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GMM WITH WEAK IDENTIFICATION

BY JAMES H. STOCK AND JONATHAN H. WRIGHT1

This paper develops asymptotic distribution theory for GMM estimators and test
statistics when some or all of the parameters are weakly identified. General results are
obtained and are specialized to two important cases: linear instrumental variables regres-
sion and Euler equations estimation of the CCAPM. Numerical results for the CCAPM
demonstrate that weak-identification asymptotics explains the breakdown of conventional
GMM procedures documented in previous Monte Carlo studies. Confidence sets immune
to weak identification are proposed. We use these results to inform an empirical
investigation of various CCAPM specifications; the substantive conclusions reached differ
from those obtained using conventional methods.

KEYWORDS: Instrumental variables, empirical processes, Euler equation estimation,
asset pricing.

1. INTRODUCTION

THERE IS CONSIDERABLE EVIDENCE that asymptotic normality often provides a
poor approximation to the sampling distributions of generalized method of

Ž .moments GMM estimators and test statistics in designs and sample sizes of
empirical relevance in economics. Examples of this discrepancy in estimation of

Ž .stochastic Euler equations are investigated by Tauchen 1986 , Kocherlakota
Ž . Ž . Ž .1990 , Neeley 1994 , West and Wilcox 1994 , Fuhrer, Moore, and Schuh
Ž . Ž .1995 , and Hansen, Heaton, and Yaron 1996 ; also see the articles in the 1996
special issue of the Journal of Business and Economic Statistics on GMM
estimation. Depending on the design, the sampling distributions of GMM
estimators can be skewed and can have heavy tails, and likelihood ratio tests of
the parameter values and tests of overidentifying restrictions can exhibit sub-
stantial size distortions. Although these problems are well documented, their
source is not well understood.

This paper investigates one possible source of these problems in GMM with
instrumental variables: that the instruments are, loosely speaking, only weakly
correlated with the relevant first order condition so that the parameters are
poorly identified. In the linear simultaneous equations model, it is well known
that when the instruments are weak in the sense that they have a low correlation
with the included endogenous variables, then the large-sample normal approxi-

Ž .mations work poorly; see, for example, Anderson and Sawa 1979 , Nelson and

1 The authors thank Jushan Bai, John Campbell, John Heaton, Peter Phillips, Doug Staiger, Mark
Watson, the editor, and three anonymous referees for helpful discussions andror comments on
earlier drafts; George Tauchen for providing us with computer code for generating artificial asset
data; and John Campbell, Luis Viceira, and Matthew van Vlack for providing us with the U.S. asset
data. A previous draft of this paper was circulated under the title, ‘‘Asymptotics for GMM

Ž .Estimators with Weak Instruments’’ NBER Technical Working Paper a198 . This research was
supported in part by National Science Foundation Grant No. SBR-9409629.
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Ž . Ž .Startz 1990 , and Maddala and Jeong 1992 . Intuition suggests that a similar
phenomenon could be important in nonlinear GMM problems. For example,
because lagged asset returns and consumption growth have low correlations with
current returns and consumption growth in postwar U.S. data, similar problems
might arise in nonlinear asset pricing models in which lagged consumption and
asset returns are used as instruments for a function of current returns and
consumption growth.

We therefore address four questions. First, is it possible to develop an
asymptotic theory for nonlinear GMM estimation when some or all of the
parameters are weakly identified? Second, does this theory explain the puzzling
failures found in Monte Carlo studies of conventional GMM asymptotics?
Third, if so, are there alternative econometric procedures that perform reliably
even if there is weak identification? Fourth, do these alternative procedures
produce different results than the conventional methods in empirical applica-
tions?

We find affirmative answers to all four questions. We develop nonstandard
asymptotic approximations to the distributions of GMM estimators and test
statistics when some or all of the parameters are weakly identified, in a sense
made precise in Section 2. In Section 4 we present a Monte Carlo study,

Ž .modeled on that of Hansen, Heaton, and Yaron 1996 , of GMM estimation of
Ž .the intertemporal consumption capital asset pricing model CCAPM . In this

study, the nonstandard asymptotic approximations generally are found to match
closely the finite sample distributions, although the usual normal approximations
do not.2

The weak-identification asymptotic approximations to the distributions of the
GMM estimators depend on nuisance parameters that are typically unknown in
empirical applications. Thus these approximating distributions cannot be used
directly for inference. Nonetheless, our asymptotic theory does lead to feasible
methods for hypothesis testing and for the construction of confidence sets.
These methods do not require knowledge of the nuisance parameters and yield
asymptotically valid tests and confidence sets even if there are weakly identified
parameters. These confidence sets are constructed by direct comparison of an
objective function, evaluated over the entire parameter space, to a chi-squared
critical value.

These findings are used to guide an empirical investigation of the CCAPM,
using aggregate data from the United States, under three specifications of

Ž .preferences: constant relative risk aversion CRRA utility, habit formationr
Ž Ž .. Ž .durability Dunn and Singleton 1986 , and Epstein-Zin 1989, 1991 prefer-

ences. As predicted by our Monte Carlo study, there is considerable evidence of

2 Some Monte Carlo studies have suggested that another possible source of the poor performance
of the conventional normal approximation is finite sample discrepancies between the GMM

Ž .weighting matrix and its population value; see Pagan and Robertson 1997 for a discussion. The
alternative asymptotic theory developed in this paper ignores this possibility and simply assumes that

Ž .this weight matrix is consistent the details are given in Section 2 , so as to focus solely on issues
related to weak identification.
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weak identification, and the new confidence sets we propose in this paper
typically differ from conventional GMM confidence sets.

Although there is a growing literature on instrumental variables estimation
with weak identification, it almost exclusively considers linear models. In the

Ž .linear case, the most closely related paper is Staiger and Stock 1997 . They
consider single equation estimators and tests, and their main results obtain as a
special case of ours. However, the technical approach in this paper is quite

Ž .different than in Staiger and Stock 1997 : their method of taking limits of first
order conditions seems not to generalize to the nonlinear case, so we consider
instead limits of the GMM objective function directly using empirical process
methods. Other recent papers that study weak instruments in the linear case

Ž . Ž .include Hall, Rudebusch, and Wilcox 1996 , Pagan and Robertson 1997, 1998 ,
Ž . Ž .Chamberlain and Imbens 1996 , Nelson, Startz, and Zivot 1998 , Wang and

Ž . Ž . Ž .Zivot 1998 , and Shea 1997 . Sargan 1983 considered models that are linear
in the variables but nonlinear in the parameters, in which the derivative of the
population objective function with respect to the parameter vector is not of full
rank but the parameters are still locally identifiable in the sense of Fisher
Ž .1966 . He argued that in this circumstance estimators are consistent but not
asymptotically normal, and he used local asymptotic expansions to approximate
their distributions. None of these treatments handles GMM Euler equation
estimation in the general nonlinear case.

The main theoretical results are laid out in Section 2. These results rely on
high level assumptions that accommodate applications to either time series or
cross-sectional data. In Section 3, explicit formulas are provided for the special
case of single equation estimation in the linear simultaneous equations model.
Section 4 reports on a Monte Carlo study of GMM estimation of the parameters
of the power utility function in a representative agent model of consumption. An
empirical investigation of the CCAPM using U.S. data is reported in Section 5.
Section 6 concludes.

2. ASYMPTOTIC REPRESENTATIONS: GENERAL RESULTS

This section provides limiting representations of a GMM estimator with a
general weighting matrix when some of the parameters are weakly identified.
These general results are then used to obtain somewhat simpler expressions for
some specific estimators and test statistics, in particular the one-step and
two-step estimators and associated tests and what Hansen, Heaton, and Yaron
Ž .1996 term the ‘‘continuous updating’’ estimator.

2.1. The GMM Estimator

Let u be an n-dimensional parameter vector with true value u , which is0
assumed to be in the interior of the compact parameter space Q . The true
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parameter value satisfies the G equations,

Ž . w Ž . x2.1 E h Y , u ¬F s0,t 0 t

where F is the information set at time t. Let Z be a K-dimensional vector oft t
�Ž . 4instruments contained in F . The data are Y , Z , ts1, . . . , T .t t t

ˆ Ž Ž ..The GMM estimator u minimizes the objective function S u ; u u overT T
ugQ , where

XT T
y1r2 y1r2Ž . Ž . Ž . Ž . Ž .2.2 S u ; u u s T f u W u u T f u ,Ž . Ž .Ý ÝT T t T T s

ts1 ss1

Ž . Ž . Ž Ž .. Ž .where f u sh Y , u mZ and where W u u is an O 1 positive definitet t t T T p
GK=GK weighting matrix. The somewhat cumbersome notation for the
weighting matrix allows for various special cases. For the one-step GMM
estimator, W does not depend on u and typically does not depend on the data;T
for example it might be the identity matrix. For the efficient two-step estimator,
W is computed using a preliminary estimator of u , in which case u does notT T
depend on u . For the efficient continuous updating estimator, W is continu-T
ously evaluated at the parameter values used for the moments, in which case

Ž .u u su . For some of the test statistics considered below, W is evaluated at aT T
Ž .fixed hypothesized value of u , say u ; in this case u u su . For notationalH T H

Ž .convenience, u u will simply be denoted u unless the explicit notation isT T
necessary.

We adopt the following additional notation. As is discussed in Section 2.3,
some expectation operators E depend on T , but this dependence is suppressed
for notational convenience. Let

T
y1r2Ž . w Ž . Ž .xC u sT f u yEf u ,ÝT t t

ts1
XŽ . Ž . Ž .V u , u s lim EC u C u ,1 2 T 1 T 2

Tª`

T
Xy1Q s lim T EZ Z ,ÝZZ t t

Tª` ts1

T
y1Ž . � w Ž . Ž .xS u s lim T E h Y , u yEh Y , uÝhh t t

Tª` ts1
Xw Ž . Ž .x 4= h Y , u yEh Y , u , andt t

T
Xy1Q̂ sT Z Z ;ÝZZ t t

ts1

w Ž . Ž . xV , S , and Q are assumed to be finite. If cov h Y , u , h Y , u ¬Z , Z doeshh ZZ t s t s
not depend on Z and Z , then the errors are conditionally homoskedastic andt s

Ž . Ž . Ž . Ž .2.3 V u , u sS u mQ conditional homoskedasticity .0 0 hh 0 ZZ
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2.2. Moment Assumptions

Our approach is to make so-called ‘‘high level’’ assumptions about the
properties of the moments that enter the GMM first order conditions. The
advantage of making high-level assumptions is that the results cover a wide
range of special cases. The disadvantage is that the assumptions must be
interpreted, and their plausibility checked, on a case by case basis. This process

Žof interpreting the assumptions in two leading cases linear IV estimation and
.the CCAPM is undertaken in Sections 3 and 4.

Ž .The first assumption is that C u obeys a central limit theorem:T 0

dŽ . Ž Ž ..ASSUMPTION A: C u ª N 0, V u , u .T 0 0 0

This assumption is local in the sense that it pertains to the properties of CT
only at u . This assumption typically will not be satisfied if the instruments are0
integrated of order one or higher.

The next, stronger assumption is that C obeys a functional central limitT
theorem, so that C treated as a function of u converges to a GaussianT
empirical process. Functional central limit theory and the related empirical

Ž .process literature in econometrics are surveyed by Andrews 1994 . Let ‘‘« ’’
denote weak convergence of random functions on Q with respect to the sup

Ž .norm; see Andrews 1994, Section 2 .

Ž .ASSUMPTION B: C «C , where C u is a Gaussian stochastic process on QT
Ž . Ž .X Ž .with mean zero and co¨ariance function EC u C u sV u , u .1 2 1 2

Assumption B implies Assumption A.
It is of course possible to provide primitive conditions that in turn imply

Assumption B. One such set of conditions applies to time series applications in
Ž .which f u is m-dependent:t

ASSUMPTION BX:
Ž . Ž .i f u is m-dependent;t
Ž . < Ž . Ž . < < < y1 T Ž 2qd .ii f u yf u FB u yu , where lim T Ý E B -` fort 1 t 2 t 1 2 T ª` ts1 t

some d)0;
Ž . < Ž . < 2qdiii sup E f u -` for some d)0.u gQ t

Ž .Weak convergence Assumption B follows from the convergence of the finite
Ž .dimensional distributions of C u , stochastic equicontinuity, and the totalT

Ž Ž .. XŽ . XŽ .boundedness of Q Andrews 1994 . Assumptions B i and B ii imply stochas-
Ž Ž .. XŽ .tic equicontinuity Andrews 1994, Theorems 1 and 2 . Assumptions B i and

XŽ .B iii imply the convergence of the finite dimensional distributions. The bound-
XŽ . Ž .edness of Q and Assumption B ii imply that f u is totally bounded.t
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2.3. Identification, Lack of Identification, and Weak Identification

Ž .Identification in GMM is a combined property of the function h Y , u , thet
instruments Z , and the weighting matrix W . Identification hinges on whethert T

Žthe population GMM moment conditions are satisfied uniquely. Assume as we
.shall below that W is positive definite. Then u is identified at u if usu isT 0 0

Ž .the unique solution of Ef u s0 for ugQ , where the expectation is, as usual,t
Ž .taken with respect to the true distribution for which usu , cf. Newey and0

Ž .McFadden 1994, Sec. 2.2.3 . An extreme version of lack of identification arises
Ž .when Ef u s0 for all ugQ , in which case we shall say that u is completelyt

unidentified at u .0
Our primary interest is not in whether u is strictly identified or unidentified,

but in the intermediate case in which u , or a subset of u , is weakly identified.
Ž .Because identification is a feature of Ef u , it is natural to characterize weakt

Ž . Ž .identification in terms of Ef u . In finite samples, Ef u , while nonzero fort t
u/u , might be small for a large set of u , so that the population objective0
function has large regions of plateaus or ridges; thus the population objective
function provides only limited ability to discriminate among a large set of

Ž .parameter values. If so, it is useful to think of u or a subset of u as being
weakly identified.

Our formal characterization of weak identification starts with an identity.
Ž X X.XFirst adopt some additional notation. Partition u as us a , b , where agA is

n =1 and will be treated as weakly identified, while bgB is n =1 and will be1 2
treated as strongly identified. With this notation, it will at times be convenient to
write functions of u interchangeably as functions of a and b ; for example

Ž . Ž . y1 T Ž . Ž .C u and C a , b are equivalent. Also, let ET Ý f a , b sm a , b .˜T T ts1 t T
Now write the identity

Ž . Ž . Ž . Ž . Ž .2.4 m a , b sm a , b qm a , b qm b˜ ˜ ˜ ˜T T 0 0 1T 2T

Ž . Ž . Ž . Ž . Ž .where m a , b s m a , b y m a , b and m b s m a , b y˜ ˜ ˜ ˜ ˜1T T T 0 2T T 0
Ž . Ž . Ž . Ž .m a , b . Because Ef a , b s0, m a , b s0, m a , b s0, and˜ ˜ ˜T 0 0 t 0 0 T 0 0 1T 0 0
Ž .m b s0.˜ 2T 0

The key idea in this paper, made precise in Assumption C below, is to treat
Ž . Ž .m b as large for b outside a neighborhood of b , but m a , b as small˜ ˜2T 0 1T

for all a and b. Thus b can be thought of as well identified, whereas a is
weakly identified in the sense that the population moment conditions are zero at
Ž .a , b but are very nearly zero for a/a . In other words, the population0 0 0
objective function is steep in b around b , but is nearly flat in a .0

Ž .The notion that b is well identified is implemented by assuming that m b˜ 2T
satisfies conventional identification conditions in the GMM literature. Specifi-

Ž . Ž .cally, we suppose that m b does not depend on T and to simplify notation˜ 2T
Ž . Ž . Ž . Ž .write m b s m b , where m b s 0, m b / 0 for b / b , and˜ 2T 2 2 0 2 0

Ž . X < m b rb has full column rank. If all the parameters are well identified sob2 0

that usb , this becomes the standard set of GMM identification conditions that,
with additional conditions on moments and dependence, lead to T 1r2-con-
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Žsistency and asymptotic normality of the GMM estimator of b cf. Newey and
Ž ..McFadden 1994 .
Ž . Ž .If, like m b , m u is nonzero for u/u and does not depend on T , then˜ ˜2T 1T 0

the usual asymptotic approximation would obtain for the distribution of the
GMM estimator of a . However, the purpose of this paper is to develop a
nonstandard distribution theory for a that embodies its weak identification.
Whereas conventional asymptotics for estimators of well-identified parameters
rests on the assumption that it suffices to consider only those values of b close
to b , we question whether this is adequate to approximate the distributions of0
estimators of weakly identified parameters. We therefore adopt the device of
linking the expectation of the moment condition to the sample size so that, even
asymptotically, the population objective function is finite globally in a , although
it is finite in b only in a local neighborhood of b . This entails considering a0

Ž .sequence of models in which Ef u depends on T for u/u , but the truet 0
Ž .value u does not depend on T. Specifically, we adopt the nesting, m u s˜0 1T

y1r2 Ž . Ž y1r2 . Ž . y1r2T m u qo T , where m u is bounded. The choice of the T rate1 1
in this nesting yields tractable asymptotic approximations to the sampling
distributions of GMM estimators and test statistics that reflect the fact that
weak identification results in an objective function that is nearly flat in a .3

Ž . ŽIn the limiting special case that m u does not depend on u and thus1T

. y1 T Ž . Ž .equals zero , ET Ý f u sm b , so that a is completely unidentified.ts1 t 2
Ž .This would occur if, for example, Eh Y , a , b does not depend on a and Y andt t

Z are independent, so that the instruments are irrelevant. This is the so-calledt
Ž .partially identified model studied in the linear case by Phillips 1989 and Choi

Ž .and Phillips 1992 .
We thus have the following assumption:

y1 T 'Ž . Ž . Ž .ASSUMPTION C: ET Ý f u sm u r T qm b , where:ts1 t 1T 2
Ž . Ž . Ž . Ž . Ž .i m u ªm u uniformly in ugQ , m u s0, and m u is continuous1T 1 1 0 1

in u and is bounded on Q ;
Ž . Ž . Ž . Ž . Ž .ii m b s0, m b /0 for b/b , R b is continuous, and R b has2 0 2 0 0

Ž . Ž . Xfull column rank, where R b s m b rb is GK=n .2 2

Identification also depends on the weighting matrix W , which, as wasT

mentioned above, is assumed to have a positive definite uniform limit.

3 Ž .In the terminology of Davidson and MacKinnon 1993 , this is a drifting DGP, conceptually akin
to the sequence of models used to study local asymptotic power of a test against a Pitman drift. Such
local nestings can be a useful device for approximating sampling distributions in the region of
knife-edge special cases. An example is the so-called local to unity model of an autoregression with a

Ž Ž . Ž . Ž . Ž ..nearly unit root Bobkoski 1983 , Cavanagh 1985 , Chan and Wei 1987 , Phillips 1987 . An
unusual feature here is that the local parameter is in general infinite dimensional in the sense that it

Ž .is the function m u .1
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p
Ž . Ž .ASSUMPTION D: W is positï e definite and W u ª W u uniformly in u ,T T

Ž .where W u is a symmetric nonrandom GK=GK matrix that is continuous in u
and is positï e definite for all ugQ .

2.4. General Results

Theorem 1 provides a limiting representation for the GMM estimator by
first obtaining a limiting empirical process representation for the GMM ob-

ˆŽ . Ž Ž ..jective function; let b a solve argmin S a , b ; u a , b , let a solveˆb g B T T
ˆ ˆ ˆ ˆŽ Ž . Ž Ž ... Ž .argmin S a , b a ; u a , b a , and let bsb a .ˆa g A T T

Ž .THEOREM 1: Suppose that Assumptions B, C, and D hold, and that u u «T
Ž .u u uniformly in u . Then:

1r2 Ž .S a , b qbrT ; u a , bŽ .T 0 T 0

w Ž . Ž . Ž . x« C a , b qm a , b qR b b 90 1 0 0

Ž . w Ž . Ž . Ž . x=W u a , b C a , b qm a , b qR b bŽ .0 0 1 0 0

Ž .'S a , b; u a , b .Ž .0

X 1r2 ˆŽ . Ž Ž .. Ž Žii If S a , b; u a , b has a unique minimum, then a , T b yˆ0
dX UX UX U U. . Ž . Ž Ž ..b ª a , b , where a sargmin S a ; u a , b and where0 a g A 0

y1XU UŽ . Ž . Ž .b sy R b W u a , b R bŽ .0 0 0

X U U UŽ . Ž . w Ž . Ž .x=R b W u a , b C a , b qm a , b ,Ž .0 0 0 1 0

U Ž .S a ; u a , bŽ .0

Xw Ž . Ž .xs C a , b qm a , b0 1 0

Ž . w Ž . Ž .x=M a , b ; u a , b C a , b qm a , b , andŽ .0 0 0 1 0

Ž . Ž . Ž .M a , b ; u a , b sW u a , b yW u a , bŽ . Ž . Ž .0 0 0 0

y1XŽ . Ž . Ž . Ž .=R b R b W u a , b R bŽ .0 0 0 0

XŽ . Ž .=R b W u a , b .Ž .0 0

Proofs are given in Appendix A.
ˆ 'Several remarks are in order. First, although b is T -consistent, a is notˆ

Ž . Ž .consistent but rather is O 1 . Because m u is finite on Q , the objectivep 1
Ž . Ž .function S a , b ; u is uniformly O 1 , so a could not be consistentlyT 0 T p

estimated even if b were known. The lack of consistency of a stems fromˆ0
Ž .m u being finite under Assumption C.1
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1r2 ˆŽ .Second, in general the limiting distributions of a and T byb areˆ 0
nonstandard. It is not surprising that a has a nonnormal limiting distribution inˆ
this setting because its limiting representation is the solution to a global,
generally nonquadratic rather than a local quadratic minimization problem. The

1r2 ˆŽ .limiting nonnormality of T byb , which is perhaps more surprising be-0
cause b is well identified, arises from the inconsistent estimation of a . If â

Ž U . Ž U .were consistent for a , then the term C a , b qm a , b in the limiting0 0 1 0
U Ž .expression for b would simplify to C a , b , u would have a nonrandom0 0

probability limit, and bU would be normally distributed with mean zero and the
usual GMM covariance matrix. However, the inconsistent estimation of a
implies that in general the population moments are not evaluated within a local
neighborhood of a and so impart a nonzero bias to the limiting representation.
In the special case that W does not depend on u , the extent of the asymptoticT T

Ž U . Ubias depends on Em a , b , where the expectation is taken over a . In1 0
general this expectation need not be zero even if aU is symmetrically dis-
tributed around a , and in any event the distribution of aU need not be0
centered around a , so in general this contribution to the bias is nonzero.0

Third, as a special case, these results provide limiting representations of the
Ž .estimators when a is completely unidentified in the sense that Ef a , b doest 0

Ž . Ž .not depend on a , so m a , b sm a , b s0. Then1 0 1 0 0

XU Ž . Ž . Ž . Ž .S a ; u a , b sC a , b M a , b ; u a , b C a , bŽ . Ž .0 0 0 0 0

U U Ž Ž ..and a«a sargmin S a ; u a , b . Complete characterizations of theseˆ a g A 0
Ž .distributions depend on V , W, and R b , which are specific to a given0

application.
Because the limiting distributions are nonstandard, confidence intervals for b

Ž . Ž Ž ..constructed by inverting the quasi-likelihood ratio LR statistic S u , u uT 0 T 0
ˆ ˆŽ Ž ..yS u , u u or the conventional Wald statistic will not in general be valid.T T

Ž .However, under weak conditions Assumption A confidence intervals can be
constructed directly from the objective function. This is a consequence of the
following theorems:

p
Ž . Ž .THEOREM 2: Suppose that Assumption A holds and W u ª W u sT 0 0

Ž .y1V u , u . Then0 0

d 2Ž .S u ; u ª x .T 0 0 G K

Ž .THEOREM 3: Suppose that Assumptions B, C, and D hold and that W u s0
Ž .y1V u , u . Then0 0

d 2ˆ ˆŽ . Ž .S a , b a ; a , b a ª x .Ž .T 0 0 0 0 G Kyn2
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Thus, despite the weak identification, at the true values of the parameters the
objective function has a standard asymptotic x 2 distribution if an efficient

Ž Ž .weighting matrix is used efficient in the usual sense that W u consistentlyT 0
Ž ..estimates the inverse of the covariance matrix of f u . Theorem 2 holdst 0

under quite weak conditions and does not involve any assumptions about
Ž .instrument validity except that the moment orthogonality condition Ef u s0t 0

holds; the only assumptions on the properties of sample moments needed for
Theorem 2 are ones at the true parameter value. Theorem 3 does not require

Ž .m u to be nonzero for u/u , but it does require that b be well identified in1 0
the sense of Assumption C. Under these stronger conditions, the concentrated
objective function has an asymptotic x 2 distribution.

Theorem 2 provides a straightforward method for constructing asymptotically
valid hypothesis tests and confidence sets, that is, tests and confidence sets with
asymptotic size and coverage equal to their respective nominal levels uniformly
over the parameter space. To perform an asymptotically valid test of the

Ž . 2hypothesis usu , reject if S u ; u exceeds the appropriate x critical0 T 0 0 G K
value. To construct an asymptotically valid confidence set, invert the test based

Ž . � Ž . 2 4 Ž .on S u ; u . That is, u : S u , u Fx is an asymptotic 100 1y r %T 0 0 0 T 0 0 G K , r

confidence set, where x 2 is the 100r% critical value of the x 2 distribution.G K , r G K
Alternatively, a confidence set for a alone can be constructed by inverting the

ˆ ˆŽ Ž . Ž ..test of asa based on S a , b a ; a , b a . Because they are based0 T 0 0 0 0
directly on the objective function S , we refer to these confidence sets as S-sets.T
Note that Theorems 2 and 3 apply only to the continuous updating objective
function, and in particular the S-sets cannot be formed using the two-step
objective function.

ŽConstruction of asymptotically valid confidence sets for subvectors of u other
.than a or subvectors of a is somewhat more difficult. One approach is to

Ž . Ž .construct a valid 100 1y r % set for u or a and to project out the other
Ž .elements; see, for example, Dufour 1997, Section 5.2 . A confidence set thus

constructed will be asymptotically conservative, with asymptotic coverage rate of
Ž .at least 100 1y r %.

The S-sets are related to standard GMM test statistics. Under conventional
Ž .asymptotics, S u ; u is asymptotically the sum of the LR statistic testingT 0 0

Ž .usu and Hansen’s 1982 J statistic testing the overidentifying conditions.0
Under weak-identification asymptotics, in the special case of the linear simulta-
neous equations model, S-sets are asymptotically equivalent to confidence sets

Ž .constructed by inverting the Anderson-Rubin 1949 test statistic.
The S-sets consist of parameter values at which one fails to reject the joint

hypothesis that usu and that the overidentifying conditions are valid, that is,0
w Ž . xE h Y , u ¬Z s0. This has some appealing consequences, but also requirest 0 t

care in interpretation. If the model is misspecified so that the overidentifying
conditions are invalid, S-sets can be null. If the instruments are weak or
irrelevant, it is possible that no parameter value will be rejected, that is, the
S-sets can contain the entire parameter space. The case of a small but nonempty
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S-set is, however, more ambiguous. The S-set could be small either because the
model is correctly specified and precisely estimated or because the model is
misspecified but the evidence is too weak to reject it entirely.4

2.5. Results for Specific GMM Estimators

We now provide explicit expressions for some common GMM estimators and
their associated test statistics. The estimators differ in their choice of the
weighting matrix W . Weighting matrices that are asymptotically equivalentT
under conventional assumptions need not be with weak identification, and
indeed can produce substantially different inferences.

The two-step and continuous updating estimators entail construction of an
efficient weighting matrix. We consider both heteroskedasticity robust and

y1 Ž N .y1nonrobust versions of the weighting matrix, respectively V and V , whereT T

T
Xy1˜ ˜ ˜ ˜ ˜Ž . Ž . Ž . Ž . Ž . Ž .2.5 V u sT f u yf u f u yf u ,ÝT t t

ts1

N ˜ ˆ ˜ ˆŽ . Ž . Ž .2.6 V u sS u mQ , whereT hh ZZ

T
Xy1ˆ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .S u sT h Y , u yh u h Y , u yh u ,Ž . Ž .Ýhh t t

ts1

T
y1˜ ˜Ž . Ž .f u sT f u , andÝ t

ts1

T
y1˜ ˜Ž .h u sT h Y , u .Ž .Ý t

ts1

ˆThe one-step estimator, u , is computed using W sI . The efficient two-step1 T G K
ˆestimator, u , minimizes the objective function with the efficient weight matrix2

evaluated at the one-step estimator, so in the heteroskedasticity-robust case
y1ˆ ˆŽ Ž .. Ž .W u u sV u . The efficient continuous updating estimator, u , mini-T T 1 c

mizes the objective function with the efficient weight matrix evaluated at the
y1Ž Ž .. Ž .same point as the moments themselves, so W u u sV u . Accordingly,T T

the one-step, efficient two-step, and efficient continuous updating estimators

4 Ž .The S-sets are consistent with the recommendations in Dufour’s 1997 study of confidence sets
with locally almost unidentified parameters. He provided finite-sample results and did not consider
GMM estimation in the general case. In linear instrumental variables estimation with weak
instruments and an unbounded parameter space, he showed that Wald-type confidence ellipsoids are
bounded with probability one and hence cannot be valid confidence sets. He also pointed out that

Ž .Anderson-Rubin 1949 sets are unbounded with positive probability and, with fixed instruments and
Gaussian errors, they constitute valid confidence sets in finite samples.
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respectively are the minimizers of the three objective functions,
XT T

y1r2 y1r2Ž . Ž . Ž . Ž .2.7 S u s T f u T f u ,Ý Ý1T t s
ts1 ss1

XT Ty1y1r2 y1r2ˆ ˆŽ . Ž . Ž . Ž .2.8 S u sS u ; u s T f u V u T f u ,Ž . Ž .Ý Ý2T T 1 t T 1 s
ts1 ss1

XT T
y1y1r2 y1r2Ž . Ž . Ž . Ž . Ž . Ž .2.9 S u sS u ; u s T f u V u T f u .Ý ÝcT T t T s

ts1 ss1

Either for computational convenience or because heteroskedasticity is consid-
ered negligible, the two-step and continuous updating estimators could alterna-
tively be computed using the nonrobust covariance matrix V N. These will beT
referred to as the nonheteroskedasticity robust versions of these estimators;

ˆN ˆN N Ž .they will be denoted u and u , and their objective functions S u and2 c 2T
N Ž . Ž . Ž . NS u correspond to 2.8 and 2.9 with V replaced by V .cT T T
The quasi likelihood ratio statistics, which test the hypothesis usu , based0

on the two-step and continuous updating estimators respectively, are

ˆŽ . Ž .2.10a LR sS u yS u ,Ž .2 2T 0 2T 2

ˆŽ . Ž .2.10b LR sS u yS u .Ž .c cT 0 cT c

The J-tests of overidentifying restrictions based on these two estimators reject
for large values of the statistics,

ˆŽ .2.11a J sS u ,Ž .2 2T 2

ˆŽ .2.11b J sS u .Ž .c cT c

We assume that the weighting matrices in the objective functions are consis-
tent. For some purposes, pointwise consistency is sufficient, while for others,

Ž .uniform on Q consistency is used. These assumptions are as follows.

p p pˆ ˆ Ž . Ž . Ž . Ž .ASSUMPTION D9: Q ª Q , S u ª S u , and V u ª V u , u .ZZ ZZ h h 0 hh 0 T 0 0 0

p p p
Y ˆ ˆ Ž . Ž . Ž . Ž .ASSUMPTION D : Q ª Q , S u ª S u , and V u ª V u , u uni-ZZ ZZ hh hh T

formly in ugQ .

The limiting behavior of the objective functions S , S , and S and the1T 2T cT
associated estimators and test statistics now follow from Theorem 1. To simplify

Ž . Ž .notation, let V denote V u , u and let V denote V u , u evaluated atu a , b 0

Ž X X .X Ž . y1r2X Ž . Ž . y1r2X Ž .us a , b . Let m a sV m a , b and let z a sV C a , b , so0 a , b 1 0 a , b 00 0

Ž .that z a is a mean-zero, GK-dimensional Gaussian process in a with covari-
Ž . Ž .X y1r2X ŽŽ X X .X Ž X X .X. y1r2 Žance function Ez a z a sV V a , b , a , b V we adopt the1 2 a , b 1 0 2 0 a , b1 0 2 0

notational convention that BsB1r2XB1r2 and By1 sBy1r2By1r2X, where B is
.any nonsingular symmetric matrix .
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COROLLARY 4: Under Assumptions B, C, and DY, the following representations
hold jointly:
Ž .a One-step objectï e function:

ˆ U XŽ . w Ž . Ž .x Ž . w Ž . Ž .xS a , b «S a s z a qm a Q a z a qm a ,Ž .1T 1 1 1

uniformly in agA, where
X Xy1 X1r2 1r2Ž . Ž . w Ž . Ž .x Ž .Q a sV IyR b R b R b R b V .½ 51 a , b 0 0 0 0 a , b0 0

Ž .b One-step estimator:
XX UX UX1r2 ˆ Ž .a , T b yb « a , b , whereˆ Ž .ž /1 1 0 1 1

U U Ž .a sargmin S a and1 a g A 1

X Xy1 XU U U1r2w Ž . Ž .x Ž . w Ž . Ž .xUb sy R b R b R b V z a qm a .1 0 0 0 a , b 1 11 0

Ž .c Two-step objectï e function:

ˆ U Ž .S a , b «S a , whereŽ .2T 2 2

U Ž . w Ž . Ž .x X Ž . w Ž . Ž .xS a s z a qm a Q a z a qm a , where2 2

y1X1r2 y1 y1 y1Ž . Ž . Ž . Ž .U U UQ a sV V yV R b R b V R b½2 a , b a , b a , b 0 0 a , b 00 1 0 1 0 1 0

X Xy1 1r2Ž . U=R b V V .50 a , b a , b1 0 0

Ž .d Two-step estimator:
XX UX UX1r2 ˆ Ž .a , T b yb « a , b , whereˆ Ž .ž /2 2 0 2 2

U U Ž .a sargmin S a and2 a g A 2

y1X X XU U Uy1 y1 1r2Ž . Ž . Ž . w Ž . Ž .xU U Ub sy R b V R b R b V V z a qm a .2 0 a , b 0 0 a , b a , b 2 21 0 1 0 2 0

Ž .e Continuous updating objectï e function:
XUˆ Ž . w Ž . Ž .xS a , b «S a s z a qm aŽ .cT c c

X Xy1w Ž .Ž Ž . Ž .. Ž . x= IyF a F a F a F a

w Ž . Ž .x= z a qm a , where

Ž . y1r2 Ž .F a sV R b .a , b 00

Ž .f Continuous updating estimator:
XX UX UX1r2 ˆ Ž .a , T b yb « a , b , whereˆ Ž .ž /c c 0 c c

U U Ž .a s argmin S a andc c
agA

y1X XU U Uy1 y1r2Ž . Ž . Ž . w Ž . Ž .xU Ub sy R b V R b R b V z a qm a .c 0 a , b 0 0 a , b c cc 0 c 0
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˜ U ˜ U U UŽ . Ž . Ž .g LR «S a , 0; a yS a , b ; a , where2 0 1 2 2 1

˜ XŽ . w Ž . Ž . Ž . xS a , b; a s C a , b qm a , b qR b b0 1 0 0

y1 w Ž . Ž . Ž . x=V C a , b qm a , b qR b b ;a , b 0 1 0 00

˜ ˜ U U UŽ . Ž . Ž .h LR «S a , 0; a yS a , b ; a ;c 0 0 c c c
˜ U U UŽ . Ž .i J «S a , b ; a ;2 2 2 1
˜ U U UŽ . Ž .j J «S a , b ; a .c c c c

Limiting representations for the two-step and continuous updating GMM
estimators based on the nonheteroskedasticity robust objective function are also
readily obtained from Theorem 1. One that will be used in Section 4 is the

N ˆŽ .nonrobust concentrated continuous updating objective function, S a , b ,cT c
which has the limit,

N ˆŽ .2.12 S a , bŽ .cT c

Xw Ž . Ž .x« z a qm a

X Xy1U U U U1r2 Ž .Ž Ž . Ž .. Ž .=V W yW R b R b W R b R b Wa , b 0 0 0 00

1r2X w Ž . Ž .x=V z a qm a ,a , b 0

U Ž .where W sS a , b mQ .hh 0 ZZ

2.6. The Unidentified Case and Measures of Identification

Ž . Ž .If Ef a , b s0 for all a , then a is completely unidentified and m a , bt 0 1 0
Ž .s0, so m a s0 for all a . In this case, the expressions above simplify and it

becomes possible to make some general comments about the behavior of these
estimators. First consider the concentrated continuous updating objective func-

ˆ U XŽ . Ž . Ž . wtion, S a , b . In the unidentified case, this has the limit, S a sz a IycT c c
Ž .Ž Ž .X Ž ..y1 Ž .X x Ž . U Ž .F a F a F a F a z a . Evidently, for fixed a , S a is distributedc

x 2 , so SU may be considered a chi-squared process indexed by a . If a isG Kyn c2
Ž .not unidentified but rather is weakly identified, then m a is nonzero for

U Ž . 2a/a , and for fixed a , S a is distributed as a noncentral x random0 c G Kyn2
Ž .X Ž . Uvariable with noncentrality parameter m a m a . Thus S can be thought of asc

following a noncentral x 2 process.G Kyn2

Consideration of the unidentified case suggests that the two-step estimator of
a will be biased towards the probability limit of the nonlinear least squares
Ž . Ž .X Ž .NLS estimator, with the bias increasing as m a m a decreases. This parallels
the linear simultaneous equations case, in which TSLS is biased towards the
probability limit of the OLS estimator. To see this for GMM, consider the
nonrobust estimator with Gs1 when all the coefficients are weakly identified,

Ž .so usa , and suppose that Eh Y , a s0. The NLS objective function ist p
y1 T 2Ž . Ž . Ž . Ž .S a sT Ý h Y , a , and S a ª S a uniformly in a . The coun-nl s ts1 t nl s hh
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Ž .terpart to the result in Corollary 4 c for the nonrobust estimator simplifies in
Ž .this case because the terms in R b vanish, and0

X y1 XUN 1r2 1r2Ž . w Ž . Ž .x w Ž . x w Ž . Ž .xS a « z a qm a V S a Q V z a qm a2T a hh 1 ZZ a

Ž . Ž . N Ž .where V s S a Q . If a is unidentified, m a s 0 so S a «a hh ZZ 2T
Ž . X Ž .Ž Ž . Ž U .. Ž U .z a z a S a rS a . Because S a is a scalar that does not dependhh hh 1 hh 1

Ž . X Ž .on a , this factor can be ignored for the minimization. Because Ez a z a sK,
in expectation the limiting objective function is proportional to the probability

Ž . N Ž .limit of S a . This suggests that the minimizer of S a will be biasednl s 2T
towards the probability limit of the NLS estimator.

Ž .X Ž .This discussion also suggests that the function m a m a is a population
measure of the strength of identification. In single equation estimation in the

Ž .linear simultaneous equations model examined in the next section when ns1,
Ž .X Ž . Ž .X Ž . Ž .XŽ .m a m a is quadratic in aya and H m a m a darH aya aya da0 A A 0 0

Ž .where A is symmetric around a equals the so-called concentration parameter0
which governs the rate of convergence of the finite sample distributions of the

Ž .two stage least squares TSLS and limited information maximum likelihood
Ž . Ž Ž ..LIML estimators to their Gaussian limits e.g. Anderson 1977 . This provides
a simple one dimensional summary of the quality of identification in this case. In

Ž . Ž .X Ž .general, however, the dependence of m a on a is complicated, and m a m a
< <need not be monotone increasing in aya . This introduces the possibility of0

Ž .X Ž .multiple peaks in the pdf of the continuous updating estimator even if m a m a
is steep for a close to a . This suggests that, in general, a full characterization0

Ž .X Ž .of the extent of weak identification requires global knowledge of m a m a .

3. SINGLE-EQUATION LINEAR INSTRUMENTAL VARIABLES ESTIMATION

In this section the results of Section 2 are specialized to the estimation of a
single equation in the linear simultaneous equations model. In this case, the
two-step estimator is TSLS and the continuous updating estimator is LIML.

There is a large literature on exact distribution theory of instrumental
Ž .variables estimators in the linear model; see Phillips 1983 for a review. Let yt

˜be the dependent variable in the equation of interest and let Y denote the nt
other endogenous variables included in that equation. Suppose that n of these1

˜variables, Y , have a small correlation with the instruments, while the remainingA
˜ ˜n variables, Y , have a large correlation. The coefficients on Y will be treated2 B A

˜as weakly identified, while the coefficients on Y will be treated as wellB
identified in the sense of Section 2. Suppose, for notational convenience, that

Žthe equation of interest contains no exogenous variables this is readily relaxed
.using standard projection arguments . The equation of interest and the equation

˜relating the instruments Z to Y are, in matrix form,t t

˜ ˜ ˜Ž .3.1 ysYuqusY a qY b qu ,A 0 B 0

˜ P P V VŽ .3.2 YsZPqVsZ q ,A B A B
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w X xX Ž .where U s u V satisfies E U ¬Z s0, and P and V are partitioned con-t t t t t

˜formably with Y. We follow the convention in that literature and assume that Ut
Ž X .is serially uncorrelated and homoskedastic, so E U U ¬Z , Z sS if tss,t s t s U U

else s0.
˜X ˜XŽ . Ž . Ž .In the notation of Section 2, h Y , u s y y Y u , f u s y y Y u Z ,t t t t t t t

Xy1 T y1 T 2˜ ˆŽ . Ž . Ž . w Ž . Ž .xS u s lim T Ý var y y Y u , S u s T Ý h Y , u y h u ,hh T ª` ts1 t t hh ts1 t

Ž . Ž . N Ž . N Ž .and V u , u sS u Q . The objective functions S u and S u can be0 0 hh 0 ZZ 2T cT
written

X
N ˜ ˜ ˆ ˆŽ . Ž .3.3 S u s yyYu P yyYu rS u ,Ž . Ž . Ž .2T Z hh 1

y1y1NŽ . Ž . Ž .3.4 S u sT 1qA u ,� 4cT T

˜ X ˜ ˜ X ˜ X y1 XŽ . Ž . Ž . Ž . Ž . Ž .where A u s yyYu P yyYu r yyYu M yyYu , P sQ Q Q Q ,T Z Z Q
ˆand M sIyP for any full rank a=b matrix, Q, aGb. Evidently u sQ Q 2

˜X ˜ y1 ˜XŽ .Y P Y Y P y is the TSLS estimator. Since the LIML estimator minimizesZ Z
N ˆŽ . Ž . Ž .A u and S u is an increasing function of A u , u is the LIML estimator.T cT T c

It is useful to translate Assumptions A]C and DY into more transparent
assumptions which are tailored to this model. Accordingly, suppose that sample
moments involving u, V, and Z converge in probability to their expectations and

dXy1r2 T y1r2 Ž .that T Ý U mQ Z ª j;N 0, S mI . Then, by direct calculation,ts1 t ZZ t U U K
p p

Nˆ Ž . Ž . Ž . Ž .S u ª S u , V u ª S u Q , andhh hh T hh ZZ

T
y1r2Ž . Ž . Ž Ž . Ž ..3.5 C u sT f u yEf uÝT t t

ts1
T

Xy1r2 Ž .1 u yusT U ZÝ 0ž /t t
ts1

X X1r2Ž .1 u yu« mQ j .0ž /ZZ

Because the primitive moments do not involve u and the various functionals are
continuous in u , all limits are automatically uniform in u on Q , and Assump-
tions A, B, and DY follow.

Translating Assumption C requires making the notion of weakly correlated
asymptotics concrete in this model. Direct calculation reveals that

T
y1Ž . Ž .3.6 ET f uÝ t

ts1

Ž . Ž . Ž .sQ P u yu sQ P a ya qQ P b yb .ZZ 0 ZZ A 0 ZZ B 0

Assumption C is satisfied by setting P sTy1r2 C and P sC , where C andA A B B A
C are fixed matrices with dimensions K=n and K=n , respectively; thenB 1 2

Ž . Ž . Ž . Ž .m u sQ C a ya and m b sQ C b yb . In the special case that1 ZZ A 0 2 ZZ B 0
all parameters are weakly identified so that usa , then the term in P is notB

Ž . y1r2present in 3.6 and Assumption C reduces to PsT C , which is the nestingA
Ž .used in Staiger and Stock 1997, Assumption L .P
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The linearity of this model permits considerable simplification of the formal
limits in Theorem 1 and Corollary 4. Consider the TSLS estimator. Partition j

Ž X Ž .X Ž .X.X Ž X Ž .X.Xas j vec j vec j s j vec j , where j is K=1, j is K=n ,u V V u V u V 1A B A

Ž . y1and j is K=n , so j is K=n. For the TSLS estimator, W u sQ ,V 2 V ZZB
Ž .R b syQ C , andZZ B

T
Xy1r2Ž . w Ž . xC u sT u q u yu V Z soÝT t 0 t t

ts1

Ž . Ž . 1r2X w Ž .xC u «C u sQ j qj u yu andT ZZ u V 0

X1r2Ž . Ž .C a , b sQ j qj a ya .0 ZZ u V 0A

Define l sQ1r2 C and l sQ1r2 C . Substituting these expressions into theA ZZ A B ZZ B
formulas in Theorem 1, we obtain

XUŽ . Ž . Ž .Ž .3.7 S a s j q l qj a ya2 u A V 0A

UŽ .Ž . Ž .=M j q l qj a ya rS a , b .l u A V 0 hh 1 0B A

U U Ž . U Ž .Thus a «a sargmin S a . Because S a is quadratic in a , thisˆT S LS 2 a 2 2
minimization can be carried out analytically; this yields

y1X XUŽ . Ž . Ž . Ž .3.8 a «a sa q l qj M l qj l qjˆT S LS T S LS 0 A V l A V A VA B A A

=M j ,l uB

y1X X U1r2 ˆŽ . Ž . Ž .Ž .3.9 T b yb « l l l j y l qj a ya .Ž .T S LS 0 B B B u A V T S LS 0A

Ž . Ž .Two special cases of 3.8 and 3.9 can be found in the literature. First, when
P s0, a is unidentified and the model reduces to the partially identified caseA

Ž . Ž . Ž .considered by Choi and Phillips 1992 , and 3.8 and 3.9 reduce to Corollary
3.1 in that paper. Second, in the special case that all coefficients are weakly
identified,

y1X XŽ . Ž . Ž .a ya « l qj l qj l qj j ,ˆT S LS 0 A V A V A V uA A A

which, upon setting l sl and j sj , is the limiting representation inA V VA
Ž .Staiger and Stock 1997, Thm. 1 .

Clearly the linear model permits a substantial simplification, relative to the
Žgeneral results in Section 2. The proof of uniform convergence the verification

.of Assumption B is straightforward because u does not enter the primitive
sample moments, so uniform convergence follows from finite dimensional con-
vergence and the continuous mapping theorem. For the same reason, the

Ž .stochastic process z a is linear in a , which in turn leads to the relatively
Ž . Ž .simple expressions 3.8 and 3.9 .
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4. THE INTERTEMPORALLY SEPARABLE CCAPM: MONTE CARLO EVIDENCE

This section reports numerical results for the prototype consumption-based
asset pricing model, the representative agent intertemporally separable CCAPM
model with CRRA preferences. Two sets of questions are addressed. Does this
new asymptotic theory explain the puzzling failures of conventional GMM
asymptotics found in previous Monte Carlo studies, and does it provide better
approximations to the finite sample distributions than the usual Gaussian
distributions?

4.1. Theoretical Considerations

Ž .With CRRA preferences, the G Euler equations are 2.1 with

ygŽ . Ž . Ž . Ž .4.1 h Y , u sd C rC R y i CRRAt tq1 t tq1 G

where d is a discount factor, C is consumption, R is a G=1 vector of assett t
Ž Ž ..returns, and i is the G=1 vector of ones cf. Hansen and Singleton 1982 .G

Moment conditions are available using a constant and lagged variables as
Ž . w Ž .yg xinstruments. In the notation of Section 2, f u s dR C rC y i mZ ,t tq1 tq1 t G t

Ž .Xwhere us g , d . The parameters are assumed to be bounded by d FdFdmin max
and g FgFg .min max

The first step is to provide primitive assumptions that imply the high-level
Assumptions A, B, C, and DY. Assumption A holds under standard conditions in

Ž . ŽŽ . .the GMM literature; cf. Newey and McFadden 1994 . If C rC , R , Ztq1 t tq1 t
XŽ . < < 5are m-dependent, then Assumption B i is satisfied. Also, E R mZ -`tq1 t

Ž Ž . < <. Ž . XŽ .and E exp 5 g q1 c -`, where c ' ln C rC , imply B ii andmax tq1 tq1 tq1 t
XŽ . XB iii , so Assumption B is satisfied, which implies Assumption B. Assumption
Y ŽŽ . .D , which implies Assumption D, holds if C rC , R , Z also have enoughtq1 t tq1 t

moments.
Assumption C is satisfied by treating g as weakly identified and d as strongly

identified; in the notation of Section 2, asg and bsd . Specific formulas for
implementing this assumption are given in Appendix B. The motivation for the
different treatment of d and g comes from the structure of the first order
conditions. First suppose Gs1. Given g , d can be estimated precisely from the

ˆ y1 T yg y1Ž . w Ž . xsample mean, d g s T Ý C rC R . Under the assumptions ints1 tq1 t tq1
ˆ 1r2Ž .the previous paragraph, d g is T -consistent for any fixed g . In this sense, d

is strongly identified by a constant, which is one of the instruments. When
ŽŽ .yg .G)1, if cov C rC , R is nearly zero, then the additional first ordertq1 t tq1

conditions with a constant as the instrument arguably will not result in improved
Ž .ygestimation. If the covariance between C rC R and a stochastic instru-tq1 t tq1

ment is small, things will not be improved by adding that instrument. It should
be stressed that the success of this weakrstrong treatment of g and d can and
will be ascertained numerically. For example, if both d and g are appropriately
modeled as weakly identified, the approximations will be less satisfactory than
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they could be. On the other hand, if both d and g are appropriately modeled as
strongly identified, they will have the usual joint normal distribution and the
weak-identification approximation will offer no improvement.

4.2. Data Generation and Estimation Equations

Ž . Ž .The Monte Carlo design follows Tauchen 1986 , Kocherlakota 1990 , and
Ž .Hansen, Heaton, and Yaron 1996 . The artificial data were generated by the

Ž .method discussed by Tauchen and Hussey 1991 , which was used by Kocher-
Ž . Ž .lakota 1990 and Hansen, Heaton, and Yaron 1996 . This method fits a 16 state

Markov chain to the law of motion of consumption and dividend growth,
Ž . 5calibrated so as to approximate a Gaussian VAR 1 . The consumption CAPM

with CRRA preferences is then used to price stocks and a risk-free bond in each
time period, thereby yielding a time series of asset returns.

Four combinations of true parameters values and estimation equations are
studied. Let c , r f, and r s denote consumption growth, the risk-free rate, andt t t
the stock return. These combinations, or models, are as shown in Table I.
Models M1b, M2, and M3 were selected as representative of models that
previously have been found to produce nonnormal estimator distributions.

Ž .Kocherlakota 1990 studied models M1a and M1b. Hansen, Heaton, and Yaron
Ž .1996 studied models M1a, M2, and M3.

Preliminary simulations indicated that whether a heteroskedasticity robust or
nonrobust covariance matrix is used makes only a small difference for the
distribution of the estimator and test statistics. All the results reported here are
based on the nonrobust covariance matrix, which is faster to compute. In this

Ždesign errors are martingale difference sequences at the true values there are
.no overlapping data so a correction for autocorrelation is not used. Each

Monte Carlo draw from the finite-sample distribution required numerical opti-
Ž . 6mization over g , d .

TABLE I

Ž .Interest Rate s in
Ž . Ž .Model g , d First Order Condition s Instruments0 0

s sŽ .M1a 1.3, .97 r 1, r , ct ty1 ty1
s sŽ .M1b 13.7, 1.139 r 1, r , ct ty1 ty1
s f s fŽ .M2 1.3, .97 r , r 1, r , r , ct t ty1 ty1 ty1
s fŽ .M3 1.3, .97 r , r 1, ct t ty1

5 ŽLet A denote the VAR matrix with A the coefficient on consumption growth in the dividenddc
.growth equation, etc. , and let f and H be the intercept vector and error variance-covariance matrix

Ž .in the VAR. Following Hansen, Heaton, and Yaron 1996 , the values of the parameters used are
Ž . Ž . Ž . Ž . Ž . ŽA , A , A , A s .117, .414, .017, y.161 , f , f s .004, .021 , and H , H , H s .014,dd dc cd cc d c dd dc cc

..00177, .0012 .
6 Numerical optimization details and the results of numerical sensitivity checks are available from

the authors upon request.
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TABLE II

SUMMARY MEASURES OF ESTIMATOR AND TEST STATISTIC DISTRIBUTIONS: MONTE CARLO, WEAK INSTRUMENT ASYMPTOTIC,
AND NORMAL ASYMPTOTIC DISTRIBUTIONS:

g d

ˆŽ . Ž . Ž . Ž Ž ..10% Median 90% KS g 10% Median 90% KS d J LR S g , d S g , d gcT 0 0 cT 0 0

A. Model M1a: d s0.97, g s1.30 0

Two Step
Monte Carlo y1.284 1.646 4.359 } 0.917 0.976 1.028 } 3.2% 5.2% } }

Weak Iden. y1.139 1.750 4.538 0.03 0.918 0.978 1.024 0.02 3.3% 4.5% } }

Normal y1.800 1.300 4.400 0.09 0.910 0.970 1.030 0.09 10.0% 10.0% } }

Continuous Updating
Monte Carlo y4.685 1.368 5.041 } 0.836 0.969 1.033 } 3.5% 14.2% 10.1% 9.3%
Weak Iden. y5.718 1.325 4.912 0.02 0.791 0.968 1.026 0.02 3.3% 14.0% 10.0% 10.0%
Normal y1.800 1.300 4.400 0.10 0.910 0.970 1.030 0.12 10.0% 10.0% 10.0% 10.0%

B. Model M1b: d s1.139, g s13.70 0

Two Step
Monte Carlo 5.664 9.470 16.052 } 1.029 1.091 1.164 } 21.3% 40.1% } }

Weak Iden. 5.996 9.968 16.377 0.07 1.030 1.095 1.164 0.05 23.4% 36.8% } }

Normal 3.852 13.700 23.542 0.34 1.052 1.139 1.226 0.34 10.0% 10.0% } }

Continuous Updating
Monte Carlo 8.374 12.930 42.315 } 0.867 1.104 1.188 } 7.2% 10.8% 10.3% 9.4%
Weak Iden. 8.510 13.702 51.858 0.06 0.305 1.102 1.187 0.09 6.8% 11.3% 10.0% 10.0%
Normal 3.852 13.700 23.542 0.14 1.052 1.139 1.226 0.25 10.0% 10.0% 10.0% 10.0%
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C. Model M2: d s0.97, g s1.30 0

Two Step
Monte Carlo y0.904 0.814 3.611 } 0.924 0.960 1.001 } 10.3% 25.2% } }

Weak Iden. y0.481 0.937 3.899 0.05 0.932 0.961 1.003 0.04 16.1% 29.0% } }

Normal 0.348 1.300 2.252 0.24 0.954 0.970 0.986 0.30 10.0% 10.0% } }

Continuous Updating
Monte Carlo 0.756 1.308 4.651 } 0.960 0.969 1.025 } 9.3% 11.0% 9.8% 9.2%
Weak Iden. 0.687 1.286 4.315 0.05 0.959 0.970 1.015 0.05 10.5% 12.5% 10.0% 10.0%
Normal 0.348 1.300 2.252 0.16 0.954 0.970 0.986 0.14 10.0% 10.0% 10.0% 10.0%

D. Model M3: d s0.97, g s1.30 0

Two Step
Monte Carlo y2.125 1.256 5.406 } 0.905 0.966 1.030 } 4.9% 16.3 } }

Weak Iden. y1.581 1.361 5.364 0.04 0.912 0.967 1.023 0.02 5.9% 21.2% } }

Normal 0.292 1.300 2.308 0.23 0.953 0.970 0.987 0.19 10.0% 10.0% } }

Continuous Updating
Monte Carlo 0.728 1.297 4.809 } 0.960 0.969 1.026 } 9.7% 11.2% 10.6% 10.5%
Weak Iden. 0.586 1.296 4.595 0.08 0.957 0.970 1.018 0.07 10.1% 10.9% 10.0% 10.0%
Normal 0.292 1.300 2.308 0.16 0.953 0.970 0.987 0.15 10.0% 10.0% 10.0% 10.0%

Notes: d is treated as strongly identified and g is treated as weakly identified. The columns headed ‘‘g ’’ and ‘‘d ’’ summarize the distributions of the
estimators of these parameters. Kolmogorov-Smirnov statistics compare the Monte Carlo distribution with the asymptotic approximation in the relevant

ˆŽ . Ž Ž .. Žrow. The columns labeled ‘‘ J ,’’ ‘‘LR ,’’ ‘‘S g , d ,’’ and ‘‘S g , d g ’’ report rejection rates of these four test statistics at the nominal standardcT 0 0 cT 0 0
.asymptotic 10% level, where the test statistics are described in the text.
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Finite sample distributions were computed using 5000 Monte Carlo replica-
tions. Computation of the weak-identification asymptotic approximation is dis-
cussed in Appendix B.

4.3. Results

The results are summarized in Table II for Ts100. The finite-sample
distributions diverge substantially from the asymptotic normal approximation for
models M1b, M2, and M3. In almost all cases, the weak-instrument asymptotics
provides a much better approximation than the normal approximation, as

Žmeasured by the quantiles and the Kolmogorov-Smirnov statistic the maximum
.absolute difference between the two empirical cdfs . The weak-identification

asymptotic approximations also match the rejection rates of the J and LR
statistics.

The final two columns in Table II present the rejection rates of the test
Žstatistics used to form the S-sets the S-set coverage rate is one minus this

.rejection rate . The first statistic tests the joint hypothesis that g and d take on
their true values, according to Theorem 2, and the second statistic tests the

Ž .hypothesis that g takes on its true value based on the concentrated over d
continuous updating objective function, according to Theorem 3. In each of the
designs the finite-sample size of both these test statistics is very close to the
nominal size of 10%.

Cumulative distribution functions for the two-step and continuous updating
estimators of d and g are presented in Figure 1 for model M1b. Evidently, the
weak-identification asymptotic approximation captures the main qualitative fea-
tures of the finite-sample distribution, while the normal approximation typically
does not.7

Ž .X Ž .In Section 2 it was predicted that, as m a m a gets large, the weak-instru-
ment asymptotic distribution will approach the usual Gaussian limit, and the LR
and J statistics will approach their usual x 2 distributions. In contrast, as

X ˆŽ . Ž .m a m a decreases, u was predicted to be biased towards the probability limit2
ˆof the NLS estimator, and the distribution of u was predicted to be tighter2

ˆthan that of u . These predictions are explored here by exploiting a scalingc
property of the weak-identification approximation that permits ready computa-

7 Results were also computed for Ts50, although these are not tabulated here to save space.
Relative to the Ts100 results, the performance of both the conventional normal and the weak-
identification asymptotic approximations deteriorates when Ts50. Although the weak instrument
approximation generally provides a good approximation to the central tendency of the distributions,
the Monte Carlo distributions generally have heavier tails than the weak instrument approximations,
and the Kolmogorov-Smirnov statistics for the weak-identification approximation are greater for
Ts50 than Ts100 by between .01 and .03. The weak instrument approximation nonetheless does
considerably better than the normal approximation in all cases considered.
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Ž .FIGURE 1.}Estimator cdf’s for model M1b: Finite sample monte carlo solid line , standard normal asymptotic
Ž . Ž . Ž .short dashes , and weak instrument asymptotic long dashes . Vertical dashed line denotes true ¨alue. a g , continuousˆ

ˆ ˆŽ . Ž . Ž .updating; b d , continuous updating; c g , two-step; d d , two-step.ˆ
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tion of the approximation for alternative sample sizes once it has been com-
puted for an initial sample size.8

The results, summarized in Table III, are consistent with these predictions.
Ž .X Ž .For small T , and thus small m a m a , the distribution of g is tighter thanˆ2

that of g . In models M1a and M1b the median of g is strongly biased towardsˆ ˆc 2
the probability limit of the NLS estimator, which is 2.39 for M1a and 3.91 for
M1b. As T increases this median shifts towards g . For small T , the J and LR0
statistics can have major size distortions, but as T increases their sizes approach
the desired 10% level. For the weak-identification and normal approximations to
converge, as measured by a Kolmogorov-Smirnov statistic of .05 or less, requires
T(1000 in M1a and 10,000 in M1b, M2, and M3. Because the weak-identifica-
tion approximation was found to work well in these designs, this suggests that
approximately a century of monthly data are needed before conventional normal
asymptotics provides a good approximation to the finite sample distributions of
these estimators.

5. EMPIRICAL RESULTS FOR U.S. DATA

5.1. Models

In this section, the tools developed in the previous section are applied to an
empirical investigation of several consumption-based asset pricing models. Three

Ž .sets of preferences are considered. The first is CRRA, with h Y , u givent
Ž .in 4.1 . The second allows for time nonseparability in the form of durabil-

ity and habit formation. In this model the representative agent maximizes
` swŽ .1yg x Ž .E Ý d C qrC y1 r 1yg , andt ss0 s sy1

yg ygŽ . Ž . Ž . Ž .5.1 h Y , u sdR C qrC qdr C qrCt tq1 tq1 t tq2 tq1

ygŽ .C qrCt ty1

yg yg ygŽ . Ž . Ž .y C qrC qdr C qrC r C qrCt ty1 tq1 t t ty1

Ž .habit formationrdurability .

8 0Ž . 0Ž . 0Ž .Let m u , m d , and R d denote these quantities computed for some TsT so that1 2 0
y1 r2 0Ž . 0Ž . Ž .Ef sT m u qm d . Because the functions Ef and V u , u determine the weak-identifi-t 0 1 2 t

cation asymptotic approximation, holding the design fixed and changing T amounts to holding these
functions fixed and changing T. Thus for general T ,

T
1r2 1r2y1r2 0 1r2 0Ž . Ž . wŽ . Ž .xET f s TrT m u qT TrT m d ,Ý t 0 1 0 0 2

ts1

so the weak-identification asymptotic approximation for general T is obtained by making the
Ž . Ž .1r2 0Ž . Ž . Ž .1r2 0Ž . Ž . Ž .1r2 0Ž .transformation m u s TrT m u , m d s TrT m d , and R d s TrT R d .1 0 1 2 0 2 0

Ž .Note that V u , u does not depend on T so no adjustment is needed for general T. Because the0
Ž .mean and covariance functions need to be computed only once for T , the computational burden0

of recomputing the asymptotic distribution does not depend on T.
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Positive values of r imply durability of consumption, negative values of r imply
habit formation, and rs0 corresponds to CRRA preferences. For additional

Ž . Ž .discussion see Dunn and Singleton 1986 , Eichenbaum and Hansen 1990 ,
Ž . Ž .Ferson and Constantinides 1991 , and Hansen, Heaton, and Yaron 1996 .

TABLE III

WEAK IDENTIFICATION ASYMPTOTIC APPROXIMATIONS, VARIOUS SAMPLE SIZES

g d

Ž . Ž .T 10% Median 90% KS g 10% Median 90% KS d J LR

A. Model M1a

Two Step
10 y1.482 2.267 6.527 0.26 0.891 0.984 1.064 0.20 2.8% 3.6%
100 y1.139 1.750 4.538 0.12 0.918 0.978 1.024 0.10 3.3% 4.5%
1000 0.338 1.354 2.265 0.03 0.951 0.971 0.988 0.03 5.5% 7.7%
10,000 0.998 1.310 1.604 0.02 0.964 0.970 0.976 0.01 8.0% 9.1%

Continuous Updating
10 y12.983 1.262 6.961 0.14 0.513 0.965 1.065 0.16 1.6% 15.2%
100 y5.718 1.325 4.912 0.11 0.791 0.968 1.026 0.13 3.3% 14.0%
1000 0.220 1.315 2.259 0.02 0.948 0.970 0.988 0.03 8.3% 9.9%
10,000 0.992 1.303 1.600 0.01 0.964 0.970 0.976 0.01 9.1% 9.5%

B. Model M1b
Two Step

10 1.137 6.014 11.931 0.43 0.914 1.029 1.152 0.38 12.8% 57.9%
100 5.996 9.968 16.377 0.30 1.030 1.095 1.164 0.31 23.4% 36.8%
1000 11.092 13.258 16.826 0.08 1.110 1.134 1.160 0.11 11.9% 14.7%
10,000 12.806 13.659 14.672 0.03 1.130 1.138 1.147 0.04 8.9% 10.6%

Continuous Updating
10 5.440 13.494 71.562 0.30 y2.017 1.058 1.371 0.20 5.4% 12.7%
100 8.510 13.702 51.858 0.17 0.305 1.102 1.187 0.24 6.8% 11.3%
1000 11.385 13.712 18.109 0.08 1.111 1.135 1.162 0.07 8.8% 10.1%
10,000 12.843 13.705 14.734 0.04 1.131 1.139 1.147 0.02 9.2% 9.9%

C. Model M2

Two Step
10 y1.041 0.740 5.990 0.11 0.897 0.951 1.024 0.23 12.0% 27.5%
100 y0.481 0.937 3.899 0.20 0.932 0.961 1.003 0.26 16.1% 29.0%
1000 0.942 1.273 1.833 0.11 0.963 0.969 0.978 0.12 29.0% 35.1%
10,000 1.194 1.300 1.415 0.04 0.968 0.970 0.972 0.06 15.5% 18.6%

Continuous Updating
10 0.426 1.316 17.665 0.29 0.949 0.968 1.095 0.21 8.6% 15.2%
100 0.687 1.286 4.315 0.15 0.959 0.970 1.015 0.14 10.5% 12.5%
1000 1.026 1.299 1.770 0.09 0.965 0.970 0.978 0.08 11.0% 10.7%
10,000 1.198 1.300 1.412 0.04 0.968 0.970 0.972 0.03 10.3% 10.7%
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Ž .TABLE III} Continued

g d

Ž . Ž .T 10% Median 90% KS g 10% Median 90% KS d J LR

D. Model M3

Two Step
10 y3.975 1.316 11.338 0.21 0.832 0.950 1.098 0.19 5.3% 10.8%
100 y1.581 1.361 5.364 0.24 0.912 0.967 1.023 0.19 5.9% 21.2%
1000 0.985 1.364 2.021 0.17 0.964 0.970 0.980 0.13 10.0% 36.1%
10,000 1.198 1.307 1.437 0.08 0.968 0.970 0.972 0.06 9.6% 18.6%

Continuous Updating
10 0.144 1.275 20.430 0.26 0.946 0.966 1.129 0.21 9.3% 12.8%
100 0.586 1.296 4.595 0.16 0.957 0.970 1.018 0.15 10.1% 10.9%
1000 1.004 1.294 1.766 0.07 0.965 0.970 0.978 0.07 11.0% 10.9%
10,000 1.193 1.298 1.420 0.04 0.968 0.970 0.972 0.04 10.0% 10.7%

Note: Kolmogorov-Smirnov statistics compare the weak identification and normal asymptotic approximations.
See the notes to Table II.

The third set of preferences considered are the time-separable Kreps-Porteus
Ž . Ž .1978 preferences as developed by Epstein and Zin 1989, 1991 . With CRRA
preferences, the coefficient of relative risk aversion is the reciprocal of the
intertemporal elasticity of substitution. With Epstein-Zin preferences, this link
is broken, and

ylgl ly1Ž . Ž . Ž . Ž .5.2 h Y , u sd C rC R R y i Epstein-Zint tq1 t o , tq1 1, tq1 G

where g now denotes the reciprocal of the intertemporal elasticity of substitu-
tion, R denotes the return on the optimal portfolio, and R denotes ao, t 1, tq1
G-vector of returns on arbitrary asset portfolios. When ls1 this reduces to the
CRRA case.

5.2. The Data

Two data sets are used. The first is an updated version of the long annual data
Ž .set used by Campbell and Shiller 1987 , and consists of annual U.S. data on

stock returns, bond returns, and consumption covering the period 1871 to 1993.
The stock returns are based on the Cowles Commission index, followed by the
annual average price of the Standard & Poors monthly composite index. The
interest rate is the nominal rate for prime 4]6 month commercial paper. The
spread, used as an instrument in some models, is the difference between the
yield on long term U.S. Treasury bonds and the commercial paper rate. Asset
returns were put on a real basis using the producer price index. The consump-
tion series is the real consumption of nondurables and services per capita.

Ž .Sources and construction of the data are detailed in Campbell and Shiller 1987
Ž . Ž . Ž .asset data and Shiller 1982 consumption data .



GMM WITH WEAK IDENTIFICATION 1081

Ž .The second data set consists of Campbell’s 1996 monthly U.S. data from
1959:1 to 1990:12 on twelve assets: returns on 11 portfolios of stocks sorted

Žby sector petroleum, financerreal estate, consumer durables, basic industry,
foodrtobacco, construction, capital goods, transportation, textiles and services,

.and utilities and the one-month U.S. Treasury bill rate. For details and data
Ž .sources, see Campbell 1996 . We augmented these data by real per capita

consumption, constructed as nominal personal consumption expenditures on
Ž .nondurables taken from CITIBASE, mnemonic GMCN , divided by the adult

Ž . Ž .population POP and deflated by its implicit deflator GMDCN . This deflator
was also used to convert all the monthly nominal asset returns into real returns.

Ž . Ž .Following Epstein and Zin 1991 , the optimal portfolio in 5.2 was proxied by
the market portfolio as measured by the NYSE value-weighted index of stock

Žreturns, and the GMM statistics were computed with Gs13 eleven sectors, the
.NYSE value-weighted return, and the Treasury bill rate .

5.3. Results

ŽConventional two-step GMM results are reported in Tables IV CRRA
. Ž . Ž .preferences , V habit formationrdurability , and VI Epstein-Zin . Most instru-

ment sets include only the first lag. Because of concerns about temporal
aggregation bias, however, in some cases only second lags were used as instru-
ments. The details are given in the tables.

These results, when analyzed using conventional normal asymptotics, gener-
ally accord with the existing literature. When stocks and bonds are both priced

Ž .and the full set of instruments is used first lags; CRRA-4 and CRRA-10 , the
overidentifying restrictions implied by the CRRA model are rejected at the 5%
level by the J statistic in both data sets. For the habit formationrdurability
model with the annual data, a moderate positive value of r is estimated,
indicating durability, but all estimates of g are, nonsensically, negative, and the
J statistic rejects three of the four specifications at the 10% level. In the
monthly data, conflicting results are obtained for the two models not rejected at

Ž .the 10% level by the J statistic. With first lags as instruments HrD-5 , r is
Ž .precisely estimated as positive, but with second lags as instruments HrD-7 , r

is imprecisely estimated as negative. For Epstein-Zin preferences, when lagged
Žreturns on the market and consumption growth are used as instruments EZ-1

. Žand EZ-2 , the J statistic fails to reject and the hypothesis ls1 CRRA
.preferences is rejected at the 1% level, but the estimates of g are negative.

When the spread and the dividend yield are added as instruments, the J statistic
Ž .rejects at the 5% level EZ-3 and EZ-4 .

Because of the possibility of weak identification, we computed S-sets for these
Ž .models, both for all parameters jointly based on Theorem 2 and for the weakly

Ž .identified parameters based on Theorem 3 . In the CRRA model, d is treated
as strongly identified as discussed in the previous section. In the habit forma-
tionrdurability and Epstein-Zin models, it remains reasonable to treat the
function of the parameters describing the unconditional mean as well identified
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TABLE IV

GMM ESTIMATION RESULTS, CRRA PREFERENCES

Model Assets GK Instruments d g J 90% S-set for g S-set

A. Annual Data, 1871]1993

Ž .CRRA-1 SR 3 SR, CG 0.903 0.132 0.69 y2.0, 2.3 Fig. 2
Ž . Ž . w x0.022 1.037 0.69

UUUCRRA-2 SR, BR 6 SR, CG 0.958 y0.507 22.93 B B
UUUŽ . Ž . w x0.007 0.298 25.27

UUUCRRA-3 SR, BR 8 SR, BR, CG 0.952 y0.819 32.73 B B
UUUŽ . Ž . w x0.007 0.306 39.10

UUUCRRA-4 SR, BR 10 SR, BR, CG, 0.953 y0.745 37.81 B B
UUUŽ . Ž . w xSpread, DY 0.007 0.277 46.82

Ž .CRRA-5 SR, BR 8 As CRRA-3, 0.971 6.436 10.11 18.8, 40.8 Fig. 3
UUUŽ . Ž . w xsecond lag 0.037 2.994 33.00

Ž .CRRA-6 SR, BR 10 As CRRA-4, 0.822 y3.333 12.02 16.0, 58.8 †
UUUŽ . Ž . w xsecond lag 0.042 2.269 70.81

B. Monthly Data, 1959:1]1990:12

Ž .CRRA-7 SR 3 SR, CG 0.999 0.641 2.79 y0.1, 1.5 †
Ž . Ž . w x0.002 0.743 2.79

CRRA-8 SR, BR 6 SR, CG 0.999 0.122 3.07 B B
UUUŽ . Ž . w x0.000 0.068 20.36

CRRA-9 SR, BR 8 SR, BR, CG 0.999 0.210 4.38 B B
Ž . Ž . w xUUU0.000 0.071 81.78

UUUCRRA-10 SR, BR 10 SR, BR, CG, 0.998 0.035 20.43 B B
UUUŽ . Ž . w xSpread, DY 0.000 0.064 113.58

Ž .CRRA-11 SR, BR 8 As CRRA-9, 0.999 1.148 1.53 0.6, ` †
Ž . Ž . w xsecond lag 0.001 0.396 3.23

UCRRA-12 SR, BR 10 As CRRA-10, 0.999 0.289 13.88 B B
UUUŽ . Ž . w xsecond lag 0.000 0.160 54.59

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared critical
value. B denotes an empty S-set, and † denotes a nonempty S-set, which is not presented graphically to save space; these

Ž .figures are available upon request from the authors. Point estimates, standard errors in parentheses , the first J statistic
in each row are two-step estimates. The J statistics in square brackets were computed from the continuous updating
objective function. The S-set for g is based on the objective function, concentrated with respect to d . The instruments are
the indicated variables, lagged once, except for the models in which the instruments are stated as lagged twice. The

Ž .instruments always include a constant term. Variable definitions: SR s stock returns returns on a market portfolio ;
BRs bond returns; CG s consumption growth, spread s long bond rate minus short interest rate, DY s dividend yield.
See the text for a discussion of the data.

Ž .the constant term is a strong instrument . This function depends on d and r
Ž . Ž .habit formation-durability or d and l Epstein-Zin ; as in the CRRA case, g
enters this function only weakly when movements in consumption are small, as
they are in the data. In those models, we therefore report two concentrated
S-sets, one in which d is concentrated out and one in which either r or l is
concentrated out.

The results for the CRRA models are summarized in the final columns of
ŽTable IV, and selected 90% S-sets along with conventional two-step GMM

.confidence ellipses are graphed in Figures 2 and 3. When only stocks are priced



GMM WITH WEAK IDENTIFICATION 1083

TABLE V

GMM ESTIMATION RESULTS, HABIT FORMATIONrDURABILITY PREFERENCES

Model Assets GK Instruments d g r J S-set

A. Annual Data, 1871]1993

UUUHrD-1 SR, BR 8 SR, BR, CG 0.944 y0.897 0.116 24.77 Fig. 4
UUUŽ . Ž . Ž . w x0.009 0.438 0.187 42.86

UUUHrD-2 SR, BR 10 SR, BR, CG, 0.944 y0.895 0.112 28.08 †
UUUŽ . Ž . Ž . w xSpread, DY 0.008 0.421 0.187 50.21

UHrD-3 SR, BR 8 As HrD-1, 0.866 y2.154 0.082 11.17 †
UUUŽ . Ž . Ž . w xsecond lag 0.037 2.152 0.318 76.09

HrD-4 SR, BR 10 As HrD-2, 0.790 y6.480 0.286 13.09 †
UUUŽ . Ž . Ž . w xsecond lag 0.067 3.864 0.258 59.86

B. Monthly Data, 1959:1]1990:12

HrD-5 SR, BR 8 SR, BR, CG 1.004 5.182 0.443 3.87 Fig. 5
Ž . Ž . Ž . w x0.002 1.604 0.074 6.83

UUUHrD-6 SR, BR 10 SR, BR, CG, 0.999 1.111 2.111 19.89 B
UUUŽ . Ž . Ž . w xSpread & DY 0.000 0.299 0.482 64.17

HrD-7 SR, BR 8 As HrD-5, 0.999 1.174 y0.336 1.43 †
Ž . Ž . Ž . w xsecond lag 0.002 1.709 0.359 3.98

UHrD-8 SR, BR 10 As HrD-6, 0.992 y1.885 y0.332 12.99 †
Ž . Ž . Ž . w xUUUsecond lag 0.004 2.061 0.275 25.83

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared
critical value. B denotes an empty S-set, and † denotes a nonempty S-set, which is not presented graphically to
save space. See the notes to Table IV.

TABLE VI

GMM ESTIMATION RESULTS, EPSTEIN-ZIN PREFERENCES

MONTHLY DATA, 1959:1]1990:12

Model Assets GK Instruments d g l J S-set

EZ-1 BR, MR, 39 MR, CG 0.999 y0.025 0.710 45.87 B
UUŽ . Ž . Ž . w xreturns on 11 0.000 0.065 0.079 52.92

sector portfolios
EZ-2 BR, BR 39 As EZ-1, 0.995 y4.082 0.055 29.42 †

Ž . Ž . Ž . w xreturns on 11 second lag 0.005 4.597 0.041 33.68
sector portfolios

UUUEZ-3 BR, MR, 65 MR, CG, 0.999 y0.031 0.738 93.44 B
UUUŽ . Ž . Ž . w xreturns on 11 Spread & DY 0.000 0.062 0.031 114.37

sector portfolios
UUEZ-4 BR, MR, 65 As EZ-2, 0.997 y1.892 0.738 82.70 Fig. 6
UŽ . Ž . Ž . w xreturns on 11 second lag 0.001 0.906 0.038 81.09

sector portfolios

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared critical
value. B denotes an empty S-set, and † denotes a nonempty S-set, which is not presented graphically to save space.

Ž .MR is the return on the market portfolio the proxy for the optimal portfolio . In each model there are 13 Euler
Ž .equations G s 13 . See the notes to Table IV.
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Ž .FIGURE 2.}Joint S-set and concentrated objective function: model CRRA-1. a Joint 90% S-set
Ž . Ž . Ž . Ž .shaded and 90% GMM confidence ellipse for g , d upper panel ; b objective function concen-

Ž .trated with respect to d lower panel .

Ž .using annual data CRRA-1 , inferences based on the S-sets and conventional
GMM agree closely. Although the objective function in which d is concentrated

Ž . 2out has multiple minima Figure 2b , the second minimum is well above the x
critical value used to construct the concentrated S-set. Similarly, for models
CRRA-2, CRRA-3, and CRRA-4, the S-sets are null, indicating that there are
no parameter values consistent with the overidentifying conditions, the same
conclusion as is reached using the conventional J statistic. However, when the

Ž .second lags are used as instruments Figure 3 for CRRA-5; CRRA-6 is similar ,
the conventional confidence ellipse and the S-sets have no points in common;
the S-sets are much larger, and the degree of risk aversion is greater. Among
the CRRA models with monthly data, the S-set and standard GMM inferences
agree most closely when only stock returns and consumption growth are used as

Ž . Žinstruments CRRA-7 . When both stocks and bonds are priced CRRA-8 and
.CRRA-9 , the two-step J-statistic fails to reject but the S-sets are null. When

second lags are used as instruments, the S-set differs sharply from the seemingly
precise GMM confidence ellipse.
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Ž .FIGURE 3.}Joint S-set and concentrated objective function: model CRRA-5. a Joint 90% S-set
Ž . Ž . Ž . Ž .shaded and 90% GMM confidence ellipse for g , d upper panel ; b objective function concen-

Ž .trated with respect to d lower panel .

The differences between conventional GMM inferences and those based on
the S-sets are dramatic for the habit formationrdurability models. Although the
J statistic suggests that models HrD-1, HrD-2, and HrD-3 are rejected at the
10% level, the 90% S-sets are nonempty; in fact they contain a large set of

Žparameters and are disjoint with the standard GMM confidence sets see Figure
.4 for HrD-1; HrD-2 is similar . Although HrD-4 is not rejected at the 10%

level using the J-statistic, the S-sets and standard GMM ellipses for HrD-4
differ sharply. With only second lags as instruments the S-sets are somewhat

Ž .larger. Comparing the S-sets for HrD-1 and HrD-5 Figures 4 and 5 , which
use comparable sets of instruments, reveals that the annual data are consistent
with habit formation while the monthly data are consistent with durability. This

Ž . Žaccords with the theoretical results in Heaton 1993 although his functional
.form differs , but this is not revealed by the two-step GMM point estimates,

which suggest durability in both the monthly and annual data.
Conventional and S-set inferences also disagree for the Epstein-Zin prefer-

ences. The only non-null S-sets obtain using second lags as instruments. For the
Ž .long instrument list in EZ-4 Figure 6 , the S-sets are consistent with moderate
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Ž . Ž .FIGURE 4.}Concentrated S-sets: model HrD-1. a 90% S-set shaded and 90% GMM
Ž . Ž . Ž . Ž .confidence ellipse for g , d , r concentrated out upper ; b 90% S-Set shaded and 90% GMM
Ž . Ž . Ž .confidence ellipse for g , r , d concentrated out lower ; c joint S-set: model HrD-1. Joint 90%

Ž . Ž .S-set shaded and 90% GMM confidence ellipse for g , d , r , sliced in r dimension.
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Ž . Ž . Ž .FIGURE 5 a, b .}Concentrated S-sets: model HrD-5. a 90% S-set shaded and 90% GMM
Ž . Ž . Ž . Ž .confidence ellipse for g , d , r concentrated out upper ; b 90% S-set shaded and 90% GMM
Ž . Ž .confidence ellipse for g , r , d concentrated out lower .

Žand high levels of risk aversion the coefficient of relative risk aversion in the
.EZ model is 1ylqlg . The S-sets for ls1 in models EZ-2 and EZ-4 are

nonempty, indicating that these data are in fact consistent with the CRRA
model, the opposite conclusion as reached using the standard GMM Wald
statistic.

These results reveal several symptoms of weak identification. Conclusions
based on the J statistic evaluated using the two step and continuous updating

Ž .objective functions often differ e.g. CRRA-5, CRRA-6 . The two-step point
estimates are sensitive to instrument choice even in models for which the

Ž .two-step J statistic does not reject e.g. CRRA-5, CRRA-6, or EZ-1 and EZ-2 .
Ž .The continuous updating estimates not tabulated here to save space often

differ substantially from the two-step estimates, and in some cases tended
towards arbitrarily large values. Importantly, the S-sets and conventional GMM
confidence sets typically disagree, even when the J statistic does not reject.
These observations lead us to conclude that the inferences based on conven-
tional GMM methodology are unreliable.



J. H. STOCK AND J. H. WRIGHT1088

Ž . Ž .FIGURE 6.}Concentrated S-sets: model EZ-4. a 90% S-set shaded and 90% GMM confidence
Ž . Ž . Ž . Ž .ellipse for g , d , l concentrated out upper ; b 90% S-set shaded and 90% GMM confidence
Ž . Ž . Ž . Ž .ellipse for g , l , d concentrated out lower ; c joint S-set: model EZ-4. Joint 90% S-set shaded

Ž .and 90% GMM confidence ellipse for g , d , l , sliced in l dimension.
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The S-sets lead to different substantive conclusions than the conventional
GMM analysis. The S-sets generally indicate greater degrees of risk aversion
than found using conventional GMM. Although such high risk aversion might
seem counterintuitive, these results are consistent with the view, recapitulated in

Ž .Campbell, Lo, and MacKinlay 1997, Ch. 8.2 , that very high risk aversion is
needed to resolve the equity premium puzzle. Among the specifications in which
both stocks and bonds are priced and first lags are used as instruments, the only
models for which the S-sets are nonempty are habit formationrdurability
models. In the annual data, these sets suggest habit formation, but in the
monthly data, they suggest durability. For Epstein-Zin preferences, the only
nonrejected specifications have second lags as instruments, and the associated
S-sets provide little evidence against the CRRA specification in favor of Ep-
stein-Zin preferences.

6. DISCUSSION AND CONCLUSIONS

From a methodological perspective, it is noteworthy that the empirical conclu-
sions based on the S-sets and conventional GMM analysis differ. The puzzling
Epstein-Zin conventional GMM point estimates in the nonrejected models are
less puzzling when viewed in the context of the S-sets. Using conventional
GMM, the habit formationrdurability model is largely rejected, or the point
estimates are nonsensical from an economic perspective, but using S-sets these
models are often not rejected and the confidence sets are consistent with risk
aversion. Generally speaking, the S-sets point to higher degrees of risk aversion
than suggested by the conventional GMM analysis. These differences under-
score the importance of using procedures that are robust to the problem of
weak identification in Euler equation estimation.

The weak-identification asymptotic theory developed here might be extended
Ž .in several ways. Although f u is assumed to be a martingale differencet 0

Ž .sequence, if instead f u is integrated of order zero and autocorrelated, thent 0
the efficient estimator would use a heteroskedasticity and autocorrelation
consistent covariance matrix. The extension to the autocorrelated case is con-
ceptually straightforward as long as Assumptions A]D are satisfied. Another
extension is to develop approximations to the distributions of statistics testing q
linear restrictions on u when the instruments are weak. This is relevant for
understanding distortions of sizes of tests and coverage rates of conventional
confidence intervals. An explicit asymptotic representation of the likelihood
ratio statistic for qsK has been provided, and the specialization to q-K is
conceptually straightforward. The extension to Wald statistics and conventional
standard errors appears to be more difficult. Although explicit limiting represen-

Ž Ž .tations for Wald statistics can be obtained in some special cases e.g. when f ut
.is a finite order polynomial in u , in the general GMM problem with arbitrary

nonlinearities it appears that additional assumptions are needed. This extension
is left for future work.
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Although some tools for inference robust to weak identification have been
developed in this paper, here too work remains to be done. For example, as
discussed in Section 2.4, the interpretation of the S-sets can be complicated
because they jointly test usu and instrument validity. It would be useful to0
have a method for constructing confidence sets that are robust to weak identifi-

Ž . Ž .cation, conditional on model instrument validity. Staiger and Stock 1997 and
Ž .Wang and Zivot 1998 proposed such methods in the linear case, but these do

not extend naturally to nonlinear models. It also would be useful for a re-
searcher to have a statistical measure of whether she faces weak identification in
a particular application. In general this depends on the global properties of
Ž .X Ž . Ž .X Ž .m a m a , an unobserved function. Outside of the linear case, where m a m a

is quadratic, there are no extant methods for reliable inference about this
function directly. The development of a simple and reliable statistic to detect
weak identification remains an open challenge.

This analysis nevertheless points to several symptoms of weak identification
that can be readily detected in empirical work. One such symptom is that the
objective function is clearly nonquadratic and has plateaus or ridges that are not

Ž .far in terms of LR statistics from its minimum value, as seen in Figures 3 and
4. A second, related symptom is that S-sets and conventional GMM confidence
sets have substantial areas of disagreement. A third symptom is obtaining
substantially different point estimates and inferences using GMM estimators
that, under the conventional theory, are asymptotically equivalent. A fourth
symptom is when a Monte Carlo study of a model calibrated to the empirical
problem at hand yields economically significant biases in GMM point estimates
and size distortions in LR and J statistics. If such symptoms are present, a
diagnosis of weak identification is appropriate, and it is prudent to report S-sets
in addition to, or instead of, conventional GMM statistics.
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APPENDIX A

PROOFS OF THEOREMS

ˆ 'Before proving the theorems, it is shown that b is T -consistent for b .0

1r2 ˆŽ . Ž .LEMMA A1: Under the assumptions of Theorem 1, T byb sO 1 .0 p

p
y1 r2 Tˆ Ž . Ž .PROOF: We first show that b ª b . Let m u sET Ý f u , so0 T ts1 t

XŽ Ž .. w Ž . Ž . x Ž Ž .. w Ž . Ž .xS u ; u u s C u qm u W u u C u qm u .T T T T T T T T
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By the various assumptions,

p Xy1 Ž Ž .. Ž . Ž Ž .. Ž .T S u ; u u ª m b W u u m bT T 2 2

Ž .uniformly in u . Because W is positive definite by Assumption D and m b s0 iff bsb , by the2 0p
ˆcontinuity of the argmin operator, b ª b .0

ˆ'To show T -consistency, use the fact that u minimizes S and Assumption C to write,T

Xˆ ˆ ˆ ˆ'Ž Ž .. Ž Ž .. w Ž . Ž . Ž .xS u ; u u yS u ; u u s C u qm u q T m bT T T 0 T 0 T 1T 2

ˆ ˆ ˆ ˆ'Ž Ž .. w Ž . Ž . Ž .x=W u u C u qm u q T m bT T T 1T 2

XŽ . Ž Ž .. Ž .yC u W u u C u F0T 0 T T 0 T 0

or, equivalently,
X Xˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ'Ž . Ž . Ž Ž .. Ž . Ž . Ž Ž .. w Ž . Ž .x Ž .A.1 Tm b W u u m b q2 T m b W u u C u qm u qd u F0,2 T T 2 2 T T T 1T 1T

where
XŽ . w Ž . Ž .x Ž Ž .. w Ž . Ž .xd u s C u qm u W u u C u qm u1T T 1T T T T 1T

XŽ . Ž Ž .. Ž .yC u W u u C u .T 0 T T 0 T 0

Ž Ž X ..Without loss of generality, let W be symmetric if not, replace it by 1r2 W qW . NowT T T
X 2ˆ ˆ ˆ ˆ ˆ'Ž . Ž Ž .. Ž . 5 Ž .5 w Ž Ž ..x Ž .Tm b W u u m b G T m b mineval W u u , where mineval A denotes the min-2 T T 2 2 T T

imum eigenvalue of the matrix A. Also,
Xˆ ˆ ˆ ˆ' Ž . Ž Ž .. w Ž . Ž .xT m b W u u C u qm u2 T T T 1T

ˆ ˆ ˆ ˆ'5 Ž . 5 5 Ž Ž .. w Ž . Ž .x5Gy T m b W u u C u qm u .2 T T T 1T

ˆŽ . w Ž Ž ..x ŽUsing these inequalities and dividing A.1 through by mineval W u u which is positive withT T
.probability one by Assumption D ,

2ˆ ˆ' 'Ž . 5 Ž . 5 5 Ž . 5A.2 T m b y2 d T m b qd F0,2 2T 2 3T

where

ˆ ˆ ˆ5 Ž Ž .. w Ž . Ž .x5 w Ž Ž ..xd s W u u C u qm u rmineval W u u and2T T T T 1T T T

ˆ ˆŽ . w Ž Ž ..xd sd u rmineval W u u .3T 1T T T

ˆ ˜ ˆ ˜ ˆ' 'Ž . Ž . Ž . Ž . Ž .Now take the roots of A.2 and write T m b sR b T byb , where bg b , b and2 0 0
Ž . Ž . X Ž .R b s m b rb . Thus for A.2 to hold it must be that2

1r22˜ ˆ'Ž . 5 Ž . Ž . 5 Ž .A.3 R b T byb Fd q d yd .0 2T 2T 3T

p p
˜ ˜Ž . Ž .Because b ª b , R b ª R b which has full column rank by Assumption C. The desired result,0 0
ˆ' Ž . Ž . Ž . Ž . Ž . Ž .that T byb sO 1 , follows if i d sO 1 and ii d sO 1 . These are now shown.0 p 2T p 3T p

ˆ ˆ ˆ ˆŽ . 5 Ž Ž .. w Ž . Ž .x5 w Ž Ž ..xi d s W u u C u qm u rmineval W u u2T T T T 1T T T

5 Ž Ž .. w Ž . Ž .x5 w Ž Ž ..xFsup W u u C u qm u rinf mineval W u uu T T T 1T u T T

Ž . 5 Ž Ž .. w Ž . Ž .x5 w Ž Ž ..xA.4 «sup W u u C u qm u rinf mineval W u uu 1 u

Ž . Ž .by Assumptions B, C, and D. By these assumptions, the numerator in A.4 is O 1 and thep
Ž .denominator is a positive constant, so d sO 1 .2T p
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ˆ ˆŽ . < < < Ž . < w Ž Ž ..xii d s d u rmineval W u u3T 1T T T

Ž . w Ž Ž ..xFsup d u rinf mineval W u uu 1T u T T

Xw Ž . Ž .x Ž Ž .. w Ž . Ž .xF2 sup C u qm u W u u C u qm u ru T 1T T T T 1T

w Ž Ž ..xinf mineval W u uu T T

XŽ . w Ž . Ž .x Ž Ž .. w Ž . Ž .x w Ž Ž ..xA.5 «2 sup C u qm u W u u C u qm u rinf mineval W u uu 1 1 u

Ž . Ž . Ž .by Assumptions B, C, and D. The right-hand side of A.5 is O 1 , so d sO 1 . Q.E.D.p 3T p

PROOF OF THEOREM 1:
Ž . Ž 1r2 .i By Lemma A1, it suffices to obtain a limiting representation for S a , b qbrT as anT 0

X X XŽ .empirical process in a , b gA=B, where B is compact. Now,

T
y1 r2 1r2 1r2 1r2Ž . Ž . Ž .T f a , b qbrT sC a , b qbrT qm a , b qbrTÝ t 0 T 0 1T 0

ts1

1r2 Ž 1r2 .qT m b qbrT .2 0

Ž 1r2 . Ž . Ž . Ž 1r2 .By Assumption B, C a , b qbrT «C a , b ; by Assumption C i , m a , b qbrTT 0 0 1T 0
Ž . Ž . 1r2 Ž 1r2 . Ž .ªm a , b ; by Assumption C ii , T m b qbrT ªR b b; and by Assumption D,1 0 2 0 0

X X XŽ Ž .. Ž Ž .. Ž . Ž .W u a , b ªW u a , b . These limits are all uniform in a , b gA=B, proving i .T T 0 0
X 1r2 ˆŽ . Ž . Ž Žii By Lemma 3.2.1 of van der Vaart and Wellner 1996, p. 286 , it follows that a , T byˆ

X UX UX
X X. . Ž . Ž Ž ..b « a , b sargmin S a , b; u a , b . To obtain the concentrated limiting objec-0 Ža , b .g A=B 0

U Ž Ž .. Ž Ž ..tive function S a ; u a , b , fix a , differentiate S a , b ; u a , b , and rearrange the first order0 0
conditions to obtain

y1XU Ž . w Ž . Ž Ž .. Ž .xb a sy R b W u a , b R b0 0 0

XŽ . Ž Ž .. w Ž . Ž .x=R b W u a , b C a , b qm a , b .0 0 0 1 0

U U UŽ Ž .. Ž Ž . Ž .. ŽSetting S a ; u a , b sS a , b a ; u a , b and rearranging yields the expression for S a ;0 0
Ž ..u a , b in the theorem.0

A consequence of the continuous mapping theorem and the envelope theorem is that
U U ˆ ˆ 1r2 ˆ U UŽ . Ž . Ž . Ž .a«a sargmin S a . Because bsb a , T byb «b a , which yields the expres-ˆ ˆa g A 0

sion in the theorem. Q.E.D.

Ž . Ž . Ž .X Ž . Ž .PROOF OF THEOREM 2: Because Ef u s0, S u sC u W u C u by Assumptiont 0 T 0 T 0 T 0 T 0p dXy1Ž . Ž . Ž . Ž . Ž . Ž . Ž .A and the assumption W u ª W u sV u , u , S u , u sC u W u C u ªT 0 0 0 0 T 0 0 T 0 T 0 T 0
Ž .X Ž .y1 Ž . 2C u V u , u C u ;x . Q.E.D.0 0 0 0 G K

Ž . Ž . Ž .y1PROOF OF THEOREM 3: Because m a , b s0 and by assumption W u sV u , u , from1 0 0 0 0 0
Theorem 1 we have

Xy1r2 y1r2ˆ ˆ ˜Ž . w Ž . Ž .x Ž . w Ž . Ž .xS a , b ; a , b « V u , u C u M u V u , u C u ,T 0 0 0 0 0 0 0 0 0

˜ ˜ X̃ ˜ y1 X̃ ˜ y1 r2Ž . w x Ž . Ž .where M u sIyR R R R , where R sV u , u R b . The result follows from not-0 0 0 0 0 0 0 0 0
y1 r2 ˜Ž . Ž . Ž .ing that V u , u C u is a GK=1 standard normal random variable and M u is idempo-0 0 0 0

tent with rank GKyn . Q.E.D.2

Ž . Ž .PROOF OF COROLLARY 4: For each of the estimators, the assumption u u «u u in Theorem 1T
Ž . Ž .must be verified. For the one step estimator, we can set u u su u s0 and the assumption isT

ˆŽ . Ž . Ž .satisfied trivially, and parts a and b follow. For the two-step estimator, u u su , and theT 1
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Ž . Ž . Ž .assumption is implied by part b ; parts c and d thus follow. For the continuous updating
Ž . Ž . Ž . Ž .estimator, u u su u su and the assumption is satisfied, so parts e and f follow. TheT

Ž . Ž .remaining results are direct implications of parts c ] f . Q.E.D.

APPENDIX B

COMPUTATION OF WEAK ASYMPTOTIC APPROXIMATION FOR THE CRRA CCAPM

The weak asymptotic approximations to the GMM estimators and test statistics analyzed in the
Ž .Monte Carlo analysis of Section 4 were computed in three steps: i for each design and set of

Ž .instruments, compute the functions m , m , and V using a Taylor series approximation to 4.1 ,1 2
Ž .where the parameters were computed by simulation of the DGP of Section 4.2; ii given these

Ž .functions, obtain 5000 Monte Carlo draws of the limiting objective functions of interest; and iii for
each Monte Carlo realization of each objective function, compute the various statistics of interest
Ž .the optimizing estimator and the test statistics , which yields 5000 Monte Carlo draws of each
statistic. The global Taylor series approximation is feasible because a and d are known, along0 0
with the other parameters describing the DGP, and because the parameter space was bounded. The
main numerical advantage of using a finite order Taylor series approximation is that the limiting
random function C can be represented as a function of a finite-dimensional normal random
variable. The Taylor series approximation was only used to compute the weak-instrument asymptotic
distributions.

Without loss of generality, let the first element of Z be a constant and let the remainingt
elements have sample mean zero. To order m, the Taylor series approximation is

yg Žg yg .c g c0 tq1 0 tq1Ž . Ž . Ž .B.1 h Y , u sd C rC R y i sdR e re y it tq1 t tq1 G tq1 G

m
iyg c i0 tq1 Ž .(dR e 1q c g yg ri! y iÝtq1 tq1 0 G

is1

X Žm.Ž .sdh g g C y itq1 tq1 G

y1 Ž̃m. Xw x Ž . Ž .sd h yd i h C g g q drd y1 itq1 0 G tq1 tq1 0 G

where

Ž .h sR exp yg c ,tq1 tq1 0 tq1
Xm2Ž . w Ž . Ž . Ž . xg g s 1 g yg 1r2 g yg ??? g yg rm! , and0 0 0

XXŽm. Žm.˜w xC s 1 C ,tq1 tq1

Ž̃m. 2 m Xw xwhere C s c c ??? c . Thus,tq1 tq1 tq1 tq1

T T
y1 r2 y1r2 1r2Ž . Ž . w Ž .x Ž .B.2 T f u (d T z g g mZ qT drd y1 i meÝ Ýt t t 0 G K

ts1 ts1

T
X Xy1r2 1r2wŽ . x Ž . Ž .sd I mg mI T vec z mZ qT drd y1 i meÝG K t t 0 G K

ts1

X y1 Ž̃m. XŽ . w x Žwhere e is the K=1 vector 1 0 ??? 0 and z s h yd i h C the first equality inK t tq1 0 G tq1 tq1

Ž . T . Ž . 2Ž Ž ..X Ž Ž ..B.2 uses Ý Z sTe . It follows that S u sd I mg g S I mg g , wherets1 t K h h G zz G

T
XX X X Xy1 w Ž . Ž .x w Ž . Ž .xS s lim T E vec z yEvec z vec z yEvec z .Ýzz T ª` t t t t

ts1

y1 r2 T Ž X . w Ž X . xAlso, under conventional moment assumptions, T Ý vec z mZ yE vec z mZ «¨ ,ts1 t t t t
Ž . Ž X .where ¨ ;N 0, v , where v is the average covariance matrix of vec z mZ .t t
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With this notation, Assumption C is satisfied by assuming

T
Xy1r2Ž . Ž .B.3 ET vec z mZ ªMÝ t t

ts1

uniformly in u . Thus

XŽ . Ž . wŽ Ž . . xB.4a m u sd I mg g mI M ,1 G K

Ž . Ž . Ž .B.4b m d s drd y1 i me ,2 0 G K

Ž . Ž . y1B.4c R d sd i me ,0 0 G K

XŽ . wŽ . Ž .x wŽ Ž . . x wŽ Ž .. xB.4d V g , d , g , d sd d I mg g mI v I mg g mI .1 1 2 2 1 2 G 1 K G 2 K

Computation of the asymptotic distributions proceeds as follows. Suppose that M, v, and QZZ
Ž .are known. Given u , then m , m , R, and V are computed using B.4 . A realization of the random1 2

Ž .variable ¨ is obtained as a pseudorandom draw from a N 0, v distribution. Then

XXy1r2Ž . wŽ Ž . . xm g sV d I mg g mI M and0 G Kg , d 0

XXy1r2Ž . wŽ Ž . . xz g sV d I mg g mI ¨ .0 G Kg , d 0

These expressions are then used to compute a realization of the objective functions and their
Ž .minimizers in Corollary 4 or their nonrobust counterparts such as 2.12 . Repeating this for multiple

draws of ¨ gives multiple draws from the limiting distributions of these statistics.
The only information about the DGP required for computing these asymptotic distributions by

this Monte Carlo method are the values of M, v, and Q . These moments are not readily obtainedZZ
analytically and instead were computed by averaging their sample counterparts over 5000 Monte
Carlo replications generated according to the design in Section 4.2. Given these moments, the
asymptotic distributions of the various statistics were computed by numerical minimization of the

Ž .limiting stochastic process for the objective function. The Taylor series expansion B.1 was
implemented with ms6. To check the sensitivity of the results to the choice of m, the approxima-
tion for model M1b was recomputed using ms4, 8, and 10, with negligible change in the results.
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