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ABSTRACT. - A modification of the vector autoregressive model is to include a 
stochastic trend component in each equation. It is argued that this formulation 

will lead to a more parsimonious model than traditional vector autoregressions 
formulated in terms of levels or differences. Common trends, or factors, may be 
introduced into the model. This leads to certain of the variables being co-integrated 
and, as shown in GRANGER and ENGLE [1987], the model then has an error correction 
representation. Estimation of the model can be carried out by casting it in state 
space form and applying the Kalman filter. This enables estimation to be carried 
out for a very general situation in which observations may be missing, temporally 
aggregated or observed at different time intervals. The common trends may also 
be extracted using smoothing techniques. Missing observations can also be estima 
ted and the model is likely to be useful if this is the main objective. 

Prevision et interpolation utilisant des modeles 
autoregressifs vectoriels avec des tendances 
communes 

RESUMt. - Une modification du modele VAR consiste a introduire une tendance 
al6atoire dans chaque equation. II est montre que cette formulation conduit a un 

modele plus parcimonieux que les traditionnels modeles VAR en niveaux ou en 
accroissements. Des tendances communes, ou des facteurs, peuvent etre introduits 
dans le modele. Certaines variables sont co-integrees et le moddle a une representa 
tion a corrections d'erreurs. L'estimation du modele est faite a l'aide de la forme 
espace d'etats et du filtre de Kalman. Cela permet une estimation dans un cadre 
general (observations manquantes, agregation temporelle, observations a intervalles 
differents). Les tendances communes peuvent aussi etre estimees par des techniques 
de lissage. Les observations manquantes peuvent etre estimees. 
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1 Introduction 

Vector autoregressions have, in recent years, proved very popular for 
forecasting economic time series. However the formulation of such models 
is not altogether satisfactory for dealing with nonstationary time series. If 
differences are taken the length of the autoregressions may be quite long, 

leading to models with a very large number of parameters. Conversely, if 

the model is estimated in levels, the roots of the autoregressive polynomial 

will lie on the unit circle and this can be difficult to handle statistically. 

More importantly it may again lead to a model with a large number of 

parameters. Alternatively, vector ARIMA models could be used. However 
it may be argued that the ARIMA class becomes too big when considering 

vector processes so that in practice model specification can be complicated 
and possibly misleading. Besides, the way in which nonstationarity is dealt 

with in the ARIMA framework is not satisfactory in the present context 

since after differencing the series, it is difficult to obtain estimates of the 

trend components. Furthermore, if some of the trends are common, impor 
tant relationships between the variable levels will be lost, while the 

appearence of noninvertibility can complicate the statistical analysis. 

In this article we introduce a class of multivariate models which contain 

stochastic trend as well as autoregressive components. Such models may 

provide a more satisfactory and more parsimonious treatment of nonsta 

tionary time series. Furthermore, it is possible to introduce an additional 

feature into the model, namely common trends. If common trends are 

present in the model, some, or all, of the variables are co-integrated and an 

error correction representation is possible; see GRANGER and ENGLE [1987]. 

Time domain evaluation of the likelihood function for vector autoregres 

sive models with (common) stochastic trends is carried out by means of the 

Kalman filter. This likelihood function must then be maximised numerically. 

While this estimation procedure is clearly more complicated than the OLS 

regressions required for a pure vector autoregression, it does at least allow 

missing and temporally aggregated observations to be handled at little extra 

cost. This in turn means that it can cope with situations where, for example, 

some variables may be measured on a monthly basis, while others are 

quarterly. The purpose of Section 3 is to set down an algorithm for dealing 

with these features for data which include both stocks and flows. 

The ability to allow for missing and temporally aggregated observations 

widens the range of data sets that can be used in multivariate forecasting 

models. It also gives the models another purpose, namely that they can be 

used for interpolation when there are missing observations on stock variables, 

and distribution when flow variables have been subject to temporal aggrega 

tion or stock variables have been averaged over several time periods. Once 

a model has been estimated, interpolation and distribution is carried out 

by a smoothing algorithm. 

Earlier treatments of the estimation of missing observations, such as 

CHOW and LIN [1971], are based on single equation methods and make 
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strong, and in our view arbitrary, assumptions about exogeneity. The 
method suggested here does not rely on such assumptions. 

2 Vector Autoregressions 
with Stochastic Trends 

A vector autoregression with stochastic trends may be written as 

(1) yt=lit+(- 1 (L) et, t= 1, . ., T, 

(2) 9t=t-I + p+ti 

where y, is an N x 1 vector of observations, (F (L) is an N x N matrix 
polynomial in the lag operator, i. e. 

(3) (D(L) = I + l L +.. . + (DPLP, 

Et and rt are multivariate white noise processes with zero mean vectors and 
covariance matrices E. and S, respectively, gt is an N x 1 vector of stochastic 
trends and ,B is an N x 1 vector of constants. It is assumed that Et and mt 
are uncorrelated with each other in all time periods. It is also assumed 
that the roots of (F (L) lie outside the unit circle, so that if pt were not 
present in the model, yt would be stationary. The model may be extended 
to allow for 1 being time-varying. This is done in sub-section 2. 2, but for 

many macroeconomic time series on real variables 1 can be taken to be 
constant and so we will concentrate on this case. Seasonal components can 
also be brought into the model but we will not deal with this feature 
explicitly, since the general principles remain the same. 

Model (1)-(2) expresses the observations as the sum of a trend component 
and a short term component, which may exhibit pseudo-cyclical behaviour 
due to the interactions between the variables induced by ( (L). Such 
pseudo-cyclical behaviour may also be incorporated in the trend. Thus (2) 

may be extended to: 

(4) Ftt= + 0 + D- (L) qt, 

where (D. (L) is an N x N polynomial of order pS, defined in a similar way 
to (3). The analysis of univariate series, as in HARVEY [1985], suggests that 
cyclical behaviour may well be incorporated within the trend itself. 

It is worth drawing attention to some special cases of (1)-(4). First, if 

YX,S=0, the model collapses to a stationary vector autoregression about a 
set of deterministic linear trends. Secondly, if Xg = 0, the differenced observa 
tions follow a stationary vector autoregression. Both cases may be handled 
by the Kalman filter. 
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2. 1. Common Trends 

Common trends may be introduced into (1) by defining an N x K matrix, 

0, where K ? N, and re-writing (1) as 

(5) yt= E) gt+ Ho +D-1 (L) 

The N x 1 vector go has zeroes for its first K elements while its last N-K 

elements consists of an unconstrained vector i. The trend components, pt, 
are still generated by (2) or (4) but with the difference that gt, 3 and rt are 

now of length K. This is the number of common trends in the model. As 

it stands, the model represented by (5) is not identifiable since for any 

nonsingular K x K matrix P the N x K matrix 0 and the trend components 

g, could be redefined as 0 p- ' and Pjt respectively. In other words there 

is an infinite number of parameter sets for which the model would generate 

identical time series { Yt }, and, therefore, it is necessary to choose one 

member within each equivalence class so that the structure of the model 

can be estimated. 

In order for (5) to be identifiable, it is necessary to place restrictions on 

X,. and 0. There are a number of ways in which this may be done. We 

propose setting 1X, equal to a diagonal matrix while 0 is such that Oij = 0 

for j > i, and )ij = 1, i = 1, . . ., K. Note that when K = N the model reduces 

to (1) since 0 gt in (5) may be re-defined as gt and the variance of the 

corresponding 9t is then the p. s. d. symmetric matrix 01' 0'. 

The common trends model has the important property that N-K linear 

combinations of the Yt vector are stationary even though all the individual 

elements of y, are only stationary in first differences. In the terminology of 

GRANGER and ENGLE [1987] the model is said to be co-integrated of order 

( 1,1). GRANGER and ENGLE [1987] show in turn that this implies an 

error-correction representation of the kind adopted by SARGAN [1964] and 

DAVIDSON et al. [1978]. 

The co-integrating vectors are the N-K rows of an (N-K) x N matrix A 

which have the property that A 0 =0. Hence 

A y, 
= A qD 

- 
1 (L) F,, + A 1go 

and Ay, is an (N-K) x 1 stationary process. 

A model with common trends is not only more parsimonious than a 

model without common trends, but also preserves certain levels relationships 

between the variables in forecasting. In addition the trends themselves may 

have an interesting interpretation. For this purpose it may be useful to 

consider a rotation of the estimated trends. Suppose that (D. (L) =I and 

that the estimated I, is p. d. and define g + = H -1/2tt, rT+ =H 1j/2 t 
0+ =0X1'2 H', and V =H Sj1/2 , where H is an orthogonal matrix. The 

model may now be written 

(6. a) Yt = + + (L) ct, 

(6. b) g+= 1+ + 
+ 

t S 

with Var (t+) = I for any choice of H. This H may be used to redefine the 

common trends so as to give the desired interpretation. The trends remain 

independent of each other for any choice of H. 
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2.2. Slope Components 

The specifications of the common trends can be extended so as to include 

stochastic slopes. Thus 

(7. a) 9t=t- + pt- +o+t, 

(7.b) t=t- + tS 

where R, is K x1, 0<K <K, Var(Q)= I, 0, is a KxK, matrix with 

OD, ij0= for j> i. The disturbance vectors rT and gt are mutually uncorrela 
ted. Finally the K x 1 vector I3 has its first K, elements zero, so that 

P0 = (0' ')'. 
Combining (7) with (5) leads to a model which is co-integrated of order 

(2,2). Provided 0 and 0, contrain no null rows, each element of the y, 
vector needs to be differenced twice to make it stationary; in Granger's 
terminology it is integrated of order two, 1(2). Thus there is no necessity 
to require that XY, be p. d. If some of the rows of 0, are null the system 
can still be handled in the time domain. Furthermore since some variables 
are 1(2) while others are I(1) it follows that there must be at least two 
common trends. 

2.3. A Simple Illustration 

Consider two variables, say income and consumption, which are known 
to be co-integrated. This constitutes a system with N = 2 and K = 1. With 
a stationary first-order vector AR process this yields the model 

(8. a) LY 
t 

1 [1-(PL -912L x + 

Y2t 0 -_p21L 1-p22L] 92t 

(8. b) gt= 9t- + + 71V 

with Var (Th) = c2. Note that even with p = 1, the vector AR process is 
capable of generating pseudo-cyclical behaviour. 

The co-integrating vector, A, may be normalized as A =(1 cx). It must be 
such that 

1+ ocO=0 

and so 

ax=-1/0. 

Multiplying (8) through by A gives 

(9) Y1=01OV2 t+(-1/0) g+at, 

where ut is a stationary ARMA (2,1) process. 

Thus there is a levels relationship between y1 t and Y2 t. Applying OLS 
to (9) gives a consistent estimator of 0 even though Y2 t is endogenous. This 
is essentially because Yit and Y2t are both I(1) while the error term is 
stationary; see STOCK [1984]. 
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3 Statistical Treatment 

It is relatively straightforward to put model (1)-(4) in state space form. 

The likelihood function may then be evaluated in the prediction error 
decomposition form using the Kalman filter, and maximised by numerical 
optimisation with respect to the unknown parameters in 0, ?, D(L) and 

@", (L). An alternative approach is to carry out estimation in the frequency 

domain along the lines suggested in FERNANDEZ MACHO [1986]. Once the 

parameters have been estimated, prediction and smoothing is 
straightforward to carry out using standard techniques; see HARVEY [1981] 
or ANDERSON and MOORE [1979]. 

The treatment below generalises the model to situations where observa 
tions may be missing, temporally aggregated or observed at different timing 

intervals. A general form of the Kalman filter is then employed. Such 

techniques are also applicable in pure vector autoregressions without the 
trend components and so are of quite general interest. 

Consider model (5) but suppose that the full y, vector is not necessarily 

observed in all time periods. The variables generated by (5) will therefore 
be denoted by y+, so that (5) is actually written 

(10) Yt = gt+ D-1 (L) et 

with pt defined, as before, in (2). At any particular point in time 

t, t = 1, . .. , T, we may not observe some of the variables in y +. In the 

case of flow variables or time averaged stock variables, we may only observe 

the sum of the current and some past values of a variable. This latter 

phenomenon is known as temporal aggregation. In order to simplify matters 

we will assume that when temporal aggregation takes place for different 

variables it is always over the same 6 time periods. Thus if we have mixed 

monthly and quarterly observations 6 is equal to three. 

At time t we observe an Ntx 1 vector Yt. This can be written 

t= (Yt' y[')' where the Ns x 1 vector ys and the Nf x 1 vector yf are defined 
as follows: 

(1) y' contains all the variables, stocks and flows, which are observed in 

all time periods, together with the variables, normally stocks, which contain 

missing observations. The relationship between y' and y+ is determined by 

an Nt x Ns selection matrix Zs, i. e. 

(11. a) Yt~~=zt +, t= 1,... T; 

(2) yf contains all the variables which are subject to temporal aggregation. 

In this case 

(11. b) f =zf cS t = 1,..I,T 

where yc is an Nc x 1 vector which contains the cumulated values of all the 

Nc variables subject to temporal aggregation and Zf is an Nf x Nc selection 
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matrix. If cumulated variables are observed at the points t= 6, 2 6, 3 6, ... 

then 

(12) jc=zc Z + t=6,2, ..., 
j= O 

where Zc is an Nc x N selection matrix. If all the variables in yc are observed 

at t=6, 26, .. ., then Nf =Nc and 

wZf =I 
=,b.. 

t O, otherwise. 

If some of the elements of yc are missing at a given point in time then 

Nf < Nc and the appropriate rows are removed from Zf at t = 6, 2 6, . . . 

Some variables may initially be subject to temporal aggregation, but may 

later be observed in every time period. At the point where they are observed 

every time period such variables switch from being in yf and yc to being 

in y'. This could be accounted for by putting time subscripts on Nc and 
zC. 

We now consider the state space representation for the model defined by 

(2), (5), (11) and (12). The stochastic trend, (2), can be generalised to 

include autoregressive components, as in (4), quite straightforwardly and so 
will not be dealt with explicitly. 

The p-th order vector autoregressive process (D-1(L)ct in (5) can be 

written as a first-order vector autoregression by defining an Np x I state 

vector oa+ such that 

(13) at+ =T+at+ 1+R et 

where T+ is an Np x Np matrix containing the element of (,DP and 

R+= (IN OY; i. e. 

(14) a+ I OC+ + L Et 

The first N elements of ct+ are the elements of D 1 (L) Et and these are 

extracted from oc + by defining Z = (I 0) and writing 

(15) (D (L) t t 

The state vector for the full model is given by 

(16) oc = (g at+ YC ) 

Equation (2) is already effectively in the form of a transition equation. The 

transition equation for y' can readily be derived from (12), (14) and (2). 

First note that (12) can be written as 

( 17) yc = zcy ++ t= 1, . . .,T, 
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where 

f 0, t=6+ 1, 26+ 1, 36+1, 
ft={ 

- (1, otherwise, 

and y' = 0. 

Using (10), (13), (2) and (17), y' can be written, 

(18) yc=ZcO P+ZC? g1-,+ZcZ"T+ 
o+ 

+ Zc< 0% + Zc Z R+ et + *Ytc- 1 

and combining (2), (13) and (18), 

(19) [t 
= 

T+ 0 x o+ 
+ | 

0 

yc j ZcO Z ZcZT T tj C- Z Yt z i cz t Yt -1 z 
F I [ ]0 

+ 
z 03zcz R +2 E ZO ZcZ(zR+t 

Using obvious notation, (19) can be rewritten more compactly as 

(20) at=Tot-1 +y+R ut, 

where 

(21) E (ut u)t [E1 ? 

and ST is a diagonal matrix, as discussed previously. 

The measurement equation, relating the state vector to the observed 
variable yt, is obtained by rewriting (11) in terms of the state vector Oct. 
First, note that 

(22) Y+ = 
lglt+ go+Zat+. 

Thus the measurement equation is 

(23) Yt=ot+Z 

where 

[Zsc 
0 t 

_go__ 

and 
Zs e Zs z 0 ] 

[ t tz~ 
zt 

- --- --- 
-------I 

L0 0 z? f 
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Predictions of future observations can be made on the basis of the state 
space form (20) and (23). Estimates of the common trends can be made 
by a smoothing algorithm. Initial conditions for the filter can be obtained 
by using the unconditional mean and covariance matrix of oct by noting 
that y = 0, and by imposing a diffuse prior on go; cf. ANSLEY and KOHN 
[1985]. As regards estimation of the unknown parameters in 0, (D, X,. and 

S., this may be carried out via the prediction error decomposition, using 
the Kalman filter. The drift parameters, ,B, may be concentrated out of the 
likelihood function by noting that, conditional on 0, the ML estimator of 
P is 

(24) (0) =(E)" '0) -f 0'Ay 

where AY = (YT -y1)/(T -1); see FERNANDEZ MACHO [1986]. The elements 
of [i may also be concentrated out of the likelihood function, either by 

using the device suggested in KOHN and ANSLEY [1985] or by including ,u in 
an augmented state vector. 
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