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NOTES AND COMMENTS

HETEROSKEDASTICITY-ROBUST STANDARD ERRORS FOR
FIXED EFFECTS PANEL DATA REGRESSION

BY JAMES H. STOCK AND MARK W. WATSON1

The conventional heteroskedasticity-robust (HR) variance matrix estimator for
cross-sectional regression (with or without a degrees-of-freedom adjustment), applied
to the fixed-effects estimator for panel data with serially uncorrelated errors, is incon-
sistent if the number of time periods T is fixed (and greater than 2) as the number of
entities n increases. We provide a bias-adjusted HR estimator that is

√
nT -consistent

under any sequences (n�T) in which n and/or T increase to ∞. This estimator can be
extended to handle serial correlation of fixed order.

KEYWORDS: White standard errors, longitudinal data, clustered standard errors.

1. MODEL AND THEORETICAL RESULTS

CONSIDER THE FIXED-EFFECTS REGRESSION MODEL

Yit = αi +β′Xit + uit� i = 1� � � � � n� t = 1� � � � � T�(1)

where Xit is a k × 1 vector of strictly exogenous regressors and the error,
uit , is conditionally serially uncorrelated but possibly heteroskedastic. Let the
tilde (∼) over variables denote deviations from entity means (X̃it = Xit −
T−1

∑T

s=1 Xis, etc.). Suppose that (Xit� uit) satisfies the following assumptions:

ASSUMPTION 1: (Xi1� � � � �XiT �ui1� � � � � � uiT ) are independent and identically
distributed (i.i.d.) over i = 1� � � � � n (i.i.d. over entities).

ASSUMPTION 2: E(uit|Xi1� � � � �XiT )= 0 (strict exogeneity).

ASSUMPTION 3: QX̃X̃ ≡ ET−1
∑T

t=1 X̃itX̃
′
it is nonsingular (no perfect multi-

collinearity).

ASSUMPTION 4: E(uituis|Xi1� � � � �XiT )= 0 for t �= s (conditionally serially un-
correlated errors).

For the asymptotic results we make a further assumption:

ASSUMPTION 5 —Stationarity and Moment Condition: (Xit� uit) is stationary
and has absolutely summable cumulants up to order 12.

1We thank Alberto Abadie, Gary Chamberlain, Guido Imbens, Doug Staiger, Hal White, and
the referees for helpful comments and/or discussions, Mitchell Peterson for providing the data in
footnote 2, and Anna Mikusheva for research assistance. This research was supported in part by
NSF Grant SBR-0617811.
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The fixed-effects estimator is

β̂FE =
(

n∑
i=1

T∑
t=1

X̃itX̃
′
it

)−1 n∑
i=1

T∑
t=1

X̃itỸit �(2)

The asymptotic distribution of β̂FE is (e.g., Arrelano (2003))
√
nT(β̂FE −β)

d→N(0�Q−1
X̃X̃

ΣQ−1
X̃X̃

)�(3)

where Σ= 1
T

T∑
t=1

E(X̃itX̃
′
itu

2
it)�

The variance of the asymptotic distribution in (3) is estimated by Q̂−1
X̃X̃

Σ̂Q̂−1
X̃X̃

,
where Q̂X̃X̃ = (nT)−1

∑n

i=1

∑T

t=1 X̃itX̃
′
it and Σ̂ is a heteroskedasticity-robust

(HR) covariance matrix estimator.
A frequently used HR estimator of Σ is

Σ̂HR−XS = 1
nT − n− k

n∑
i=1

T∑
t=1

X̃itX̃
′
it
ˆ̃u2

it �(4)

where { ˆ̃uit} are the fixed-effects regression residuals, ˆ̃uit = ũit − (β̂FE −β)′X̃it .2

Although Σ̂HR−XS is consistent in cross-section regression (White (1980)), it
turns out to be inconsistent in panel data regression with fixed T . Specifically,
an implication of the results in the Appendix is that, under fixed-T asymptotics
with T > 2,

Σ̂HR−XS p→
(n→∞�T fixed)

Σ+ 1
T − 1

(B −Σ)�(5)

where B =E

[(
1
T

T∑
t=1

X̃itX̃
′
it

)(
1
T

T∑
s=1

u2
is

)]
�

The expression for B in (5) suggests the bias-adjusted estimator

Σ̂HR−FE =
(
T − 1
T − 2

)(
Σ̂HR−XS − 1

T − 1
B̂

)
�(6)

2For example, at the time of writing, Σ̂HR−XS is the HR panel data variance estimator used
in STATA and Eviews. Petersen (2007) reported a survey of 207 panel data papers published in
the Journal of Finance, the Journal of Financial Economics, and the Review of Financial Studies
between 2001 and 2004. Of these, 15% used Σ̂HR−XS�23% used clustered standard errors, 26%
used uncorrected ordinary least squares standard errors, and the remaining papers used other
methods.
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where B̂ = 1
n

n∑
i=1

(
1
T

T∑
t=1

X̃itX̃
′
it

)(
1

T − 1

T∑
s=1

ˆ̃u2

is

)
�

where the estimator is defined for T > 2.
It is shown in the Appendix that if Assumptions 1–5 hold, then under any

sequence (n�T) in which n → ∞ and/or T → ∞ (which includes the cases of
n fixed or T fixed),

Σ̂HR−FE = Σ+Op(1/
√
nT)�(7)

so the problematic bias term of order T−1 is eliminated if Σ̂HR−FE is used.

REMARK 1: The bias arises because the entity means are not consistently
estimated when T is fixed, so the usual step of replacing estimated regression
coefficients with their probability limits is inapplicable. This can be seen by
considering

Σ̃HR−XS ≡ 1
n(T − 1)

n∑
i=1

T∑
t=1

X̃itX̃
′
it ũ

2
it �(8)

which is the infeasible version of Σ̂HR−XS in which β is treated as known and
the degrees-of-freedom correction k is omitted. The bias calculation is short:

EΣ̃HR−XS = E
1

n(T − 1)

n∑
i=1

T∑
t=1

X̃itX̃
′
it

(
uit − 1

T

T∑
s=1

uis

)2

(9)

= 1
T − 1

E

T∑
t=1

X̃itX̃
′
itu

2
it −

2
T(T − 1)

E

T∑
t=1

T∑
s=1

X̃itX̃
′
ituituis

+ 1
T 2(T − 1)

E

T∑
t=1

T∑
s=1

T∑
r=1

X̃itX̃
′
ituisuir

=
(
T − 2
T − 1

)
1
T

T∑
t=1

E(X̃itX̃
′
itu

2
it)

+ 1
T 2(T − 1)

E

T∑
t=1

T∑
s=1

X̃itX̃
′
itu

2
is

=
(
T − 2
T − 1

)
Σ+ 1

T − 1
B�

where the third equality uses the assumption E(uituis|Xi1� � � � �XiT )= 0 for t �=
s; rearranging the final expression in (9) yields the plim in (5). The source
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of the bias is the final two terms after the second equality in (9), both of which
appear because of estimating the entity means. The problems created by the
entity means is an example of the general problem of having increasingly many
incidental parameters (cf. Lancaster (2000)).

REMARK 2: The asymptotic bias of Σ̂HR−XS is O(1/T). An implication of
the calculations in the Appendix is that var(Σ̂HR−XS) = O(1/nT), so the mean
squared error (MSE) is MSE(Σ̂HR−XS)=O(1/T 2)+O(1/nT).

REMARK 3: In general, B − Σ is neither positive nor negative semidefinite,
so Σ̂HR−XS can be biased up or down.

REMARK 4: If (Xit� uit) are i.i.d. over t as well as over i, then the asymptotic
bias in Σ̂HR−XS is proportional to the asymptotic bias in the homoskedasticity-

only estimator Σ̂homosk = Q̂X̃X̃ σ̂
2
u , where σ̂2

u = (nT − n − k)−1
∑n

i=1

∑T

t=1
ˆ̃u2

it .
Specifically, plim(Σ̂HR−XS − Σ) = bT plim(Σ̂homosk − Σ), where bT = (T − 2)/
(T − 1)2. In this sense, Σ̂HR−XS undercorrects for heteroskedasticity.

REMARK 5: One case in which Σ̂HR−XS p→Σ is when T = 2, in which case
the fixed-effects estimator and Σ̂HR−XS are equivalent to the estimator and HR
variance matrix computed using first differences of the data (suppressing the
intercept).

REMARK 6: Another case in which Σ̂HR−XS is consistent is when the errors
are homoskedastic: if E(u2

it|Xi1� � � � �XiT )= σ2
u , then B = Σ=QX̃X̃σ

2
u .

REMARK 7: Under T fixed, n → ∞ asymptotics, the assumptions of sta-
tionarity and 12 summable cumulants can be relaxed, and Assumption 5 can
be replaced by EX12

it < ∞ and Eu12
it < ∞� t = 1� � � � �T . The assumption of

12 moments, which is used in the proof of the
√
nT consistency of Σ̂HR−FE,

is stronger than needed to justify HR variance estimation in cross-sectional
data or heteroskedasticity- and autocorrelation-consistent (HAC) variance es-
timation in time series data; it arises here because the number of nuisance
parameters (entity means) increases with n.

REMARK 8: As written, Σ̂HR−FE is not guaranteed to be positive semidefinite
(psd). Asymptotically equivalent psd estimators can be constructed in a num-
ber of standard ways. For example, if the spectral decomposition of Σ̂HR−FE is
R′ΛR, then Σ̂HR−FE

psd =R′ |Λ|R is psd.

REMARK 9: If the errors are serially correlated, then (3) holds with the
modification that Σ = ET−1(

∑T

t=1 X̃it ũit)(
∑T

t=1 X̃it ũit)
′ = ET−1(

∑T

t=1 X̃ituit) ×
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(
∑T

t=1 X̃ituit)
′ (the second equality arises from the idempotent matrix identity).

The first of these expressions leads to the “clustered” (over entities) variance
estimator

Σ̂cluster = 1
nT

n∑
i=1

(
T∑
t=1

X̃it
ˆ̃uit

)(
T∑
s=1

X̃is
ˆ̃uis

)′

�(10)

If T = 3, then the infeasible version of Σ̂HR−FE (in which β is known) equals the
infeasible version of Σ̂cluster, and Σ̂HR−FE is asymptotically equivalent to Σ̂cluster

to order 1/
√
n, but for T > 3� Σ̂cluster and Σ̂HR−FE differ. The problem of no

consistent estimation of the entity means does not affect the consistency of
Σ̂cluster; however, it generally does introduce O(T−1) bias into weighted sum-of-
covariances estimators based on kernels other than the nontruncated rectan-
gular kernel used for Σ̂cluster.

REMARK 10: If n and/or T → ∞, then Σ̂cluster = Σ+Op(1/
√
n) (see the Ap-

pendix of the working paper version of Hansen (2007)). Because Σ̂HR−FE =
Σ + Op(1/

√
nT), if the errors are conditionally serially uncorrelated and T is

moderate or large, then Σ̂HR−FE is more efficient than Σ̂cluster. The efficiency
gain of Σ̂HR−FE arises because imposing the condition that uit is conditionally
serially uncorrelated permits averaging over both entities and time, whereas
Σ̂cluster averages only across entities.

REMARK 11: Under n fixed, T → ∞ asymptotics, and i.i.d. observations
across entities, the asymptotic null distribution of the t-statistic computed us-
ing Σ̂cluster testing one element of β is

√
n

n−1 tn−1 and the F -statistic testing p

elements of β is distributed as ( n
n−p

)Fp�n−p (Hansen (2007, Corollary 4.1)). If
the divisor used to compute the clustered variance estimator is (n − 1)T , not
nT as in (10), then the Wald chi-squared statistic using Σ̂cluster and testing p
restrictions on β has the Hotelling T 2(p� n − 1) distribution. In contrast, if
Σ̂HR−FE is used, the t-statistic is distributed N(0� 1) and the F -statistic testing
p restrictions is distributed χ2

p/p under any sequence with n and/or T → ∞.
All this suggests that when n is small or moderate, the increased precision of
Σ̂HR−FE over Σ̂cluster will translate into improved power and more accurate con-
fidence intervals.

REMARK 12: The estimator Σ̂HR−FE can alternatively be derived as a method
of moments estimator in which zero restrictions on the conditional autocovari-
ances of uit are used to impose restrictions on the conditional autocovariances
of ũit . Let ui = (ui1� � � � � uiT )

′� ũi = (ũi1� � � � � ũiT )
′� X̃i = (X̃i1� � � � � X̃iT )

′�Ωi =
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E(uiu
′
i|X̃i), and Ω̃i =E(ũiũ

′
i|X̃i). Then Ω̃i = MιΩMι, where Mι = IT − T−1ιι′,

where ι is the T vector of 1’s. Now Σ= T−1E(X̃ ′
iΩiX̃i), so vecΣ = T−1E[(X̃i ⊗

X̃i)
′ vecΩi]. Let S be a T 2 × r selection matrix with full column rank such

that S′ vecΩi is the r × 1 vector of the r nonzero elements of Ωi. If these
zero restrictions are valid, then MS vecΩi = 0 (where MS = IT 2 − PS and
PS = S(S′S)−1S′), so vecΣ = T−1E[(X̃i ⊗ X̃i)

′PS vecΩi]. Under these zero re-
strictions, if S′(Mι ⊗Mι)S is invertible, then (as is shown in the Appendix)

vecΣ = T−1E[(X̃i ⊗ X̃i)
′H vec Ω̃i]�(11)

where H = S[S′(Mι ⊗Mι)S]−1S′. This suggests the estimator,

vec Σ̂MA(q) = 1
nT

n∑
i=1

(X̃i ⊗ X̃i)
′H( ˆ̃ui ⊗ ˆ̃ui)�(12)

where the superscript MA(q) indicates that this estimator imposes a condi-
tional moving average structure for the errors. Under the assumption of no
conditional autocorrelation (so q = 0), S selects the diagonal elements of Ωi,
and the resulting estimator Σ̂MA(0) is the same as Σ̂HR−FE in (6) except that k is
dropped in the degrees-of-freedom correction (see the Appendix). If no zero
restrictions are imposed, then S = IT 2 and S′(Mι ⊗ Mι)S is not invertible, but
setting H = IT 2 yields Σ̂MA(T−1) = Σ̂cluster. The estimator for the MA(1) case ob-
tains by setting S to select the diagonal and first off-diagonal elements of a
vectorized T × T matrix.

REMARK 13: If time fixed effects are estimated as well, the results of this
section continue to hold under fixed T�n → ∞ asymptotics, for then the time
effects are

√
nT -consistently estimated.

REMARK 14: The theoretical results and remarks should extend to instru-
mental variable panel data regression with heteroskedasticity, albeit with dif-
ferent formulas.

2. MONTE CARLO RESULTS

A small Monte Carlo study was performed to quantify the foregoing theo-
retical results. The design has a single regressor and conditionally Gaussian
errors:

yit = xitβ+ uit�(13)

xit = ζit + θζit−1� ζit ∼ i.i.d. N(0�1)� t = 1� � � � �T�(14)

uit = εit + θεit−1� εit |xi ∼ i.n.i.d. N(0�σ2
it)� σ2

it = λ(0�1 + x2
it)

κ�(15)

t = 1� � � � � T�
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TABLE I

MONTE CARLO RESULTS: BIAS, MSE, AND SIZEa

Bias Relative to Trueb MSE Relative to Infeasiblec Sized (Nominal Level 10%)

T n Σ̂HR−XS Σ̂HR−FE Σ̂cluster Σ̂HR−XS Σ̂HR−FE Σ̂cluster Σ̂HR−XS Σ̂HR−FE Σ̂cluster

(a) κ= 1
5 20 −0�170 −0�069 −0�111 0�72 0.87 1�07 0.152 0.132 0.124

10 20 −0�085 −0�025 −0�072 0�83 0.92 1�52 0.125 0.113 0.111
20 20 −0�045 −0�014 −0�062 0�91 0.96 2�29 0.113 0.108 0.108
50 20 −0�016 −0�003 −0�050 0�96 0.98 4�73 0.105 0.102 0.101

5 100 −0�126 −0�018 −0�027 1�05 1.04 1�32 0.128 0.107 0.107
10 100 −0�064 −0�004 −0�013 1�01 1.01 1�69 0.114 0.103 0.102
20 100 −0�038 −0�006 −0�017 1�03 1.01 2�44 0.107 0.102 0.103
50 100 −0�016 −0�003 −0�014 1�02 1.00 4�87 0.103 0.101 0.101

5 500 −0�115 −0�004 −0�006 2�06 1.09 1�38 0.122 0.103 0.103
10 500 −0�060 0�001 −0�001 1�57 1.03 1�72 0.110 0.099 0.099
20 500 −0�013 0�019 0�017 0�87 1.01 2�29 0.104 0.098 0.097
50 500 −0�014 −0�001 −0�003 1�16 1.01 4�95 0.102 0.100 0.100

(b) κ = −1
5 20 0�317 0�022 −0�032 2�05 1.32 1�41 0.060 0.106 0.094

10 20 0�235 0�006 −0�044 2�25 1.21 2�37 0.068 0.101 0.096
20 20 0�149 0�007 −0�044 2�08 1.14 4�39 0.077 0.099 0.098
50 20 0�058 −0�007 −0�055 1�47 1.06 10�58 0.091 0.101 0.100

5 100 0�320 0�009 −0�001 4�72 1.30 1�46 0.060 0.102 0.100
10 100 0�228 −0�004 −0�013 5�52 1.21 2�42 0.069 0.102 0.100
20 100 0�134 −0�008 −0�018 4�49 1.12 4�46 0.081 0.101 0.101
50 100 0�052 −0�013 −0�022 2�30 1.05 10�09 0.091 0.101 0.101

5 500 0�320 0�007 0�005 18�16 1.31 1�50 0.058 0.099 0.099
10 500 0�230 −0�003 −0�005 22�13 1.20 2�43 0.067 0.099 0.099
20 500 0�150 0�006 0�004 20�83 1.12 4�37 0.078 0.099 0.099
50 500 0�056 −0�009 −0�010 7�73 1.05 9�37 0.091 0.102 0.103

aMonte Carlo design: Equations (13)–(15) with θ = 0 (uncorrelated errors) and β = 0. All results are based on
50,000 Monte Carlo draws.

bBias of the indicated estimator as a fraction of the true variance.
cMSE of the indicated estimator, relative to the MSE of the infeasible estimator Σ̂inf = (nT)−1 ∑n

i=1
∑T

t=1 X̃
2
itu

2
it .

dRejection rates under the null hypothesis of the two-sided test of β = β0 based on the t-statistic computed using

the indicated variance estimator and the 10% asymptotic critical value (using Σ̂HR−XS and Σ̂HR−FE, the critical value
is from the standard normal distribution, using Σ̂cluster it is from the

√
n

n−1 tn−1 distribution).

where ζi0 and εi0 are drawn from their stationary distributions, κ = ±1, λ is
chosen so that var(εit) = 1, and i.n.i.d. means independent and nonidentically
distributed.

Table I presents results for Σ̂HR−XS (given in (4)), Σ̂HR−FE (given in (6)), and
Σ̂cluster (given in (10)) for κ = 1 (panel (a)) and κ = −1 (panel (b)), for con-
ditionally serially uncorrelated errors (θ = 0). The third to fifth columns of
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Table I report the bias of the three estimators, relative to the true value of Σ
(e.g., E(Σ̂HR−XS − Σ)/Σ). The next three columns report their MSEs relative
to the MSE of the infeasible HR estimator Σ̂inf = (nT)−1

∑n

i=1

∑T

t=1 X̃itX̃
′
itu

2
it

that could be computed were the entity means and β known. The final three
columns report the size of the 10% two-sided tests of β = β0 based on the
t-statistic using the indicated variance estimator and asymptotic critical value
(standard normal for Σ̂HR−XS and Σ̂HR−FE�

√
n

n−1 tn−1 for Σ̂cluster). Several results
are noteworthy.

First, the bias in Σ̂HR−XS can be large, it persists as n increases with T fixed,
and it can be positive or negative depending on the design. For example, with
T = 5 and n = 500, the relative bias of Σ̂HR−XS is −11�5% when κ = 1 and is
32% when κ = −1. This large bias of Σ̂HR−XS can produce a very large relative
MSE. Interestingly, in some cases with small n and T , and κ = 1, the MSE of
Σ̂HR−XS is less than the MSE of the infeasible estimator, apparently reflecting a
bias–variance trade-off.

Second, the bias correction in Σ̂HR−FE does its job: the relative bias of Σ̂HR−FE

is less than 2% in all cases with n ≥ 100, and in most cases the MSE of Σ̂HR−FE

is very close to the MSE of the infeasible HR estimator.
Third, consistent with Remark 12, the ratio of the MSE of the cluster vari-

ance estimator to the infeasible estimator depends on T and does not converge
to 1 as n gets large for fixed T . The MSE of Σ̂cluster considerably exceeds the
MSE of Σ̂HR−FE when T is moderate or large, regardless of n.

Fourth, although the focus of this note has been bias and MSE, in practice
variance estimators are used mainly for inference on β, and one would suspect
that the variance estimators with less bias would produce tests of β = β0 with
better size. Table I is consistent with this conjecture: when Σ̂HR−XS is biased
up, the t-tests reject too infrequently, and when Σ̂HR−XS is biased down, the t-
tests reject too often. When T is small, the magnitudes of these size distortions
can be considerable: for T = 5 and n = 500, the size of the nominal 10% test is
12.2% for κ = 1 and is 5.8% when κ = −1. In contrast, in all cases with n = 500,
tests based on Σ̂HR−FE and Σ̂cluster have sizes within Monte Carlo error of 10%.
In unreported designs with greater heteroskedasticity, the size distortions of
tests based on Σ̂HR−XS are even larger than reported in Table I.

Table II compares the size-adjusted power of two-sided t-tests of β = β0 us-
ing Σ̂HR−FE or Σ̂cluster when the errors are conditionally serially uncorrelated
(θ = 0). Monte Carlo critical values are used to correct for finite-sample dis-
tortions in the distribution of the t-ratio under the null. Consistent with Re-
mark 11, when n is small, the power of Wald tests based on the more precise es-
timator Σ̂HR−FE can considerably exceed the power of the test based on Σ̂cluster.
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TABLE II

SIZE-ADJUSTED POWER OF LEVEL-10% TWO-SIDED WALD TESTS OF β= 0 AGAINST
THE LOCAL ALTERNATIVE β = b/

√
nT a

Size-Adjusted Power of z-Test Based on:

n Σ̂HR−FE Σ̂cluster

(a) b= 2
3 0.338 0.227
5 0.324 0.269

10 0.332 0.305
20 0.322 0.307

100 0.321 0.316

(b) b = 4
3 0.758 0.504
5 0.750 0.629

10 0.760 0.710
20 0.760 0.731

100 0.761 0.756

aMonte Carlo design: Equations (13)–(15) with β = 0, κ = 1, θ = 0 (uncorrelated errors), and T = 20. Entries are
Monte Carlo rejection rates of two-sided t-tests using the indicated variance estimator, with a critical value computed
by Monte Carlo. Results are based on 50,000 Monte Carlo draws.

As discussed in Remark 12, the approach used to obtain Σ̂HR−FE can be ex-
tended to conditionally moving average errors. Table III considers the MA(1)
case (θ = ±0�8) and compares the performance of Σ̂MA(1), defined in and sub-
sequent to (12), to Σ̂cluster. As expected, both estimators show little bias and

TABLE III

PERFORMANCE OF Σ̂MA(1) AND Σ̂cluster WITH MA(1) ERRORSa

Bias Relative to True MSE(Σ̂MA(1))
MSE(Σ̂cluster)

Size (Nominal Level 10%)

T Σ̂MA(1) Σ̂cluster Σ̂MA(1) Σ̂cluster

(a) θ = 0�8
5 −0.022 −0.023 0.99 0.113 0.108

10 −0.013 −0.019 0.73 0.107 0.105
20 −0.006 −0.015 0.52 0.103 0.102

(b) θ = −0�8
5 −0.032 −0.035 0.93 0.112 0.109

10 −0.018 −0.025 0.72 0.107 0.106
20 −0.007 −0.015 0.52 0.103 0.102

aMonte Carlo design: Equations (13)–(15) with κ = 1, θ = ±0�8, β = 0, and n = 100. Σ̂MA(1) is defined in (12),
where S selects the diagonal and first upper and lower off-diagonal elements of a vectorized T × T matrix. Size was
computed using asymptotic critical values (standard normal for Σ̂MA(1)�

√
n

n−1 tn−1 for Σ̂cluster) for two-sided Wald

tests using the indicated variance estimator. Results are based on 50,000 Monte Carlo draws.
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produce Wald tests with small or negligible size distortions. Because Σ̂MA(1)

in effect estimates fewer covariances than Σ̂cluster, however, Σ̂MA(1) has a lower
MSE than Σ̂cluster, with its relative precision increasing as T increases.

3. CONCLUSIONS

Our theoretical results and Monte Carlo simulations, combined with the re-
sults in Hansen (2007), suggest the following advice for empirical practice. The
usual estimator Σ̂HR−XS can be used if T = 2, but it should not be used if T > 2.
If T = 3� Σ̂HR−FE and Σ̂cluster are asymptotically equivalent and either can be
used. If T > 3 and there are good reasons to believe that uit is conditionally
serially uncorrelated, then Σ̂HR−FE will be more efficient than Σ̂cluster and tests
based on Σ̂HR−FE will be more powerful than tests based on Σ̂cluster, so Σ̂HR−FE

should be used, especially if T is moderate or large. If the errors are well mod-
eled as a low-order moving average and T is moderate or large, then Σ̂MA(q) is
an appropriate choice and is more efficient than Σ̂cluster. If, however, no restric-
tions can be placed on the serial correlation structure of the errors, then Σ̂cluster

should be used in conjunction with
√

n
n−1 tn−1 or ( n

n−p
)Fp�n−p critical values for

hypothesis tests on β.
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APPENDIX: PROOFS

PROOF OF (7): All limits in this appendix hold for any nondecreasing se-
quence (n� T) in which n → ∞ and/or T → ∞. To simplify the calculations,
we consider the special case that Xit is a scalar. Without loss of generality,
let EXit = 0. Adopt the notation ūi = T−1

∑T

t=1 uit and X̄i = T−1
∑T

t=1 Xit . The
proof repeatedly uses the inequality var(

∑m

j=1 aj)≤ (
∑m

j=1

√
var(aj))

2.

Begin by writing
√
nT(Σ̂HR−FE − Σ) as the sum of four terms using (6) and

(9):
√
nT(Σ̂HR−FE −Σ)(16)

= √
nT

[(
T − 1
T − 2

)(
Σ̂HR−XS − 1

T − 1
B̂

)

mailto:james_stock@harvard.edu
mailto:mwatson@penalty -@M princeton.edu
mailto:mwatson@penalty -@M princeton.edu
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−
(
T − 1
T − 2

)(
EΣ̃HR−XS − 1

T − 1
B

)]

=
(
T − 1
T − 2

)√
nT(Σ̂HR−XS −EΣ̃HR−XS)−

√
nT

T − 2
(B̂ −B)

=
(
T − 1
T − 2

)
[√nT(Σ̂HR−XS − Σ̃HR−XS)+ √

nT(Σ̃HR−XS −EΣ̃HR−XS)]

−
(

T

T − 2

)[√
n

T
(B̂ − B̃)+

√
n

T
(B̃ −B)

]
�

where Σ̃HR−XS is given in (8) and B̃ is B̂ given in (6) with ˆ̃uit replaced by ũit .
The proof of (7) proceeds by showing that, under the stated moment condi-

tions,
(a)

√
nT(Σ̃HR−XS −EΣ̃HR−XS)= Op(1),

(b)
√
n/T(B̃ −B)= Op(1/

√
T),

(c)
√
nT(Σ̂HR−XS − Σ̃HR−XS)

p→0,
(d)

√
n/T(B̂ − B̃)

p→0.
Substitution of (a)–(d) into (16) yields

√
nT(Σ̂HR−FE −Σ) = Op(1) and thus

the result (7).
(a) From (8), we have that

var[√nT(Σ̃HR−XS −EΣ̃HR−XS)]

= var
[(

T

T − 1

)
1√
nT

n∑
i=1

T∑
t=1

(X̃2
it ũ

2
it −EX̃2

it ũ
2
it)

]

=
(

T

T − 1

)2

var

(
1√
T

T∑
t=1

X̃2
it ũ

2
it

)
�

so (a) follows if it can be shown that var(T−1/2
∑T

t=1 X̃
2
it ũ

2
it) = O(1). Expanding

1√
T

∑T

t=1 X̃
2
it ũ

2
it yields

1√
T

T∑
t=1

X̃2
it ũ

2
it = A0 − 2A1D3 + 1√

T
(A2

1D2 +A2
2D1 − 2A2A4)

+ 4
T
A1A2A3 − 3

T 3/2
A2

1A
2
2�
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where

A0 = 1√
T

T∑
t=1

X2
itu

2
it � A1 = 1√

T

T∑
t=1

Xit� A2 = 1√
T

T∑
t=1

uit�

A3 = 1√
T

T∑
t=1

Xituit� A4 = 1√
T

T∑
t=1

X2
ituit�

D1 = 1
T

T∑
t=1

X2
it � D2 = 1

T

T∑
t=1

u2
it � and D3 = 1

T

T∑
t=1

Xitu
2
it �

Thus

var

(
1√
T

T∑
t=1

X̃2
it ũ

2
it

)
(17)

≤ {
var(A0)

1/2 + 2 var(A1D3)
1/2 + T−1/2 var(A2

1D2)
1/2

+ T−1/2 var(A2
2D1)

1/2 + 2T−1/2 var(A2A4)
1/2

+ 4T−1 var(A1A2A3)
1/2 + 3T−3/2 var(A2

1A
2
2)

1/2
}2

≤ {
var(A0)

1/2 + 2(EA4
1ED

4
3)

1/4 + T−1/2(EA8
1ED

4
2)

1/4

+ T−1/2(EA8
2ED

4
1)

1/4 + 2T−1/2(EA4
2EA

4
4)

1/4

+ 4T−1(EA8
1EA

8
2)

1/8(EA4
3)

1/4 + 3T−3/2(EA8
1EA

8
2)

1/4
}2
�

where the second inequality uses term-by-term inequalities; for example, the
second term in the final expression obtains using var(A1D3) ≤ EA2

1D
2
3 ≤

(EA4
1ED

4
3)

1/2. Thus a sufficient condition for var(T−1/2
∑T

t=1 X̃
2
it ũ

2
it) to be O(1)

is that var(A0), EA8
1, EA8

2, EA4
3, EA4

4, ED4
1, ED4

2, and ED4
3 all are O(1).

First consider the D terms. Because ED4
1 ≤ EX8

it , ED4
2 ≤ Eu8

it , and (by
Hölder’s inequality) ED4

3 ≤EX4
itu

8
it ≤ (EX12

it )
1/3(Eu12

it )
2/3, under Assumption 5

all the D moments in (17) are O(1).
For the remainder of the proof of (a), drop the subscript i. Now turn to

the A terms, starting with A1. Because Xt (Xit) has mean zero and absolutely
summable eighth cumulants,

EA8
1 = E

(
1√
T

T∑
t=1

Xt

)8

≤ h8

( ∞∑
j=−∞

| cov(Xt�Xt−j)|
)4

+O(T−1)

= O(1)�
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where h8 is the eighth moment of a standard normal random variable.3 The
same argument applied to ut yields EA8

2 = O(1).
Now consider A3 and let ξt =Xtut . Then

EA4
3 = E

(
1√
T

T∑
t=1

ξt

)4

= 1
T 2

T∑
t1�����t4=1

Eξt1ξt2ξt3ξt4(18)

= 3

[
1
T

T∑
t1=1

T∑
t2=1

cov(ξt1� ξt2)

]2

+ 1
T 2

T∑
t1�����t4=1

cum(ξt1� ξt2� ξt3� ξt4)

= 3 var(ξt)
2 + 1

T

T∑
t1�t2�t3=1

cum(ξ0� ξt1� ξt2� ξt3)

≤ 3EX4
t Eu

4
t + 1

T

T∑
t1�t2�t3=1

| cum(X0u0�Xt1ut1�Xt2ut2�Xt3ut3)|�

where cum(·) denotes the cumulant, the third equality follows from Assump-
tion 1 and the definition of the fourth cumulant (see Definition 2.3.1 of
Brillinger (1981)), the fourth equality follows by the stationarity of (Xt�ut) and
because cov(ξt� ξs) = 0 for t �= s by Assumption 4, and the inequality follows
by Cauchy–Schwarz (first term).

It remains to show that the final term in (18) is finite. We do so by using
a result of Leonov and Shiryaev (1959), stated as Theorem 2.3.2 in Brillinger
(1981), to express the cumulant of products as the product of cumulants. Let
zs1 = Xs and zs2 = us, and let ν = ⋃m

j=1 νj denote a partition of the set of index
pairs SA3 = {(0� 1)� (0� 2)� (t1� 1)� (t1� 2)� (t2� 1)� (t2� 2)� (t3� 1)� (t3� 2)}. Theo-
rem 2.3.2 implies that cum(X0u0�Xt1ut1�Xt2ut2�Xt3ut3) = cum(z01z02� zt11zt12�
zt21zt22� zt31zt32) = ∑

ν cum(zij� ij ∈ ν1) · · · cum(zij� ij ∈ νm), where the summa-
tion extends over all indecomposable partitions of SA3 . Because (Xt�ut) has
mean zero, cum(X0) = cum(u0) = 0, so all partitions with some νk having a
single element make a contribution of zero to the sum. Thus nontrivial parti-
tions must have m ≤ 4. Separating out the partition with m = 1, we therefore
have that

T∑
t1�t2�t3=1

| cum(X0u0�Xt1ut1�Xt2ut2�Xt3ut3)|(19)

≤
∞∑

t1�t2�t3=−∞
| cum(X0�u0�Xt1�ut1�Xt2�ut2�Xt3�ut3)|

3If at is stationary with mean zero, autocovariances γj , and absolutely summable cumulants up
to order 2k, then E(T−1/2 ∑T

t=1 at)
2k ≤ h2k(

∑
j |γj |)k +O(T−1).
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+
∑

ν:m=2�3�4

∞∑
t1�t2�t3=−∞

| cum(zij� ij ∈ ν1) · · · cum(zij� ij ∈ νm)|�

The first term on the right-hand side of (19) satisfies

∞∑
t1�t2�t3=−∞

| cum(X0�u0�Xt1�ut1�Xt2�ut2�Xt3�ut3)|

≤
∞∑

t1�t2�����t7=−∞
| cum(X0�ut1�Xt2�ut3�Xt4�ut5�Xt6�ut7)|�

which is finite by Assumption 5.
It remains to show that the second term in (19) is finite. Consider cumu-

lants of the form cum(Xt1� � � � �Xtr � us1� � � � � usp) (including the case of no X ’s).
When p = 1, by Assumption 1 this cumulant is zero. When p = 2, by Assump-
tion 4 this cumulant is zero if s1 �= s2. Thus the only nontrivial partitions of
SA3 either (i) place two occurrences of u in one set and two in a second set or
(ii) place all four occurrences of u in a single set.

In case (i), the threefold summation reduces to a single summation which
can be handled by bounding one or more cumulants and invoking summability.
For example, one such term is

∞∑
t1�t2�t3=−∞

| cum(X0�Xt3) cum(Xt1�u0�ut2) cum(Xt2�ut1�ut3)|(20)

=
∞∑

t=−∞
| cum(X0�Xt) cum(Xt�u0�u0) cum(X0�ut�ut)|

≤ var(X0)
√
EX2

0Eu
4
0

∞∑
t1�t2=−∞

| cum(X0�ut1�ut2)| <∞�

where the equality follows because the initial summand is zero unless t2 = 0 and
t1 = t3, and the inequality uses | cum(X0�Xt)| ≤ var(X0)� | cum(Xt�u0�u0)| ≤
|EXtu

2
0| ≤ √

EX2
0Eu

4
0, and

∑∞
t=−∞ | cum(X0�ut�ut)| ≤ ∑∞

t1�t2=−∞ | cum(X0�ut1�

ut2)|; all terms in the final line of (20) are finite by Assumption 5. For a par-
tition to be indecomposable, it must be that at least one cumulant under the
single summation contains both time indexes 0 and t (if not, the partition satis-
fies Equation (2.3.5) in Brillinger (1981) and thus violates the row equivalency
necessary and sufficient condition for indecomposability). Thus all terms in
case (i) can be handled in the same way (bounding and applying summability
to a cumulant with indexes of both 0 and t) as the term handled in (20). Thus
all terms in case (i) are finite.
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In case (ii), the summation remains three dimensional and all cases can be
handled by bounding the cumulants that do not contain the u’s and invoking
absolute summability for the cumulants that contain the u’s. A typical term is

∞∑
t1�t2�t3=−∞

| cum(X0�u0�ut1�ut2�ut3) cum(Xt1�Xt2�Xt3)|

≤E|X0|3
∞∑

t1�t2�t3=−∞
| cum(X0�u0�ut1�ut2�ut3)|

≤E|X0|3
∞∑

t1�����t4=−∞
| cum(X0�ut1�ut2�ut3�ut4)|<∞�

Because the number of partitions is finite, the final term in (19) is finite, and it
follows from (18) that EA4

3 =O(1).
Next consider A4. The argument that EA4

4 = O(1) closely follows the argu-
ment for A3. The counterpart of the final line of (18) is

EA4
4 ≤ 3EX8

t Eu
4
t

+ 1
T

T∑
t1�t2�t3=1

| cum(X0X0u0�Xt1Xt1ut1�Xt2Xt2ut2�Xt3Xt3ut3)|�

so the leading term in the counterpart of (19) is a twelfth cumulant, which is
absolutely summable by Assumption 5. Following the remaining steps shows
that EA4

4 <∞.
Now turn to A0. The logic of (19) implies that

var(A0) = var

(
1√
T

T∑
t=1

X2
itu

2
it

)
(21)

≤
∞∑

t=−∞
| cov(X2

0u
2
0�X

2
t u

2
t )|

≤
∞∑

t=−∞
| cum(X0�X0�u0�u0�Xt�Xt�ut�ut)|

+
∑

ν:m=2�3�4

∞∑
t=−∞

| cum(zij� ij ∈ ν1) · · · cum(zij� ij ∈ νm)|�

where the summation over ν extends over indecomposable partitions of SA0 =
{(0�1)� (0�1)� (0�2)� (0�2)� (t�1)� (t�1)� (t�2)� (t�2)} with 2 ≤ m ≤ 4. The first
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term in the final line of (21) is finite by Assumption 5. For a partition of SA0

to be indecomposable, at least one cumulant must have indexes of both 0 and
t (otherwise Brillinger’s (1981) Equation (2.3.5) is satisfied). Thus the bound-
ing and summability steps of (20) can be applied to all partitions in (21), so
var(A0)=O(1). This proves (a).

(b) First note that EB̃ = B:

EB̃ = E
1
n

n∑
i=1

(
1
T

T∑
t=1

X̃2
it

)(
1

T − 1

T∑
s=1

ũ2
is

)

= E

(
1
T

T∑
t=1

X̃2
it

)(
1

T − 1

T∑
s=1

u2
is − T

T 2(T − 1)

T∑
s=1

T∑
r=1

uisuir

)

= E

(
1
T

T∑
t=1

X̃2
it

)(
1

T − 1

T∑
s=1

u2
is − 1

T(T − 1)

T∑
s=1

u2
is

)
= B�

where the penultimate equality obtains because uit is conditionally serially un-
correlated. Thus

E

[√
n

T
(B̃ −B)

]2

= 1
T

var

[(
1
T

T∑
t=1

X̃2
it

)(
1

T − 1

T∑
s=1

ũ2
is

)]
(22)

≤ 1
T
E

(
1
T

T∑
t=1

X2
it

)2(
1

T − 1

T∑
s=1

u2
is

)2

≤ 1
T

√
EX8

itEu
8
is�

where the first inequality uses
∑T

t=1 X̃
2
it ≤

∑T

t=1 X
2
it and

∑T

t=1 ũ
2
it ≤

∑T

t=1 u
2
it . The

result (b) follows from (22). Inspection of the right-hand side of the first line
in (22) reveals that this variance is positive for finite T , so that under fixed-T
asymptotics the estimation of B makes a 1/nT contribution to the variance of
Σ̂HR−FE.

(c) We have
√
nT(Σ̂HR−XS − Σ̃HR−XS)(23)

=
√
nT

nT − n− k

n∑
i=1

T∑
t=1

X̃2
it
ˆ̃u2

it −
√
nT

n(T − 1)

n∑
i=1

T∑
t=1

X̃2
it ũ

2
it

=
(

nT

n(T − 1)− k

)
1√
nT

n∑
i=1

T∑
t=1

X̃2
it(

ˆ̃u2

it − ũ2
it)
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−
(

k
√
nT

n(T − 1)− k

)
Σ̃HR−XS�

An implication of (a) is that Σ̃HR−XS p→EΣ̃HR−XS, so the second term in (23) is
Op(1/

√
nT). To show that the first term in (23) is op(1), it suffices to show that

1√
nT

∑n

i=1

∑T

t=1 X̃
2
it(

ˆ̃u2

it − ũ2
it)

p→0. Because ˆ̃uit = ũit − (β̂FE −β)X̃it ,

1√
nT

n∑
i=1

T∑
t=1

X̃2
it(

ˆ̃u2

it − ũ2
it)(24)

= √
nT(β̂FE −β)2 1

nT

n∑
i=1

T∑
t=1

X̃4
it

− 2
√
nT(β̂FE −β)

1
nT

n∑
i=1

T∑
t=1

X̃3
it ũit

= [√nT(β̂FE −β)]2 1
(nT)3/2

n∑
i=1

T∑
t=1

X̃4
it

− 2
√
nT(β̂FE −β)

1
nT

n∑
i=1

T∑
t=1

X̃3
ituit

+ 2
√
nT(β̂FE −β)

1
n

n∑
i=1

(
1
T

T∑
t=1

X̃3
it

)
ūi�

Consider the first term in (24). Now
√
nT(β̂FE −β) =Op(1) and

E

∣∣∣∣∣ 1
(nT)3/2

n∑
i=1

T∑
t=1

X̃4
it

∣∣∣∣∣ = 1√
nT

E(X̃4
it)→ 0�

where convergence follows because E(X̃4
it) < ∞ is implied by E(X4

it) < ∞.
Thus, by Markov’s inequality, the first term in (24) converges in probability to
zero. Next consider the second term in (24). Because uit is conditionally serially
uncorrelated, uit has 4 moments, and X̃it has 12 moments (because Xit has 12
moments),

var

(
1
nT

n∑
i=1

T∑
t=1

X̃3
ituit

)
= 1

nT
E(X̃6

itu
2
it)≤ 1

nT

√
(EX̃12

it )(Eu
4
it)→ 0�
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This result and
√
nT(β̂FE − β) = Op(1) imply that the second term in (24)

converges in probability to zero. Turning to the final term in (24), because uit is
conditionally serially uncorrelated, X̃it has 12 moments, and uit has 4 moments,

var

(
1
n

n∑
i=1

(
1
T

T∑
t=1

X̃3
it

)
ūi

)
= 1

nT
E

((
1
T

T∑
t=1

X̃3
it

)2(
1
T

T∑
t=1

u2
it

))

≤ 1
nT

√√√√E

(
1
T

T∑
t=1

X̃3
it

)4√
Eu4

it → 0�

This result and
√
nT(β̂FE − β) = Op(1) imply that the final term in (24) con-

verges in probability to zero, and (c) follows.
(d) Use ˆ̃uit = ũit − (β̂FE −β)X̃it and collect terms to obtain√

n/T(B̂ − B̃)(25)

= 1√
nT

n∑
i=1

(
1
T

T∑
t=1

X̃itX̃
′
it

)(
1

T − 1

T∑
s=1

( ˆ̃u2

is − ũ2
is)

)

=
(

T

T − 1

)
[√nT(β̂FE −β)]2 1

(nT)3/2

n∑
i=1

(
1
T

T∑
t=1

X̃2
it

)2

− 2
√
nT(β̂FE −β)

1
nT

n∑
i=1

(
1
T

T∑
t=1

X̃2
it

)

×
(

1
T − 1

T∑
s=1

X̃isũis

)
�

Because
√
nT(β̂FE − β) = Op(1) and Xit has four moments, by Markov’s in-

equality the first term in (25) converges in probability to zero (the argument is
like that used for the first term in (24)). Turning to the second term in (25),

var

[
1
nT

n∑
i=1

(
1
T

T∑
t=1

X̃2
it

)(
1

T − 1

T∑
s=1

X̃isũis

)]

= 1
n(T − 1)2

var

(
1
T 2

T∑
t=1

T∑
s=1

X̃2
itX̃isũis

)

≤ 1
n(T − 1)2

√
EX̃12

it Eu
4
it → 0�
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so the second term in (25) converges in probability to zero and (d) fol-
lows. Q.E.D.

DETAILS OF REMARK 4: If (Xit� uit) is i.i.d., t = 1� � � � �T� i = 1� � � � � n, then
Σ = EX̃itX̃

′
itu

2
it = QX̃X̃σ

2
u +Ω, where Ωjk = cov(X̃jitX̃kit� u

2
it), where X̃jit is the

jth element of X̃it . Also, the (j� k) element of B is

Bjk = E
1
T 2

T∑
t=1

T∑
s=1

X̃jitX̃kitu
2
is

= QX̃X̃�jkσ
2
u + 1

T 2

T∑
t=1

T∑
s=1

cov(X̃jitX̃kit� u
2
is)

= QX̃X̃�jkσ
2
u + 1

T − 1
Ωjk�

where the final equality uses, for t �= s� cov(X̃jitX̃kit� u
2
is) = T−2 cov(XjitXkit�

u2
it) = (T − 1)−2Ωjk (because (Xit� uit) is i.i.d. over t). Thus B = QX̃X̃σ

2
u +

(T − 1)−1Ω = QX̃X̃σ
2
u + (T − 1)−1(Σ − QX̃X̃σ

2
u). The result stated in the re-

mark follows by substituting this final expression for B into (5), noting that
Σ̂homosk p→QX̃X̃σ

2
u , and collecting terms.

DETAILS OF REMARK 7: The only place in the proof that the summable cu-
mulant condition is used is to bound the A moments in part (a). If T is fixed, a
sufficient condition for the moments of A to be bounded is that Xit and uit have
12 moments. Stationarity of (Xit� uit) is used repeatedly, but if T is fixed, sta-
tionarity could be relaxed by replacing moments such as EX4

it with maxt EX4
it .

Thus, under T fixed, n → ∞ asymptotics, Assumption 5 could be replaced by
the assumption that EX12

it < ∞ and Eu12
it <∞ for t = 1� � � � �T .

DETAILS OF REMARK 12: To derive (11), first note that vec Ω̃i = (Mι ⊗
Mι) vecΩi = (Mι ⊗ Mι)(PS + MS) vecΩi = (Mι ⊗ Mι)SS

′ vecΩi, where the fi-
nal equality imposes the zero restrictions MS vecΩi = 0 and uses the fact that
S′S = I. The system of equations vec Ω̃i = (Mι ⊗ Mι)SS

′ vecΩi, is overdeter-
mined, but the system S′ vec Ω̃i = S′(Mι ⊗Mι)SS

′ vecΩi is exactly determined,
so if S′(Mι ⊗ Mι)S is invertible, then S′ vecΩi = [S′(Mι ⊗ Mι)S]−1S′ vec Ω̃i�
(This final expression also can be obtained as the least squares solution to the
overdetermined system.) One obtains (11) by substituting this final expression
into vecΣ= T−1E[(X̃i ⊗ X̃i)

′PS vecΩi] and using S′S = I.

We now show that Σ̂MA(0), given by (12) for the MA(0) case, is the same as
Σ̂HR−FE up to the degrees-of-freedom correction involving k. For the MA(0)
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case, S is T 2 × T with nonzero elements {S(j−1)T+j�j = 1� j = 1� � � � � T }. Di-
rect calculations show that S′(Mι ⊗ Mι)S = T−1(T − 2)[I + T−1(T − 2)−1ιι′]
and [S′(Mι ⊗ Mι)S]−1 = (T − 2)−1T [I − T−1(T − 1)−1ιι′]. Now S′( ˆ̃ui ⊗ ˆ̃ui) =
( ˆ̃u2

i1� � � � �
ˆ̃u2
iT )

′ ≡ ˆ̃u2
i and S′(X̃i ⊗ X̃i) = (X̃i1 ⊗ X̃i1� � � � � X̃iT ⊗ X̃iT )

′ ≡ X̃2
i . Thus,

starting with (12) and the definition of H,

vec Σ̂MA(0) = 1
nT

n∑
i=1

(X̃i ⊗ X̃i)
′S[S′(Mι ⊗Mι)S]−1S′( ˆ̃ui ⊗ ˆ̃ui)(26)

= 1
nT

n∑
i=1

X̃2′
i

(
T

T − 2

)[
I − 1

T(T − 1)
ιι′

]
ˆ̃u2
i

=
(
T − 1
T − 2

)[
1

n(T − 1)

n∑
i=1

X̃2′
i

ˆ̃u2
i

− 1
T − 1

1
n

n∑
i=1

(
X̃2′

i ι

T

)(
ι′ ˆ̃u2

i

T − 1

)]

=
(
T − 1
T − 2

)[(
nT − n− k

nT − n

)
vec Σ̂HR−XS − 1

T − 1
vec B̂

]
�

The only difference between Σ̂MA(0) in (26) and Σ̂HR−FE in (6) is that k in the
degrees-of-freedom adjustment in Σ̂HR−XS is eliminated in (26).
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