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ABSTRACT

We consider both frequentist and empirical Bayes forecasts of a single time series using a linear

model with T observations and K orthonormal predictors.  The frequentist formulation considers

estimators that are equivariant under permutations (reorderings) of the regressors.  The empirical

Bayes formulation (both parametric and nonparametric) treats the coefficients as i.i.d. and estimates

their prior.  Asymptotically, when K is proportional to T the empirical Bayes estimator is shown to

be: (i) optimal in Robbins' (1955, 1964) sense; (ii) the minimum risk equivariant estimator;  and

(iii) minimax in both the frequentist and Bayesian problems over a class of nonGaussian error

distributions.  Also, the asymptotic frequentist risk of the minimum risk equivariant estimator is

shown to equal the Bayes risk of the (infeasible subjectivist) Bayes estimator in the Gaussian case,

where the "prior" is the weak limit of the empirical cdf of the true parameter values.  Monte Carlo

results are encouraging.  The new estimators are used to forecast monthly postwar U.S.

macroeconomic time series using the first 151 principal components from a large panel of

predictors.

Key Words: Large model forecasting, equivariant estimation, minimax forecasting

JEL Codes:  C32, E37



1

1. Introduction

Recent advances in data availability now allow economic forecasters to examine hundreds

of economic time series during each forecasting cycle.  Consider, for example, the problem of

forecasting of the U.S. index of industrial production.  A forecaster can collect monthly

observations on, say, 200 (or more) potentially useful predictors beginning in January 1959.  But

what should the forecaster do next?

 This paper considers this problem for a forecaster using a linear regression model with K

regressors and T observations, whose loss function is quadratic in the forecast error.  The regressors

are taken to be orthonormal, an assumption that both simplifies the analysis and is motivated by the

empirical work summarized in section 6, in which the regressors are principal components of a

large macroeconomic data set.  In this framework, the forecast risk (the expected value of the

forecast loss) is the sum of two parts: one that reflects unknowable future events, and one that

depends on the estimator used to construct the forecast.  Because the forecaster can do nothing

about the first, we focus on the second part, which is the estimation risk.  Because the regressors

are orthonormal, we take this to be tr(Vβ% ), the trace of the mean squared error matrix of the

candidate estimator, β% .

This econometric forecasting problem thus reduces to the statistical problem of finding the

estimator that minimizes tr(Vβ% ).   When K is large, this (and the related K-mean problem) is a

difficult problem that has received much attention ever since Stein (1955) showed that the ordinary

least squares (OLS) estimator is inadmissible for K ≥ 3.  A variety of approaches are available in

the literature, including model selection, model averaging, shrinkage estimation, ridge regression,
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and parameter reduction schemes such as factor models (references are given below).  However,

outside of a subjectivist Bayesian framework (where the optimal estimator is the posterior mean),

the quest for an optimal estimator has been elusive.1

We attack this problem from two perspectives, one classical (“frequentist”), and one

Bayesian.

Our frequentist approach to this problem is based on the theory of equivariant estimation.

Suppose for the moment that the regression errors are i.i.d. normally distributed, that they are

independent of the regressors, and that the regressor and error distributions do not depend on the

regression parameters; this shall henceforth be referred to as the "Gaussian case".  In the Gaussian

case, the likelihood does not depend on the ordering of the regressors, that is, the likelihood is

invariant to simultaneous permutations of the cross sectional index of the regressors and their

coefficients.  Moreover, in the Gaussian case the OLS estimators are sufficient for the regression

parameters.  These two observations lead us to consider the class of estimators that are equivariant

functions of the OLS estimator under permutations of the cross sectional index.  Because the form

of these estimators derives from the Gaussian case, we call these "Gaussian equivariant estimators."

This class is large, and contains common estimators in this problem, including OLS, OLS with

information criterion selection, ridge regression, the James-Stein (1960) estimator, the positive part

James-Stein estimator, and common shrinkage estimators.  The estimator that minimizes tr(Vβ% )

among all equivariant estimators is the minimum risk equivariant estimator.  If this estimator

                                               
1Two other approaches to the many-regressor problem that have attracted considerable attention are
Bayesian model selection and Bayesian model averaging.  Recent developments in Bayesian model
averaging are reviewed by Hoeting, Madigan, Raftery and Volinsky (1999).  Some recent
developments in Bayesian model selection are reviewed by George (1999).   The work in this
literature that is, as far as we know, closest to the present paper is George and Foster (2000), which
considers an empirical Bayes approach to variable selection.  However, their setup is fully
parametric and their results refer to model selection, a different objective than ours.
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achieves the minimum risk uniformly for all true regression coefficients in an arbitrary closed ball

around the origin, the estimator is uniformly minimum risk equivariant over this ball.

The Bayesian approach has two different motivations.  One is to adopt the perspective of a

subjectivist Bayesian, and to model the coefficients as i.i.d. draws from some subjective prior

distribution Gβ.  This leads to considering the Bayes risk, 1tr( )d ( ) d ( )KV G Gβ ββ
β β∫ % L , rather than

the frequentist risk tr(Vβ% ).  The subjectivist Bayesian knows his prior, and because of quadratic loss

the Bayes estimator is the posterior mean.  In the Gaussian case, this depends only on the OLS

coefficients, and computation of the subjectivist Bayes estimator is straightforward.  A different

motivation is to adopt an empirical Bayes perspective and to treat the "prior" G as an unknown

infinite dimensional nuisance parameter.  Accordingly, the empirical Bayes estimator is the

subjectivist Bayes estimator, constructed using an estimate of G.2  We adopt this latter perspective,

and consider empirical Bayes estimators of β.  In the Gaussian case, the OLS estimators are

sufficient for the regression parameters, so we consider empirical Bayes estimators that are

functions of the OLS estimators.  In parallel to the nomenclature in the frequentist approach, we

refer to these as "Gaussian empirical Bayes" estimators.

Although the form of these estimators is motivated by the Gaussian case, the statistical

properties of these estimators are examined under more general conditions on the joint distribution

of the regression errors and regressors, such as existence of certain moments, smoothness of certain

distributions, and mixing.  Accordingly, all our results are asymptotic.  If K is held fixed as T → ∞,

the risk of all mean-square consistent estimators converges to zero, and the forecaster achieves the

                                               
2 Empirical Bayes methods were introduced by Robbins (1955, 1964).  Efron and Morris (1972)
showed that the James-Stein estimator can be derived as an empirical Bayes estimator.  Maritz and
Lwin (1989) and Carlin and Louis (1996) provide a recent monograph treatments of empirical
Bayes methods.
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optimal forecast risk for any such estimator.  This setup does not do justice to the forecasting

problem with, say, K = 200 and T = 500.  We therefore adopt a nesting that treats K as proportional

to T (an assumption used, in a different context, by Bekker [1994]);  specifically, K/T → ρ as T →

∞.  If the true regression coefficients are fixed, then as K increases the population R2 of the

forecasting regression approaches one.  This also is unrealistic, so for the asymptotic analysis we

model the true coefficients as being in a 1/ T  neighborhood of zero.  Under this nesting, the

estimation risk (frequentist and Bayesian) has a nontrivial (nonzero but finite) asymptotic limit.

This paper makes three main theoretical contributions.

The first concerns the Bayes risk.  In the Gaussian case, we show that a Gaussian empirical

Bayes estimator asymptotically achieves the same Bayes risk as the subjectivist Bayes estimator,

which treats G as known.  This is shown both in a nonparametric framework, in which G is treated

as an infinite dimensional nuisance parameter, and in a parametric framework, in which G is

finitely parameterized.  Thus this Gaussian empirical Bayes estimator is asymptotically optimal in

the Gaussian case in the sense of Robbins (1964), and the Gaussian empirical Bayes estimator is

admissible asymptotically.  Moreover, the same Bayes risk is attained under the weaker, non-

Gaussian assumptions on the distribution of the error term and regressors.  Thus, the Gaussian

empirical Bayes estimator is minimax (as measured by the Bayes risk) against a large class of

distributional deviations from the assumptions of the Gaussian case.

The second contribution concerns the frequentist risk.  In the Gaussian case, the Gaussian

empirical Bayes estimator is shown to be, asymptotically, the uniformly minimum risk equivariant

estimator. Moreover, the same frequentist risk is attained under weaker, non-Gaussian assumptions.

Thus, the Gaussian empirical Bayes estimator is minimax (as measured by the frequentist risk)

among equivariant estimators against these deviations from the Gaussian case.
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Third, because the same estimator solves both the Bayes and the frequentist problems, it

makes sense that the problems themselves are the same asymptotically.  We show that this is so.

Specifically, it is shown that the empirical Bayes estimator asymptotically achieves the same Bayes

risk as the subjectivist Bayes estimator based on the "prior" which is the weak limit of the cdf of the

true regression coefficients (assuming this exists).  Furthermore, this Bayes risk equals the limiting

frequentist risk of the minimum risk equivariant estimator.

This paper also makes several contributions within the context of the empirical Bayes

literature.  Although we do not have repeated forecasting experiments, under our asymptotic

nesting in the Gaussian case the regression problem becomes formally similar to the Gaussian

compound decision problem.  Also, results for the compound decision problem are extended to the

nonGaussian case by exploiting Berry-Esseen type results for the regression coefficients;  this leads

to our minimax results.  Finally, permutation arguments are used to extend an insight of Edelman

(1988) in the Gaussian compound decision problem to show that the empirical Bayes estimator is

also minimum risk equivariant.

The remainder of the paper is organized as follows.  The model, Bayesian risk function, and

Gaussian empirical Bayes estimators are presented in section 2.  Assumptions and theoretical

results regarding the OLS estimators and the Bayes risk are given in section 3.  The frequentist

equivariant estimation problem is laid out in section 4, and the minimum risk equivariant estimator

is characterized in section 5.  The link between the two problems is discussed in section 6.  Section

7 summarizes a Monte Carlo study of the Gaussian empirical Bayes estimators from both Bayesian

and frequentist perspectives. An empirical application, in which these methods are used to forecast

several U.S. macroeconomic time series, is summarized in section 8.  Section 9 concludes.
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2. The Model, Bayes Risk, and Gaussian Empirical Bayes Estimators

2.1.  The Model and Asymptotic Nesting

We consider the linear regression model,

(2.1) yt+1 = β'Xt + εt+1,

where Xt is a vector of K predictor time series and εt+1 is an error term that is a homoskedastic

martingale difference sequence with E[εt+1|Ft] = 0 and E( 2
1tε + |Ft) = 2

εσ , where Ft = {Xt, εt, Xt-1,

εt-1,…}.

We are interested in out-of-sample forecasting, specifically forecasting yT+1 using XT under

quadratic loss.  Let β%  be an estimator of β  constructed using observations on {Xt-1, yt, t=1,…,T},

and let 1Ty +%  = β% 'XT  be a candidate forecast of yT+1.  The forecast loss is,

(2.2) L( β% , β) = (yT+1- 1Ty +% )2 = [εT+1 + ( β% - β )'XT]2.

The forecast risk is the expected loss,

(2.3) EL( β% ,β) = 2
εσ  + E( β%  – β)'HT( β%  – β),

where HT = '
1E( | , )T T T TX X F y− .

To keep the analysis tractable, we make two simplifying assumptions:  first, that the

regressors are orthonormal, so 1

1

T

t tt
T X X−

=
′∑  = IK;  and second, that HT = IK, the K¥K identity
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matrix.  As discussed in the introduction, the first assumption arises from our empirical application,

in which the regressors are orthonormal by construction.  The second assumption, that HT = IK, is

motivated by the first:  because the regressors are orthonormal, it is plausible to weight each

diagonal element of the estimation risk equally and to apply zero weight to the off diagonal

elements, that is, to set HT = IK.

The forecaster would like to minimize the forecasting risk (2.3).  Because 2
εσ  does not

depend on the estimator, only the second term in the forecasting risk is affected by statistical

considerations;  this is the estimation risk which, upon setting setting HT = IK, is tr(Vβ% ), where

( )( ) 'V Eβ
β β β β= − −% % % .  Looking ahead to the asymptotic analysis, we rewrite this term using the

change of variables,

(2.4) β  = /b T  and β%  = /b T% .

Using this change of variables and setting HT = IK , the estimation risk tr(Vβ% ) is,

(2.5) R(b, b% ) = 1 2

1
( )

K

i ii

K

T
K E b b−

=
 
 
 

−∑ % .

where bi is the ith element of b, etc.

2.2  Asymptotic Nesting

The asymptotic nesting formalizes the notion that number of regressors is large,

specifically, that
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(2.6)  K/T → ρ as T → ∞.

To simplify notation, we ignore integer constraints and set K = ρT.

Under this nesting, if each βi is bounded away from zero, the population R2 tends to one,

which is unrepresentative of the empirical problems of interest.  We therefore adopt a nesting in

which each predictor is treated as making a small but potentially nonzero contribution to the

forecast, specifically we adopt the local parameterization (2.4) with {bi} held fixed as T → ∞.

Because K and T are linked, various objects are doubly indexed arrays, and b and its estimates are

sequences indexed by K, but to simplify notation this indexing is usually suppressed.  All limits in

this paper are taken under (2.4) and (2.6).

2.3  OLS Estimators

Under the nesting (2.4) and (2.6) with 1 '

1

T

t tt
T X X−

=∑  = IK, the OLS estimator of b is,

(2.7) b̂  = 1/2
1

1

T

t t
t

T X y−
−

=
∑ ,

so that E îb  = bi and E( b̂ -b) ( b̂ -b)' = 2
εσ IK.  Also let 2ˆεσ  be the usual estimator of  2

εσ ,

(2.8) 2ˆεσ   = 1 2
11

ˆ( ) ( ' )
T

t tt
T k y Xβ−

−=
− −∑ .
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2.4  Class of Estimators and the Bayes Risk

As discussed in the introduction, the estimators we consider are motivated by supposing that  

εt is iid N(0, 2
εσ ), {Xt} and {εt} are independent, the distribution of {Xt, εt} does not depend on b,

and the distribution of {Xt} does not depend on 2
εσ ;  these assumptions constitute the "Gaussian

case".  In the Gaussian case, ( b̂ , 2ˆεσ ) are sufficient for (b, 2
εσ ).  We therefore restrict attention to

estimators b%  that are functions of ( b̂ , 2ˆεσ ).

The likelihood of b̂  (given b and 2
εσ ), denoted by fK( b̂ |b), has the location form, fK( b̂ |b) =

fK( b̂  – b).  In the Gaussian case, b̂  has a finite sample N(b, 2
εσ IK) distribution, and it is useful to

adopt special notation for this case.  Let φK(z) = 1 ( )K
i izφ=∏ , where φ is the normal density with

mean zero and variance 2
εσ .  Thus, in the Gaussian case fK = φK.  Note that, if K were fixed,

standard central limit theory would imply that φK provides a good approximation to fK.

In the Bayesian formulation, {bi} are modeled as i.i.d. draws from the prior distribution G.

We suppose that the subjectivist Bayesian knows 2
εσ  (has a point mass prior on 2

εσ ).  (One

motivation for this simplification is that it will be shown that 2ˆεσ  is L2-consistent for 2
εσ , so that a

proper prior over 2
εσ  would be dominated by the information in 2ˆεσ .)  Accordingly, the Bayes risk

we consider is the frequentist risk (2.5), integrated against the prior distribution G.  Upon setting

K/T = ρ, under the normalization (2.4) the Bayes risk is,

(2.9)

1 2

1

1 2

1

( , ) ( ) d ( )

ˆ ˆ ˆ( ( ) ) ( )d d ( )

K

G K i i Ki

K

i i K Ki

r b f K E b b G b

K b b b f b b b G b

ρ

ρ

−
=

−
=

= −

= − −

∑∫
∑∫ ∫

% %
%
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where GK(b) = G(b1)··· G(bK) and where the second line makes the integration in the inner

expectation explicit.

2.5.  The Subjectivist Bayes Estimator in the Gaussian Case

The subjectivist Bayesian knows G.  Because loss is quadratic, the Bayes risk (2.9) is

minimized by the posterior mean.  In the Gaussian case, { ˆ
ib } are i.i.d., so the posterior mean is,

(2.10)
ˆ( )d ( )

ˆ( )d ( )

K K

K K

x b x G x

b x G x

φ

φ

−

−
∫
∫

.

Because the likelihood is Gaussian, the posterior mean (2.10) can be written in terms of the score of

the marginal distribution of b̂  (e.g. see Maritz and Lwin [1989, p. 73]).  Let mφ denote the marginal

distribution of ( 1
ˆ ˆ,..., Kb b ) in the Gaussian case,

(2.11) ( ) ( ) ( )K Km x x b dG bφ φ= −∫ ,

and let ( ) ( ) / ( )x m x m xφ φ φ′=l  be its score.  Accordingly, the subjectivist Bayes estimator ˆNBb  (the

"Normal Bayes" estimator) is,

(2.12) ˆNBb  = b̂  + 2 ˆ( )bε φσ l .
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Note that ˆNBb  is based on the prior G through the score, although this dependence is suppressed

notationally.

2.6  Gaussian Empirical Bayes Estimators

The Gaussian empirical Bayes estimators studied here are motivated by the foregoing

expressions derived for the Gaussian case.  In the empirical Bayes approach to this problem, G is

unknown, as is 2
εσ .  Thus the score φl  is unknown, and the estimator (2.12) is infeasible.  However,

both the score and 2
εσ  can be estimated.  Moreover, although the derivation of (2.12) relies on fK =

φK, as was mentioned φK might be a plausible large sample approximation to fK.  This suggests

using an estimator of the form (2.12), with φl  and 2
εσ  estimated, even outside the Gaussian case.

 The resulting estimator is referred to as a simple empirical Bayes estimator ("simple"

because G does not appear explicitly in (2.12), as it does in (2.10)).  Throughout, 2
εσ  is estimated

by 2ˆεσ , defined in (2.8).  Both parametric and nonparametric approaches to estimating the score are

considered.  These respectively yield parametric and nonparametric empirical Bayes estimators.

Parametric Gaussian empirical Bayes estimator.  The parametric Gaussian empirical Bayes

estimator is based on adopting a parametric specification for G, which will be denoted GK(b;q),

where q is a finite dimensional parameter vector.  Using the normal approximation φK to the

likelihood, this in turn provides a parametric approximation to the marginal distribution of b̂ ,

mφ(x;q) = ( ) ( ; )K Kx b dG bφ θ−∫ .  The parametric Gaussian empirical Bayes estimator is computed

by substituting estimates of 2
εσ  and θ into mφ(x;q), using this parametrically estimated marginal
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and its derivative to estimate the score, and substituting this parametric score estimator into (2.12).

The specific parametric score estimator used here is,

(2.13)
ˆ

ˆ

ˆ( ; )
ˆ ˆ( ; )

ˆ( ; )
K

K

m x
x

m x s
φ

φ

θ
θ

θ

′
=

+
l ,

where ˆ
ˆ ˆ ˆ( ; ) ( ) ( ; )K Km x x b dG b

φ
θ φ θ= −∫  and ˆ

ˆ ˆ ˆ( ; ) ( ) ( ; )K Km x x b dG b
φ

θ φ θ′ ′= −∫ , where ˆ
Kφ  denotes φK

with 2
εσ  estimated, that is, 2 / 2 2ˆ ˆ ˆ( ) (2 ) exp( ' / 2 )K

K u u uε εφ πσ σ−= − , and where {sK} is a sequence of

small positive numbers such that sK → 0.  (The sequence {sK} is a technical device used in the

proof to control the rate of convergence.)

The parametric Gaussian empirical Bayes estimator, ˆPEBb , is obtained by combining (2.12)

and (2.13) and using 2ˆεσ ;  thus,

(2.14) ˆPEBb  = b̂  + 2 ˆˆ ˆˆ ( ; )K bεσ θl .

Nonparametric Gaussian simple empirical Bayes estimator.  The nonparametric Gaussian

simple empirical Bayes estimator is based on the assumption that {bi} are independent draws from

the distribution G.  This permits estimation of the score without assuming a parametric form for G.

The score estimator used for the theoretical results uses a construction similar to Bickel et.

al. (1993) and van der Vaart (1988).  Let w(z) be a symmetric bounded kernel with 4 ( )z w z dz < ∞∫

and with bounded derivative w'(z) = dw(z)/dz, and let hK denote the kernel bandwidth sequence.

Define
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(2.15)
ˆ1

ˆ ( )
( 1)iK

j iK

b xj
hK

m x w
K h ≠

− =  −  
∑

(2.16)
2

ˆ1
ˆ ( )

( 1)iK
j iK

b xj
hK

m x w
K h ≠

− ′ ′= −  −  
∑ , and

(2.17)
ˆ ( )

( )
ˆ ( )

iK
iK

iK K

m x
x

m x s

′
=

+

(l .

The nonparametric score estimator considered here is,

(2.18)

2ˆ

128
( ) if | | log  and | ( ) | ,ˆ ( )

0 otherwise

iK iK K
iK

x x K x q
x

εσ 
 < ≤=  
  

( (l ll ,

where {sK} and {qK} are sequences of constants.  Rates for these sequences are given below.

The nonparametric Gaussian simple empirical Bayes estimator, ˆNSEBb , obtains by

substituting  2ˆεσ  and (2.18) into (2.12);  thus,

(2.19) ˆNSEB
ib  = ˆ

ib   + 2 ˆˆˆ ( )iK ibεσ l ,  i=1,…, K.

Note that although the assumption of normal errors was used to motivate the form of this estimator,

the normal approximation φK is in fact not used in the construction of (2.18).
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3. Results Concerning OLS and the Bayes Risk

3.1.  Assumptions

The following assumptions are used for one or more of the theoretical results.  Throughout,

we adopt the notation that C is a finite constant, possibly different in each occurrence.

The first assumption restricts the moments of {Xt} and {εt}.  Let Zt = (X1t,..., XKt, εt).

Assumption 1 (moments).

(i)  1

1

T

t t Kt
T X X I−

=
′ =∑ ;

(ii) 12 12sup  and supit it t tEX C E Cε≤ < ∞ ≤ < ∞ ;

(iii) E(εt|Zt-1,..., Z1) = 0;

(iv) E( 2
tε |Xt, Zt-1,..., Z1) = 2

εσ > 0; and

(v)  
1 1

4
,..., 1 1sup max sup ( | , ,..., )

tT t T Z Z t t tE X Z Z Cε
−≤ − ≤ < ∞ .

The next assumption is that the maximal correlation coefficient of Z decays geometrically

(cf. Hall and Heyde [1980], p. 276).  Let {νn} denote the maximal correlation coefficients of Z, that

is, let {νn} be a sequence such that 
1 ,

sup sup | corr( , ) |m
m n

m ny x
x y ν∞

+∈ ∈
≤mH H , where b

aH  is the σ-field

generated by the random variables {Zs, s=a,…,b}.

Assumption 2 (time series dependence).  {Zt, t=1,…,T }has maximal correlation coefficient

νn that satisfies νn ≤ De-λn for some positive finite constants D and λ.
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The next assumption places smoothness restrictions on the (conditional) densities of {Xit}

and {εit}. Let ( )X
itKp x  denote the conditional density of Xit given (Z1,…,Zt-1); let ( | )X

ijtK i jp x x  be the

conditional density of Xit given (Xjt, Z1,…,Zt-1); and let ( )itKpε ε denote the conditional density of εt

given (Z1,…,Zt-1).

Assumption 3 (densities).

(i)  The distribution of {Xit, εt} does not depend on {bi}.

(ii)  There exists a constant C < ∞ such that, for all i, j, t, K, | ( )X
itKp x | ≤ C, | ( | ) |X

ijtK i jp x x  ≤ C

for i π j, and 
2

2
| ( ) |itK

d

d
Cp dε

ε
ε ε ≤∫ .

The next assumption restricts the cross sectional dependence among {Xit} using a

conditional maximal correlation coefficient condition.  Let Xi = (Xi1,…, XiT) and let b
aF  be the σ-

field generated by the random variables {Xi, i = a,…,b}, and define the cross sectional conditional

maximal correlation coefficients {τn} to be a sequence satisfying 
1 ,

sup sup m
m n

m y x ∞
+∈ ∈mF F |corr(x,y|Xj)| ≤

τn for all j.

Assumption 4 (cross sectional dependence).  There exists a sequence of cross sectional

maximal correlation coefficients {τn} such that 
1 nn
τ

∞

=∑  < ∞.

The next two assumptions place restrictions on the family containing the true distribution of

b in, respectively, the parametric and nonparametric cases.
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Assumption 5 (parametric G).

(i)  {bi} are i.i.d. with distribution G and var(bi) = 2
bσ  < ∞.

(ii)  G belongs to a known family of distributions G(b;θ) indexed by the finite-dimensional

parameter θ contained in a compact Euclidean parameter space Q;

(iii)  G has density g(b; θ) which is Lipschitz continuous in θ uniformly over b and θ, i.e.

supb,θŒQsupθ'ŒQ|g(b;θ) – g(b;θ')| ≤ C 'θ θ− .

(iv)  There exists an estimator 2ˆˆ ˆ( , )b εθ θ σ=  such that, for all K sufficiently large,

E[K
2

θ̂ θ− ] ≤ C < ∞, where the expectation is taken either under (fK, G) or under (φK, G).

Assumption 6 (nonparametric G).  {bi} are i.i.d. with distribution G and var(bi) = 2
bσ  < ∞.

The final assumption provides conditions on the rates of the various sequences of constants

used to construct the estimators.

Assumption 7 (rates).  The sequences {sK}, {qK}, and {hK} satisfy:  hK  → 0, sK → 0,

qK → ∞, K1/24hKlogK → 0, K2/9hK → ∞, 2
Ks logK→ ∞, K-1/6qK → ∞, and K-1/2qK → 0.

3.2. Results for the OLS Estimators

The theoretical results pertain to the model (2.1), and all limits are taken under the

asymptotic nesting (2.4) and (2.6).  The first result is that, under this nesting, 2ˆεσ  is consistent.
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Theorem 1 (standard error of the regression).

Under assumptions 1 and 2, E[( 2ˆεσ  - 2
εσ )2|b, 2

εσ ] ≤ C/K.

All proofs are given in the appendix.

An immediate consequence of theorem 1 is that 2ˆεσ  is consistent.

Theorem 1 is nonstandard because the number of regressors increases with the sample size.

In the special case that εt is i.i.d. N(0, 2
εσ ) and the regressors are independent of the errors, the proof

is straightforward.  Under these special assumptions, in conventional matrix notation 2ˆεσ  = y'[I-

X(X'X)-1X']y/(T-K) = ε'[I-X(X'X)-1X']ε/(T-K).  Because I-X(X'X)-1X' is idempotent with T-K degrees

of freedom, 2ˆεσ / 2
εσ  is distributed 2 /( )T K T Kχ − − .  Thus E[( 2ˆεσ  - 2

εσ )2|b, 2
εσ ] = 2 4

εσ /(T-K), so the

result in theorem 1 holds with C = 2ρ 4
εσ /(1-ρ).  The proof under the more general assumption 1 is,

however, more involved.

The next theorem provides results for the OLS estimator and its forecast, 1|ˆOLS
T Ty + .

Theorem 2 (OLS risk).

Under assumption 1, R( b̂ ,b) → ρ 2
εσ , rG( b̂ ,fK) = ρ 2

εσ , and var(yT+1- 1|ˆOLS
T Ty + )/ 2

εσ  → 1+ρ.

3.3  Results for Gaussian Empirical Bayes Estimators

The next two theorems establish the asymptotic Bayes risks of the Gaussian empirical

Bayes estimators.  Theorem 3 pertains to the parametric case, and theorem 4 pertains to the

nonparametric case.
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Theorem 3 (Parametric Empirical Bayes).

Suppose that the assumptions 1 – 5 and 7 hold.  Then:

(i)  rG( ˆPEBb ,fK) - rG( ˆNBb ,φK) → 0, and

(ii) ˆinf sup ( , ) ( , ) 0
K

NB
f G K G Kb

r b f r b φ− →% % , where the supremum is taken over the class of

likelihoods fK  that satisfy assumptions 1 – 4 with fixed constants.

Theorem 4 (Nonparametric Empirical Bayes).

Under assumptions 1-4, 6, and 7,

(i)  rG( ˆNSEBb ,fK) - rG( ˆNBb ,φK) → 0, and

(ii) ˆinf sup ( , ) ( , ) 0
K

NB
f G K G Kb

r b f r b φ− →% % , where the supremum is taken over the class of

likelihoods fK  that satisfy assumptions 1 – 4 with fixed constants.

Part (i) of Theorem 3 states that the Bayes risk of the parametric EB estimator

asymptotically equals the Gaussian Bayes risk of the infeasible estimator, ˆNBb .  By definition, ˆNBb

is the Bayes estimator if G is known when the errors are normally distributed and are independent

of the regressors.  Thus the theorem implies that, if the errors are Gaussian and are independent of

the regressors, the feasible estimator ˆPEBb  is asymptotically optimal in the sense of Robbins (1964).

The theorem further states that the Bayes risk of the infeasible estimator ˆNBb  is achieved

even if the conditions for ˆNBb  to be optimal (Gaussianity) are not met, as long as the assumptions

of the theorem hold.  Moreover, according to part (ii), this risk is achieved uniformly over

distributions satisfying the stated assumptions.  If {εt} has a nonnormal distribution, then the OLS
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estimators are no longer sufficient, and generally a lower Bayes risk can be achieved by using the

Bayes estimator based on the true error distribution.  Together these observations imply that

rG( ˆNBb ,φK) is an upper bound on the Bayes risk of the Bayes estimator under the prior G when {εt}

is known but nonnormal.  However, ˆPEBb  is asymptotically optimal in the Gaussian case and its

Bayes risk does not depend on the true error distribution asymptotically, so ˆPEBb  is asymptotically

minimax.

Because the Bayes risk function was derived from the forecasting problem, these statements

about the properties of the parametric EB estimator carry over directly to forecasts based on the

parametric EB estimator.

The interpretation of theorem 4 parallels that of theorem 3.  In particular, ˆNSEBb  is

asymptotically optimal if the errors are normal and independent of the regressors.  Asymptotically

the Bayes risk of this estimator does not depend on the true distributions, as long as they satisfy the

stated assumptions.  Thus this estimator is asymptotically minimax for the family of distributions

satisfying the assumptions of theorem 4.

Finally, because assumption 5 implies assumption 6, if the true distributions satisfy the

conditions of theorem 3, the parametric and nonparametric EB estimators are asymptotically

equivalent in the sense that they achieve the same asymptotic Bayes risk.

4. Frequentist Risk and Gaussian Equivariant Estimators

4.1  Frequentist Risk

As in the Bayesian case, the family of estimators considered in the frequentist formulation

of the estimation problem is motivated by the Gaussian case.  The sufficiency argument of section
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2.4 applies here, so we consider estimators b%  which are functions of the OLS estimator b̂ .

Accordingly we write the frequentist estimation risk (2.5) as,

(4.1) R(b, b% ;fK) = 1 2

1
ˆ[ ( ) ]

K

i ii
K E b b bρ −

=
−∑ % .

where (4.1) differs from (2.5) by making explicit both the likelihood fK under which the expectation

is taken and the dependence of the estimator on b̂ .

4.2  Gaussian Equivariant Estimators

In the Gaussian case, the value of the likelihood φK does not change under a simultaneous

reordering of the cross sectional index i on (Xi, bi), where Xi = (Xi1,…, XiT).   More precisely, let P

denote the permutation operator, so that P(X1, X2,…, XK) = (
1 2
, ,...,

Ki i iX X X ), where {ij, j=1,…,K} is

a permutation of {1,…,K}.  The collection of all such permutations is a group, where the group

operation is composition.  The induced permutation of the parameters is Pb.  In the Gaussian case,

the likelihood constructed using (PX, Pb) equals the likelihood constructed using (X, b);  that is, the

likelihood is invariant to P.

Following the theory of equivariant estimation (e.g. Lehmann and Casella (1998, ch. 3)),

this leads us to consider the set of estimators that are equivariant under any such permutation.  An

estimator ˆ( )b b%  is equivariant under P if the permutation of the estimator constructed using b̂

equals the (non-permuted) estimator constructed using the same permutation applied to b̂ .  The set

B of all estimators that are functions of b̂  and are equivariant under the permutation group thus is,
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(4.2) B = { ˆ( )b b% : P[ ˆ( )b b% ] = ˆ( )b bP% }.

An implication of equivariance is that the risk of an equivariant estimator is invariant under

the permutation, that is,

(4.3) R(b, b% ;fK) = R(Pb, ˆ( )b bP% ;fK)

for all P, cf. Lehmann and Casella (1998, Chapter 3, Theorem 2.7).  Note that, in the problem at

hand, because the risk is quadratic this invariance of the risk holds for all b ∈% B  even if the

motivating assumptions of the Gaussian case do not hold.

The set B contains the estimators commonly proposed for this problem, for example OLS,

OLS with BIC model selection, ridge regression, and James-Stein estimation; ˆNSEBb  is also in B.

5. Results Concerning the Frequentist Risk

The next theorem characterizes the asymptotic limit of the frequentist risk of the minimum

risk equivariant estimator.  Let KG%  denote the (unknown) empirical cdf of the true coefficients {bi}

for fixed K, and let ˆ
K

NB
G

b %  denote the normal Bayes estimator constructed using (2.12), with the true

empirical cdf KG%  replacing G.  Also, let 
2

x  = (x'x/K)1/2 for the K-vector x.
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Theorem 5 (Minimum Risk Equivariant Estimator).

Suppose that the assumptions 1 – 4 and 7 hold.  Then:

(i)  ˆ ˆinf ( , ; ) ( , ; ) ( , )
K K K

NB NB
K KG G Gb

R b b R b b r bφ φ φ
∈

≥ =% % % %%
B  for all Kb∈R  and for all K;

(ii) 
2

ˆsup | ( , ; ) inf ( , ; ) | 0NSEB
b M K Kb

R b b R b bφ φ≤ ∈− →%P P
%

B  for all M < ∞; and

(iii) 
2

ˆsup {sup | ( , ; ) inf ( , ; ) |} 0
K

NSEB
b M f K Kb

R b b f R b b φ≤ ∈− →%P P
%

B  for all M < ∞, where the

supremum over fK is taken over the class of likelihoods fK which satisfy assumptions 1 – 4

with fixed constants.

Part (i) of this theorem provides a device for calculating a lower bound on the frequentist

risk of any equivariant estimator in the Gaussian case.  This lower bound can be expressed as the

Bayes risk of the subjectivist normal Bayes estimator computed using the "prior" that equals the

empirical cdf of the true coefficients;  because this is computed using the true (unknown) empirical

cdf, this is better thought of as a pseudo-Bayes risk. The estimator that achieves this in finite

samples is the Bayes estimator constructed using the "prior" KG% , but because this prior is unknown

this estimator is infeasible.

Part (ii) of the theorem shows that, in the Gaussian case, this optimal risk is achieved

asymptotically by the nonparametric Gaussian simple empirical Bayes estimator.  Moreover, this

optimality holds uniformly for coefficient vectors in a normalized ball (of arbitrary radius) around

the origin.  Thus, in the Gaussian case the nonparametric Gaussian simple empirical Bayes

estimator is asymptotically uniformly (over the ball) minimum risk equivariant.

Part (iii) of the theorem parallels the final parts of theorems 3 and 4, and shows that even

outside the Gaussian case the frequentist risk of ˆNSEBb  does not depend on fK, as long as
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assumptions 1 – 4 hold.  Because ˆNSEBb  is optimal among equivariant estimators in the Gaussian

case, and because its asymptotic risk does not depend on fK, it is minimax among equivariant

estimators.

6.  Connecting the Frequentist and Bayesian Problems

The fact that ˆNSEBb  is the optimal estimator in these two seemingly different estimation

problems suggests that the problems themselves are related.  It is well known that in conventional,

fixed dimension parametric settings, by the Bernstein – von Mises argument, Bayes estimators and

efficient frequentist estimators can be asymptotically equivalent.  In these settings, a proper prior is

dominated asymptotically by the likelihood.  This is not, however, what is happening in this

problem.  Here, because the number of coefficients is increasing with the sample size and the

coefficients are local to zero, the {bi} cannot be estimated consistently.  Indeed, Stein's (1955)

result that the OLS estimator is inadmissible holds here asymptotically, and the Bayes risks of the

OLS and subjectivist Bayes estimators differ even asymptotically.  Thus the standard argument,

applicable to fixed parameter values, does not apply here.

Instead, the reason that these two problems are similar is that the frequentist risk for

equivariant estimators is in effect the Bayes risk, evaluated at the empirical cdf KG% .  For

equivariant estimators, in the Gaussian case the ith component of the frequentist risk (4.1),

2ˆ[ ( ) ]i iE b b b−% depends only on bi.  Thus we might write,

(6.1)

1 2

1

2
1 1 1

ˆ( , ; ) [ ( ) ]

ˆ[ ( ) ] ( )

K

K i i
i

K

R b b K E b b b

E b b b dG b

φ ρ

ρ

−

=

= −

= −

∑

∫

% %

% %
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If the sequence of empirical cdfs { KG% } has the weak limit G that is, KG%  fi G, and if the integrand

in (6.1) is dominated, then

(6.2) 2 2
1 1 1 1

ˆ ˆ( , ; ) [ ( ) ] ( ) [ ( ) ] ( )K KR b b E b b b dG b E b b b dG bφ ρ ρ= − ⇒ −∫ ∫% % %%

which is the Bayes risk of  b% .  This reasoning extends Edelman's (1988) argument linking the

compound decision problem and the Bayes problem (for a narrow class of estimators) in the

problem of estimating multiple means under a Gaussian likelihood.

This heuristic argument is made precise in the next theorem.

Theorem 6.

If KG G⇒%  and 
2

supK b  ≤ M, then ˆ ˆ| ( , ; ) ( , ) | 0
K

NB NB
K GG

R b b r bφ φ− →% .

Thus, in the Gaussian case the frequentist risk of the subjectivist Bayes estimator ˆ
K

NB

G
b % ,

based on the true empirical cdf KG% , and the Bayes risk of the subjectivist Bayes estimator ˆNBb

based on its weak limit G, are the same asymptotically.  It follows from theorems 3, 4 and 5 that

this risk is also a lower bound on both the frequentist and Bayesian risks.  This lower bound is

achieved by the feasible nonparametric Gaussian simple empirical Bayes estimator, which,

asymptotically, behaves as well as if the weak limit G were known.
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7.  Monte Carlo Analysis

7.1.  Estimators

Parametric Gaussian EB estimator.  The parametric Gaussian EB estimator examined in

this Monte Carlo study is based on the parametric specification that {bi} are i.i.d. N(µ,τ2).  Using

the normal approximating distribution for the likelihood, the marginal distribution of ˆ
ib  is thus

N(µ, 2

b̂
σ ), where 2

b̂
σ  = 2

εσ  + τ2.  The parameters µ and 2

b̂
σ  are consistently estimated by

1

1
ˆˆ

K

ii
K bµ −

=
= ∑  and 2 1 2

ˆ 1
ˆˆ ˆ( 1) ( )

K

ib i
K bσ µ−

=
= − −∑ .  For the Monte Carlo analysis, we treat the

sequence of constants sK as a technical device and thus drop this term from (2.13).  Accordingly,

the parametric Gaussian empirical Bayes estimator, ˆPEBb , is given by (2.14) with

(7.1)
2
ˆ

ˆ ˆˆˆ ˆ( ; )
ˆK

b

b
b

µ
θ

σ
−

= −l .

Nonparametric Simple EB estimator.  The nonparametric Gaussian simple EB estimator is

computed as in (2.10) and (2.11), with some modifications.  Following Härdle et. al. (1992), the

score function is estimated using the bisquare kernel with bandwidth proportional to (T/100)-2/7.

Preliminary numerical investigation found advantages to shrinking the nonparametric score

estimator towards the parametric Gaussian score estimator.  We therefore use the modified score

estimator,

(7.2) ˆ ˆ ˆ ˆ( ) ( ) ( ) [1 ( )] ( ; )s
iK T iK T Kx x x x xλ λ θ= + −l l l
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where ˆ ( )iK xl  is (2.18) implemented using the bisquare kernel nonparametric score estimator and sK

= 0, and, and ˆ ˆ( ; )K x θl  is given in (7.1).  The shrinkage weights are λT(x) = exp[-½κ2(x- µ̂ )2/ 2

b̂
σ .

Results are presented for various shrinkage parameters κ;  small values of κ represent less

shrinkage, and when κ = 0, ˆ ˆ( ) ( )s
iK iKx x=l l .

Deconvolution EB estimator.  An alternative to the nonparametric SEB estimator is to

estimate the density g directly by nonparametric deconvolution, and then to use the estimated g in

an empirical version of (2.10).  Let ĝ  be such an estimator of g.  The nonparametric deconvolution

EB estimator is,

(7.3)
ˆˆ ˆ( ) ( )d

ˆ
ˆˆ ˆ( ) ( )d

i i i i iNDEB
i

i i i i

b b b g b b
b

b b g b b

φ

φ

−
=

−
∫
∫

.

Various approaches are available for estimating g.  The specific deconvolution estimator

considered here is constructed in the manner of Fan (1991) and Diggle and Hall (1993).  If { ˆ
ib } are

i.i.d. normal (conditional on b), then the marginal distribution of ˆ
ib  is,

(7.4) ( ) ( ) ( )dm x x u g u uφ φ= −∫ .

Let χm(t) = ( )e ditxm x x−∫ , etc.  Then (7.4) implies that χm(t) = χφ(t)χg(t), so χg(t) =

χm(t)/χφ(t).  Let m̂  be a kernel density estimator of m.  This suggests the nonparametric estimator
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of the characteristic function of g, ˆˆˆ ( ) ( ) / ( )g mt t t
φ

χ χ χ= .  Following Diggle and Hall (1993), we

therefore consider the nonparametric deconvolution estimator of g,

(7.5) *ˆ ˆ( ) ( ) ( )e d [1 ( )] ( )e ditx itx
g gg x t t x t t xω χ ω χ= + −∫ ∫ ,

where ω(t) is a weight function and g* is a fixed density.  Diggle and Hall(1991) choose χg*(t) = 0

and ω(t) = 1(|t|≤pT), where pT > 0 and pT → ∞ as T → ∞.

No formal results are presented here for this estimator.  If { ˆ
ib } are i.i.d., a result similar to

Theorem 4 can be proven using the central limit theorem and arguments similar to those in Fan

(1991) and Diggle and Hall (1993).  However, extending this proof to the case that { ˆ
ib } are

dependent appears to be difficult.

The nonparametric deconvolution EB estimator, ˆNDEBb , is computed using (7.3) and (7.5),

where the integrals are evaluated numerically.  The kernel density estimator m̂  was computed from

{ ˆ
ib } using a t-distribution kernel with five degrees of freedom and bandwidth c(T/100)-2/7/ ˆˆ

b
σ ,

where c is a constant (referred to below as the t-kernel bandwidth parameter).  This heavy-tailed

kernel was found to perform better than truncated kernels because m̂  appears in the denominator of

the EB estimate of the posterior mean.  Diggle and Hall (1993) chose χg* in (7.5) to be zero, so that

the deconvolution estimator was shrunk towards a uniform distribution.  However, numerical

experimentation indicated that it is better to shrink towards the parametric Gaussian prior, so this is

the choice of g* used for the results here.  The weight function ω(t) was chosen to be triangular so

ω(0) = 1 and ω(pT) = 0.
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Both the nonparametric deconvolution EB and nonparametric simple EB estimators

occasionally produced extremely large estimates, and some results were sensitive to these outliers.

We therefore implemented the upper truncation | ˆEB
ib | ≤ maxi| ˆ

ib | for all nonparametric estimators.

Other benchmark estimators.  Results are also reported for some estimators that serve as

benchmarks:  the infeasible Bayes estimator, the OLS estimator, and the BIC estimator.  The

infeasible Bayes estimator is the Bayes estimator based on the true G and 2
εσ ;  this is feasible only

in a controlled experimental setting.  The BIC estimator is the estimator that estimates bi either by

ˆ
ib  or by zero, depending on whether this regressor is included in the regression according to the

BIC criterion.  Enumeration of all possible models and thus exhaustive BIC selection is possible in

this design because of the orthonormality of the X's.

7.2  Experimental Design

The data were generated according to (1.1), with εt i.i.d. N(0,1), where Xt are the K principal

components of {Wt, t=1,...,T}, where Wit are i.i.d. N(0,1) and independent of {εt};  Xt was rescaled

to be orthonormal.  The number of regressors was set at K = ρT.  Results are presented for ρ = 0.4

and ρ = 0.7.

Two sets of calculations were performed.  The first examines the finite sample convergence

of the Bayes risk of the various estimators to the Gaussian Bayes risk of the true Bayes estimator;

that is, this calculation examines the relevance of theorems 3 and 4 to the finite sample behavior of

these estimators.  For these calculations, the parameters βi were drawn from the mixture of normals

distribution,
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(7.6) βi  i.i.d. N(µ1,
2
1σ ) w.p. λ and  N(µ2,

2
2σ ) w.p. 1-λ.

Six configurations of the parameters, taken from Marron and Wand (1992), were chosen to

generate a wide range of distribution shapes.  The densities are shown are shown in figure 1.  The

first sets λ = 1, so that the β's are normally distributed.  The second and third are symmetric and

bimodal, and the fourth is skewed.  The fifth density is heavy tailed, and the sixth is extremely so.

In all of the experiments, the mean and variance parameters were scaled so that the population

regression R2 was 0.40.

The normal/mixed normal design allows analytic calculation of the Bayes risk for the

(infeasible) Bayes estimator and the OLS estimator (where the risk only depends on the second

moments).  For the other estimators, the Bayes risk rG was estimated by Monte Carlo simulation,

with 1000 Monte Carlo repetitions, where each repetition entailed redrawing (β, X, ε).

The second set of calculations evaluates the frequentist risk of the various estimators for a

design in which the coefficients are fixed rather than drawn from a distribution.  For these

calculations, βi was set according to

(7.7)
, 1,...,[ ]

0, [ ] 1,...,i

i K

i K K

γ λ
β

λ
= 

=  = + 

where λ is a design parameter between 0 and 1, and γ  is chosen so that the population R2 = 0.4.

For these results, ρ was set at 0.4.
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7.3  Results and Discussion

The Bayes estimation risk results are presented in table 1; results for ρ = 0.4 and ρ = 0.7 are

shown in panels A and B, respectively.  First consider the results in panel A.  The Bayes risk of the

OLS estimator is ρ = 0.4 for all sample sizes; the experimental design means that the asymptotic

result in Theorem 2 holds exactly in finite samples.  The Bayes estimators offer substantial

improvements over OLS, with risks ranging from 0.25 to 0.12 (improvements of 40% – 70%

relative to OLS).  The BIC estimator generally performs worse than OLS, presumably because BIC

is in part selecting variables that have small true coefficients but large estimated coefficients

because of sampling error.  The exception to this is when the β's are generated by the outlier

distribution.  Here 10% of the β's are drawn from a large-variance normal, and 90% of the β's are

drawn from a small-variance normal concentrated around 0.  Thus, most of the regression's

predictive ability comes from a few regressors with large coefficients, and BIC does a relatively

good job selecting these few regressors.

Two results stand out when looking at the performance of the empirical Bayes estimators.

First, their performance is generally very close to the infeasible Bayes estimator for all of the

sample sizes considered here, and thus they offer substantial improvement on the OLS and BIC

estimators.  The exception occurs when the β's are generated by the outlier distribution.  In this case

the empirical Bayes estimators achieve approximately half of the gain of the infeasible Bayes

estimator, relative to OLS.  For these outlier distributions, the BIC estimator dominates the

empirical Bayes estimators.  The second result that stands out is that the three empirical Bayes

estimators have very similar performance.  This is not surprising when the β's are generated from

the Gaussian distribution, since in this case the parametric Gaussian empirical Bayes is predicated

on the correct distribution.  In this case, the similar performance of the non-parametric estimators
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suggests that little is lost ignoring this information.  However, when the β's are generated by non-

Gaussian distributions, the parametric Gaussian empirical Bayes estimator is misspecified.  Yet,

this estimator still performs essentially as well as the non-parametric estimators, and, except in the

case of the outlier distribution, performs nearly as well as the optimal infeasible Bayes estimator.

The results in panel B, for which ρ = 0.7, present a similar picture.  The Bayes risks of the

OLS and BIC estimators is typically poor and is worse than the parametric or nonparametric EB

estimators.  The parametric and nonparametric EB estimators have Bayes risk approaching that of

the true Bayes estimator except when the β's are generated by the outlier distribution.

The frequentist risk results are given in table 2.  No prior is specified so the Bayes estimator

is not relevant here.  When λ is small there are only a few non-zero (and large) coefficients, much

like the β's generated by the outlier distribution.  Thus, the results for λ = 0.05 are much like those

for the outlier distribution in table 1;  BIC does well selecting the few non-zero coefficients; the

empirical Bayes estimators perform well relative to OLS, but are dominated by BIC.  However, the

performance of BIC drops sharply as λ increases; BIC and OLS are roughly comparable when λ =

.30, but when λ = 0.50, the risk of BIC is 50% larger than the risk of OLS.  In contrast, the

empirical Bayes estimators work well for all values of λ.  For example, the (frequentist) risk of the

nonparametric simple empirical Bayes estimator offer a 50% improvement on OLS when λ is

small, and more than a 75% improvement when λ is large.

8.  Application to Forecasting Monthly U.S. Macroeconomic Time Series

This section summarizes the results of using these methods to forecast monthly U.S.

economic time series.  The forecasts are based on the principal components of 151 macroeconomic

time series.  Forecasts based on the first few of these principal components from closely related
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data sets are studied in detail in Stock and Watson (1998, 1999).   Here, we extend the analysis in

those papers by considering forecasts based on all of the principal components.

8.1. Data

Forecasts were computed for four measures of aggregate real economic activity in the

United States:  total industrial production (ip);  real personal income less transfers (gmyxpq);  real

manufacturing and trade sales (msmtq);  and the number of employees on nonagricultural payrolls

(lpnag).   The forecasts were constructed using a set of 151 predictors that cover eight broad

categories of available macroeconomic and financial time series.  The series are listed in appendix

B.  The complete data set spans 1959:1-1998:12.

8.2.  Construction of the Forecasts

Forecasts were constructed from regressions of the form

(8.1) yt+1 = β'Xt + εt+1,

where Xt is composed of the first K principal of the standardized predictors.  The coefficient vector

β was estimated by OLS and by the parametric and nonparametric simple empirical Bayes

estimators.  These estimators were implemented as in the Monte Carlo experiment.  Results are

presented for both one month ahead and one quarter ahead predictions. These latter results were

calculated using quarterly aggregates of the data constructed using the final monthly observation of

the quarter.
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All forecasts are computed recursively (that is, in simulated real time) beginning in 1970:1.

Thus, for example, to compute the forecasts for month T, principal components of the predictors

were computed using data from 1960:1 through month T.  The first K = min(151,ρT) principal

components were used as Xt, where ρ = 0.4.  To capture serial correlation in the variables being

predicted, residuals from univariate autoregressions were used for yt+1.  Thus, letting zt denote the

variable to be forecast, yt+1 was formed as the residual from the regression zt+1 onto (1, zt, zt-1,…,

zt-3) with data from t = 1960:1 through T-1.  The regression coefficients in (5.1) were then estimated

using the methods described above with data through from t = 1960:1 through T-1.  These

estimated coefficients, together with the coefficients from the autoregression were used to construct

forecasts for zT+1.  This procedure was carried out for T = 1970:1 through the last available

observation in 1998.

In addition, as a benchmark we report forecasts based on the first two principal components,

a constant, and lags of zt estimated by OLS, that is, OLS forecasts with (X1t, X2t, 1,  zt,…,zt-3) as

regressors.  Following Stock and Watson (1998), we refer to these as “DIAR” forecasts.

8.3  Results

Results are presented in table 3. The entries in this table are the mean square error of the

simulated forecast errors relative to the mean square error from the univariate autoregression.

Thus, for example, the first row of table 3 shows the results for the 1-month-ahead predictions of

industrial production.  The value of 1.01 under the column heading "OLS" means that the forecast

constructed using the OLS estimates of β had a mean square error that was 1% greater than the

forecasts that set β = 0 (the univariate autoregressive forecast).  Results are also shown for the

empirical Bayes estimators and for the DIAR estimator.
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Several findings stand out in table 3.  First, in all cases the empirical Bayes estimators

improve upon OLS.  Second, the relative MSE of the empirical Bayes estimators are always less

than 1.0, so that these forecasts improve on the univariate autoregression.  Third, as in the Monte

Carlo experiment, the parametric and non-parametric empirical Bayes estimators have nearly

identical performance.   Finally, the DIAR models yielded the most accurate forecasts.

Apparently, it is better to forecast using only the first two principal components of the predictors

with no shrinkage, than to use many of the principal components and shrink them toward a

common value.

Taken as a whole the table suggests only modest improvement of the empirical Bayes

estimators relative to the univariate autoregression.  This is somewhat surprising given the

performance of the Empirical Bayes estimators in the Monte Carlo experiments reported in section

4.3.  The explanation seems to be that the predictive power of the regression (measured by the

regression R2) is not as great in as in the Monte Carlo design.  In the Monte Carlo experiment, the

R2 was 0.40, and for the series considered here it is considerably less than 0.40.  For example,

suppose for a moment that the DIAR results give a good estimate of the forecastibility of y given all

of the predictors.  Thus, for the 1-month ahead forecasts, the R2 is approximately 10%  – 15%.  A

calculation shows that if the population R2 is 15% and ρ = 0.4, then the asymptotic relative

efficiency of the empirical Bayes estimators is only 0.95, and deteriorates to 0.98 when R2 falls to

10%.

The final question addressed in this section is whether the empirical Bayes methods can be

used to improve upon the DIAR models.  To answer this question the forecasting experiment was

repeated, but now using the DIAR model as baseline regression rather than the univariate

autoregression.  Thus, residuals from the DIAR forecasts were used for yt+1 in the empirical Bayes
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regressions.  The results for this experiment are shown in table 4.  There is some evidence that the

EB estimators can yield small improvements on the DIAR model.  For example, PEB yields an

average 3% improvement over DIAR.

9.  Discussion and Conclusion

This paper studied the problem of prediction in a linear regression model with a large

number of predictors.  This framework leads to a natural integration of frequentist and Bayesian

methods.  In particular, in the Gaussian case, the limiting frequentist risk of permutation-

equivariant estimators and the limiting Bayes risk share a lower bound which is the risk of the

subjectivist Bayes estimator constructed using a “prior” that equals the limiting empirical

distribution of the true regression coefficients. This bound is achieved by the empirical Bayes

estimators laid out in this paper.  The empirical Bayes estimators use the large number of estimated

regression coefficients to estimate this "prior."  These results differ in an important way from the

usual asymptotic analysis of Bayes estimators in finite dimensional settings, in which the likelihood

dominates the prior distribution.  Here the number of parameters grows proportionally to the

sample size so that the prior affects the posterior, even asymptotically.

The Monte Carlo analysis suggested that the proposed empirical Bayes methods work well

in finite samples for a range of distributions of the regression coefficients.  An important exception

was a distribution that generated a very few large non-zero coefficients with the remaining

coefficients very close to zero.  Only in this case did choosing the regressors by BIC perform better

than the empirical Bayes estimators.

Although macroeconomic forecasting motivated our interest in the methods developed here,

the theoretical results also contribute to the econometric literature on regression with many
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unknown parameters.  Thus, for example, these methods may prove useful for instrumental variable

models with many instruments (e.g., Angrist and Krueger (1991), Bekker (1994), Chamberlain and

Imbens (1996)).

There are several unfinished extensions of this work.  The theoretical analysis relied on

martingale difference regression errors and orthonormal regressors.  The assumption of martingale

difference errors prevents these results from applying directly to multiperiod forecasting, a problem

of practical interest.  Within the framework of orthonormal regressors, one might want to model the

potential forecasting importance of the factors as diminishing with their contribution to the R2 of

the original data.  It is straightforward to do this using parametric empirical Bayes techniques, but it

is less clear how to extend this idea to the nonparametric empirical Bayes or equivariant estimation

problems.  Similarly, although the assumption of orthonormal regressors coincides with the factor

structure used in the empirical application, in other applications it might be more natural to forecast

using the original, nonorthogonalized regressors.

Finally, the empirical Bayes estimators yielded considerable improvement in the Monte

Carlo design – indeed they approached the efficiency of the infeasible “true” Bayes estimator – yet

they delivered only small improvements in the empirical application.  This suggests that the

empirical finding is not the result of using an inefficient forecast, but rather that there simply is

little predictive content in these macroeconomic principal components beyond the first few.  If true,

this has striking and, we believe, significant implications for empirical macroeconomics and large-

model forecasting.  Additional analysis remains, however, before we can be confident of this

intriguing negative finding.
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Table 1
Bayes Estimation Risk of Various Estimators

Regression R2 = 0.40, 2
εσ = 1.0

A.  ρ = 0.4
Estimators

β Distribution Bayes OLS BIC PEB NSEB NDEB

i. T=50
Gaussian 0.25 0.40 0.54 0.29 0.29 0.31
Bimodal 0.24 0.40 0.62 0.29 0.28 0.29
Separated Bimodal 0.22 0.40 0.69 0.29 0.28 0.28
Asymmetric Bimodal 0.24 0.40 0.61 0.28 0.28 0.29
Kurtotic 0.24 0.40 0.44 0.28 0.28 0.32
Outlier 0.13 0.40 0.17 0.25 0.24 0.28

ii. T=100
Gaussian 0.25 0.40 0.56 0.27 0.27 0.28
Bimodal 0.24 0.40 0.63 0.27 0.27 0.27
Separated Bimodal 0.22 0.40 0.69 0.27 0.26 0.25
Asymmetric Bimodal 0.23 0.40 0.62 0.26 0.26 0.26
Kurtotic 0.24 0.40 0.46 0.26 0.27 0.29
Outlier 0.12 0.40 0.16 0.24 0.23 0.27

iii. T=200
Gaussian 0.25 0.40 0.57 0.26 0.26 0.26
Bimodal 0.24 0.40 0.64 0.26 0.26 0.26
Separated Bimodal 0.22 0.40 0.70 0.26 0.25 0.24
Asymmetric Bimodal 0.23 0.40 0.63 0.25 0.25 0.25
Kurtotic 0.24 0.40 0.49 0.26 0.26 0.27
Outlier 0.12 0.40 0.16 0.24 0.22 0.27

iv. T=400
Gaussian 0.25 0.40 0.59 0.25 0.26 0.26
Bimodal 0.24 0.40 0.65 0.26 0.26 0.25
Separated Bimodal 0.22 0.40 0.69 0.25 0.24 0.25
Asymmetric Bimodal 0.23 0.40 0.65 0.24 0.25 0.24
Kurtotic 0.24 0.40 0.51 0.25 0.25 0.26
Outlier 0.12 0.40 0.17 0.25 0.21 0.30



Table 1  Continued

A.  ρ = 0.7
Estimators

β Distribution Bayes OLS BIC PEB NSEB NDEB

i. T=50
Gaussian 0.34 0.70 0.69 0.42 0.43 0.39
Bimodal 0.33 0.70 0.75 0.43 0.43 0.39
Separated Bimodal 0.32 0.70 0.81 0.43 0.42 0.38
Asymmetric Bimodal 0.32 0.70 0.73 0.41 0.41 0.36
Kurtotic 0.34 0.70 0.61 0.42 0.42 0.39
Outlier 0.19 0.70 0.34 0.39 0.38 0.34

ii. T=100
Gaussian 0.34 0.70 0.68 0.38 0.39 0.37
Bimodal 0.34 0.70 0.75 0.38 0.38 0.36
Separated Bimodal 0.33 0.70 0.81 0.39 0.38 0.36
Asymmetric Bimodal 0.32 0.70 0.74 0.36 0.37 0.35
Kurtotic 0.33 0.70 0.60 0.38 0.39 0.37
Outlier 0.19 0.70 0.32 0.36 0.35 0.33

iii. T=200
Gaussian 0.34 0.70 0.68 0.36 0.37 0.36
Bimodal 0.34 0.70 0.75 0.36 0.37 0.36
Separated Bimodal 0.32 0.70 0.80 0.36 0.36 0.35
Asymmetric Bimodal 0.32 0.70 0.73 0.34 0.35 0.34
Kurtotic 0.33 0.70 0.59 0.36 0.37 0.36
Outlier 0.19 0.70 0.29 0.35 0.33 0.33

iv. T=400
Gaussian 0.34 0.70 0.68 0.35 0.36 0.35
Bimodal 0.34 0.70 0.74 0.35 0.36 0.35
Separated Bimodal 0.33 0.70 0.79 0.35 0.35 0.35
Asymmetric Bimodal 0.32 0.70 0.74 0.33 0.34 0.33
Kurtotic 0.33 0.70 0.60 0.35 0.36 0.35
Outlier 0.18 0.70 0.27 0.35 0.32 0.33

Notes:  The values shown in the table are the Bayes risk ( , )G Kr b f%  where the distribution

of the coefficients is shown in first column. The estimators are the exact (infeasible)
Bayes estimator, OLS, BIC models selection over all possible regressions, the parametric
Gaussian simple empirical Bayes estimator (PEB), the nonparametric Gaussian simple
empirical Bayes estimator (NSEB), and the nonparametric deconvolution Gaussian
empirical Bayes estimator (NDEB).



Table 2
Classical Estimation Risk of Various Estimators
Regression R2 = 0.40, 2

εσ = 1.0, T = 200, ρρ = 0.40

1( )i i Kβ γ λ= × ≤

Estimator
λ OLS BIC PEB NSEB NDEB

0.05 0.40 0.08 0.26 0.20 0.27
0.10 0.40 0.11 0.25 0.19 0.29
0.20 0.40 0.28 0.24 0.21 0.27
0.30 0.40 0.42 0.23 0.21 0.24
0.40 0.40 0.52 0.21 0.21 0.22
0.50 0.40 0.58 0.20 0.19 0.20
0.60 0.40 0.63 0.17 0.18 0.17
0.70 0.40 0.66 0.15 0.15 0.15
0.80 0.40 0.69 0.12 0.12 0.11
0.90 0.40 0.71 0.08 0.09 0.08

Notes:  The values shown in the table are the classical risk, ( , )R β β% , where the first λK

values of β  take on the value γ and the remaining values are 0. The estimators are OLS,

BIC models selection over all possible regressions, the parametric Gaussian simple

empirical Bayes estimator (PEB), the nonparametric simple Gaussian empirical Bayes

estimator (NSEB), and the nonparametric deconvolution Gaussian empirical Bayes

estimator (NDEB).



Table 3

 Simulated Out-of-Sample Forecasting Results with ρρ = 0.4

Mean Square Errors Relative to Univariate Autoregression

Forecast Method

Series OLS PEB NSEB DIAR

1 Month Ahead Forecasts

Industrial Production 1.01 0.94 0.94 0.89

Personal Income 1.07 0.98 0.98 0.91

Mfg. & Trade Sales 1.03 0.94 0.94 0.88

Nonag. Employment 1.04 0.95 0.95 0.82

1 Quarter Ahead Forecasts

Industrial Production 0.95 0.94 0.94 0.72

Personal Income 0.96 0.95 0.95 0.81

Mfg. & Trade Sales 0.92 0.91 0.91 0.72

Nonag. Employment 1.02 0.96 0.96 0.73

Note: The table entries show the simulated out-of-sample forecast mean square error

relative the mean square forecast error for a univariate autoregression. All forecasts were

computed using recursive methods described in the text with a sample period beginning

in 1960:1.  The simulated out-of-sample forecast period is 1970:1-1998:12.



Table 4

 Simulated Out-of-Sample Forecasting Results with ρρ = 0.4

Mean Square Errors Relative to DIAR forecasts

Forecast Method

Series OLS PEB NSEB

1 Month Ahead Forecasts

Industrial Production 1.04 0.95 0.97

Personal Income 1.11 0.99 1.00

Mfg. & Trade Sales 1.03 0.96 0.96

Nonag. Employment 1.11 0.98 0.98

1 Quarter Ahead Forecasts

Industrial Production 1.06 0.95 0.95

Personal Income 1.02 0.98 1.00

Mfg. & Trade Sales 0.98 0.99 0.98

Nonag. Employment 1.19 1.01 1.01

Note: The table entries show the simulated out-of-sample forecast mean square error

relative the mean square forecast error for the DIAR model with 2 factors. All forecasts

were computed using recursive methods described in the text with a sample period

beginning in 1960:1.  The simulated out-of-sample forecast period is 1970:1-1998:12.




