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Estimation, Smoothing, Interpolation, and
Distribution for Structural Time-Series Models
in Continuous Time

A. C. Harvey and James H. Stock

Introduction

Rex Bergstrom’s work has stressed not just the technical aspects but also the
philosophical basis for applying continuous time models to time-series data; see
Bergstrom (1966, 1976, 1984). Because many economic variables are essentially
continuous and decisions are made continuously, it is often more appealing to set up
models in continuous time even though observations are made at discrete intervals.
The dynamic structure of a model is then not dependent on the observation interval,
something which may bear no relation to the underlying data generation process.

An application of continuous-time models emphasized in this paper is their use to
estimate intermediate values of a discretely sampled time series. Adopting Litterman’s
(1983) terminology, estimation at points between observations will be termed
interpolation for a stock variable (sampled at a point in time) and distribution for
a flow (sampled as an integral over a time interval). Using a continuous-time model
in this context is appealing for several reasons. First, as emphasized by the
contributors to Bergstrom (1976), the continuous-time framework provides a logically
consistent basis for the handling of stocks and flows. Second, it provides a natural
conceptual framework, with considerable technical simplifications, for handling
irregularly spaced observations. Third, it provides a well-defined framework for
interpolation and distribution to arbitrary subintervals.

Historically, a key technical hurdle in applying continuous-time models to
economic data has been the difficulty of evaluating the exact Gaussian likelihood for
flow data and for mixed stock-flow systems. These problems have largely been solved
for large classes of models by Bergstrom (1983, 1984, 1985, 1986) and by his students
and collaborators. Here, we consider interpolation for stocks and distribution for
flows. To simplify the discussion, we restrict attention to univariate series.

This article studies continuous-time formulations within the context of structural
time-series models in the sense of Harvey (1989). Structural models are formulated
directly in terms of components of interest, such as trends, seasonals, and cycles.
These components are functions of time and it is natural to regard them as being
continuous. The essence of a structural time-series model is that its components are
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stochastic rather than deterministic. A continuous-time model can be set up to
parameterize these stochastic movements. It can then be shown that, for the principal
structural time-series models, the implied discrete-time model is, apart from some
minor differences, of the same form as a discrete-time model which one would set
up without reference to the continuous-time formulation. This is true for both stocks
and flows. Thus there is a logical consistency in the structural class.

Since the components of structural time-series models have a direct interpretation,
these models can often be specified without a detailed initial analysis of the data.
The appropriatencss of a particular specification is then checked by various
diagnostics, and the whole model selection exercise is much more akin to what it
is in econometrics; sce for example Harvey (1985). Thus although data are not
available on a continuous basis, the greater emphasis on prior considerations in
model specification means that it is just as easy to adopt a continuous-time model
formulation as a discrete one.

The next two sections examine the exact discrete-time models implied by the
underlying continuous-time structural models sampled at the observation timing
interval. This is straightforward for stock variables, less so for flows. In each case we
consider the following statistical problems: time domain cstimation of the model
parameters by maximum likelihood; prediction of future observations; estimation of
the unobserved components at the observation points and at intermediate points;

and estimation of what the observations themselves would have been at intermediate
points.

Structural Time-series Models in Discrete Time

A structural time-series model is one which is set up in terms of components which
have a direct interpretation, For an economic time series, these components will
typically consist of a trend, a seasonal, an irregular, and perhaps even a cycle.
Examples of the application of such models can be found in Engle (1978), Harvey
(1985), and Kitagawa (1981). Other components can be brought into the model. For
example, daily or weekly components can be included if appropriate data are
available. A general review can be found in Harvey (1989). In the present article,

attention is restricted primarily to trend, cycle, seasonal, and irregular components,
defined as follows.

Trend The level, g, and slope, B, are generated by the multivariate random walk
process, :

He = -y + Bt-—l + nn (la)
Bi=Bi-1+ L, (1b)

whc?re n, and {, are mutually uncorrelated white-noise processes with zero means and
variances ¢ and af respectively.

Cycle The cycle, ¥,, is stationary and is centered on a frequency 4., which lies in
the range [0, n]. Its statistical formulation is

- ¢, . cc’)sﬂ.‘c sin A, || ¢, K, o |
[w] K Lsin A cos zc][w.i] ¥ [xr]’ S E |
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where «, and «* are uncorrelated white-noise disturbances with a common variance
c%, and p is a damping factor which lies in the range 0 < p < 1.

Seasonal The seasonal component, y,, is defined as the sum of an appropriate
number of trigonometric terms, y;,, each having a specification of the form (2) with
p equal to unity and 4, equal to a given seasonal frequency, A; = 27j/s. Thus
9. = Y ¥2, ;1> where s is the number of “seasons” (assumed to be even) and where

yj,:| _ [ cos4; sin A,-J[y,-,,_l] N [w,-,:l 3)
T —sind; cos A; |l y¥, -, ()
with Var (w;,) = Var (o}) = ¢ for all j.
Irregular The irregular term, g,, is generally taken to be a white-noise process, with
variance ¢, unless there are strong a priori grounds to assume otherwise, as in
Hausman and Watson (1985).

These components — trend, cycle, seasonal, and irregular — combine in various ways

to give the principal structural time-series models for an observed series, Y,
t=1,...,T. These models are:

1. Local Linear Trend The discrete-time process obeys
Y=u+e, )]
where u, is a stochastic trend of the form (1) and ¢, is a white-noise irregular term.

2. Local Level This is a special case of the local linear trend in which g, is just a
random walk:

M= My + 1y &)

3. Basic Structural Model with Cycles Both seasonal and cyclical components may
be brought into the model by expanding (4) to give

Xzf‘t+7r+‘/’t+£t' (6)

Each of these models can be handled statistically by putting them in state space
form:

o, = Lo,y + Rm,, Var(n,) = Q, (7a)
Y =z, + &, Var(g,) = h, (7b)

where @, is an m x 1 state vector and g, and n, are respectively scalar and g x 1 zero
mean white-noise disturbances which are mutually uncorrelated. The matrices z,, T;,
R,, and Q, are m x 1, m x m, m X g and g x g respectively. These matrices may
depend on a number of parameters, known as hyperparameters. Thus, for example,
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in the local linear trend model, (4), the hyperparameters are the vanances o:, ag and
¢2. In some circumstances z, and R, will depend on time, say if there are some missing
observations. More often, z, and R, will be time-invariant and henceforth will be
denoted by z and R.

The state vector may be estimated by the Kalman filter. Furthermore, if the
disturbances are normally distributed, the unknown hyperparameters may be
estimated by maximum likelihood via the prediction error decomposition; see Ansley
and Kohn (1985), De Jong (1991) and Harvey (1989, chapter 4).

General State Form of Continuous Time Models with Stocks and Flows
This section summarizes some results for the general continuous-time model when
the data are observed at T irregular observation times {t.}, t=1...,T. These
observation times are scparated by calendar time units ,, so that t, = t,_, + d,.
The continuous-time state vector is denoted by a(t); at the observation times, it is
denoted by a, = a(t,). Thus, in the notational convention adopted here, a(t), y(¢), etc.
denote continuous-time processes, and a,, y,, etc. denote these processes at the
appropriate discrete-time sampling dates. The observable (discrete time) process
is ¥, and the data are T observations on the (discrete time) time series
(Y,..., ).

The continuous-time analog of the time-invariant discrete-time transition equation
in (7a) is

da(t) = Aa(r)dt + R dy(r) @®)

where the matrices A and R are m x m and m x g respectively and may be functions
of hype}'parameters and (¢) is a g x 1 continuous-time multivariate Wiener process.
For a discussion of the formal interpretation of linear stochastic differential equations,

see qugstrom (1983). The Wiener process has independent increments that are
Gaussian with mean zero and covariance matrix

E [ j " dn) j dn(t)'] = (s~ Q.

Suppose we have a univariate series of observations at time {t,} fort=1,...,T.
For a stock variable the observations are defined by

Y, =zat)+e,1=1,...,T, ®

where ¢, is white-noise disturbance term with mean zero and variance o2 which is
uncorrelated with differences of n(¢) in all time periods. For a flow

tel fent

e ' 1,
Y, =.f Za(r) dr + J de(r),t=1,..., T, (10)
S t S

where g(t) isa continuous-time Gaussian process with uncorrelated increments, mean
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zero and variance o2, which is uncorrelated with 5(¢) in all time periods in that

s q
E[ J dn(e) f ds(r)] =0
r 1 4
forallr<sand p<gq.

The state space formulation of continuous-time models derives from the stochastic
integral equations that properly define the stochastic differential equations (8). The
relationship between the state vector at time ¢, and time ¢,_, is given by

t
a(t,) = etda(t, ) + J edt9IR dy(s). (1)

r—1

This yields the discrete-time transition equation,

a,=Ta,_,+,7=1...,T, (12)
where T, = e?* a, = a(t,), and y, is a multivariate white-noise disturbance term with
mean zero and covariance matrix

6r
Q.= J eAG=9IROR’ '@ g, (13)
0

The condition for a(f) in (8) to be stationary is that the real parts of the
characteristic roots of A are negative. Then

t
a(t) = J e1! IR dn(s)
so that Ea(t) = 0 and

Var {a(t)} = J e*RQR e ds (14)

0

which provides initial conditions for a(f) in the Kalman filter.
Structural Components in Continuous Time
The main structural components have the following natural formulations in con-

tinuous time.

Trend The linear trend component is

0] _fo 1], o)
d = d N 15
ollo o sl < " Lao )

- where the continuous time processes n(t) and {(f) have mutually and serially
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uncorrelated increments and variances o and o7, resgectively. The local level model
obtains as a special case of (15) with B(0) = 0and o7 =0.

Cycle The continuous-time cycle component is

AR ] _ \:log p A ][ (t) ] di+ [dx(t) ] 16

(1) -4 logp JL¥*() dx*(t)
where x(t) and x*(t) have mutually and serially uncorrelated increments and the
same variance, o2, and p, and 4, are parameters, the latter being the frequency of the
cycle. The characteristic roots of the matrix containing these parameters are
(log p) * iA.. Since the general condition for stationarity of a model of the form (8)

is that the characteristic roots must have negative real parts, the condition for ¥(
to be a stationary process is log p < 0, which corresponds to p < 1.

Seasonal The continuous-time seasonal component is the sum of a suitable nurpber
of trigonometric components, ,(t), generated by processes of the form (16) x\_nth p
equal to unity and A, set equal to the appropriate seasonal frequency A,. That is, for

j=1,...,572,
0] [0 i;][v,(t)] [dw,(t)]
dl = d R 17
[y;(t)] —1, ollyro)® T Laepe (a7

where (?) and w¥(t) are processes with serially and mutually uncorrelated incre-
ments and with equal variance o2.

Continuous-time structural models constructed from these components constitute
special cases of the general process (8) and of more general continuous-time processes
such as those studied by Phillips (1988). The aim of these structural models is to

provide a practical framework for forecasting and - in the continuous-time setting -
interpolation and distribution.

Stock Variables

The discrete state space form for a stock variable generated by a continuous-time
process consists of the transition equation (12) together with the measurement
equation (9). The Kalman filter can therefore be applied in a standard way. When
the observations are equally spaced the implied discrete time model is time-invariant
and typically it is convenient to set §, = 1. One of the main practical advantages,
however, of the continuous-time framework is the easy handling of irregularly spaced

observations, so the case of general 8, is considered here. For related applications,
sce Jones (1984) and Kitagawa (1984),

Structural Models

The continuous-time components defined above can be combined to produce a
continuous-time structural model. As in the discrete case, the components are usually
assumed to be mutually uncorrelated. Hence the 4 and Q matrices in (13) are block
diagonal and so the discrete-time components can be evaluated separately.
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Trend For the local linear trend model (15), T, = e4% is

ool e [p 4105 )

Thus the exact discrete-time representation of (15) is

0 -
[ut] —_ [1 t][”t 1] + [’T!]. (183)
Bt 0 1 ﬁz—l Ct
In view of the simple structure of this matrix exponential, the evaluation of the

covariance matrix of the discrete-time disturbances can be carried out explicitly,
yielding

2 2.2 1 2
Var ["] =5, ["" +ovoz/3 25“"]. (18b)

1 2
C iat O; GCZ

When ¢, is equal to unity, (18) reduces to the discrete-time local linear trend (1).
However, while in (1) the disturbances are uncorrelated, (18b) shows that uncor-
relatedness of the continuous-time disturbances implies that the corresponding
discrete-time disturbances are correlated.

The discrete-time model for the local level trend obtains by setting 8, = 0 and
o? = 0 in (18), in which case g, evolves in discrete time as a random walk. Thus with
only a local level trend and the irregular term ¢, ¥, =u, +¢,,7=1,..., T, so that

T

Y, evolves according to the familiar random-walk-plus-noise model.

Cycle For the cycle model (16), use of the matrix exponential definition together
with the power series expansions for the cosine and sine functions gives the
discrete-time model

[:‘Pt] _ 5‘[ cos 2.8, sin Acér][‘l’r_il N I:rc,] 19)
pF P7] —sin Ab, cos A | WX, K* |

When 4, is one, the transition matrix corresponds exactly to the transition matrix of
the discrete-time cyclical component (2). As regards the properties of the disturbances,
specifying that x(¢) and x*(¢t) be mutually uncorrelated with equal variances means
that in the corresponding discrete time model x, and x* will also be uncorrelated
with the same variance for any §,. In fact, the covariance matrix of (x,, k*) is
(—oz/2log pX(1 — p**)L.

There are three noteworthy parallels between (19) and the cyclical process as
originally defined in discrete time. First, as in the discrete analog, letting x(t) and
k*(¢) be uncorrelated with equal variances imposes one more restriction than is
necessary for identifiability. However, it ensures that the specification of the
discrete-time model is consistent with the continuous-time model. Second, setting A,
equal to zero in (19) means that W, collapses to a continuous-time AR(1) process
exhibiting positive autocorrelation. Third, a pseudocyclical process is also obtained
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from a continuous time AR(2) or ARMA(2,1) model since, as shown in Phadke and
Wu (1974), the roots of the corresponding discrete time AR(2) polynomial are
typically complex. One attraction of working with the cycle model is that it is easier
to handle as well as being set up in terms of the parameters of interest.

Seasonal For a trigonometric seasonal component, (17), the discrete time specifica-
tion is similar to (19) with p = 1. The covariance matrix of the disturbance is 626,1.
When §, = 1, this specification corresponds exactly to that given in (3).

As regards starting values for the Kalman filter for irregularly spaced observations,
the considerations which arise are almost exactly as for a conventional discrete-time
model. Thus, if the state vector contains d nonstationary components, d observations
are needed before the clements of the state vector can be estimated with finite MSE.
A diffuse prior can be used to initiate the nonstationary elements of the state vector,
The starting values for the stationary components are provided by their respective
unconditional distributions. Thus for the stationary cyclical component (16), the
unconditional mean of [¥(¢), ¥*(r)]' is zero while the covariance matrix is obtained
by evaluating (14). Thus, because RQR' = a1, Var (ao) = o7 [ € * " ds. However
A+ A =(Q2logp)l, so Var () = (—a2/2log p)I.

In summary, putting the various continuous-time components together yields
discrete-time models which, for regularly spaced observations, are almost identical
to the discrete-time models set up in equations (1) to (7). In fact, the only case where
the implied discrete time model is different from the model originally formulated
is the local linear trend and there the difference is minor. Thus, for a stock variable,
the principal discrete-time structural models are consistent with the corresponding
continuous-time models. The continuous-time models are more general, however, in
that they can handle irregularly spaced observations and interpolate at any point.

Smoothing and Interpolation

Interpolation is the estimation of the series and/or its components at some point
between observations. This may be carried out by defining the required points,
constructing the appropriate transition equations, and treating the corresponding
observations as missing. Thus, suppose interpolation is to be carried out at J points
t.+r,t,+r,andsoonwhere 0 <r <r,<---<ry <8, All that is required is
the definition of the discrete-time transition equation (12) at ¢, + ry, £, + a5 oy Lewt
and the subsequent applications of the Kalman filter. The optimal estimators of y(t)
at these intermediate points are then obtained by applying a suitable smoothing
algoritl}m; see for example Anderson and Moore (1979) or Harvey (1989, chapter 3).
The estimators at time ¢, + r; may be written as y(t, + ;| T). This yields the minimum
MSE linear estimator of an observation at time ¢, + r;, y(t, + r;|T) = Z'a(t. + r;|T),
where -a{tlr) denote the optimal predictor of a(t) using da{a throught thcJ rth
observat.mn (ie. the observable time series through calendar date t,). The cor-
responding MSE is MSE [(t, + 1| T)] = ZP(t, + | T)z + 62, j = 1,2, ..., J, whete
P(t. + r;|T) is the MSE matrix of a(t, + ;| T), the smoothed estimator of the state

vector at time t, + r;.

Prediction. , _

l{'.et a, = a(t.,|_1). In th(? gener.al model (8), the optimal predictor of the state vector.
or any positive lead time, / (i.c. at time t; + J, given data through calendar time t),
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is given by the forecast function a(t; + 1| T) = e?'a;.. The state vector at lead time [
satisfies:

tr+i
oty + 1) = ety + J‘ eAtr*I=IR dn(s) (20)

tr

and so the MSE matrix associated with a(t;y + I|T) is Pt + 1|T) = T, ;T + @y,
where 7, = e#! and Q, is given by (13) evaluated with J, = L.

The forecast function for the systematic part of the series, y(¢) = z'a(t), can also be
expressed as a continuous function of }, namely j(¢; + I|T) = z' e*'a;. Note that, if
this is considered to be the forecast of an observation to be made at time t, + [, then
we can simply set 674, =1, so that Y, r = §(tr + 1|T). Thus Yo,y = 2 e*ay.
Here, the observation to be forecast has arbitrarily been classified as the one indexed
by t=T+ 1. The MSE of this forecast obtains directly as MSE (¥, 1) =
E(Yryy — Yroqr)? = 2P0ty + 11Tz + 0.

The evaluation of forecast functions for the various structural models is relatively
straightforward. For example, consider the local level model with measurement
equation Y, = u(t,) +¢,, t=1,..., T, where Var (g,) = oZ. This model has the
forecast function, y(¢t; + !|T) = u(tr + 1|T) = pug,r, which is simply a horizontal
straight line passing through the final estimate of the trend. The MSE of the forecast
of the (7" + 1)th observation (to be made at calendar time t; + 1) is MSE (Y3, ¢) =
Pr + I + o2.

The forecast functions for more complicated components models obtain directly.
For example, introducing a slope component into the trend — the local linear trend
model - yields the straight line forecast function, y(ty +1|T) = u(ty +1|T) =
ur r + Bryrl Also, the forecast function for a cyclical component takes the form of
a damped cosine wave, ¥(t; + I|T) = p'[(cos A )¥ 7|1 + (sin A.[)¥%,1]. The fore-
cast function for the seasonal component has the form of the cyclical component
with p = 1 (no damping factor).

Estimation

The estimation of Gaussian continuous-time structural models poses no new
problems when the observations are regularly spaced: algorithms aiready developed
can be applied directly with only a minor modification needed to handle the
covariance matrix of the disturbances of the local linear trend model in (18b). On
the other hand, when the observations are irregularly spaced, the time domain
estimation procedure must be adapted to account for the fact that the state space
model is no longer time invariant. Once this has been done, the construction of the
likelihood function can proceed via the prediction error decomposition as imple-

mented by the Kalman filter; see for example Jones (1981) or Harvey and Stock
(1985).

Flow Variables

Observed flow variables were defined in (10). To develop a state-space model of flow
variables in continuous time, it is useful to introduce a continuous time cumulator
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(or integrator) variable, y'(t). This cumulator is defined as

te+1

Vit + 1) = j yrdr, 0<I<é. Q1)

133

Thus Y, = y'(¢,) for t=1,..., T. This definition, (10) and (11) imply that the
cumulator at time t, can be written as

o; b 1
yit) = J‘ y(t,o,+r)dr=12 J alt,_, +rydr+ J- de(r)
0

0

te-13

[ te-1r 8
=7 j [e"’a(t,_l) + J gilt-1+r"IR dn(s)] dr + J de(r)
t 1

0 =1

3, S [te-1+r e
= z’[j e’ dr] oft,_y) + 2 j j eAt-1+r= IR dy(s) dr + j de(r)
0 0 Ji

=1 te-1

= WO Jalt.- 1) + 2n(t) +€(t.), 22)

t—1

where nf(t,) = i-_, W(t, — )R dn(s), €(t,) = [i:_, de(s), and W(r) = {; e** ds. Now
letting 1t = 0'(z,), £ = €(¢,), and yf = y'(t,), and remembering that yi(t,) =Y, we
have, on combining (12) with (22), the augmented state space form

% | _ et 0 %, I 0 ¢ 0
[yﬁ] - [z' We.,) o][yg_ J + [0 2'][115] + LJ, (23a)

Y,=(0 1)[‘;;] @3b)
With Var (35) = 54;3 and
¢ Ar r AT Ar , ,
var| ™| ("] c"ReR e CRQRW(r)] o
r[ﬂi] j 0 [W(F‘)RQR’ CA" W(T)RQR’ W(T)' dr = Qt' (24)

ng'imum likelihood estimators of the hyperparameters can be computed via the
prediction error decomposition by running the Kalman filter on (23). No additional

starting valfue pfoblems are caused by bringing the cumulator variable into the state
vector as y'(t,) is zero by construction.

An alternative, numericaily equivalent approach is to treat the second equation in

(23a) as a measurement equation rather than a state equation. Define of = o, ;.
Then (23) can be rewritten as t t

oy = TH o + 0, (252)
Yo=ztal +el, (25b)

® e ok —
\;v:;ere zE =7 W(&,),' &=z 1. + €, and T*,; = e4%. Taken together equations (25)
a state model. in, which, the measurement equation disturbance, ¢,, and the
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transition equation disturbance, #,, are correlated, in contrast to the standard
formulation with uncorrelated disturbances. The covariance matrix of (1, £€*)’ is given

by
i1 vl ey 2 ]
Var[sé"] [G; Hf] [o z'] %lo J*lo sa2l @

The modified version of the Kalman filter needed to handlie such systems is described
in Jazwinski (1970, chapter 7) and Harvey (1989, chapter 3).

Structural Models

The various matrix exponential expressions which need to be computed for the flow
variable are relatively easy to evaluate for trend and seasonal components. The
formulas for a stationary cyclical component are rather more tedious to derive and
so wiil not be given here explicitly. Because the components in a basic structural
model are typically assumed to be independent of each other, the various blocks in
(24) can be treated separately, as though there were only a single component in the
model. This simplifics the development for general structural models. Because the
top left-hand block in (24) is the same as the corresponding @, matrix evaluated for
a stock variable in the second section of this article, only the remaining two terms
are derived here. ‘

Trend For the local linear trend component (15),

[t s _|r %rz]
W(r) = L [0 Ist [0 " @7

Thus, in (24), the lower right-hand matrix is
3 83062/3 + 6362/20 6ta?/8
Var£=J WrRR’W’d=["’ <t ek 28
() . (r)RQR'W(ry dr 52028 a3 (28)

where in this case nf is the 2 x 1 vector (nf (0).
The off-diagonal blocks are derived in a similar way. Thus

3

Cov (i, 7}) = J W(r)RQR’ e” dr =[

0o

30i0l + 6tal/8 6ia}/6 ' 29)
53a2/3 30767

The local level model is just a special case in which Var (f) and Cov (7f, 5,) are

scalars consisting of the top left-hand elements of (27) and (28), respectively, with

2 _
a; = 0.

Seasonal For a trigonometric component in the seasonal model (17),

: ' is s : .
W(r)=J. [cos s smls:lds=2'1|: sindr 1 (cos}.r)]. (30)

oL—sinds  cos As (cos r) — 1 sin Ar
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Thus, if 4f in (23) relates to the disturbances in a trigonometric term,

1 — (1/48,)(sin 45;) 0 ] , ()

Var (n;) = 25tai/12[ 0 1 — (1/26,)(sin A3,)

| 1 —(cos 28,) (sin 4d,) — 24,
Cov (o 1)) = oi/ﬂ[ (cos 45.) . (32)

18, — (sin 28,) 1 — (cos 4d,)

The state space form with correlated disturbances in the measun':ment and
transition equations, (25), shows that the structure of the discrete-time model
corresponding to a particular continuous-time model is essentially the same for a
flow as for a stock. For example, consider the continuous-time local level model
y(t) = n(r) + £(2), with p(z) given by the local level specialization of (15). .In t?rms of
(25), the state equation is p¥y, = pf + 1 and the measurement equation is Y, =
o.n* + &, with

2 1522
5:‘71 26: 0’,,

L . 33
var [a:] [%6303 8302/3 +6,a3] @)

When the observations are evenly spaced, &, can be set equal to unity. The forecasts
formed by the steady-state Kalman filter for the local level model with flows are then
equivalent to the exponentially weighted moving average,

Yﬂ-llt:(l-)*)y;lt—l +)'Yn (34)

where 0 < 1 < 1.27. Note that the smoothing constant has a maximum value of 1.27
(to two decimal places) rather than unity. The reason is that this model has a wider
range of dynamic properties than the discrete-time model formulated in (4) and (5).
Taking first differences of (34) with &, = 1, and evaluating the autocorrelations, one
obtains p(1) = (q — 6)/(4q + 12), where q = o}/o? and, for > 2, p(r) = 0. Whereas
in (4) and (5), p(1) is always negative, lying in the range [—0.5,0], in this case
p(1)e[—0.5,0.25).

One interesting consequence is that a series with a first-order autocorrelation of
0.25 in first differences can be modeled simply by a time-aggregated Brownian motion;
compare Working (1960). A second point is that AY, follows a discrete-time random
walk when q = 6. This means that a discrete-time random walk can be smoothed to
a limited extent since the corresponding continuous-time model contains an additive
disturbance term. Of course the same can be done when a discrete-time random-

walk-plus-noise model is formulated at a finer timing interval than the observation
interval; see Harvey (1989, chapter 6).

Smoothing and Distribution

Suppose that the observations are evenly spaced at intervals of § and that one wishes
to estimate certain integrals of linear combinations of the state vector at evenly spaced

“intervals A time periods apart where §/A is a positive integer. For example, it might

be desirable to distribute quarterly observations to a monthly level. The quantities
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to be estimated may be written in an m* x 1 vector as

att)=ab = JA Z'a(t;_, +8)ds, t,i=1,...,(6/A)T, (35)

0

where Z 1s an m* x m selection matrix. In the continuous-time basic structural model,
the components of interest might be (for example) the level of the trend, the slope
and the seasonal, in which case Z'a(t) = {u(t), B(¢), y(t)}'- In addition it may be
desirable to estimate the values of the series itself,

A ti

Zaft;_; + s)ds + J de(s). (36)

tirt

Y? =y(;) = J

0

Smoothed estimates of the quantities of interest may be obtained from an
augmented discrete-time state space model. The transition equation is

o, | [ e 0 0 0 ey ] [1 07 [ 0]
£ ZW(A ; 00 . 0 7 ,
of = Yol _ & ¢ Yi-a + [“;] + g, 37
ol ZW@L) 0 0 o, 0o z|lnd | o
_y2d LzZw@) 0 0 odLyr,d Lo z_ 1]

withd, =0,i=(/A)(t— 1)+ 1,t=1,...,T,and ¢, = 1 otherwise. The covariance
matrix of (1}, #5")’ is defined as in (24) with J, replaced by A, while Var (¢f) = Ac2.
The corresponding measurement equation is only defined at observation times and
can be written as Y, =[0' 1 O O] fori=(/A)r,1=1,...,T.

The distributed values of the series (the y* terms) could alternatively be estimated
by differencing the estimators of the yf terms. The appearance of y2 in the state is
really only necessary if the MSE of its estimator is required. Of course if A = 9, it
becomes totally superfluous.

Predictions

In making predictions for a flow it is necessary to distinguish between the total
accumulation from time t, to time ¢, + I, which might include several unit time
intervals, and the amount of the flow in a single time period ending at time ¢, + L
The latter concept corresponds to the usual idea of prediction in a discrete model.
Cumulative predictions are perhaps more natural in a continuous-time model,
particularly when the observations are made at irregular intervals. Here, three types
of predictions are discussed: cumulative predictions, predictions over the unit interval,
and predictions over a variable lead time.

Cumulative Predictions Predictions for the cumulative effect of y(¢) are obtained by
noting that the quantity required is y(z, + ) which in terms of the state space model
(23)is y;4, with 874, = |, where it is assumed that | > 0. The optimal predictor can
therefore be obtained directly from the Kalman filter as can its MSE. Written out
explicitly, y'(t+ + 1| T) = Yz+,|7 = 2 W(l)a;. Because the quantity to be estimated is
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Vit + 1) =foytr +dr= 2 W()ar + 2041 + ¢, ., the prediction MSE is
MSE [y'(ty + 11T)] = Z WDPW(Yz + 2 Var (a)z + Var @.). (9)

Note that if the modified Kalman filter based on (25) is run, ar = a%, r (because
at,, =or)andsoaf.yr is the optimal estimator of etz based on all the observations.
As a simple example, consider the local level model. For I >0,

¥ty + IT) = Inpyrs  MSE[yCr + 1T = PP+ Po?/3 + o2, (39)

Corresponding expressions for the discrete-time models can be obtained; sce for
example Johnson and Harrison (1986). However, the derivation of (39) is both simpler
and more elegant. For the local linear trend, (27) gives

¥i(tr + 11T) = Ingir + 32Bmirs (40)
MSE [¥'(t + 1)) = PPyyr + PPiar + P Poar/4 + 13%62[3 + 13}/20 + lo?, (41)
where Py is the (i, j) element of Py.

Predictions over the Unit Interval Predictions over the unit interval emerge quite
naturally from the state space form (23) as the predictions of Yr.p, [=1,2,... with
S7.4,set equal to unity for all . The forecast function for the state vector, ar ., = e*'ar,
has the same form as in the corresponding stock variable model. The presence of the
term W(1) in (23a) leads to a slight modification when these forecasts are translated
into a prediction for the series itself. Specifically,

Yrir = 2WDags-gr =2ZW) et Vay,  I=12,.... 42)

As a special case, in the local linear trend model ars_yr = + 0= Db

’
Prir]s so Yroyr=pnrt (= 9HByr for 1=1,2,.... The one-hall arises here
because each observation is cumulated over the unit interval.

Predictions over a Variable Lead Time In some applications the lead time itself can
be regarded as a random variable. This happens, for example, in inventory control
problems. whe}'e an order is put in to meet demand, but the delivery time is uncertain.
In such §1tuatxons it may be useful to determine the unconditional distribution of the
cumulation of y(¢) from the current point in time, 7. Assume the random lead

ttim:- ils.independent of {y(s)}. The unconditional PDF of this cumulation from tr to
r+1is

P(y‘(tr +1)|My) = ‘[P(yf(tr + D)[Mr, 1) dF (D), 43)

‘g‘}:r% F (.1) is‘thef distribption of lead times and pk(y'(tT + 1)I Mg, 1) is the predictive
oln ?aggon ozfv[ y'(¢) at time ty + 1, that is the distribution of y(ty -+ 1) conditional
; on My ={Y, ¥,..., ,YT}’ ie. the information available at time ty. In a




Time-series Models in Continuous Time

Gaussian model, the mean of y'(t; + [) (conditional on ! and M;) is given by
yi(rp + 1) = ZW(Da, and its conditional variance is the MSE given in (39). Although
it can be difficult to derive the full PDF p(y'(t; + [)|M;), expressions for the mean
“and variance of this distribution may be obtained for the principal structural time
series models; see Harvey and Snyder (1990). If the lead time distribution is taken
to be discrete, the derivation of such expressions is much more tedious. Of course,
in concrete applications the integral (43) can be evaluated numerically.

Conclusion

The formulas provided here for univariate stocks or flows are readily extended to
multivariate mixed stock-flow systems, compare Harvey and Stock (1985) and
Zadrozny (1988). Harvey and Stock (1988) develop this extension for a model in
which the variables are cointegrated (so that the stochastic trend term is common
among several multivariate time series); they also provide an empirical application
to the estimation of the common stochastic trend among consumption and income
using a mutivariate continuous-time components model.

An advantage of the continuous-time framework is that, in multivariate applica-
tions, the observational frequency need not be the same for all the series. As a concrete
example, weekly observations on interest rates (a “stock™ variable), observations on
some of the components of investment that are available monthly (a “flow”), and
quarterly observations on total investment could be used to distribute total quarterly
investment to a monthly level. Some of the components - say, trend and cycle - could
be modeled as common among these series, and some could be modeled as
independent (or perhaps correlated) across series. It should be emphasized, however,
that the distributed values (or, for stocks, the interpolated values) resulting from the
procedures outlined in this article have unavoidable measurement error. Moreover,
this article has not addressed issues of aliasing, which could pose additional difficulties
for interpolation and distribution. Thus care must be taken in using these values in
subsequent statistical analysis.

Structural time-series models are based on fitting stochastic functions of time to
the observations. A continuous-time formulation of structural models both is
intuitively appealing and provides a logical consistency for both stock and flow data.
The form of the model does not depend on the observation timing interval and hence
can be applied to irregular observations. From the technical point of view, estimation,
prediction, interpolation, and distribution can all be based on state space algorithms.

Note

Stock thanks the Sloan Foundation and the National Science Foundation for financial support
through grants SES-86-18984 and SES-89-10601.
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