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Abstract

Historically, time series forecasts of economic variables have used only a handful of
predictor variables, while forecasts based on a large number of predictors have been
the province of judgmental forecasts and large structural econometric models. The past
decade, however, has seen considerable progress in the development of time series fore-
casting methods that exploit many predictors, and this chapter surveys these methods.
The first group of methods considered is forecast combination (forecast pooling), in
which a single forecast is produced from a panel of many forecasts. The second group
of methods is based on dynamic factor models, in which the comovements among a
large number of economic variables are treated as arising from a small number of un-
observed sources, or factors. In a dynamic factor model, estimates of the factors (which
become increasingly precise as the number of series increases) can be used to forecast
individual economic variables. The third group of methods is Bayesian model averag-
ing, in which the forecasts from very many models, which differ in their constituent
variables, are averaged based on the posterior probability assigned to each model. The
chapter also discusses empirical Bayes methods, in which the hyperparameters of the
priors are estimated. An empirical illustration applies these different methods to the
problem of forecasting the growth rate of the U.S. index of industrial production with
130 predictor variables.

Keywords

forecast combining, dynamic factor models, principal components analysis, Bayesian
model averaging, empirical Bayes forecasts, shrinkage forecasts

JEL classification: C32, C53, E17
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1. Introduction

1.1. Many predictors: Opportunities and challenges

Academic work on macroeconomic modeling and economic forecasting historically has
focused on models with only a handful of variables. In contrast, economists in business
and government, whose job is to track the swings of the economy and to make fore-
casts that inform decision-makers in real time, have long examined a large number of
variables. In the U.S., for example, literally thousands of potentially relevant time se-
ries are available on a monthly or quarterly basis. The fact that practitioners use many
series when making their forecasts – despite the lack of academic guidance about how
to proceed – suggests that these series have information content beyond that contained
in the major macroeconomic aggregates. But if so, what are the best ways to extract this
information and to use it for real-time forecasting?

This chapter surveys theoretical and empirical research on methods for forecasting
economic time series variables using many predictors, where “many” can number from
scores to hundreds or, perhaps, even more than one thousand. Improvements in comput-
ing and electronic data availability over the past ten years have finally made it practical
to conduct research in this area, and the result has been the rapid development of a sub-
stantial body of theory and applications. This work already has had practical impact –
economic indexes and forecasts based on many-predictor methods currently are being
produced in real time both in the U.S. and in Europe – and research on promising new
methods and applications continues.

Forecasting with many predictors provides the opportunity to exploit a much richer
base of information than is conventionally used for time series forecasting. Another, less
obvious (and less researched) opportunity is that using many predictors might provide
some robustness against the structural instability that plagues low-dimensional fore-
casting. But these opportunities bring substantial challenges. Most notably, with many
predictors come many parameters, which raises the specter of overwhelming the infor-
mation in the data with estimation error. For example, suppose you have twenty years
of monthly data on a series of interest, along with 100 predictors. A benchmark pro-
cedure might be using ordinary least squares (OLS) to estimate a regression with these
100 regressors. But this benchmark procedure is a poor choice. Formally, if the number
of regressors is proportional to the sample size, the OLS forecasts are not first-order
efficient, that is, they do not converge to the infeasible optimal forecast. Indeed, a fore-
caster who only used OLS would be driven to adopt a principle of parsimony so that his
forecasts are not overwhelmed by estimation noise. Evidently, a key aspect of many-
predictor forecasting is imposing enough structure so that estimation error is controlled
(is asymptotically negligible) yet useful information is still extracted. Said differently,
the challenge of many-predictor forecasting is to turn dimensionality from a curse into
a blessing.
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1.2. Coverage of this chapter

This chapter surveys methods for forecasting a single variable using many (n) predic-
tors. Some of these methods extend techniques originally developed for the case that n

is small. Small-n methods covered in other chapters in this Handbook are summarized
only briefly before presenting their large-n extensions. We only consider linear fore-
casts, that is, forecasts that are linear in the predictors, because this has been the focus
of almost all large-n research on economic forecasting to date.

We focus on methods that can exploit many predictors, where n is of the same order
as the sample size. Consequently, we do not examine some methods that have been
applied to moderately many variables, a score or so, but not more. In particular, we
do not discuss vector autoregressive (VAR) models with moderately many variables
[see Leeper, Sims and Zha (1996) for an application with n = 18]. Neither do we
discuss complex model reduction/variable selection methods, such as is implemented in
PC-GETS [see Hendry and Krolzig (1999) for an application with n = 18].

Much of the research on linear modeling when n is large has been undertaken by sta-
tisticians and biostatisticians, and is motivated by such diverse problems as predicting
disease onset in individuals, modeling the effects of air pollution, and signal compres-
sion using wavelets. We survey these methodological developments as they pertain to
economic forecasting, however we do not discuss empirical applications outside eco-
nomics. Moreover, because our focus is on methods for forecasting, our discussion of
empirical applications of large-n methods to macroeconomic problems other than fore-
casting is terse.

The chapter is organized by forecasting method. Section 2 establishes notation and
reviews the pitfalls of standard forecasting methods when n is large. Section 3 focuses
on forecast combining, also known as forecast pooling. Section 4 surveys dynamic fac-
tor models and forecasts based on principal components. Bayesian model averaging and
Bayesian model selection are reviewed in Section 5, and empirical Bayes methods are
surveyed in Section 6. Section 7 illustrates the use of these methods in an application
to forecasting the Index of Industrial Production in the United States, and Section 8
concludes.

2. The forecasting environment and pitfalls of standard forecasting methods

This section presents the notation and assumptions used in this survey, then reviews
some key shortcomings of the standard tools of OLS regression and information crite-
rion model selection when there are many predictors.

2.1. Notation and assumptions

Let Yt be the variable to be forecasted and let Xt be the n × 1 vector of predictor
variables. The h-step ahead value of the variable to be forecasted is denoted by Yh

t+h.
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For example, in Section 7 we consider forecasts of 3- and 6-month growth of the Index
of Industrial Production. Let IPt denote the value of the index in month t . Then the
h-month growth of the index, at an annual rate of growth, is

(1)Yh
t+h = (1200/h) ln(IPt+h/IPt ),

where the factor 1200/h converts monthly decimal growth to annual percentage growth.
A forecast of Yh

t+h at period t is denoted by Yh
t+h|t , where the subscript |t indicates

that the forecast is made using data through date t . If there are multiple forecasts, as in
forecast combining, the individual forecasts are denoted Yh

i,t+h|t , where i runs over the
m available forecasts.

The many-predictor literature has focused on the case that both Xt and Yt are inte-
grated of order zero (are I (0)). In practice this is implemented by suitable preliminary
transformations arrived at by a combination of statistical pretests and expert judgment.
In the case of IP, for example, unit root tests suggest that the logarithm of IP is well
modeled as having a unit root, so that the appropriate transformation of IP is taking the
log first difference (or, for h-step ahead forecasts, the hth difference of the logarithms,
as in (1)).

Many of the formal theoretical results in the literature assume that Xt and Yt have a
stationary distribution, ruling out time variation. Unless stated otherwise, this assump-
tion is maintained here, and we will highlight exceptions in which results admit some
types of time variation. This limitation reflects a tension between the formal theoretical
results and the hope that large-n forecasts might be robust to time variation.

Throughout, we assume that Xt has been standardized to have sample mean zero
and sample variance one. This standardization is conventional in principal components
analysis and matters mainly for that application, in which different forecasts would be
produced were the predictors scaled using a different method, or were they left in their
native units.

2.2. Pitfalls of using standard forecasting methods when n is large

OLS regression Consider the linear regression model

(2)Yt+1 = β ′Xt + εt ,

where β is the n × 1 coefficient vector and εt is an error term. Suppose for the moment
that the regressors Xt have mean zero and are orthogonal with T −1 ∑T

t=1 XtX
′
t = In

(the n×n identity matrix), and that the regression error is i.i.d. N(0, σ 2
ε ) and is indepen-

dent of {Xt }. Then the OLS estimator of the ith coefficient, β̂i , is normally distributed,
unbiased, has variance σ 2

ε /T , and is distributed independently of the other OLS coeffi-
cients. The forecast based on the OLS coefficients is x′β̂, where x is the n × 1 vector of
values of the predictors used in the forecast. Assuming that x and β̂ are independently
distributed, conditional on x the forecast is distributed N(x′β, (x′x)σ 2

ε /T ). Because
T −1 ∑T

t=1 XtX
′
t = In, a typical value of Xt is Op(1), so a typical x vector used to
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construct a forecast will have norm of order x′x = Op(n). Thus let x′x = cn, where c

is a constant. It follows that the forecast x′β̂ is distributed N(x′β, cσ 2
ε (n/T )). Thus, the

forecast – which is unbiased under these assumptions – has a forecast error variance that
is proportional to n/T . If n is small relative to T , then E(x′β̂ − x′β)2 is small and OLS
estimation error is negligible. If, however, n is large relative to T , then the contribution
of OLS estimation error to the forecast does not vanish, no matter how large the sample
size.

Although these calculations were done under the assumption of normal errors and
strictly exogenous regressors, the general finding – that the contribution of OLS estima-
tion error to the mean squared forecast error does not vanish as the sample size increases
if n is proportional to T – holds more generally. Moreover, it is straightforward to devise
examples in which the mean squared error of the OLS forecast using all the X’s exceeds
the mean squared error of using no X’s at all; in other words, if n is large, using OLS
can be (much) worse than simply forecasting Y by its unconditional mean.

These observations do not doom the quest for using information in many predictors to
improve upon low-dimensional models; they simply point out that forecasts should not
be made using the OLS estimator β̂ when n is large. As Stein (1955) pointed out, under
quadratic risk (E[(β̂ − β)′(β̂ − β)]), the OLS estimator is not admissible. James and
Stein (1960) provided a shrinkage estimator that dominates the OLS estimator. Efron
and Morris (1973) showed this estimator to be related to empirical Bayes estimators, an
approach surveyed in Section 6 below.

Information criteria Reliance on information criteria, such as the Akaike information
criterion (AIC) or Bayes information criterion (BIC), to select regressors poses two dif-
ficulties when n is large. The first is practical: when n is large, the number of models
to evaluate is too large to enumerate, so finding the model that minimizes an informa-
tion criterion is not computationally straightforward (however the methods discussed in
Section 5 can be used). The second is substantive: the asymptotic theory of information
criteria generally assumes that the number of models is fixed or grows at a very slow rate
[e.g., Hannan and Deistler (1988)]. When n is of the same order as the sample size, as in
the applications of interest, using model selection criteria can reduce the forecast error
variance, relative to OLS, but in theory the methods described in the following sections
are able to reduce this forecast error variance further. In fact, under certain assumptions
those forecasts (unlike ones based on information criteria) can achieve first-order op-
timality, that is, they are as efficient as the infeasible forecasts based on the unknown
parameter vector β.

3. Forecast combination

Forecast combination, also known as forecast pooling, is the combination of two or
more individual forecasts from a panel of forecasts to produce a single, pooled fore-
cast. The theory of combining forecasts was originally developed by Bates and Granger
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(1969) for pooling forecasts from separate forecasters, whose forecasts may or may not
be based on statistical models. In the context of forecasting using many predictors, the n

individual forecasts comprising the panel are model-based forecasts based on n individ-
ual forecasting models, where each model uses a different predictor or set of predictors.

This section begins with a brief review of the forecast combination framework; for a
more detailed treatment, see Chapter 4 in this Handbook by Timmermann. We then turn
to various schemes for evaluating the combining weights that are appropriate when n –
here, the number of forecasts to be combined – is large. The section concludes with a
discussion of the main empirical findings in the literature.

3.1. Forecast combining setup and notation

Let {Yh
i,t+h|t , i = 1, . . . , n} denote the panel of n forecasts. We focus on the case

in which the n forecasts are based on the n individual predictors. For example, in the
empirical work, Yh

i,t+h|t is the forecast of Yh
t+h constructed using an autoregressive dis-

tributed lag (ADL) model involving lagged values of the ith element of Xt , although
nothing in this subsection requires the individual forecast to have this structure.

We consider linear forecast combination, so that the pooled forecast is

(3)Yh
t+h|t = w0 +

n∑
i=1

witY
h
i,t+h|t ,

where wit is the weight on the ith forecast in period t .
As shown by Bates and Granger (1969), the weights in (3) that minimize the means

squared forecast error are those given by the population projection of Yh
t+h onto a con-

stant and the individual forecasts. Often the constant is omitted, and in this case the
constraint

∑n
i=1 wit = 1 is imposed so that Yh

t+h|t is unbiased when each of the con-
stituent forecasts is unbiased. As long as no one forecast is generated by the “true”
model, the optimal combination forecast places weight on multiple forecasts. The min-
imum MSFE combining weights will be time-varying if the covariance matrices of
(Yh

t+h|t , {Yh
i,t+h|t }) change over time.

In practice, these optimal weights are infeasible because these covariance matrices are
unknown. Granger and Ramanathan (1984) suggested estimating the combining weights
by OLS (or by restricted least squares if the constraints w0t = 0 and

∑n
i=1 wit = 1

are imposed). When n is large, however, one would expect regression estimates of the
combining weights to perform poorly, simply because estimating a large number of
parameters can introduce considerable sampling uncertainty. In fact, if n is proportional
to the sample size, the OLS estimators are not consistent and combining using the OLS
estimators does not achieve forecasts that are asymptotically first-order optimal. As
a result, research on combining with large n has focused on methods which impose
additional structure on the combining weights.

Forecast combining and structural shifts Compared with research on combination
forecasting in a stationary environment, there has been little theoretical work on fore-
cast combination when the individual models are nonstationary in the sense that they

http://dx.doi.org/10.1016/S1574-0706(05)01004-9
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exhibit unstable parameters. One notable contribution is Hendry and Clements (2002),
who examine simple mean combination forecasts when the individual models omit rel-
evant variables and these variables are subject to out-of-sample mean shifts, which in
turn induce intercept shifts in the individual misspecified forecasting models. Their cal-
culations suggest that, for plausible ranges of parameter values, combining forecasts
can offset the instability in the individual forecasts and in effect serves as an intercept
correction.

3.2. Large-n forecast combining methods1

Simple combination forecasts Simple combination forecasts report a measure of the
center of the distribution of the panel of forecasts. The equal-weighted, or average,
forecast sets wit = 1/n. Simple combination forecasts that are less sensitive to outliers
than the average forecast are the median and the trimmed mean of the panel of forecasts.

Discounted MSFE weights Discounted MSFE forecasts compute the combination
forecast as a weighted average of the individual forecasts, where the weights depend
inversely on the historical performance of each individual forecast [cf. Diebold and
Pauly (1987); Miller, Clemen and Winkler (1992) use discounted Bates–Granger (1969)
weights]. The weight on the ith forecast depends inversely on its discounted MSFE:

(4)wit = m−1
it

/ n∑
j=1

m−1
j t , where mit =

t−h∑
s=T0

ρt−h−s
(
Yh

s+h − Ŷ h
i,s+h|s

)2
,

where ρ is the discount factor.

Shrinkage forecasts Shrinkage forecasts entail shrinking the weights towards a value
imposed a priori which is typically equal weighting. For example, Diebold and Pauly
(1990) suggest shrinkage combining weights of the form

(5)wit = λŵit + (1 − λ)(1/n),

where ŵit is the ith estimated coefficient from a recursive OLS regression of Yh
s+h on

Ŷ h
1,s+h|s , . . . , Ŷ

h
n,s+h|s for s = T0, . . . , t − h (no intercept), where T0 is the first date

for the forecast combining regressions and where λ controls the amount of shrinkage
towards equal weighting. Shrinkage forecasts can be interpreted as a partial implemen-
tation of Bayesian model averaging (see Section 5).

1 This discussion draws on Stock and Watson (2004a).
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Time-varying parameter weights Time-varying parameter (TVP) weighting allows the
weights to evolve as a stochastic process, thereby adapting to possible changes in the
underlying covariances. For example, the weights can be modeled as evolving according
to the random walk, wit = wit+1 + ηit , where ηit is a disturbance that is serially uncor-
related, uncorrelated across i, and uncorrelated with the disturbance in the forecasting
equation. Under these assumptions, the TVP combining weights can be estimated using
the Kalman filter. This method is used by Sessions and Chatterjee (1989) and by LeSage
and Magura (1992). LeSage and Magura (1992) also extend it to mixture models of the
errors, but that extension did not improve upon the simpler Kalman filter approach in
their empirical application.

A practical difficulty that arises with TVP combining is the determination of the
magnitude of the time variation, that is, the variance of ηit . In principle, this variance
can be estimated, however estimation of var(ηit ) is difficult even when there are few
regressors [cf. Stock and Watson (1998)].

Data requirements for these methods An important practical consideration is that
these methods have different data requirements. The simple combination methods use
only the contemporaneous forecasts, so forecasts can enter and leave the panel of fore-
casts. In contrast, methods that weight the constituent forecasts based on their historical
performance require a historical track record for each forecast. The discounted MSFE
methods can be implemented if there is historical forecast data, but the forecasts are
available over differing subsamples (as would be the case if the individual X variables
become available at different dates). In contrast, the TVP and shrinkage methods require
a complete historical panel of forecasts, with all forecasts available at all dates.

3.3. Survey of the empirical literature

There is a vast empirical literature on forecast combining, and there are also a number
of simulation studies that compare the performance of combining methods in controlled
experiments. These studies are surveyed by Clemen (1989), Diebold and Lopez (1996),
Newbold and Harvey (2002), and in Chapter 4 of this Handbook by Timmermann. Al-
most all of this literature considers the case that the number of forecasts to be combined
is small, so these studies do not fall under the large-n brief of this survey. Still, there are
two themes in this literature that are worth noting. First, combining methods typically
outperform individual forecasts in the panel, often by a wide margin. Second, simple
combining methods – the mean, trimmed mean, or median – often perform as well as
or better than more sophisticated regression methods. This stylized fact has been called
the “forecast combining puzzle”, since extant statistical theories of combining meth-
ods suggest that in general it should be possible to improve upon simple combination
forecasts.

The few forecast combining studies that consider large panels of forecasts include
Figlewski (1983), Figlewski and Urich (1983), Chan, Stock and Watson (1999), Stock

http://dx.doi.org/10.1016/S1574-0706(05)01004-9
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and Watson (2003, 2004a), Kitchen and Monaco (2003), and Aiolfi and Timmermann
(2004). The studies by Figlewski (1983) and Figlewski and Urich (1983) use static fac-
tor models for forecast combining; they found that the factor model forecasts improved
equal-weighted averages in one instance (n = 33 price forecasts) but not in another
(n = 20 money supply forecasts). Further discussion of these papers is deferred to Sec-
tion 4. Stock and Watson (2003, 2004b) examined pooled forecasts of output growth and
inflation based on panels of up to 43 predictors for each of the G7 countries, where each
forecast was based on an autoregressive distributed lag model with an individual Xt .
They found that several combination methods consistently improved upon autoregres-
sive forecasts; as in the studies with small n, simple combining methods performed
well, in some cases producing the lowest mean squared forecast error. Kitchen and
Monaco (2003) summarize the real time forecasting system used at the U.S. Treasury
Department, which forecasts the current quarter’s value of GDP by combining ADL
forecasts made using 30 monthly predictors, where the combination weights depend on
relative historical forecasting performance. They report substantial improvement over a
benchmark AR model over the 1995–2003 sample period. Their system has the virtue
of readily permitting within-quarter updating based on recently released data. Aiolfi
and Timmermann (2004) consider time-varying combining weights which are nonlin-
ear functions of the data. For example, they allow for instability by recursively sorting
forecasts into reliable and unreliable categories, then computing combination forecasts
with categories. Using the Stock–Watson (2003) data set, they report some improve-
ments over simple combination forecasts.

4. Dynamic factor models and principal components analysis

Factor analysis and principal components analysis (PCA) are two longstanding methods
for summarizing the main sources of variation and covariation among n variables. For
a thorough treatment for the classical case that n is small, see Anderson (1984). These
methods were originally developed for independently distributed random vectors. Fac-
tor models were extended to dynamic factor models by Geweke (1977), and PCA was
extended to dynamic principal components analysis by Brillinger (1964).

This section discusses the use of these methods for forecasting with many predictors.
Early applications of dynamic factor models (DFMs) to macroeconomic data suggested
that a small number of factors can account for much of the observed variation of ma-
jor economic aggregates [Sargent and Sims (1977), Stock and Watson (1989, 1991),
Sargent (1989)]. If so, and if a forecaster were able to obtain accurate and precise es-
timates of these factors, then the task of forecasting using many predictors could be
simplified substantially by using the estimated dynamic factors for forecasting, instead
of using all n series themselves. As is discussed below, in theory the performance of
estimators of the factors typically improves as n increases. Moreover, although factor
analysis and PCA differ when n is small, their differences diminish as n increases; in
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fact, PCA (or dynamic PCA) can be used to construct consistent estimators of the fac-
tors in DFMs. These observations have spurred considerable recent interest in economic
forecasting using the twin methods of DFMs and PCA.

This section begins by introducing the DFM, then turns to algorithms for estimation
of the dynamic factors and for forecasting using these estimated factors. The section
concludes with a brief review of the empirical literature on large-n forecasting with
DFMs.

4.1. The dynamic factor model

The premise of the dynamic factor model is that the covariation among economic time
series variables at leads and lags can be traced to a few underlying unobserved series, or
factors. The disturbances to these factors might represent the major aggregate shocks to
the economy, such as demand or supply shocks. Accordingly, DFMs express observed
time series as a distributed lag of a small number of unobserved common factors, plus
an idiosyncratic disturbance that itself might be serially correlated:

(6)Xit = λi(L)′ft + uit , i = 1, . . . , n,

where ft is the q × 1 vector of unobserved factors, λi(L) is a q × 1 vector lag polyno-
mial, called the “dynamic factor loadings”, and uit is the idiosyncratic disturbance. The
factors and idiosyncratic disturbances are assumed to be uncorrelated at all leads and
lags, that is, E(ftuis) = 0 for all i, s.

The unobserved factors are modeled (explicitly or implicitly) as following a linear
dynamic process

(7)Γ (L)ft = ηt ,

where Γ (L) is a matrix lag polynomial and ηt is a q × 1 disturbance vector.
The DFM implies that the spectral density matrix of Xt can be written as the sum

of two parts, one arising from the factors and the other arising from the idiosyncratic
disturbance. Because Ft and ut are uncorrelated at all leads and lags, the spectral density
matrix of Xit at frequency ω is

(8)SXX(ω) = λ
(
eiω)

Sff (ω)λ
(
e−iω)′ + Suu(ω),

where λ(z) = [λ1(z) . . . λn(z)]′ and Sff (ω) and Suu(ω) are the spectral density matrices
of ft and ut at frequency ω. This decomposition, which is due to Geweke (1977), is the
frequency-domain counterpart of the variance decomposition of classical factor models.

In classical factor analysis, the factors are identified only up to multiplication by a
nonsingular q × q matrix. In dynamic factor analysis, the factors are identified only up
to multiplication by a nonsingular q × q matrix lag polynomial. This ambiguity can be
resolved by imposing identifying restrictions, e.g., restrictions on the dynamic factor
loadings and on Γ (L). As in classical factor analysis, this identification problem makes
it difficult to interpret the dynamic factors, but it is inconsequential for linear forecasting
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because all that is desired is the linear combination of the factors that produces the
minimum mean squared forecast error.

Treatment of Yt The variable to be forecasted, Yt , can be handled in two different
ways. The first is to include Yt in the Xt vector and model it as part of the system (6)
and (7). This approach is used when n is small and the DFM is estimated parametri-
cally, as is discussed in Section 4.3. When n is large, however, computationally efficient
nonparametric methods can be used to estimate the factors, in which case it is useful to
treat the forecasting equation for Yt as a single equation, not as a system.

The single forecasting equation for Yt can be derived from (6). Augment Xt in
that expression by Yt , so that Yt = λY (L)′ft + uY t , where {uY t } is distributed in-
dependently of {ft } and {uit }, i = 1, . . . , n. Further suppose that uY t follows the
autoregression, δY (L)uY t = νY t . Then δY (L)Yt+1 = δY (L)′λY (L)ft+1 + νt+1 or
Yt+1 = δY (L)λY (L)′ft+1 + γ (L)Yt + νt+1, where γ (L) = L−1(1 − δY (L)). Thus
E[Yt+1 | Xt, Yt , ft , Xt−1, Yt−1, ft−1, . . .] = E[δY (L)λY (L)′ft+1 + γ (L)Yt + νt+1 |
Yt , ft , Yt−1, ft−1, . . .] = β(L)ft + γ (L)Yt , where β(L)ft = E[δY (L)λY (L)′ft+1 |
ft , ft−1, . . .]. Setting Zt = Yt , we thus have

(9)Yt+1 = β(L)ft + γ (L)′Zt + εt+1,

where εt+1 = νY t+1 + (δY (L)λY (L)′ft+1 − E[δY (L)λY (L)′ft+1 | ft , ft−1, . . .]) has
conditional mean zero given Xt, ft , Yt and their lags. We use the notation Zt rather
than Yt for the regressor in (9) to generalize the equation somewhat so that observable
predictors other than lagged Yt can be included in the regression, for example, Zt might
include an observable variable that, in the forecaster’s judgment, might be valuable for
forecasting Yt+1 despite the inclusion of the factors and lags of the dependent variable.

Exact vs. approximate DFMs Chamberlain and Rothschild (1983) introduced a useful
distinction between exact and approximate DFMs. In the exact DFM, the idiosyncratic
terms are mutually uncorrelated, that is,

(10)E(uitujt ) = 0 for i �= j.

The approximate DFM relaxes this assumption and allows for a limited amount of
correlation among the idiosyncratic terms. The precise technical condition varies from
paper to paper, but in general the condition limits the contribution of the idiosyncratic
covariances to the total covariance of X as n gets large. For example, Stock and Watson
(2002a) require that the average absolute covariances satisfy

(11)lim
n→∞ n−1

n∑
i=1

n∑
j=1

∣∣E(uitujt )
∣∣ < ∞.

There are two general approaches to the estimation of the dynamic factors, the first
employing parametric estimation using an exact DFM and the second employing non-
parametric methods, either PCA or dynamic PCA. We address these in turn.
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4.2. DFM estimation by maximum likelihood

The initial applications of the DFM by Geweke’s (1977) and Sargent and Sims (1977)
focused on testing the restrictions implied by the exact DFM on the spectrum of Xt , that
is, that its spectral density matrix has the factor structure (8), where Suu is diagonal. If
n is sufficiently larger than q (for example, if q = 1 and n � 3), the null hypothesis of
an unrestricted spectral density matrix can be tested against the alternative of a DFM by
testing the factor restrictions using an estimator of SXX(ω). For fixed n, this estimator
is asymptotically normal under the null hypothesis and the Wald test statistic has a chi-
squared distribution. Although Sargent and Sims (1977) found evidence in favor of a
reduced number of factors, their methods did not yield estimates of the factors and thus
could not be used for forecasting.

With sufficient additional structure to ensure identification, the parameters of the
DFM (6), (7) and (9) can be estimated by maximum likelihood, where the likelihood is
computed using the Kalman filter, and the dynamic factors can be estimated using the
Kalman smoother [Engle and Watson (1981), Stock and Watson (1989, 1991)]. Specif-
ically, suppose that Yt is included in Xt . Then make the following assumptions:

(1) the idiosyncratic terms follow a finite order AR model, δi(L)uit = νit ;
(2) (ν1t , . . . , νnt , η1t , . . . , ηqt ) are i.i.d. normal and mutually independent;
(3) Γ (L) has finite order with Γ0 = Ir ;
(4) λi(L) is a lag polynomial of degree p; and
(5) [λ′

10 . . . λ′
q0]′ = Iq .

Under these assumptions, the Gaussian likelihood can be constructed using the Kalman
filter, and the parameters can be estimated by maximizing this likelihood.

One-step ahead forecasts Using the MLEs of the parameter vector, the time series of
factors can be estimated using the Kalman smoother. Let ft |T and uit |T , i = 1, . . . , n,
respectively denote the Kalman smoother estimates of the unobserved factors and idio-
syncratic terms using the full data through time T . Suppose that the variable of interest
is the final element of Xt . Then the one-step ahead forecast of the variable of interest at
time T + 1 is YT +1|T = XnT +1|T = λ̂n(L)′fT |T + unT |T , where λ̂n(L) is the MLE of
λn(L).2

h-step ahead forecasts Multistep ahead forecasts can be computed using either the
iterated or the direct method. The iterated h-step ahead forecast is computed by solving
the full DFM forward, which is done using the Kalman filter. The direct h-step ahead
forecast is computed by projecting Yh

t+h onto the estimated factors and observables, that
is, by estimating βh(L) and γh(L) in the equation

(12)Yh
t+h = βh(L)′ft |t + γh(L)Yt + εh

t+h

2 Peña and Poncela (2004) provide an interpretation of forecasts based on the exact DFM as shrinkage
forecasts.
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(where Lift/t = ft−i/t ) using data through period T −h. Consistent estimates of βh(L)

and γh(L) can be obtained by OLS because the signal extraction error ft−i − ft−i/t

is uncorrelated with ft−j/t and Yt−j for j � 0. The forecast for period T + h is then
β̂h(L)′fT |T + γ̂h(L)YT . The direct method suffers from the usual potential inefficiency
of direct forecasts arising from the inefficient estimation of βh(L) and γh(L), instead of
basing the projections on the MLEs.

Successes and limitations Maximum likelihood has been used successfully to estimate
the parameters of low-dimensional DFMs, which in turn have been used to estimate
the factors and (among other things) to construct indexes of coincident and leading
economic indicators. For example, Stock and Watson (1991) use this approach (with
n = 4) to rationalize the U.S. Index of Coincident Indicators, previously maintained
by the U.S. Department of Commerce and now produced the Conference Board. The
method has also been used to construct regional indexes of coincident indexes, see
Clayton-Matthews and Crone (2003). (For further discussion of DFMs and indexes of
coincident and leading indicators, see Chapter 16 by Marcellino in this Handbook.)
Quah and Sargent (1993) estimated a larger system (n = 60) by MLE. However, the
underlying assumption of an exact factor model is a strong one. Moreover, the computa-
tional demands of maximizing the likelihood over the many parameters that arise when
n is large are significant. Fortunately, when n is large, other methods are available for
the consistent estimation of the factors in approximate DFMs.

4.3. DFM estimation by principal components analysis

If the lag polynomials λi(L) and β(L) have finite order p, then (6) and (9) can be written

(13)Xt = ΛFt + ut ,

(14)Yt+1 = β ′Ft + γ (L)′Zt + εt+1,

where Ft = [f ′
t f

′
t−1 . . . f ′

t−p+1]′, ut = [u1t . . . unt ], Λ is a matrix consisting of zeros
and the coefficients of λi(L), and β is a vector of parameters composed of the elements
of β(L). If the number of lags in β exceeds the number of lags in Λ, then the term β ′Ft

in (14) can be replaced by a distributed lag of Ft .
Equations (13) and (14) rewrite the DFM as a static factor model, in which there are

r static factors consisting of the current and lagged values of the q dynamic factors,
where r � pq (r will be strictly less than pq if one or more lagged dynamic factors
are redundant). The representation (13) and (14) is called the static representation of the
DFM.

Because Ft and ut are uncorrelated at all leads and lags, the covariance matrix of Xt ,
ΣXX, is the sum of two parts, one arising from the common factors and the other arising
from the idiosyncratic disturbance:

(15)ΣXX = ΛΣFF Λ′ + Σuu,

http://dx.doi.org/10.1016/S1574-0706(05)01016-5
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where ΣFF and Σuu are the variance matrices of Ft and ut . This is the usual variance
decomposition of classical factor analysis.

When n is small, the standard methods of estimation of exact static factor models are
to estimate Λ and Σuu by Gaussian maximum likelihood estimation or by method of
moments [Anderson (1984)]. However, when n is large simpler methods are available.
Under the assumptions that the eigenvalues of Σuu are O(1) and Λ′Λ is O(n), the first
r eigenvalues of ΣXX are O(N) and the remaining eigenvalues are O(1). This suggests
that the first r principal components of X can serve as estimators of Λ, which could in
turn be used to estimate Ft . In fact, if Λ were known, then Ft could be estimated by
(Λ′Λ)−1Λ′Xt : by (13), (Λ′Λ)−1Λ′Xt = Ft + (Λ′Λ)−1Λ′ut . Under the two assump-
tions, var[(Λ′Λ)−1Λ′ut ] = (Λ′Λ)−1Λ′ΣuuΛ(Λ′Λ)−1 = O(1/n), so that if Λ were
known, Ft could be estimated precisely if n is sufficiently large.

More formally, by analogy to regression we can consider estimation of Λ and Ft by
solving the nonlinear least-squares problem

(16)min
F1,...,FT ,Λ

T −1
T∑

t=1

(Xt − ΛFt)
′(Xt − ΛFt)

subject to Λ′Λ = Ir . Note that this method treats F1, . . . , FT as fixed parame-
ters to be estimated.3 The first order conditions for maximizing (16) with respect
to Ft shows that the estimators satisfy F̂t = (Λ̂′Λ̂)−1Λ̂′Xt . Substituting this into
the objective function yields the concentrated objective function, T −1 ∑T

t=1 X′
t [I −

Λ(Λ′Λ)−1Λ]Xt . Minimizing the concentrated objective function is equivalent to max-
imizing tr{(Λ′Λ)−1/2 ′Λ′Σ̂XXΛ(Λ′Λ)−1/2}, where Σ̂XX = T −1 ∑T

t=1 XtX
′
t . This in

turn is equivalent to maximizing Λ′Σ̂XXΛ subject to Λ′Λ = Ir , the solution to which
is to set Λ̂ to be the first r eigenvectors of Σ̂XX. The resulting estimator of the fac-
tors is F̂t = Λ̂′Xt , which is the vector consisting of the first r principal components
of Xt . The matrix T −1 ∑T

t=1 F̂t F̂
′
t is diagonal with diagonal elements that equal the

largest r ordered eigenvalues of Σ̂XX. The estimators {F̂t } could be rescaled so that
T −1 ∑T

t=1 F̂t F̂
′
t = Ir , however this is unnecessary if the only purpose is forecasting.

We will refer to {F̂t } as the PCA estimator of the factors in the static representation of
the DFM.

PCA: large-n theoretical results Connor and Korajczyk (1986) show that the PCA es-
timators of the space spanned by the factors are pointwise consistent for T fixed and
n → ∞ in the approximate factor model, but do not provide formal arguments for n,
T → ∞. Ding and Hwang (1999) provide consistency results for PCA estimation of

3 When F1, . . . , FT are treated as parameters to be estimated, the Gaussian likelihood for the classical factor
model is unbounded, so the maximum likelihood estimator is undefined [see Anderson (1984)]. This difficulty
does not arise in the least-squares problem (16), which has a global minimum (subject to the identification
conditions discussed in this and the previous sections).
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the classic exact factor model as n, T → ∞, and Stock and Watson (2002a) show that,
in the static form of the DFM, the space of the dynamic factors is consistently estimated
by the principal components estimator as n, T → ∞, with no further conditions on
the relative rates of n or T . In addition, estimation of the coefficients of the forecasting
equation by OLS, using the estimated factors as regressors, produces consistent esti-
mates of β(L) and γ (L) and, consequently, forecasts that are first-order efficient, that
is, they achieve the mean squared forecast error of the infeasible forecast based on the
true coefficients and factors. Bai (2003) shows that the PCA estimator of the common
component is asymptotically normal, converging at a rate of min(n1/2, T 1/2), even if ut

is serially correlated and/or heteroskedastic.
Some theory also exists, also under strong conditions, concerning the distribution of

the largest eigenvalues of the sample covariance matrix of Xt . If n and T are fixed and
Xt is i.i.d. N(0,ΣXX), then the principal components are distributed as those of a non-
central Wishart; see James (1964) and Anderson (1984). If n is fixed, T → ∞, and the
eigenvalues of ΣXX are distinct, then the principal components are asymptotically nor-
mally distributed (they are continuous functions of Σ̂XX, which is itself asymptotically
normally distributed). Johnstone (2001) [extended by El Karoui (2003)] shows that the
largest eigenvalues of Σ̂XX satisfy the Tracy–Widom law if n, T → ∞, however these
results apply to unscaled Xit (not divided by its sample standard deviation).

Weighted principal components Suppose for the moment that ut is i.i.d. N(0,Σuu) and
that Σuu is known. Then by analogy to regression, one could modify (16) and consider
the nonlinear generalized least-squares (GLS) problem

(17)min
F1,...,FT ,Λ

T∑
t=1

(Xt − ΛFt)
′Σ−1

uu (Xt − ΛFt).

Evidently the weighting schemes in (16) and (17) differ. Because (17) corresponds to
GLS when Σuu is known, there could be efficiency gains by using the estimator that
solves (17) instead of the PCA estimator.

In applications, Σuu is unknown, so minimizing (17) is infeasible. However, Boivin
and Ng (2003) and Forni et al. (2003b) have proposed feasible versions of (17). We shall
call these weighted PCA estimators since they involve alternative weighting schemes in
place of simply weighting by the inverse sample variances as does the PCA estimator
(recall the notational convention that Xt has been standardized to have sample variance
one). Jones (2001) proposed a weighted factor estimation algorithm which is closely
related to weighted PCA estimation when n is large.

Because the exact factor model posits that Σuu is diagonal, a natural approach is to
replace Σuu in (17) with an estimator that is diagonal, where the diagonal elements are
estimators of the variance of the individual uit ’s. This approach is taken by Jones (2001)
and Boivin and Ng (2003). Boivin and Ng (2003) consider several diagonal weighting
schemes, including schemes that drop series that are highly correlated with others. One
simple two-step weighting method, which Boivin and Ng (2003) found worked well in
their empirical application to U.S. data, entails estimating the diagonal elements of Σuu
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by the sample variances of the residuals from a preliminary regression of Xit onto a
relatively large number of factors estimated by PCA.

Forni et al. (2003b) also consider two-step weighted PCA, where they estimated Σuu

in (17) by the difference between Σ̂XX and an estimator of the covariance matrix of
the common component, where the latter estimator is based on a preliminary dynamic
principal components analysis (dynamic PCA is discussed below). They consider both
diagonal and nondiagonal estimators of Σuu. Like Boivin and Ng (2003), they find that
weighted PCA can improve upon conventional PCA, with the gains depending on the
particulars of the stochastic processes under study.

The weighted minimization problem (17) was motivated by the assumption that ut is
i.i.d. N(0,Σuu). In general, however, ut will be serially correlated, in which case GLS
entails an adjustment for this serial correlation. Stock and Watson (2005) propose an
extension of weighted PCA in which a low-order autoregressive structure is assumed
for ut . Specifically, suppose that the diagonal filter D(L) whitens ut so that D(L)ut ≡
ũt is serially uncorrelated. Then the generalization of (17) is

(18)min
D(L),F̃1,...,F̃T ,Λ

T∑
t=1

[
D(L)Xt − ΛF̃t

]′
Σ−1

ũũ

[
D(L)Xt − ΛF̃t

]
,

where F̃t = D(L)Ft and Σũũ = Eũt ũ
′
t . Stock and Watson (2005) implement this with

Σũũ = In, so that the estimated factors are the principal components of the filtered
series D(L)Xt . Estimation of D(L) and {F̃t } can be done sequentially, iterating to con-
vergence.

Factor estimation under model instability There are some theoretical results on the
properties of PCA factor estimates when there is parameter instability. Stock and Wat-
son (2002a) show that the PCA factor estimates are consistent even if there is some
temporal instability in the factor loadings, as long as the temporal instability is suf-
ficiently dissimilar from one series to the next. More broadly, because the precision
of the factor estimates improves with n, it might be possible to compensate for short
panels, which would be appropriate if there is parameter instability, by increasing the
number of predictors. More work is needed on the properties of PCA and dynamic PCA
estimators under model instability.

Determination of the number of factors At least two statistical methods are available
for the determination of the number of factors when n is large. The first is to use model
selection methods to estimate the number of factors that belong in the forecasting equa-
tion (14). Given an upper bound on the dimension and lags of Ft , Stock and Watson
(2002a) show that this can be accomplished using an information criterion. Although
the rate requirements for the information criteria in Stock and Watson (2002a) techni-
cally rule out the BIC, simulation results suggest that the BIC can perform well in the
sample sizes typically found in macroeconomic forecasting applications.

The second approach is to estimate the number of factors entering the full DFM.
Bai and Ng (2002) prove that the dimension of Ft can be estimated consistently for
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approximate DFMs that can be written in static form, using suitable information criteria
which they provide. In principle, these two methods are complementary: a full set of
factors could be chosen using the Bai–Ng method, and model selection could then be
applied to the Yt equation to select a subset of these for forecasting purposes.

h-step ahead forecasts Direct h-step ahead forecasts are produced by regressing Yh
t+h

against F̂t and, possibly, lags of F̂t and Yt , then forecasting Yh
t+h.

Iterated h-step ahead forecasts require specifying a subsidiary model of the dynamic
process followed by Ft , which has heretofore not been required in the principal compo-
nents method. One approach, proposed by Bernanke, Boivin and Eliasz (2005) models
(Yt , Ft ) jointly as a VAR, which they term a factor-augmented VAR (FAVAR). They
estimate this FAVAR using the PCA estimates of {Ft }. Although they use the estimated
model for impulse response analysis, it could be used for forecasting by iterating the
estimated FAVAR h steps ahead.

In a second approach to iterated multistep forecasts, Forni et al. (2003b) and
Giannoni, Reichlin and Sala (2004) developed a modification of the FAVAR approach
in which the shocks in the Ft equation in the VAR have reduced dimension. The mo-
tivation for this further restriction is that Ft contains lags of ft . The resulting h-step
forecasts are made by iterating the system forward using the Kalman filter.

4.4. DFM estimation by dynamic principal components analysis

The method of dynamic principal components was introduced by Brillinger (1964) and
is described in detail in Brillinger’s (1981) textbook. Static principal components entails
finding the closest approximation to the covariance matrix of Xt among all covariance
matrices of a given reduced rank. In contrast, dynamic principal components entails
finding the closest approximation to the spectrum of Xt among all spectral density ma-
trices of a given reduced rank.

Brillinger’s (1981) estimation algorithm generalizes static PCA to the frequency do-
main. First, the spectral density of Xt is estimated using a consistent spectral density
estimator, ŜXX(ω), at frequency ω. Next, the eigenvectors corresponding to the largest
q eigenvalues of this (Hermitian) matrix are computed. The inverse Fourier transform
of these eigenvectors yields estimators of the principal component time series using
formulas given in Brillinger (1981, Chapter 9).

Forni et al. (2000, 2004) study the properties of this algorithm and the estimator of
the common component of Xit in a DFM, λi(L)′ft , when n is large. The advantages of
this method, relative to parametric maximum likelihood, are that it allows for an approx-
imate dynamic factor structure, and it does not require high-dimensional maximization
when n is large. The advantage of this method, relative to static principal components,
is that it admits a richer lag structure than the finite-order lag structure that led to (13).

Brillinger (1981) summarizes distributional results for dynamic PCA for the case
that n is fixed and T → ∞ (as in classic PCA, estimators are asymptotically normal
because they are continuous functions of ŜXX(ω), which is asymptotically normal).
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Forni et al. (2000) show that dynamic PCA provides pointwise consistent estimation of
the common component as n and T both increase, and Forni et al. (2004) further show
that this consistency holds if n, T → ∞ and n/T → 0. The latter condition suggests
that some caution should be exercised in applications in which n is large relative to T ,
although further evidence on this is needed.

The time-domain estimates of the dynamic common components series are based on
two-sided filters, so their implementation entails trimming the data at the start and end
of the sample. Because dynamic PCA does not yield an estimator of the common com-
ponent at the end of the sample, this method cannot be used for forecasting, although
it can be used for historical analysis or [as is done by Forni et al. (2003b)] to provide a
weighting matrix for subsequent use in weighted (static) PCA. Because the focus of this
chapter is on forecasting, not historical analysis, we do not discuss dynamic principal
components further.

4.5. DFM estimation by Bayes methods

Another approach to DFM estimation is to use Bayes methods. The difficulty with max-
imum likelihood estimation of the DFM when n is large is not that it is difficult to
compute the likelihood, which can be evaluated fairly rapidly using the Kalman filter,
but rather that it requires maximizing over a very large parameter vector. From a com-
putational perspective, this suggests that perhaps averaging the likelihood with respect
to some weighting function will be computationally more tractable than maximizing it;
that is, Bayes methods might be offer substantial computational gains.

Otrok and Whiteman (1998), Kim and Nelson (1998), and Kose, Otrok and Whiteman
(2003) develop Markov Chain Monte Carlo (MCMC) methods for sampling from the
posterior distribution of dynamic factor models. The focus of these papers was inference
about the parameters, historical episodes, and implied model dynamics, not forecasting.
These methods also can be used for forecast construction (see Otrok, Silos and White-
man (2003) and Chapter 1 by Geweke and Whiteman in this Handbook), however to
date not enough is known to say whether this approach provides an improvement over
PCA-type methods when n is large.

4.6. Survey of the empirical literature

There have been several empirical studies that have used estimated dynamic factors for
forecasting. In two prescient but little-noticed papers, Figlewski (1983) (n = 33) and
Figlewski and Urich (1983) (n = 20) considered combining forecasts from a panel of
forecasts using a static factor model. Figlewski (1983) pointed out that, if forecasters
are unbiased, then the factor model implied that the average forecast would converge in
probability to the unobserved factor as n increases. Because some forecasters are better
than others, the optimal factor-model combination (which should be close to but not
equal to the largest weighted principle component) differs from equal weighting. In an
application to a panel of n = 33 forecasters who participated in the Livingston price

http://dx.doi.org/10.1016/S1574-0706(05)01001-3
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survey, with T = 65 survey dates, Figlewski (1983) found that using the optimal static
factor model combination outperformed the simple weighted average. When Figlewski
and Urich (1983) applied this methodology to a panel of n = 20 weekly forecasts of the
money supply, however, they were unable to improve upon the simple weighted average
forecast.

Recent studies on large-model forecasting have used pseudo-out-of-sample forecast
methods (that is, recursive or rolling forecasts) to evaluate and to compare forecasts.
Stock and Watson (1999) considered factor forecasts for U.S. inflation, where the fac-
tors were estimated by PCA from a panel of up to 147 monthly predictors. They found
that the forecasts based on a single real factor generally had lower pseudo-out-of-sample
forecast error than benchmark autoregressions and traditional Phillips-curve forecasts.
Stock and Watson (2002b) found substantial forecasting improvements for real vari-
ables using dynamic factors estimated by PCA from a panel of up to 215 U.S. monthly
predictors, a finding confirmed by Bernanke and Boivin (2003). Boivin and Ng (2003)
compared forecasts using PCA and weighted PCA estimators of the factors, also for
U.S. monthly data (n = 147). They found that weighted PCA forecasts tended to out-
perform PCA forecasts for real variables but not nominal variables.

There also have been applications of these methods to non-U.S. data. Forni et al.
(2003b) focused on forecasting Euro-wide industrial production and inflation (HICP)
using a short monthly data set (1987:2–2001:3) with very many predictors (n = 447).
They considered both PCA and weighted PCA forecasts, where the weighted principal
components were constructed using the dynamic PCA weighting method of Forni et al.
(2003a). The PCA and weighted PCA forecasts performed similarly, and both exhib-
ited modest improvements over the AR benchmark. Brisson, Campbell and Galbraith
(2002) examined the performance factor-based forecasts of Canadian GDP and invest-
ment growth using two panels, one consisting of only Canadian data (n = 66) and one
with both Canadian and U.S. data (n = 133), where the factors were estimated by PCA.
They find that the factor-based forecasts improve substantially over benchmark models
(autoregressions and some small time series models), but perform less well than the
real-time OECD forecasts of these series. Using data for the UK, Artis, Banerjee and
Marcellino (2001) found that 6 factors (estimated by PCA) explain 50% of the variation
in their panel of 80 variables, and that factor-based forecasts could make substantial
forecasting improvements for real variables, especially at longer horizons.

Practical implementation of DFM forecasting requires making many modeling deci-
sions, notably to use PCA or weighted PCA, how to construct the weights if weighted
PCA weights is used, and how to specify the forecasting equation. Existing theory pro-
vides limited guidance on these choices. Forni et al. (2003b) and Boivin and Ng (2005)
provide simulation and empirical evidence comparing various DFM forecasting meth-
ods, and we provide some additional empirical comparisons are provided in Section 7
below.

DFM-based methods also have been used to construct real-time indexes of economic
activity based on large cross sections. Two such indexes are now being produced and
publicly released in real time. In the U.S., the Federal Reserve Bank of Chicago pub-
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lishes the monthly Chicago Fed National Activity Index (CFNAI), where the index is
the single factor estimated by PCA from a panel of 85 monthly real activity variables
[Federal Reserve Bank of Chicago (undated)]. In Europe, the Centre for Economic
Policy Research (CEPR) in London publishes the monthly European Coincident Index
(EuroCOIN), where the index is the single dynamic factor estimated by weighted PCA
from a panel of nearly 1000 economic time series for Eurozone countries [Altissimo et
al. (2001)].

These methods also have been used for nonforecasting purposes, which we mention
briefly although these are not the focus of this survey. Following Connor and Korajczyk
(1986, 1988), there have been many applications in finance that use (static) factor model
methods to estimate unobserved factors and, among other things, to test whether those
unobserved factors are consistent with the arbitrage pricing theory; see Jones (2001) for
a recent contribution and additional references. Forni and Reichlin (1998), Bernanke
and Boivin (2003), Favero and Marcellino (2001), Bernanke, Boivin and Eliasz (2005),
Giannoni, Reichlin and Sala (2002, 2004) and Forni et al. (2005) used estimated fac-
tors in an attempt better to approximate the true economic shocks and thereby to obtain
improved estimates of impulse responses as variables. Another application, pursued by
Favero and Marcellino (2001) and Favero, Marcellino and Neglia (2002), is to use lags
of the estimated factors as instrumental variables, reflecting the hope that the factors
might be stronger instruments than lagged observed variables. Kapetanios and Mar-
cellino (2002) and Favero, Marcellino and Neglia (2002) compared PCA and dynamic
PCA estimators of the dynamic factors. Generally speaking, the results are mixed, with
neither method clearly dominating the other. A point stressed by Favero, Marcellino
and Neglia (2002) is that the dynamic PCA methods estimate the factors by a two-sided
filter, which makes it problematic, or even unsuitable, for applications in which strict
timing is important, such as using the estimated factors in VARs or as instrumental vari-
ables. More research is needed before clear recommendation about which procedure is
best for such applications.

5. Bayesian model averaging

Bayesian model averaging (BMA) can be thought of as a Bayesian approach to com-
bination forecasting. In forecast combining, the forecast is a weighted average of the
individual forecasts, where the weights can depend on some measure of the historical
accuracy of the individual forecasts. This is also true for BMA, however in BMA the
weights are computed as formal posterior probabilities that the models are correct. In ad-
dition, the individual forecasts in BMA are model-based and are the posterior means of
the variable to be forecast, conditional on the selected model. Thus BMA extends fore-
cast combining to a fully Bayesian setting, where the forecasts themselves are optimal
Bayes forecasts, given the model (and some parametric priors). Importantly, recent re-
search on BMA methods also has tackled the difficult computational problem in which
the individual models can contain arbitrary subsets of the predictors Xt . Even if n is
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moderate, there are more models than can be computed exhaustively, yet by cleverly
sampling the most likely models, BMA numerical methods are able to provide good
approximations to the optimal combined posterior mean forecast.

The basic paradigm for BMA was laid out by Leamer (1978). In an early contribution
in macroeconomic forecasting, Min and Zellner (1993) used BMA to forecast annual
output growth in a panel of 18 countries, averaging over four different models. The area
of BMA has been very active recently, mainly occurring outside economics. Work on
BMA through the 1990s is surveyed by Hoeting et al. (1999) and their discussants, and
Chapter 1 by Geweke and Whiteman in this Handbook contains a thorough discussion
of Bayesian forecasting methods. In this section, we focus on BMA methods specifi-
cally developed for linear prediction with large n. This is the focus of Fernandez, Ley
and Steel (2001a) [their application in Fernandez, Ley and Steel (2001b) is to growth
regressions], and we draw heavily on their work in the next section.

This section first sets out the basic BMA setup, then turns to a discussion of the few
empirical applications to date of BMA to economic forecasting with many predictors.

5.1. Fundamentals of Bayesian model averaging

In standard Bayesian analysis, the parameters of a given model are treated as random,
distributed according to a prior distribution. In BMA, the binary variable indicating
whether a given model is true also is treated as random and distributed according to
some prior distribution.

Specifically, suppose that the distribution of Yt+1 conditional on Xt is given by one
of K models, denoted by M1, . . . , MK . We focus on the case that all the models are
linear, so they differ by which subset of predictors Xt are contained in the model. Thus
Mk specifies the list of indexes of Xt contained in model k. Let π(Mk) denote the prior
probability that the data are generated by model k, and let Dt denote the data set through
date t . Then the predictive probability density for YT +1 is

(19)f (YT +1 | DT ) =
K∑

k=1

fk(YT +1 | DT ) Pr(Mk | DT ),

where fk(YT +1 | DT ) is the predictive density of YT +1 for model k and Pr(Mk | DT ) is
the posterior probability of model k. This posterior probability is given by

(20)Pr(Mk | DT ) = Pr(DT | Mk)π(Mk)∑K
i=1 Pr(DT | Mi)π(Mi)

,

where Pr(DT | Mk) is given by

(21)Pr(DT | Mk) =
∫

Pr(DT | θk,Mk)π(θk | Mk) dθk,

where θk is the vector of parameters in model k and π(θk | Mk) is the prior for the
parameters in model k.

http://dx.doi.org/10.1016/S1574-0706(05)01001-3
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Under squared error loss, the optimal Bayes forecast is the posterior mean of YT +1,
which we denote by ỸT +1|T . It follows from (19) that this posterior mean is

(22)ỸT +1|T =
K∑

k=1

Pr(Mk | DT )ỸMk,T +1|T ,

where ỸMk,T +1|T is the posterior mean of YT +1 for model Mk .
Comparison of (22) and (3) shows that BMA can be thought of as an extension of

the Bates–Granger (1969) forecast combining setup, where the weights are determined
by the posterior probabilities over the models, the forecasts are posterior means, and,
because the individual forecasts are already conditional means, given the model, there
is no constant term (w0 = 0 in (3)).

These simple expressions mask considerable computational difficulties. If the set of
models is allowed to be all possible subsets of the predictors Xt , then there are K = 2n

possible models. Even with n = 30, this is several orders of magnitude more than is
feasible to compute exhaustively. Thus the computational objective is to approximate
the summation (22) while only evaluating a small subset of models. Achieving this ob-
jective requires a judicious choice of prior distributions and using appropriate numerical
simulation methods.

Choice of priors Implementation of BMA requires choosing two sets of priors, the
prior distribution of the parameters given the model and the prior probability of the
model. In principle, the researcher could have prior beliefs about the values of specific
parameters in specific models. In practice, however, given the large number of models
this is rarely the case. In addition, given the large number of models to evaluate, there
is a premium on using priors that are computationally convenient. These considerations
lead to the use of priors that impose little prior information and that lead to posteriors
(21) that are easy to evaluate quickly.

Fernandez, Ley and Steel (2001a) conducted a study of various priors that might use-
fully be applied in linear models with economic data and large n. Based on theoretical
consideration and simulation results, they propose a benchmark set of priors for BMA
in the linear model with large n. Let the kth model be

(23)Yt+1 = X
(k) ′
t βk + Z′

t γ + εt ,

where X
(k)
t is the vector of predictors appearing in model k, Zt is a vector of variables

to be included in all models, βk and γ are coefficient vectors, and εt is the error term.
The analysis is simplified if the model-specific regressors X

(k)
t are orthogonal to the

common regressor Zt , and this assumption is adopted throughout this section by taking
X

(k)
t to be the residuals from the projection of the original set of predictors onto Zt .

In applications to economic forecasting, because of serial correlation in Yt , Zt might
include lagged values of Y that potentially appear in each model.

Following the rest of the literature on BMA in the linear model [cf. Hoeting et al.
(1999)], Fernandez, Ley and Steel (2001a) assume that {X

(k)
t , Zt } is strictly exogenous
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and εt is i.i.d. N(0, σ 2). In the notation of (21), θk = [β ′
k γ ′ σ ]′. They suggest using con-

jugate priors, an uninformative prior for γ and σ 2 and Zellner’s (1986) g-prior for βk:

(24)π(γ, σ | Mk) ∝ 1/σ,

(25)π(βk | σ,Mk) = N

(
0, σ 2

(
g

T∑
t=1

X
(k)
t X

(k) ′
t

)−1 )
.

With the priors (24) and (25), the conditional marginal likelihood Pr(DT | Mk) in
(21) is

Pr(Y1, . . . , YT | Mk)

(26)= const × a(g)
1
2 #Mk

[
a(g)SSRR + (

1 − a(g)
)
SSRU

k

]− 1
2 dfR

,

where a(g) = g/(1 + g), SSRR is the sum of squared residuals of Y from the restricted
OLS regression of Yt+1 on Zt , SSRU

k is the sum of squared residuals from the OLS

regression of Y onto (X(k)
t , Zt ), #Mk is the dimension of X

(k)
t , dfR is the degrees of

freedom of the restricted regression, and the constant is the same from one model to the
next [see Raftery, Madigan and Hoeting (1997) and Fernandez, Ley and Steel (2001a)].

The prior model probability, π(Mk), also needs to be specified. One choice for this
prior is a multinomial distribution, where the probability is determined by the prior
probability that an individual variable enters the model; see, for example, Koop and
Potter (2004). If all the variables are deemed equally likely to enter and whether one
variable enters the model is treated as independent of whether any other variable enters,
then the prior probability for all models is the same and the term π(θk) drops out of the
expressions. In this case, (22), (20) and (26) imply that

ỸT +1|T =
K∑

k=1

wkỸMk,T +1|T ,

(27)where wk = a(g)
1
2 #Mk [1 + g−1SSRU

k /SSRR]− 1
2 dfR∑K

i=1 a(g)
1
2 #Mi [1 + g−1SSRU

i /SSRR]− 1
2 dfR

.

Three aspects of (27) bear emphasis. First, this expression links BMA and forecast
combining: for the linear model with the g-prior and in which each model is given
equal prior probability, the BMA forecast as a weighted average of the (Bayes) forecasts
from the individual models, where the weighting factor depends on the reduction in the
sum of squared residuals of model Mk , relative to the benchmark model that includes
only Zt .

Second, the weights in (27) (and the posterior (26)) penalize models with more para-
meters through the exponent #Mk/2. This arises directly from the g-prior calculations
and appears even though the derivation here places equal weight on all models. A further
penalty could be placed on large models by letting π(Mk) depend on #Mk .



Ch. 10: Forecasting with Many Predictors 539

Third, the weights are based on the posterior (marginal likelihood) (26), which is
conditional on {X(k)

t , Zt }. Conditioning on {X(k)
t , Zt } is justified by the assumption that

the regressors are strictly exogenous, an assumption we return to below.
The foregoing expressions depend upon the hyperparameter g. The choice of g deter-

mines the amount of shrinkage appears in the Bayes estimator of βk , with higher values
of g corresponding to greater shrinkage. Based on their simulation study, Fernandez,
Ley and Steel (2001a) suggest g = 1/ min(T , n2). Alternatively, empirical Bayes meth-
ods could be used to estimate the value of g that provides the BMA forecasts with the
best performance.

Computation of posterior over models If n exceeds 20 or 25, there are too many mod-
els to enumerate and the population summations in (27) cannot be evaluated directly.
Instead, numerical algorithms have been developed to provide precise, yet numerically
efficient, estimates of this the summation.

In principle, one could approximate the population mean in (27) by drawing a random
sample of models, evaluating the weights and the posterior means for each forecast, and
evaluating (27) using the sample averages, so the summations run over sampled models.
In many applications, however, a large fraction of models might have posterior proba-
bility near zero, so this method is computationally inefficient. For this reason, a number
of methods have been developed that permit accurate estimation of (27) using a rela-
tively small sample of models. The key to these algorithms is cleverly deciding which
models to sample with high probability. Clyde (1999a, 1999b) provides a survey of
these methods. Two closely related methods are the stochastic search variable selection
(SSVS) methods of George and McCulloch (1993, 1997) [also see Geweke (1996)] and
the Markov chain Monte Carlo model composition (MC3) algorithm of Madigan and
York (1995); we briefly summarize the latter.

The MC3 sampling scheme starts with a given model, say Mk . One of the n elements
of Xt is chosen at random; a new model, Mk′, is defined by dropping that regressor if
it appears in Mk , or adding it to Mk if it does not. The sampler moves from model Mk

to Mk′ with probability min(1, Bk,k′), where Bk,k′ is the Bayes ratio comparing the two
models (which, with the g-prior, is computed using (26)). Following Fernandez, Ley
and Steel (2001a), the summation (27) is estimated using the summands for the visited
models.

Orthogonalized regressors The computational problem simplifies greatly if the regres-
sors are orthogonal. For example, Koop and Potter (2004) transform Xt to its principal
components, but in contrast to the DFM methods discussed in Section 3, all or a large
number of the components are kept. This approach can be seen as an extension of the
DFM methods in Section 4, where BIC or AIC model selection is replaced by BMA,
where nonzero prior probability is placed on the higher principal components enter-
ing as predictors. In this sense, it is plausible to model the prior probability of the kth
principle component entering as a declining function of k.

Computational details for BMA in linear models with orthogonal regressors and a
g-prior are given in Clyde (1999a) and Clyde, Desimone and Parmigiani (1996). [As
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Clyde, Desimone and Parmigiani (1996) point out, the method of orthogonalization is
irrelevant when a g-prior is used, so weighted principal components can be used instead
of standard PCA.] Let γj be a binary random variable indicating whether regressor j is
in the model, and treat γj as independently (but not necessarily identically) distributed
with prior probability πj = Pr(γj = 1). Suppose that σ 2

ε is known. Because the re-
gressors are exogenous and the errors are normally distributed, the OLS estimators {β̂j }
are sufficient statistics. Because the regressors are orthogonal, γj , βj and β̂j are jointly
independently distributed over j . Consequently, the posterior mean of βj depends on
the data only through β̂j and is given by

(28)E
(
βj

∣∣ β̂j , σ
2
ε

) = a(g)β̂j × Pr
(
γj = 1

∣∣ β̂j , σ
2
ε

)
,

where g is the g-prior parameter [Clyde (1999a, 1999b)]. Thus the weights in the BMA
forecast can be computed analytically, eliminating the need for a stochastic sampling
scheme to approximate (27). The expression (28) treats σ 2

ε as known. The full BMA
estimator can be computed by integrating over σ 2

ε , alternatively one could use a plug-in
estimator of σ 2

ε as suggested by Clyde (1999a, 1999b).

Bayesian model selection Bayesian model selection entails selecting the model with
the highest posterior probability and using that model as the basis for forecasting; see the
reviews by George (1999) and Chipman, George and McCulloch (2001). With suitable
choice of priors, BMA can yield Bayesian model selection. For example, Fernandez,
Ley and Steel (2001a) provide conditions on the choice of g as a function of k and T that
produce consistent Bayesian model selection, in the sense that the posterior probability
of the true model tends to one (the asymptotics hold the number of models K fixed as
T → ∞). In particular they show that, if g = 1/T and the number of models K is held
fixed, then the g-prior BMA method outlined above, with a flat prior over models, is
asymptotically equivalent to model selection using the BIC.

Like other forms of model selection, Bayesian model selection might be expected to
perform best when the number of models is small relative to the sample size. In the
applications of interest in this survey, the number of models is very large and Bayesian
model selection would be expected to share the problems of model selection more gen-
erally.

Extension to h-step ahead forecasts The algorithm outlined above does not extend to
iterated multiperiod forecasts because the analysis is conditional on X and Z (mod-
els for X and Z are never estimated). Although the algorithm can be used to produce
multiperiod forecasts, its derivation is inapplicable because the error term εt in (23) is
modeled as i.i.d., whereas it would be MA(h − 1) if the dependent variable were Yh

t+h,
and the likelihood calculations leading to (27) no longer would be valid.

In principle, BMA could be extended to multiperiod forecasts by calculating the pos-
terior using the correct likelihood with the MA(h−1) error term, however the simplicity
of the g-prior development would be lost and in any event this extension seems not to
be in the literature. Instead, one could apply the formulas in (27), simply replacing Yt+1
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with Yh
t+h; this approach is taken by Koop and Potter (2004), and although the formal

BMA interpretation is lost the expressions provide an intuitively appealing alternative
to the forecast combining methods of Section 3, in which only a single X appears in
each model.

Extension to endogenous regressors Although the general theory of BMA does not
require strict exogeneity, the calculations based on the g-prior leading to the average
forecast (27) assume that {Xt, Zt } are strictly exogenous. This assumption is clearly
false in a macro forecasting application. In practice, Zt (if present) consists of lagged
values of Yt and one or two key variables that the forecaster “knows” to belong in the
forecasting equation. Alternatively, if the regressor space has been orthogonalized, Zt

could consist of lagged Yt and the first few one or two factors. In either case, Z is not
strictly exogenous. In macroeconomic applications, Xt is not strictly exogenous either.
For example, a typical application is forecasting output growth using many interest
rates, measures of real activity, measures of wage and price inflation, etc.; these are
predetermined and thus are valid predictors but X has a future path that is codetermined
with output growth, so X is not strictly exogenous.

It is not clear how serious this critique is. On the one hand, the model-based poste-
riors leading to (27) evidently are not the true posteriors Pr(Mk | DT ) (the likelihood
is fundamentally misspecified), so the elegant decision theoretic conclusion that BMA
combining is the optimal Bayes predictor does not apply. On the other hand, the weights
in (27) are simple and have considerable intuitive appeal as a competitor to forecast
combining. Moreover, BMA methods provide computational tools for combining many
models in which multiple predictors enter; this constitutes a major extension of forecast
combining as discussed in Section 3, in which there were only n models, each contain-
ing a single predictor. From this perspective, BMA can be seen as a potentially useful
extension of forecast combining, despite the inapplicability of the underlying theory.

5.2. Survey of the empirical literature

Aside from the contribution by Min and Zellner (1993), which used BMA methods to
combine forecasts from one linear and one nonlinear model, the applications of BMA
to economic forecasting have been quite recent.

Most of the applications have been to forecasting financial variables. Avramov (2002)
applied BMA to the problem of forecasting monthly and quarterly returns on six differ-
ent portfolios of U.S. stocks using n = 14 traditional predictors (the dividend yield, the
default risk spread, the 90-day Treasury bill rate, etc.). Avramov (2002) finds that the
BMA forecasts produce RMSFEs that are approximately two percent smaller than the
random walk (efficient market) benchmark, in contrast to conventional information cri-
teria forecasts, which have higher RMSFEs than the random walk benchmark. Cremers
(2002) undertook a similar study with n = 14 predictors [there is partial overlap be-
tween Avramov’s (2002) and Cremers’ (2002) predictors] and found improvements in
in-sample fit and pseudo-out-of-sample forecasting performance comparable to those
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found by Avramov (2002). Wright (2003) focuses on the problem of forecasting four
exchange rates using n = 10 predictors, for a variety of values of g. For two of the
currencies he studies, he finds pseudo-out-of-sample MSFE improvements of as much
as 15% at longer horizons, relative to the random walk benchmark; for the other two
currencies he studies, the improvements are much smaller or nonexistent. In all three
of these studies, n has been sufficiently small that the authors were able to evaluate all
possible models and simulation methods were not needed to evaluate (27).

We are aware of only two applications of BMA to forecasting macroeconomic aggre-
gates. Koop and Potter (2004) focused on forecasting GDP and the change of inflation
using n = 142 quarterly predictors, which they orthogonalized by transforming to prin-
cipal components. They explored a number of different priors and found that priors
that focused attention on the set of principal components that explained 99.9% of the
variance of X provided the best results. Koop and Potter (2004) concluded that the
BMA forecasts improve on benchmark AR(2) forecasts and on forecasts that used BIC-
selected factors (although this evidence is weaker) at short horizons, but not at longer
horizons. Wright (2004) considers forecasts of quarterly U.S. inflation using n = 93
predictors; he used the g-prior methodology above, except that he only considered mod-
els with one predictor, so there are only a total of n models under consideration. Despite
ruling out models with multiple predictors, he found that BMA can improve upon the
equal-weighted combination forecasts.

6. Empirical Bayes methods

The discussion of BMA in the previous section treats the priors as reflecting subjectively
held a priori beliefs of the forecaster or client. Over time, however, different forecasters
using the same BMA framework but different priors will produce different forecasts,
and some of those forecasts will be better than others: the data can inform the choice of
“priors” so that the priors chosen will perform well for forecasting. For example, in the
context of the BMA model with prior probability π of including a variable and a g-prior
for the coefficient conditional upon inclusion, the hyperparameters π and g both can be
chosen, or estimated, based on the data.

This idea of using Bayes methods with an estimated, rather than subjective, prior
distribution is the central idea of empirical Bayes estimation. In the many-predictor
problem, because there are n predictors, one obtains many observations on the empirical
distribution of the regression coefficients; this empirical distribution can in turn be used
to find the prior (to estimate the prior) that comes as close as possible to producing a
marginal distribution that matches the empirical distribution.

The method of empirical Bayes estimation dates to Robbins (1955, 1964), who in-
troduced nonparametric empirical Bayes methods. Maritz and Lwin (1989), Carlin and
Louis (1996), and Lehmann and Casella (1998, Section 4.6) provide monograph and
textbook treatments of empirical Bayes methods. Recent contributions to the theory
of empirical Bayes estimation in the linear model with orthogonal regressors include
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George and Foster (2000) and Zhang (2003, 2005). For an early application of empiri-
cal Bayes methods to economic forecasting using VARs, see Doan, Litterman and Sims
(1984).

This section lays out the basic structure of empirical Bayes estimation, as applied to
the large-n linear forecasting problem. We focus on the case of orthogonalized regres-
sors (the regressors are the principle components or weighted principle components).
We defer discussion of empirical experience with large-n empirical Bayes macroeco-
nomic forecasting to Section 7.

6.1. Empirical Bayes methods for large-n linear forecasting

The empirical Bayes model consists of the regression equation for the variable to be
forecasted plus a specification of the priors. Throughout this section we focus on esti-
mation with n orthogonalized regressors. In the empirical applications these regressors
will be the factors, estimated by PCA, so we denote these regressors by the n × 1
vector Ft , which we assume have been normalized so that T −1 ∑T

t=1 FtF
′
t = In. We

assume that n < T so all the principal components are nonzero; otherwise, n in this
section would be replaced by n′ = min(n, T ). The starting point is the linear model

(29)Yt+1 = β ′Ft + εt+1,

where {Ft } is treated as strictly exogenous. The vector of coefficients β is treated as
being drawn from a prior distribution. Because the regressors are orthogonal, it is con-
venient to adopt a prior in which the elements of β are independently (although not
necessarily identically) distributed, so that βi has the prior distribution Gi , i = 1, . . . , n.

If the forecaster has a squared error loss function, then the Bayes risk of the forecast
is minimized by using the Bayes estimator of β, which is the posterior mean. Suppose
that the errors are i.i.d. N(0, σ 2

ε ), and for the moment suppose that σ 2
ε is known. Condi-

tional on β, the centered OLS estimators, {β̂i − βi}, are i.i.d. N(0, σ 2
ε /T ); denote this

conditional pdf by φ. Under these assumptions, the Bayes estimator of βi is

(30)β̂B
i =

∫
xφ(β̂i − x) dGi(x)∫
φ(β̂i − x) dGi(x)

= β̂i + σ 2
ε �i

(
β̂i

)
,

where �i(x) = d ln(mi(x))/dx, where mi(x) = ∫
φ(x − β) dGi(β) is the marginal

distribution of β̂i . The second expression in (30) is convenient because it represents the
Bayes estimator as a function of the OLS estimator, σ 2

ε , and the score of the marginal
distribution [see, for example, Maritz and Lwin (1989)].

Although the Bayes estimator minimizes the Bayes risk and is admissible, from a
frequentist perspective it (and the Bayes forecast based on the predictive density) can
have poor properties if the prior places most of its mass away from the true parameter
value. The empirical Bayes solution to this criticism is to treat the prior as an unknown
distribution to be estimated. To be concrete, suppose that the prior is the same for all i,
that is, Gi = G for all i. Then {β̂i} constitute n i.i.d. draws from the marginal distribu-
tion m, which in turn depends on the prior G. Because the conditional distribution φ is
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known, this permits inference about G. In turn, the estimator of G can be used in (30) to
compute the empirical Bayes estimator. The estimation of the prior can be done either
parametrically or nonparametrically.

Parametric empirical Bayes The parametric empirical Bayes approach entails specify-
ing a parametric prior distribution, Gi(X; θ), where θ is an unknown parameter vector
that is common to all the priors. Then the marginal distribution of β̂i is mi(x; θ) =∫

φ(x − β) dGi(β; θ). If Gi = G for all i, then there are n i.i.d. observations on β̂i

from the marginal m(x; θ), and inference can proceed by maximum likelihood or by
method of moments.

In the application at hand, where the regressors are the principal components, one
might specify a prior with a spread that declines with i following some parametric struc-
ture. In this case, {β̂i} constitute n independent draws from a heteroskedastic marginal
distribution with parameterized heteroskedasticity, which again permits estimation of θ .
Although the discussion has assumed that σ 2

ε is known, it can be estimated consistently
if n, T → ∞ as long as n/T → const < 1.

As a leading case, one could adopt the conjugate g-prior. An alternative approach to
parameterizing Gi is to adopt a hierarchical prior. Clyde and George (2000) take this
approach for wavelet transforms, as applied to signal compression, where the prior is
allowed to vary depending on the wavelet level.

Nonparametric empirical Bayes The nonparametric empirical Bayes approach treats
the prior as an unknown distribution. Suppose that the prior is the same (G) for all i, so
that �i = � for all i. Then the second expression in (30) suggests the estimator

(31)β̂NEB
i = β̂i + σ 2

ε �̂
(
β̂i

)
,

where �̂ is an estimator of �.
The virtue of the estimator (31) is that it does not require direct estimation of G; for

this reason, Maritz and Lwin (1989) refer to it as a simple empirical Bayes estimator.
Instead, the estimator (31) only requires estimation of the derivative of the log of the
marginal likelihood, �(x) = d ln(mi(x))/dx = (dm(x)/dx)/m(x). Nonparametric esti-
mation of the score of i.i.d. random variables arises in other applications in statistics, in
particular adaptive estimation, and has been extensively studied. Going into the details
would take us beyond the scope of this survey, so instead the reader is referred to Maritz
and Lwin (1989), Carlin and Louis (1996), and Bickel et al. (1993).

Optimality results Robbins (1955) considered nonparametric empirical Bayes estima-
tion in the context of the compound decision problem, in which there are samples from
each of n units, where the draws for the ith unit are from the same distribution, con-
ditional on some parameters, and these parameters in turn obey some distribution G.
The distribution G can be formally treated either as a prior, or simply as an unknown
distribution describing the population of parameters across the different units. In this
setting, given G, the estimator of the parameters that minimizes the Bayes risk is the
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Bayes estimator. Robbins (1955, 1964) showed that it is possible to construct empirical
Bayes estimators that are asymptotically optimal, that is, empirical Bayes estimators
that achieve the Bayes risk based on the infeasible Bayes estimator using the true un-
known distribution G as the number of units tends to infinity.

At a formal level, if n/T → c, 0 < c < 1, and if the true parameters βi are in
a 1/n1/2 neighborhood of zero, then the linear model with orthogonal regressors has
a similar mathematical structure to the compound decision problem. Knox, Stock and
Watson (2001) provide results about the asymptotic optimality of the parametric and
nonparametric empirical Bayes estimators. They also provide conditions under which
the empirical Bayes estimator (with a common prior G) is, asymptotically, the minimum
risk equivariant estimator under the group that permutes the indexes of the regressors.

Extension to lagged endogenous regressors As in the methods of Sections 3–5, in
practice it can be desirable to extend the linear regression model to include an addi-
tional set of regressors, Zt , that the researcher has confidence belong in the model; the
leading case is when Zt consists of lags of Yt . The key difference between Zt and Ft is
associated with the degree of certainty about the coefficients: Zt are variables that the
researcher believes to belong in the model with potentially large coefficients, whereas
Ft is viewed as having potentially small coefficients. In principle a separate prior could
be specified for the coefficients on Zt . By analogy to the treatment in BMA, however,
a simpler approach is to replace Xt and Yt+1 in the foregoing with the residuals from
initial regressions of Xt and Yt+1 onto Zt . The principal components Ft then can be
computed using these residuals.

Extensions to endogenous regressors and multiperiod forecasts Like BMA, the the-
ory for empirical Bayes estimation in the linear model was developed assuming that
{Xt, Zt } are strictly exogenous. As was discussed in Section 5, this assumption is im-
plausible in the macroeconomic forecasting. We are unaware of work that has extended
empirical Bayes methods to the large-n linear forecasting model with regressors that are
predetermined but not strictly exogenous.

7. Empirical illustration

This section illustrates the performance of these methods in an application to forecasting
the growth rate of U.S. industrial production using n = 130 predictors. The results
in this section are taken from Stock and Watson (2004a), which presents results for
additional methods and for forecasts of other series.

7.1. Forecasting methods

The forecasting methods consist of univariate benchmark forecasts, and five categories
of multivariate forecasts using all the predictors. All multistep ahead forecasts (includ-
ing the univariate forecasts) were computed by the direct method, that is, using a single
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noniterated equation with dependent variable being the h-period growth in industrial
production, Yh

t+h, as defined in (1). All models include an intercept.

Univariate forecasts The benchmark model is an AR, with lag length selected by AIC
(maximum lag = 12). Results are also presented for an AR(4).

OLS The OLS forecast is based on the OLS regression of Yh
t+h onto Xt and four lags

of Yt .

Combination forecasts Three combination forecasts are reported. The first is the sim-
ple mean of the 130 forecasts based on autoregressive distributed lag (ADL) models
with four lags each of Xt and Yt . The second combination forecast is a weighted av-
erage, where the weights are computed using the expression implied by g-prior BMA,
specifically, the weights are given by wit in (27) with g = 1, where in this case the
number of models K equals n [this second method is similar to one of several used by
Wright (2004)].

DFM Three DFM forecasts are reported. Each is based on the regression of Yh
t+h onto

the first three factors and four lags of Yt . The forecasts differ by the method of comput-
ing the factors. The first, denoted PCA(3, 4), estimates the factors by PCA. The second,
denoted diagonal-weighted PCA(3, 4), estimates the factors by weighted PCA, where
the weight matrix Σuu is diagonal, with diagonal element Σuu,ii estimated by the dif-
ference between the corresponding diagonal elements of the sample covariance matrix
of Xt and the dynamic principal components estimator of the covariance matrix of the
common components, as proposed by Forni et al. (2003b). The third DFM forecast, de-
noted weighted PCA(3, 4) is similarly constructed, but also estimates the off-diagonal
elements of Σuu analogously to the diagonal elements.

BMA Three BMA forecasts are reported. The first is BMA as outlined in section with
correlated X’s and g = 1/T . The second two are BMA using orthogonal factors com-
puted using the formulas in Clyde (1999a) following Koop and Potter (2004), for two
values of g, g = 1/T and g = 1.

Empirical Bayes Two parametric empirical Bayes forecasts are reported. Both are im-
plemented using the n principal components for the orthogonal regressors and using a
common prior distribution G. The first empirical Bayes forecast uses the g-prior with
mean zero, where g and σ 2

ε are estimated from the OLS estimators and residuals. The
second empirical Bayes forecast uses a mixed normal prior, in which βj = 0 with prob-
ability 1 − π and is normally distributed, according to a g-prior with mean zero, with
probability π . In this case, the parameters g, π , and the scale σ 2 are estimated from the
OLS coefficients estimates, which allows for heteroskedasticity and autocorrelation in
the regression error (the autocorrelation is induced by the overlapping observations in
the direct multiperiod-ahead forecasts).
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7.2. Data and comparison methodology

Data The data set consists of 131 monthly U.S. economic time series (industrial pro-
duction plus 130 predictor variables) observed from 1959:1–2003:12. The data set is
an updated version of the data set used in Stock and Watson (1999). The predictors in-
clude series in 14 categories: real output and income; employment and hours; real retail,
manufacturing and trade sales; consumption; housing starts and sales; real inventories;
orders; stock prices; exchange rates; interest rates and spreads; money and credit quan-
tity aggregates; price indexes; average hourly earnings; and miscellaneous. The series
were all transformed to be stationary by taking first or second differences, logarithms, or
first or second differences of logarithms, following standard practice. The list of series
and transformations are given in Stock and Watson (2004a).

Method for forecast comparisons All forecasts are pseudo-out-of-sample and were
computed recursively (demeaning, standardization, model selection, and all model es-
timation, including any hyperparameter estimation, was done recursively). The period
for forecast comparison is 1974:7–(2003:12-h). All regressions start in 1961:1, with
earlier observations used for initial conditions. Forecast risk is evaluated using the
mean squared forecast errors (MSFEs) over the forecast period, relative to the AR(AIC)
benchmark.

7.3. Empirical results

The results are summarized in Table 1. These results are taken from Stock and Wat-
son (2004a), which reports results for other variations on these methods and for more
variables to be forecasted. Because the entries are MSFEs, relative to the AR(AIC)
benchmark, entries less than one indicate a MSFE improvement over the AR(AIC) fore-
cast. As indicated in the first row, the use of AIC to select the benchmark model is not
particularly important for these results: the performance of an AR(4) and the AR(AIC)
are nearly identical. More generally, the results in Table 1 are robust to changes in the
details of forecast construction, for example, using an information criterion to select lag
lengths.

It would be inappropriate to treat this comparison, using a single sample period and
a single target variable, as a horse race that can determine which of these methods is
“best”. Still, the results in Table 1 suggest some broad conclusions. Most importantly,
the results confirm that it is possible to make substantial improvements over the uni-
variate benchmark if one uses appropriate methods for handling this large data set. At
forecast horizons of one through six months, these forecasts can reduce the AR(AIC)
benchmark by 15% to 33%. Moreover, as expected theoretically, the OLS forecast with
all 130 predictors much performs much worse than the univariate benchmark.

As found in the research discussed in Section 4, the DFM forecasts using only a few
factors – in this case, three – improve substantially upon the benchmark. For the fore-
casts of industrial production, there seems to be some benefit from computing the factors
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Table 1
Forecasts of U.S. industrial production growth using 130 monthly predictors: Relative mean square forecast

errors for various forecasting methods

Method 1 3 6 12

Univariate benchmarks
AR(AIC) 1.00 1.00 1.00 1.00
AR(4) 0.99 1.00 0.99 0.99

Multivariate forecasts
(1) OLS 1.78 1.45 2.27 2.39
(2) Combination forecasts

Mean 0.95 0.93 0.87 0.87
SSR-weighted average 0.85 0.95 0.96 1.16

(3) DFM
PCA(3, 4) 0.83 0.70 0.74 0.87
Diagonal weighted PC(3, 4) 0.83 0.73 0.83 0.96
Weighted PC(3, 4) 0.82 0.70 0.66 0.76

(4) BMA
X’s, g = 1/T 0.83 0.79 1.18 1.50
Principal components, g = 1 0.85 0.75 0.83 0.92
Principal components, g = 1/T 0.85 0.78 1.04 1.50

(5) Empirical Bayes
Parametric/g-prior 1.00 1.04 1.56 1.92
Parametric/mixed normal prior 0.93 0.75 0.81 0.89

Notes: Entries are relative MSFEs, relative to the AR(AIC) benchmark. All forecasts are recursive (pseudo-
out-of-sample), and the MSFEs were computed over the period 1974:7–(2003:12-h). The various columns
correspond to forecasts of 1, 3, 6, and 12-month growth, where all the multiperiod forecasts were computed
by direct (not iterated) methods. The forecasting methods are described in the text.

using weighted PCA rather than PCA, with the most consistent improvements arising
from using the nondiagonal weighting scheme. Interestingly, nothing is gained by trying
to exploit the information in the additional factors beyond the third using either BMA,
applied to the PCA factors, or empirical Bayes methods. In addition, applying BMA
to the original X’s does not yield substantial improvements. Although simple mean
averaging of individual ADL forecasts improves upon the autoregressive benchmark,
the simple combination forecasts do not achieve the performance of the more sophis-
ticated methods. The more complete analysis in Stock and Watson (2004a) shows that
this interesting finding holds for other horizons and for forecasts of other U.S. series:
low-dimensional forecasts using the first few PCA or weighted PCA estimators of the
factors forecast as well or better than the methods like BMA that use many more factors.

A question of interest is how similar these different forecasting methods are. All the
forecasts use information in lagged Yt , but they differ in the way they handle infor-
mation in Xt . One way to compare the treatment of Xt by two forecasting methods
is to compare the partial correlations of the in-sample predicted values from the two
methods, after controlling for lagged values of Yt . Table 2 reports these partial corre-
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Table 2
Partial correlations between large-n forecasts, given four lags of Yt

Method (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Combination: mean 1.00
(2) Combination: SSR-wtd 0.63 1.00
(3) PCA(3, 4) 0.71 0.48 1.00
(4) Diagonal wtd PC(3, 4) 0.66 0.56 0.90 1.00
(5) Weighted PC(3, 4) 0.78 0.57 0.82 0.86 1.00
(6) BMA/X’s, g = 1/T 0.73 0.77 0.67 0.71 0.71 1.00
(7) BMA/PC’s, g = 1 0.76 0.61 0.62 0.61 0.72 0.82 1.00
(8) BMA/PC’s, g = 1/T 0.77 0.62 0.68 0.68 0.77 0.80 0.95 1.00
(9) PEB/g-prior 0.68 0.56 0.52 0.50 0.60 0.77 0.97 0.85 1.00
(10) PEB/mixed 0.79 0.63 0.70 0.70 0.80 0.82 0.96 0.99 0.87 1.00

Notes: The forecasting methods are defined in the text. Entries are the partial correlations between the in-
sample predicted values from the different forecasting models, all estimated using Yt+1 as the dependent
variable and computed over the full forecast period, where the partial correlations are computed using the
residuals from the projections of the in-sample predicted values of the two forecasting methods being corre-
lated onto four lagged values of Yt .

lations for the methods in Table 1, based on full-sample one-step ahead regressions.
The interesting feature of Table 2 is that the partial correlations among some of these
methods is quite low, even for methods that have very similar MSFEs. For example, the
PCA(3, 4) forecast and the BMA/X forecast with g = 1/T both have relative MSFE
of 0.83, but the partial correlation of their in-sample predicted values is only 0.67. This
suggests that the forecasting methods in Table 2 imply substantially different weights
on the original Xt data, which suggests that there could remain room for improvement
upon the forecasting methods in Table 2.

8. Discussion

The past few years have seen considerable progress towards the goal of exploiting the
wealth of data that is available for economic forecasting in real time. As the application
to forecasting industrial production in Section 7 illustrates, these methods can make
substantial improvements upon benchmark univariate models. Moreover, the empirical
work discussed in this review makes the case that these forecasts improve not just upon
autoregressive benchmarks, but upon standard multivariate forecasting models.

Despite this progress, the methods surveyed in this chapter are limited in at least
three important respects, and work remains to be done. First, these methods are those
that have been studied most intensively for economic forecasting, but they are not the
only methods available. For example, Inoue and Kilian (2003) examine forecasts of
U.S. inflation with n = 26 using bagging, a weighting scheme in which the weights
are produced by bootstrapping forecasts based on pretest model selection. They report
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improvements over PCA factor forecasts based on these 26 predictors. As mentioned
in the Introduction, Bayesian VARs are now capable of handling a score or more of
predictors, and a potential advantage of Bayesian VARs is that they can produce iterated
multistep forecasts. Also, there are alternative model selection methods in the statistics
literature that have not yet been explored in economic forecasting applications, e.g., the
LARS method [Efron et al. (2004)] or procedures to control the false discovery rate
[Benjamini and Hochberg (1995)].

Second, all these forecasts are linear. Although the economic forecasting literature
contains instances in which forecasts are improved by allowing for specific types of
nonlinearity, introducing nonlinearities has the effect of dramatically increasing the
dimensionality of the forecasting models. To the best of our knowledge, nonlinear fore-
casting with many predictors remains unexplored in economic applications.

Third, changes in the macroeconomy and in economic policy in general produces
linear forecasting relations that are unstable, and indeed there is considerable empirical
evidence of this type of nonstationarity in low-dimensional economic forecasting mod-
els [e.g., Clements and Hendry (1999), Stock and Watson (1996, 2003)]. This survey
has discussed some theoretical arguments and empirical evidence suggesting that some
of this instability can be mitigated by making high-dimensional forecasts: in a sense,
the instability in individual forecasting relations might, in some cases, average out. But
whether this is the case generally, and if so which forecasting methods are best able to
mitigate this instability, largely remains unexplored.

References

Aiolfi, M., Timmermann, A. (2004). “Persistence in forecasting performance and conditional combination
strategies”. Journal of Econometrics. In press.

Altissimo, F., Bassanetti, A., Cristadoro, R., Forni, M., Lippi, M., Reichlin, L., Veronese, G. (2001). “The
CEPR – Bank of Italy indicator”. Bank of Italy. Manuscript.

Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis, second ed. Wiley, New York.
Artis, M., Banerjee, A., Marcellino, M. (2001). “Factor forecasts for the UK”. Bocconi University – IGIER.

Manuscript.
Avramov, D. (2002). “Stock return predictability and model uncertainty”. Journal of Financial Economics 64,

423–458.
Bai, J. (2003). “Inferential theory for factor models of large dimensions”. Econometrica 71, 135–171.
Bai, J., Ng, S. (2002). “Determining the number of factors in approximate factor models”. Econometrica 70,

191–221.
Bates, J.M., Granger, C.W.J. (1969). “The combination of forecasts”. Operations Research Quarterly 20,

451–468.
Benjamini, Y., Hochberg, Y. (1995). “Controlling the false discovery rate: A practical and powerful approach

to multiple testing”. Journal of the Royal Statistical Society, Series B 57, 289–300.
Bernanke, B.S., Boivin, J. (2003). “Monetary policy in a data-rich environment”. Journal of Monetary Eco-

nomics 50, 525–546.
Bernanke, B.S., Boivin, J., Eliasz, P. (2005). “Measuring the effects of monetary policy: A factor-augmented

vector autoregressive (FAVAR) approach”. Quarterly Journal of Economics 120, 387–422.
Bickel, P., Klaassen, C.A.J., Ritov, Y., Wellner, J.A. (1993). “Efficient and Adaptive Estimation for Semipara-

metric Models”. Johns Hopkins University Press, Baltimore, MD.



Ch. 10: Forecasting with Many Predictors 551

Boivin, J., Ng, S. (2003). “Are more data always better for factor analysis?” NBER. Working Paper No. 9829.
Boivin, J., Ng, S. (2005). “Understanding and comparing factor-based forecasts”. NBER. Working Paper No.

11285.
Brillinger, D.R. (1964). “A frequency approach to the techniques of principal components, factor analysis

and canonical variates in the case of stationary time series”. Royal Statistical Society Conference, Cardiff
Wales. Invited Paper. Available at http://stat-www.berkeley.edu/users/brill/papers.html.

Brillinger, D.R. (1981). “Time Series: Data Analysis and Theory”, expanded ed. Holden-Day, San Francisco.
Brisson, M., Campbell, B., Galbraith, J.W. (2002). “Forecasting some low-predictability time series using

diffusion indices”. CIRANO. Manuscript.
Carlin, B., Louis, T.A. (1996). Bayes and Empirical Bayes Methods for Data Analysis. Monographs on Sta-

tistics and Probability, vol. 69. Chapman and Hall, Boca Raton.
Chamberlain, G., Rothschild, M. (1983). “Arbitrage factor structure, and mean-variance analysis of large asset

markets”. Econometrica 51, 1281–1304.
Chan, L., Stock, J.H., Watson, M. (1999). “A dynamic factor model framework for forecast combination”.

Spanish Economic Review 1, 91–121.
Chipman, H., George, E.I., McCulloch, R.E. (2001). The Practical Implementation of Bayesian Model Selec-

tion. IMS Lecture Notes Monograph Series, vol. 38. Institute of Mathematical Statistics.
Clayton-Matthews, A., Crone, T. (2003). “Consistent economic indexes for the 50 states”. Federal Reserve

Bank of Philadelphia. Manuscript.
Clemen, R.T. (1989). “Combining forecasts: A review and annotated bibliography”. International Journal of

Forecasting 5, 559–583.
Clements, M.P., Hendry, D.F. (1999). Forecasting Non-Stationary Economic Time Series. MIT Press, Cam-

bridge, MA.
Clyde, M. (1999a). “Bayesian model averaging and model search strategies (with discussion)”. In: Bernardo,

J.M., Dawid, A.P., Berger, J.O., Smith, A.F.M. (Eds.), Bayesian Statistics, vol. 6. Oxford University Press,
Oxford.

Clyde, M. (1999b). “Comment on ‘Bayesian model averaging: A tutorial”’. Statistical Science 14, 401–404.
Clyde, M., Desimone, H., Parmigiani, G. (1996). “Prediction via orthogonalized model mixing”. Journal of

the American Statistical Association 91, 1197–1208.
Clyde, M., George, E.I. (2000). “Flexible empirical Bayes estimation for wavelets”. Journal of the Royal

Statistical Society, Series B 62 (3), 681–698.
Connor, G., Korajczyk, R.A. (1986). “Performance measurement with the arbitrage pricing theory”. Journal

of Financial Economics 15, 373–394.
Connor, G., Korajczyk, R.A. (1988). “Risk and return in an equilibrium APT: Application of a new test

methodology”. Journal of Financial Economics 21, 255–289.
Cremers, K.J.M. (2002). “Stock return predictability: A Bayesian model selection perspective”. The Review

of Financial Studies 15, 1223–1249.
Diebold, F.X., Lopez, J.A. (1996). “Forecast evaluation and combination”. In: Maddala, G.S., Rao, C.R.

(Eds.), Handbook of Statistics, vol. 14. North-Holland, Amsterdam.
Diebold, F.X., Pauly, P. (1987). “Structural change and the combination of forecasts”. Journal of Forecast-

ing 6, 21–40.
Diebold, F.X., Pauly, P. (1990). “The use of prior information in forecast combination”. International Journal

of Forecasting 6, 503–508.
Ding, A.A., Hwang, J.T.G. (1999). “Prediction intervals, factor analysis models, and high-dimensional em-

pirical linear prediction”. Journal of the American Statistical Association 94, 446–455.
Doan, T., Litterman, R., Sims, C.A. (1984). “Forecasting and conditional projection using realistic prior dis-

tributions”. Econometric Reviews 3, 1–100.
Efron, B., Morris, C. (1973). “Stein’s estimation rule and its competitors – An empirical Bayes approach”.

Journal of the American Statistical Association 68, 117–130.
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). “Least angle regression”. Annals of Statistics 32,

407–499.

http://stat-www.berkeley.edu/users/brill/papers.html


552 J.H. Stock and M.W. Watson

El Karoui, N. (2003). “On the largest eigenvalue of Wishart matrices with identity covariance when n, p and
p/n → ∞”. Stanford Statistics Department Technical Report 2003-25.

Engle, R.F., Watson, M.W. (1981). “A one-factor multivariate time series model of metropolitan wage rates”.
Journal of the American Statistical Association 76 (376), 774–781.

Favero, C.A., Marcellino, M. (2001). “Large datasets, small models and monetary policy in Europe”. CEPR.
Working Paper No. 3098.

Favero, C.A., Marcellino, M., Neglia, F. (2002). “Principal components at work: The empirical analysis of
monetary policy with large datasets”. Bocconi University. IGIER Working Paper No. 223.

Federal Reserve Bank of Chicago. “CFNAI background release”. Available at http://www.chicagofed.org/
economic_research_and_data/cfnai.cfm.

Fernandez, C., Ley, E., Steel, M.F.J. (2001a). “Benchmark priors for Bayesian model averaging”. Journal of
Econometrics 100, 381–427.

Fernandez, C., Ley, E., Steel, M.F.J. (2001b). “Model uncertainty in cross-country growth regressions”. Jour-
nal of Applied Econometrics 16, 563–576.

Figlewski, S. (1983). “Optimal price forecasting using survey data”. Review of Economics and Statistics 65,
813–836.

Figlewski, S., Urich, T. (1983). “Optimal aggregation of money supply forecasts: Accuracy, profitability and
market efficiency”. The Journal of Finance 28, 695–710.

Forni, M., Reichlin, L. (1998). “Let’s get real: A dynamic factor analytical approach to disaggregated business
cycle”. Review of Economic Studies 65, 453–474.

Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2000). “The generalized factor model: Identification and esti-
mation”. The Review of Economics and Statistics 82, 540–554.

Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2003a). “Do financial variables help forecasting inflation and
real activity in the EURO area?” Journal of Monetary Economics 50, 1243–1255.

Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2003b). “The generalized dynamic factor model: One-sided
estimation and forecasting”. Manuscript.

Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2004). “The generalized factor model: Consistency and rates”.
Journal of Econometrics 119, 231–255.

Forni, M., Giannoni, D., Lippi, M., Reichlin, L. (2005). “Opening the black box: Structural factor models
with large cross-sections”. Manuscript, University of Rome.

George, E.I. (1999). “Bayesian Model Selection”. Encyclopedia of the Statistical Sciences Update, vol. 3.
Wiley, New York.

George, E.I., Foster, D.P. (2000). “Calibration and empirical Bayes variable selection”. Biometrika 87, 731–
747.

George, E.I., McCulloch, R.E. (1993). “Variable selection via Gibbs sampling”. Journal of the American
Statistical Association 88, 881–889.

George, E.I., McCulloch, R.E. (1997). “Approaches for Bayesian variable selection”. Statistica Sinica 7 (2),
339–373.

Geweke, J. (1977). “The dynamic factor analysis of economic time series”. In: Aigner, D.J., Goldberger, A.S.
(Eds.), Latent Variables in Socio-Economic Models. North-Holland, Amsterdam.

Geweke, J.F. (1996). “Variable selection and model comparison in regression”. In: Berger, J.O., Bernardo,
J.M., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, vol. 5. Oxford University Press, Oxford,
pp. 609–620.

Giannoni, D., Reichlin, L., Sala, L. (2002). “Tracking Greenspan: Systematic and unsystematic monetary
policy revisited”. ECARES. Manuscript.

Giannoni, D., Reichlin, L., Sala, L. (2004). “Monetary policy in real time”. NBER Macroeconomics An-
nual 2004, 161–200.

Granger, C.W.J., Ramanathan, R. (1984). “Improved methods of combining forecasting”. Journal of Forecast-
ing 3, 197–204.

Hannan, E.J., Deistler, M. (1988). The Statistical Theory of Linear Systems. Wiley, New York.
Hendry, D.F., Clements, M.P. (2002). “Pooling of forecasts”. Econometrics Journal 5, 1–26.

http://www.chicagofed.org/economic_research_and_data/cfnai.cfm
http://www.chicagofed.org/economic_research_and_data/cfnai.cfm


Ch. 10: Forecasting with Many Predictors 553

Hendry, D.F., Krolzig, H.-M. (1999). “Improving on ‘Data mining reconsidered’ by K.D. Hoover and
S.J. Perez”. Econometrics Journal 2, 41–58.

Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T. (1999). “Bayesian model averaging: A tutorial”.
Statistical Science 14, 382–417.

Inoue, A., Kilian, L. (2003). “Bagging time series models”. North Carolina State University. Manuscript.
James, A.T. (1964). “Distributions of matrix variates and latent roots derived from normal samples”. Annals

of Mathematical Statistics 35, 475–501.
James, W., Stein, C. (1960). “Estimation with quadratic loss”. Proceedings of the Fourth Berkeley Symposium

on Mathematical Statistics and Probability 1, 361–379.
Johnstone, I.M. (2001). “On the distribution of the largest eigenvalue in principal component analysis”. An-

nals of Statistics 29, 295–327.
Jones, C.S. (2001). “Extracting factors from heteroskedastic asset returns”. Journal of Financial Eco-

nomics 62, 293–325.
Kapetanios, G., Marcellino, M. (2002). “A comparison of estimation methods for dynamic factor models of

large dimensions”. Bocconi University – IGIER. Manuscript.
Kim, C.-J., Nelson, C.R. (1998). “Business cycle turning points, a new coincident index, and tests for duration

dependence based on a dynamic factor model with regime switching”. The Review of Economics and
Statistics 80, 188–201.

Kitchen, J., Monaco, R. (2003). “The U.S. Treasury staff’s real-time GDP forecast system”. Business Eco-
nomics, October.

Knox, T., Stock, J.H., Watson, M.W. (2001). “Empirical Bayes forecasts of one time series using many re-
gressors”. NBER. Technical Working Paper No. 269.

Koop, G., Potter, S. (2004). “Forecasting in dynamic factor models using Bayesian model averaging”. Econo-
metrics Journal 7, 550–565.

Kose, A., Otrok, C., Whiteman, C.H. (2003). “International business cycles: World, region, and country-
specific factors”. American Economic Review 93, 1216–1239.

Leamer, E.E. (1978). Specification Searches. Wiley, New York.
Leeper, E., Sims, C.A., Zha, T. (1996). “What does monetary policy do?” Brookings Papers on Economic

Activity 2, 1–63.
Lehmann, E.L., Casella, G. (1998). Theory of Point Estimation, second ed. Springer-Verlag, New York.
LeSage, J.P., Magura, M. (1992). “A mixture-model approach to combining forecasts”. Journal of Business

and Economic Statistics 3, 445–452.
Madigan, D.M., York, J. (1995). “Bayesian graphical models for discrete data”. International Statistical Re-

view 63, 215–232.
Maritz, J.S., Lwin, T. (1989). Empirical Bayes Methods, second ed. Chapman and Hall, London.
Miller, C.M., Clemen, R.T., Winkler, R.L. (1992). “The effect of nonstationarity on combined forecasts”.

International Journal of Forecasting 7, 515–529.
Min, C., Zellner, A. (1993). “Bayesian and non-Bayesian methods for combining models and forecasts with

applications to forecasting international growth rates”. Journal of Econometrics 56, 89–118.
Newbold, P., Harvey, D.I. (2002). “Forecast combination and encompassing”. In: Clements, M.P., Hendry,

D.F. (Eds.), A Companion to Economic Forecasting. Blackwell Press, Oxford, pp. 268–283.
Otrok, C., Silos, P., Whiteman, C.H. (2003). “Bayesian dynamic factor models for large datasets: Measuring

and forecasting macroeconomic data”. University of Iowa. Manuscript.
Otrok, C., Whiteman, C.H. (1998). “Bayesian leading indicators: Measuring and predicting economic condi-

tions in Iowa”. International Economic Review 39, 997–1014.
Peña, D., Poncela, P. (2004). “Forecasting with nonstationary dynamic factor models”. Journal of Economet-

rics 119, 291–321.
Quah, D., Sargent, T.J. (1993). “A dynamic index model for large cross sections”. In: Stock, J.H., Watson,

M.W. (Eds.), Business Cycles, Indicators, and Forecasting. University of Chicago Press for the NBER,
Chicago. Chapter 7.

Raftery, A.E., Madigan, D., Hoeting, J.A. (1997). “Bayesian model averaging for linear regression models”.
Journal of the American Statistical Association 92, 179–191.



554 J.H. Stock and M.W. Watson

Robbins, H. (1955). “An empirical Bayes approach to statistics”. Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Probability 1, 157–164.

Robbins, H. (1964). “The empirical Bayes approach to statistical problems”. Annals of Mathematical Statis-
tics 35, 1–20.

Sargent, T.J. (1989). “Two models of measurements and the investment accelerator”. The Journal of Political
Economy 97, 251–287.

Sargent, T.J., Sims, C.A. (1977). “Business cycle modeling without pretending to have too much a priori
economic theory”. In: Sims, C., et al. (Eds.), New Methods in Business Cycle Research. Federal Reserve
Bank of Minneapolis, Minneapolis.

Sessions, D.N., Chatterjee, S. (1989). “The combining of forecasts using recursive techniques with non-
stationary weights”. Journal of Forecasting 8, 239–251.

Stein, C. (1955). “Inadmissibility of the usual estimator for the mean of multivariate normal distribution”.
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1, 197–206.

Stock, J.H., Watson, M.W. (1989). “New indexes of coincident and leading economic indicators”. NBER
Macroeconomics Annual, 351–393.

Stock, J.H., Watson, M.W. (1991). “A probability model of the coincident economic indicators”. In:
Moore, G., Lahiri, K. (Eds.), The Leading Economic Indicators: New Approaches and Forecasting
Records. Cambridge University Press, Cambridge, pp. 63–90.

Stock, J.H., Watson, M.W. (1996). “Evidence on structural instability in macroeconomic time series rela-
tions”. Journal of Business and Economic Statistics 14, 11–30.

Stock, J.H., Watson, M.W. (1998). “Median unbiased estimation of coefficient variance in a time varying
parameter model”. Journal of the American Statistical Association 93, 349–358.

Stock, J.H., Watson, M.W. (1999). “Forecasting inflation”. Journal of Monetary Economics 44, 293–335.
Stock, J.H., Watson, M.W. (2002a). “Macroeconomic forecasting using diffusion indexes”. Journal of Busi-

ness and Economic Statistics 20, 147–162.
Stock, J.H., Watson, M.W. (2002b). “Forecasting using principal components from a large number of predic-

tors”. Journal of the American Statistical Association 97, 1167–1179.
Stock, J.H., Watson, M.W. (2003). “Forecasting output and inflation: The role of asset prices”. Journal of

Economic Literature 41, 788–829.
Stock, J.H., Watson, M.W. (2004a). “An empirical comparison of methods for forecasting using many predic-

tors”. Manuscript.
Stock, J.H., Watson, M.W. (2004b). “Combination forecasts of output growth in a seven-country data set”.

Journal of Forecasting. In press.
Stock, J.H., Watson, M.W. (2005). “Implications of dynamic factor models for VAR analysis”. Manuscript.
Wright, J.H. (2003). “Bayesian model averaging and exchange rate forecasts”. Board of Governors of the

Federal Reserve System. International Finance Discussion Paper No. 779.
Wright, J.H. (2004). “Forecasting inflation by Bayesian model averaging”. Board of Governors of the Federal

Reserve System. Manuscript.
Zellner, A. (1986). “On assessing prior distributions and Bayesian regression analysis with g-prior distribu-

tions”. In: Goel, P.K., Zellner, A. (Eds.), Bayesian Inference and Decision Techniques: Essays in Honor
of Bruno de Finietti. North-Holland, Amsterdam, pp. 233–243.

Zhang, C.-H. (2003). “Compound decision theory and empirical Bayes methods”. Annals of Statistics 31,
379–390.

Zhang, C.-H. (2005). “General empirical Bayes wavelet methods and exactly adaptive minimax estimation”.
Annals of Statistics 33, 54–100.


	Forecasting with Many Predictors
	Abstract
	Keywords
	Introduction
	Many predictors: Opportunities and challenges
	Coverage of this chapter

	The forecasting environment and pitfalls of standard forecasting methods
	Notation and assumptions
	Pitfalls of using standard forecasting methods when n is large

	Forecast combination
	Forecast combining setup and notation
	Large-n forecast combining methods
	Survey of the empirical literature

	Dynamic factor models and principal components analysis
	The dynamic factor model
	DFM estimation by maximum likelihood
	DFM estimation by principal components analysis
	DFM estimation by dynamic principal components analysis
	DFM estimation by Bayes methods
	Survey of the empirical literature

	Bayesian model averaging
	Fundamentals of Bayesian model averaging
	Survey of the empirical literature

	Empirical Bayes methods
	Empirical Bayes methods for large-n linear forecasting

	Empirical illustration
	Forecasting methods
	Data and comparison methodology
	Empirical results

	Discussion
	References


