 the expression in Theorem 1(b) can be
manipulated to yield,

cosh−1
[
e
1
2 r
2
1 sin

2 θ1NPr1|cos θ1|,r1,|θ1|(q)
]

r1 sin θ1
=

∣∣∣∣ QST√QT
∣∣∣∣+ op(1). (34)

Squaring the expression on the left hand side of (34) and
reexpressing the result using (32) yields the test statistic,

P∗Br1,θ1 =

[
cosh−1(D∗Br1,θ1)

]2
r21 sin

2 θ1
(35)

where

D∗Br1,θ1 =
1
2

(√
z1
)−ν Iν (√z1)+ (√z̃1)−ν Iν (√z̃1)(√

z0
)−ν Iν (√z0) (36)

where z0, z1, and z̃1 are defined following (32) and where the
superscript B in P∗Br1,θ1 indicates that the test involves Bessel
functions.
The tests based on P∗Br1,θ1 and NPr1|cos θ1|,r1,|θ1|(q) are equivalent.

However, the formulation P∗Br1,θ1 in (35) is convenient because P
∗B
r1,θ1

has a χ21 null distribution under strong instruments: by (34), under
strong instruments

P∗Br1,θ1 = Q
2
ST/QT + op(1) (37)

and Q 2ST/QT = LM has a central χ21 null distribution and a
noncentral χ21 distribution under a local alternative.
5.2. An approximation not involving Bessel functions

Olver (1974) provides the approximation to the Bessel function,
Iν(νx) ∼

(
1+ x2

)−1/4 eνξ/√2πν, where ξ = √
1+ x2 +

ln
[
x/
(
1+
√
1+ x2

)]
. Upon applying this approximation to

(36) and simplifying, we obtain the following approximation
to the transformed POINS test statistic P∗Br1,θ1 that involves only
elementary functions:

P∗r1,θ1 =

[
cosh−1

(
D∗r1,θ1

)]2
r21 sin

2 θ1
(38)

where

D∗r1,θ1 =
1
2

[(
ν2 + z0

)1/4 zν/20(
ν2 + z1

)1/4 zν/21 eφ1−φ0

+

(
ν2 + z0

)1/4 zν/20(
ν2 + z̃1

)1/4 z̃ν/21 eφ̃1−φ0
]
, (39)

φ0 =
√
ν2 + z0 + ν ln

(
z0

ν +
√
ν2 + z0

)
, (40)

and φ1 and φ̃1 are defined similarly to φ0 except with z1 and z̃1
respectively replacing z0.2
Under SIV-LA asymptotics, the P∗Br1,θ1 and P

∗

r1,θ1
tests are

asymptotically equivalent:

P∗Br1,θ1 = P
∗

r1,θ1 + op(1) = Q
2
ST/QT + op(1). (41)

As discussed in Remark 2 following Theorem 1, (41) is one of
two conditions for the P∗Br1,θ1 and P

∗

r1,θ1
tests to be efficient under

strong instruments. The second condition, the quantile restriction
discussed in the remark, places an additional restriction on r1 and
θ1, and this second condition will be imposed numerically.

6. Numerical results

Because finding the least favorable distribution is computation-
ally intensive, the invariant nonsimilar power envelope was com-
puted only for k = 5 instruments and tests of level α = 0.05. Less
demanding computations, including the power functions of the P∗
test and of similar invariant tests were also performed for k = 2
and k = 10. Because the power functions are symmetric in θ and
repeat every π , it suffices to compute power envelopes and func-
tions for 0 ≤ θ ≤ π/2. All computations were done on a grid of 34
values of θ and on a grid of r2/

√
k = 0.5, 1, 2, 4, 8, 16, 32, 64, a

range that spans very weak to strong instruments. The r2 grid was
scaled by

√
k because Andrews and Stock (2006) show that hold-

ing λ/
√
k constant as k increases is the sequence that results in a

nondegenerate limiting power envelope for tests involving many
weak instruments; in polar coordinates this sequence corresponds
to holding r2/

√
k constant as k increases.

6.1. Numerical considerations

For a given alternative (r1, |θ1|), the POINS test was computed
by searching numerically for the least favorable distribution.

2 In an earlier draft of this paper, we used test statistics based on the simpler
approximation given in Appendix Eq. (A.2), which holds for large arguments of the
Bessel function, however those approximations are not uniformly as good as Olver
(1974) and the resulting approximating tests have power substantially less than
the P∗r1,θ1 and P

∗B
r1,θ1

tests in some parts of the parameter space. To save space those
results are not reported here but are available from the authors upon request.
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Only one-point distributions were considered. Let F(r0,Λ) =
sup0≤r<∞ Prr,θ=0

[
NPr0,Λ,r1,|θ1|(Q ) > κr0,Λ,r1,|θ1|;α(r0,Λ)

]
−α, where

κr0,Λ,r1,|θ1|;α(r0,Λ) is the 1 − α quantile of NPr0,Λ,r1,|θ1|(Q ) when
the true r = r0,Λ and θ = 0. By the theory outlined in
Section 4, the function F(r0,Λ) is nonnegative and if F(r0,Λ) =
0, then the least favorable distribution places unit mass on r0,Λ.
Thus the one-point least favorable distribution (if it exists) can
be found by minimizing F(r0,Λ). For a given (r1, |θ1|) and r0,Λ,
F(r0,Λ) was computed by (i) computing κr0,Λ,r1,|θ1|;α(r0,Λ) as the
1 − α quantile of the Monte Carlo distribution of NPr0,Λ,r1,|θ1|(Q )
when r = r0,r and θ = 0; (ii) for a given r , estimating the
rejection probability Prr,θ=0

[
NPr0,Λ,r1,|θ1|(Q ) > κr0,Λ,r1,|θ1|;α(r0,Λ)

]
by Monte Carlo simulation; and (iii) computing the maximum of
this rejection probability on a grid over r , with 0 ≤ r2 ≤ 1000.
Preliminary investigations found that results were numerically
stable using a grid that is equal-spaced on a log scale. Computations
used either 10,000 Monte Carlo draws in steps (i) and (ii) and 60
grid points in step (iii), or 20,000 Monte Carlo draws and 100 grid
points. The reason for different precision is that some of the least
favorable distribution points were easier to compute than others;
some seem to require (at least) four-digit accuracy to minimize F .
Attempts to find the least favorable distribution were only made
when the invariant similar power envelope was less than 0.995.
Upon minimization of F , the critical values for the upper and

lower bounds of the nonsimilar test power envelope (κ̄r∗0,Λ,r1,|θ1|;α
and κ r∗0,Λ,r1,|θ1|;α , where r

∗

0,Λ is the minimizer of F(r0,Λ)) were
computed byMonte Carlo simulation (10,000 draws, grid size 150).
The upper and lower bounds in (33)were then computed byMonte
Carlo simulation (10,000 draws).
Critical values for the P∗r1,θ1 and P

∗B
r1,θ1

tests were computed
using a grid of 150 points in r and 50,000 Monte Carlo
draws, and p-values for the conditional likelihood ratio test
were computed by numerical integration using the algorithm in
Andrews et al. (2007a). Power envelopes for similar invariant tests
were computed as described inAMS (except for the different grid in
polar coordinates). All power functions were computed by Monte
Carlo simulation using either 10,000 or 50,000 draws. In all cases,
the covariance matrix Ω is taken as known and the underlying
errors are all normally distributed, so that these computations
are numerical implementations of the exact distribution theory
presented in the previous sections.

6.2. Results for least favorable distributions

A one-point least favorable distribution was deemed to have
been found, if the minimized objective function F was within
one Monte Carlo standard error of zero; this corresponds to a
maximum violation of the size condition by 0.0022 when 10,000
Monte Carlo draws are used. Under this criterion, one-point least
favorable distributionswere found in all cases (all 33 values of θ1 >
0) for r21/

√
k = 0.5, 1, and 4, and in all but one case for r21/

√
k = 2.

For r21/
√
k = 8, a one-point least favorable distribution was not

found in 6 cases; for r21/
√
k = 16, not in 13 cases; for r21/

√
k = 32,

not in 9 cases; and for r21/
√
k = 64, not in 5 cases. The cases in

which the least favorable distribution was not found are for the
largest deviations θ from the null. Even in the cases that a least
favorable distribution was not found, the largest size discrepancy
(largest value of minr F(r)) was approximately 0.02 (size of 7% for
a 5% test).
Fig. 1 plots the values of the least favorable point r20,LF , when

it was found, against r21 cos
2 θ1, on a log-log scale, for θ < π/2.

For small values of r21 cos
2 θ1, r20,LF departs from the 45

o line, and in
some cases lies as much as 0.2 log units above the 45o line. When
r21 cos

2 θ1 is large, however, r20,LF very nearly equals r
2
1 cos

2 θ1. These
numerical results accord with the calculation in the Appendix,
which suggests that r20,LF = r

2
1 cos

2 θ1 in the limit θ1 = t1/r1 and
Fig. 1. Points r20,LF of one-point least favorable distribution vs. limiting theoretical
value r21 cos

2 θ1 and 45o line (solid), log-log scale.

r1 →∞. In fact, in the extreme case r21/
√
k = 64 and θ1 = 0.01π ,

r20,LF exceeds r
2
1 cos

2 θ1 by only 0.01%.

6.3. Comparison of similar and nonsimilar power envelopes

The lower and upper bounds on the nonsimilar power envelope
are plotted for k = 5 in Fig. 2 for weak instruments and in Fig. 3 for
stronger instruments. The power envelope for similar tests is also
plotted. Figs. 2 and 3 have two remarkable features.
First, when they differ, the lower and upper bounds on the

similar power envelopes are still very close in practical terms,
rarely diverging by more than 0.01. In this numerical sense, the
bounds on the nonsimilar power envelope are tight.
Second, the nonsimilar and similar power envelopes are very

close, and in most cases cannot be distinguished visually. In fact,
against some alternatives, the similar power envelope exceeds
the upper bound of the nonsimilar power envelope. This is
theoretically impossible (similar tests are a subset of nonsimilar
tests), and reflect limitations in computational accuracy. In no
case does the similar power envelope deviate from the nonsimilar
power envelope (above or below) by more than one Monte Carlo
standard error.
These two findings provide our primary numerical conclusion

of the paper: for k = 5 instruments and tests of levelα = 0.05, the
power envelopes of invariant similar and nonsimilar tests are, as a
numerical matter, the same. It is surprising that there is such close
agreement between the similar and nonsimilar power envelopes.
The reason for this agreement is that the quantile functions of the
POINS statistics, as a function of r under the null, are in most cases
very nearly (but not exactly) flat, so that the POINS tests are very
nearly (but not exactly) similar tests.
AMS compared numerically (in native parameters) the perfor-

mance of the LM, AR, and CLR tests to each other and to the AEPE
for similar tests. Theirmain findingwas that the power function for
the CLR test is, for all practical purposes, essentially on the similar
power envelope. Because the AEPE for similar tests was found in
Figs. 2 and 3 to equal the power envelope for nonsimilar tests, the
power function for the CLR test also essentially lies on the power
envelope for invariant nonsimilar tests. Although there does not
exist a UMPI test (similar or nonsimilar) in this problem, as a nu-
merical matter, the CLR test is, in effect, UMPI among nonsimilar
tests, and thus also among similar tests, at least when k = 5.
The power envelopes are everywhere below one for values of

r2/
√
k ≤ 8. This has an intuitive interpretation. The parameter r2

measure the amount of information (strength of the instruments)
and if there is notmuch information, then a test cannot be decisive.
This might appear to conflict with the power envelopes in AMS,
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(a) r2/
√
k = 0.5. (b) r2/

√
k = 1.0.

(c) r2/
√
k = 2.0. (d) r2/

√
k = 4.0.

Fig. 2. Upper and lower bound on power envelope for nonsimilar invariant tests (NSPE) against (r, |θ |) and power envelope for asymptotically efficient similar invariant
tests (AEPE) against (r, |θ |), 0 ≤ θ ≤ π/2, r2/

√
k = 0.5, 1, 2, 4, k = 5.
which all achieve unit power against distant alternatives; but the
AMS power envelopes are in native parameters and as β diverges
from β0 holding λ constant (the AMS experiment), r increases (see
(16a)), so in this sense the strength of the instruments increases
with the divergence from the null in the AMS plots. Of course, the
plots in this paper and in AMS are simply different renderings or
slices of the same power surface, so there is no conflict, however
when portrayed in polar coordinates the power implications of
weak instruments for the testing problem are more obvious.3
The computation of the least favorable distributions and the

nonsimilar power envelope is more involved numerically than
computation of the AEPE for similar tests, so we suspect that the
similar power envelope is computed more accurately. Because
these two power envelopes are numerically indistinguishable in all
the cases we considered (the cases of Figs. 2 and 3), the remaining
figures report the AEPE for similar tests.

6.4. Comparison of LM, AR, and CLR tests to the nonsimilar power
envelope

The LM, AR, and CLR tests have been studied extensively by AMS
and others in native coordinates, however translation of those re-

3 For a given k, the power functions in AMS are presented as a function of
λ, β, and ρ, where Ω = [1 ρ : ρ 1]. The domain of the power functions is,
however, only two dimensional. In native coordinates power is solely function of
(
√
λcβ ,
√
λdβ ), and in polar coordinates it is solely a function of (r , θ ). The plots

here therefore display the power functions more concisely than those given as a
function of (λ, β, ρ) in AMS.
sults into polar coordinates is not simple so it is of interest to make
a direct comparison of these similar tests on the same grid in po-
lar coordinates. The results are presented (also for k = 5) in Fig. 4.
For comparison purposes, Fig. 4 also presents the AEPE for similar
tests. The power functions in Fig. 4 show quite clearly the optimal-
ity of the AR test against θ = π/2, and the deterioration of the LM
test as θ approaches π/2. The CLR test is essentially on the power
envelope in almost all cases; the greatest discrepancy occurs for
moderately weak instruments (r21/

√
k = 4) as θ approaches π/2.

6.5. The P∗ and P∗B tests

Numerical investigations of the P∗Br1,θ1 test entailed finding
values of (r1, θ1), such that the test is asymptotically efficient
under SIV-LA asymptotics and such that it has good power (is
close to the POINS power envelope) for a wide range of true (r , θ ).
As discussed in the second paragraph of Section 5, imposing the
condition that P∗Br1,θ1 be asymptotically efficient entails restricting
attention to (r1, θ1), such that the 1 − α quantile of P∗Br1,θ1 for
(r, θ = 0) be maximized in the limit r → ∞, in which case the
quantile is the 1 - α quantile of a χ21 . This condition for asymptotic
efficiency was imposed numerically. Numerical experimentation
revealed that setting r21 =

√
20k and θ1 = π/4 results in

P∗B
r1=(20k)1/4,θ1=π/4

being asymptotically efficient for tests at the 5%
or 1% level (but not at levels exceeding 9%) and having good overall
power properties, at least for 2 ≤ k ≤ 10. For convenience,
we refer to statistics P∗B

r1=(20k)1/4,θ1=π/4
and its approximation using

(38), P∗
r1=(20k)1/4,θ1=π/4

, simply as P∗B and P∗, respectively.
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(a) r2/
√
k = 8.0. (b) r2/

√
k = 16.0.

(c) r2/
√
k = 32.0. (d) r2/

√
k = 64.0.

Fig. 3. Upper and lower bound on power envelope for nonsimilar invariant tests (NSPE) against (r, |θ |) and power envelope for asymptotically efficient similar invariant
tests (AEPE) against (r, |θ |), 0 ≤ θ ≤ π/2, r2/

√
k = 8, 16, 32, 64, k = 5.
The power functions of P∗B and P∗ are reported in Fig. 5 for
k = 5 and in Figs. 6 and 7 for k = 2 and 10, respectively. For
comparison purposes, all figures also display the power function of
the CLR test. The P∗B and P∗ power functions are for the most part
indistinguishable, although curiously for k = 2 the power function
of the approximate test occasionally lies above that of the Bessel
function test. Evidently, nothing is lost (and perhaps something is
gained), by using the approximation P∗. We therefore focus on the
simpler of the two nonsimilar tests, the P∗ test.
The maximum gaps between the CLR and P∗ power functions

are .006, .031, and .046 for k = 2, k = 5, and k = 10, respectively.
The CLR test is noticeably more powerful than the P∗ test only for
k = 5 and 10 and only then when instruments are moderately
weak (r21 = 4/

√
k) and the alternative is distant. Because the

CLR test effectively achieves the AE similar and nonsimilar power
envelopes, for k = 2 the P∗ power function effectively lies on the
nonsimilar power envelope so the P∗ test is effectively UMPI. For
k = 5 and k = 10, the departures of the P∗ test from efficiency are
few and small, although it cannot quite be said that the P∗ test is
effectively UMPI.
Because the power functions of the P∗B and CLR tests are so

close, one might wonder whether they have the same critical
regions. Interestingly, they do not. For example, when k =
5, r2/

√
k = 4 and θ = 0.04π , the power of the two tests are

numerically indistinguishable (power of 0.06), but the conditional
probability that P∗ rejects, given that CLR rejects, is only 92%. As the
power increases, these probabilities increase, for example when
k = 5, r2/

√
k = 8 and θ = 0.15π , the power of the two

tests are again numerically indistinguishable (power of 0.40) and
this conditional probability is 96%. Only when the instruments are
strong and the alternative is distant, however, does this conditional
probability reach one. Thus, the choice faced by a practitioner
about which test to use is nontrivial, in the sense that in some
realizations the two tests will give different conclusions, even
though they have the same power.
The P∗ test is based on elementary functions, and hasχ21 critical

values (at the 1% and 5% level), it is effectively UMPI for k = 2, and
it is nearly so for k = 5 and k = 10. This said, P∗ test does not
significantly improve upon the power of the CLR test. Moreover,
fast code for the computation of p-values and confidence sets
using the CLR is now available (Mikusheva, 2006), while we have
not found a closed form expression for the inversion of the P∗
test for the computation of confidence intervals. These practical
considerations, and the slightly higher power in some regions
of the parameter space, lead us to recommend the CLR test for
empirical work.
Several open issues remain for future research. First, we found

that the nonsimilar and AE similar power envelopes were the
same for tests with level 5% for k = 5. Additional numerical
work checking this finding for other values of k and other
significance levels is in order. Second, we did not try to optimize
the performance of the P∗r1,θ1 test over r1 and θ1; doing somight find
values of r1 and θ1, such that the resulting P∗r1,θ1 test is effectively
UMPI for values of k exceeding 2. Third, the P∗r1,θ1 test can be
inverted to compute confidence intervals, however at this point
the only way to do the inversion is numerical, and it would be of
interest to have a closed-form expression for confidence intervals
based on P∗r1,θ1 .
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Fig. 4. Power envelope for similar invariant tests against (r, |θ |) and power functions of the CLR, LM, and AR tests, 0 ≤ θ ≤ π/2, r2/
√
k = 1, 4, 8, 32, k = 5.
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Appendix

A.1. Local equivalence of SIV-LA nestings in native and polar
coordinates

The SIV-LA nesting in native parameters is given by (23).
Under (23), cβ = n−1/2b̄/

√
b′0Ωb0 and dβ =

√
a′0Ω−1a0 +

n−1/2b̄e′1Ω
−1a0/

√
a′0Ω−1a0, where e1 =

[
1 0

]′. Thus h′h =
a′0Ω

−1a0 + O(1/
√
n) and cβ/

√
h′h = n−1/2b̄/

√
b′0Ωb0a

′

0Ω
−1a0 +

O(1/n). By (17), sin θ = cβ/
√
h′h, so under (23) θ = sin−1(

n−1/2b̄/
√
b′0Ωb0a

′

0Ω
−1a0 + O(n−1)

)
= t/
√
n + O(n−1), where

t = b̄/
√
b′0Ωb0a

′

0Ω
−1a0. An implication of Π and Ω being

fixed and (Z ′Z/n)→p DZ is that, as stated following (23), λ/n =
Π ′(Z ′Z/n)Π→pΛ∞, so r2/n = λh′h/n = (λ/n)[a′0Ω

−1a0 +
O(1/
√
n)]→pΛ∞a′0Ω

−1a0 = R2
∞
. From (13) and (19), the
distribution of Q depends only on (
√
λcβ ,
√
λdβ) or, equivalently,

on (θ, r). Thus the asymptotic distribution of Q is the same
under the sequence (β = β0 + b̄/

√
n, λ/n→pΛ∞) as it is

under the sequence (θ = t/
√
n, r2/n→p R2

∞
), where t =

b̄/
√
b′0Ωb0a

′

0Ω
−1a0 and R2∞ = Λ∞a′0Ω

−1a0; this latter sequence
is the sequence in (24).

Proof of Theorem 1. BecauseQ has the same limiting distribution
under the SIV-LA sequences (23) and (24), results in AMS derived
under the native local parameterization also apply under the polar
coordinate local parameterization, with a change of parameters. In
particular, from theproof of Theorem8 inAMS,wehave that, under
(24), (i) QT/n→p R2

∞
; (ii) QST/

√
QT = Op (1); (iii) QS/

√
QT→p 0;

(iv) z1/z0 = r21 cos
2 θ1/r20 + Op(n

−1/2) and z̃1/z0 = r21 cos
2 θ1/r20 +

Op(n−1/2); and (v) (by AMS, Equation A.15),

√
z1 −
√
z0 = r1 sin θ1sgn (cos θ1)

QST
√
QT

+

(√
r21 cos2 θ1 −

√
r20

)√
QT + op(1)√

z̃1 −
√
z0 = −r1 sin θ1sgn (cos θ1)

QST
√
QT

+

(√
r21 cos2 θ1 −

√
r20

)√
QT + op(1)

where z0, z1, and z̃1 are defined following (32). The statement
that the remainder terms in (iv) and (v) are Op(n−1/2) is slightly
stronger than the op(1) result given in AMS, however the stronger
Op(n−1/2) result followsby a straightforward extension of the proof
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Fig. 5. Power functions of the CLR, P∗B , and P∗ tests (in which r21 =
√
20k and θ1 = π/4), for 0 ≤ θ ≤ π/2, r2/

√
k = 1, 4, 8, 32, and k = 5.
of Theorem 8 in AMS. We therefore have that, under the SIV-LA
sequence,

NPr0,r1,|θ1|(Q ) =
1
2
e−

1
2

(
r21−r

2
0

)

×

[(√
z1
)−ν Iν (√z1)+ (√z̃1)−ν Iν (√z̃1)(√

z0
)−ν Iν (√z0)

]

=
1
2
e−

1
2

(
r21−r

2
0

) (√z1√
z0

)−(ν+ 12 )
e
√
z1−
√
z0

+

(√
z̃1
√
z0

)−(ν+ 12 )
e
√
z̃1−
√
z0

(1+ Op(n−1/4))

=
1
2
e−

1
2

(
r21−r

2
0

) (
r21 cos

2 θ1

r20

)− 12 (ν+ 12 )

×

[
e
r1 sin θ1sgn (cos θ1)

QST√
QT
+(r1|cos θ1|−r0)

√
QT

+ e
−r1 sin θ1sgn (cos θ1)

QST√
QT
+(r1|cos θ1|−r0)

√
QT
] (
1+ op(1)

)
= e−

1
2

(
r21−r

2
0

) (
r21 cos

2 θ1

r20

)− 12 (ν+ 12 )
cosh

(
r1 sin θ1

QST
√
QT

)
× e(r1|cos θ1|−r0)

√
QT
(
1+ op(1)

)
(A.1)
where the first equality restates (32); the second equality uses the
exponential approximation to the Bessel function as x→∞,

Iν(x) = (2πx)−1/2ex[1+ O(x−1)] (A.2)

(Lebedev, 1965, Equation (5.11.10)), and the limiting results (i) and
(iv), which imply that z0 = Op(n) and z1 and z̃1 are Op(n1/2); the
third equality in (A.1) uses the limiting approximations provided
above; and the final equality uses the definition of the hyperbolic
cosine and the limiting result (iv) above.
By (ii), cosh

(
r1 sin θ1QST/

√
QT
)
is Op(1) under (24). The results

stated in the theorem obtain by evaluating the limiting behavior
of (A.1) in the three cases, r21 cos

2 θ1 <,=, or > r20 where (by (i))
under SIV-LA asymptotics QT = Op(n).

Proof of Theorem 2. (a) First observe that the SIV-LA limits in
Theorem 1 are also limits that hold for n fixed under the sequence
of true parameters r → ∞, θ = t/r . This follows by noting
that the distribution of Q in (19) depends only on r and θ ; so
formally the limit in Theorem 1 can be obtained by replacing n in
the proof of Theorem 1 by n = r2/R2

∞
, treating Z as nonrandom,

and letting r →∞. With this substitution, the result in Theorem 1
(c) is that, if r20 < r21 cos

2 θ1, then r−1 ln
[
NPr0,r1,|θ1|(q)

]
=

(r1 |cos θ1| − r0)
√
QT/r2 + op(1), where op(1) is interpreted in

terms of the sequence r →∞ and where QT/r2 = Op(1).
Next note that, for all fixed n, r0, r1, and true r , NPr0,r1,|θ1|(q) has

finite quantiles. Thus a necessary condition for a point r̃0 to be the
solemass point ofΛLF , is that the supremumover r of the quantiles
of NPr̃0,r1,|θ1|(q) are bounded (else the sup-size condition (31) will
not hold). In particular, it must be the case that the quantiles of
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Fig. 6. Power functions of the CLR, P∗B , and P∗ tests (in which r21 =
√
20k and θ1 = π/4), for 0 ≤ θ ≤ π/2, r2/

√
k = 1, 4, 8, 32, and k = 2.
NPr̃0,r1,|θ1|(q) are bounded under the sequence r → ∞, θ = t/r .
But given the reinterpretation of the preceding paragraph, if r̃20 <
r21 cos

2 θ1 then the quantiles of NPr̃0,r1,|θ1|(q) are unbounded under
the sequence r → ∞, θ = t/r , so ΛLF cannot place unit mass on
r̃0 if r̃20 < r

2
1 cos

2 θ1.
(b) In the special case θ1 = ±π/2, x(π/2) =

[
1 0

]′ so z1 =
z̃1 = r21QS in (32). Consider the trial least favorable distribution

with unit mass on r0 = 0, so z0 = 0 and
(√
z0
)−ν Iν (√z0)∣∣∣

z0=0
=

[2νΓ (ν + 1)]−1. Then the test statistic (32) becomes,

NPr0=0,r1,θ1=π/2(Q )

= e−
1
2 r
2
1

(√
r21QS

)−ν
Iν

(√
r21QS

)/
2νΓ (ν + 1). (A.3)

Because z−ν Iν(z) is strictly increasing in z, NPr0=0,r1,θ1=π/2(Q )
is strictly increasing in the AR statistic QS . But the null distribution
of QS does not depend on r , so (31) is satisfied. Thus ΛLF does, in
fact, place unit mass on r0 = 0, and the AR test is the POINS test
of (0 ≤ r < ∞, θ = 0) against (r1, θ1 = ±π/2). The AR statistic
does not depend on r1, so this is true for all r1.

A.2. Additional calculation

A.2.1. Limiting POINS test along the sequence r1 → ∞ and θ1 =
t1/r1
The following calculation suggests that, under the sequence

r1 → ∞ and θ1 = t1/r1, the test NPr0,Λ,|θ1|(q) with r
2
0,Λ =
r21 cos
2 θ1 has a critical value that does not depend on the true r , and

thus that the condition (31) is satisfied so that the distribution that
places unit mass on r20 = r

2
1 cos

2 θ1 is in fact least favorable. This
result is an approximation that holds with arbitrary accuracy, so in
this sense the bounds (33) based on the one-point least favorable
distribution with r20,Λ = r

2
1 cos

2 θ1 will be arbitrarily tight.
Fix Q = q. Set r20,Λ = r

2
1 cos

2 θ1 so that
√
z1 −
√
z0 =

√
r21 x
′

1qx1 −
√
r21 cos2 θ1qT

= r1

(√(
sin2 θ1

)
qS + 2 (sin θ1 cos θ1) qST +

(
cos2 θ1

)
qT

−

√(
cos2 θ1

)
qT

)
= r1

√(
cos2 θ1

)
qT

×

(1+ 2 (sin θ1 cos θ1) qST(
cos2 θ1

)
qT

+

(
sin2 θ1

)
qS(

cos2 θ1
)
qT

)1/2
− 1


= t1

qST
√
qT
+ O(1/r1) (A.4)

where the first equality follows by r20,Λ = r
2
1 cos

2 θ1, the second
equality follows by the definition of x1, the third line rearranges the
second, and the final equality follows from setting θ1 = t/r1 and
taking a Taylor series expansion in 1/r1. Similarly,

√
z̃1 −
√
z0 =

−t1qST/
√
qT + O(1/r1). Also, z1/z0 = 1 + O(1/r1) and z̃1/z0 =

1+ O(1/r1).
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Fig. 7. Power functions of the CLR, P∗B , and P∗ tests (in which r21 =
√
20k and θ1 = π/4) for 0 ≤ θ ≤ π/2, r2/

√
k = 1, 4, 8, 32, and k = 10.
Let qmin denote theminimumeigenvalue of q. By the second line
of (A.1),

NPr0,Λ,r1,|θ1|(q) =
1
2
e−

1
2

(
r21−r

2
0,Λ

) (√z1√
z0

)−(ν+ 12 )
e
√
z1−
√
z0

+

(√
z̃1
√
z0

)−(ν+ 12 )
e
√
z̃1−
√
z0

(1+ O( 1
√
r1qmin

))
.

Substituting r20,Λ = r
2
1 cos

2 θ1 and the approximations in (A.4),
and subsequently into this expression for NPr0,Λ,r1,|θ1|(q) and
collecting terms yields
NPr0,Λ,r1,|θ1|(q)

= e−
1
2 r
2
1 sin

2 θ1 cosh
(
t1
qST
√
qT

)(
1+ O

(
1

√
r1qmin

))
. (A.5)

Thus, for a given value of qmin > 0, in the limit of the sequence
r1 → ∞ and θ1 = t1/r1, NPr0,r1,|θ1|(q) is an increasing function of
q2ST/qT .
This approximation (A.5) is uniform over mineval(q) ≥ qmin >

0. Thus on the subset of the support Q for which mineval(Q ) ≥
qmin, NPr0,r1,|θ1|(Q ) depends in the limit on LM = Q

2
ST/QT , however

the null distribution of LM does not depend on r so (31) is satisfied
conditional on mineval(Q ) ≥ qmin. Because qmin can be chosen to
be arbitrarily small the probability that mineval(Q ) ≥ qmin can be
made arbitrarily close to one (uniformly in r , θ ) so the bounds in
(33) can be satisfied with arbitrary precision.
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