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This paper examines regression tests of whether x forecasts y when the largest 
autoregressive root of the regressor is unknown. It is shown that previously pro- 
posed two-step procedures, with first stages that consistently classify x as I(1) 
or I(O), exhibit large size distortions when regressors have local-to-unit roots, 
because of asymptotic dependence on a nuisance parameter that cannot be esti- 
mated consistently. Several alternative procedures, based on Bonferroni and 
Scheffe methods, are therefore proposed and investigated. For many param- 
eter values, the power loss from using these conservative tests is small. 

1. INTRODUCTION 

In a bivariate model, the asymptotic null distribution of the F-statistic test- 
ing whether x is a useful predictor of y depends on whether the largest auto- 
regressive root ae of the regressor is I or less than 1. The application that 
motivates this paper is a special case of the general Granger causality test- 
ing problem, tests of the linear rational expectations hypothesis in finance. 
Examples include tests of the predictability of stock returns using lagged 
information - for example, the lagged dividend yield or, alternatively, the 
lagged slope of the term structure. A large body of research (see Campbell 
and Shiller, 1988; for a review, see Fama, 1991) finds significant predictive 
content in such relations using conventional critical values. However, with 
regressors such as the dividend yield, there is reason to suspect a large, pos- 
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sibly unit, autoregressive root. The presence of this arguably large autoregres- 
sive root calls into question the applicability of conventional critical values. 

There are several approaches to this problem that, at least in large sam- 
ples, satisfactorily handle the cases a = 1 or, alternatively, I ca I < 1, where 
a is fixed; an example is using a consistent sequence of pretests for a unit 
root in x (cf. Elliott and Stock, 1994; Kitamura and Phillips, 1992; Phillips, 
1995). However, these results are pointwise in a rather than uniform over 
I a l c 1. This distinction matters because controlling size in the sense of Leh- 
mann (1959, Ch. 3) and constructing an asymptotically similar test require 
controlling the size not just for a fixed but also for sequences of a. The se- 
quence that we focus on in this paper is the local-to unity model a = 1 + c/T, 
where c is a fixed constant. It has been established elsewhere that the result- 
ing local-to-unity asymptotic distributions provide good approximations 
to finite-sample distributions when the root is close to 1 (cf. Chan, 1988; 
Nabeya and S0rensen, 1994). It is shown in Section 2 that a typical pro- 
cedure that asymptotically controls size pointwise fails to control size in 
Lehmann's uniform sense because the asymptotic critical values depend on 
the nuisance parameter c. The consequence is substantial overrejection of the 
null hypothesis, both in finite samples and asymptotically. 

The specific model for which formal results are developed is the recursive 
system: 

Xt = Ax + Vt, (1 - aL)b(L)vt = t, (1.1) 

Yt = Ay + ')Xt_j + E2t, (1.2) 

where b(L) = E2_% biLi, bo = 1, and Et = (EIt,E2t)' is a martingale difference 
sequence with E(Et E Et 1 , Et-2,. . . ) E (with typical element aij) and with 
suptEC 4 < oo, i = 1,2. Let 6 = corr(E1t,E2t). Assume that Ev2 < oo. The 
roots of b(L) are assumed to be fixed and less than 1 in absolute value. 

If a ot I < 1 and a is fixed, then xt is integrated of order 0 (is 1(0)), whereas 
if ae = 1, then xt is integrated of order 1 (is I(1)). Thus, a can be taken to 
be the largest autoregressive root of the univariate representation of x,. 
Accordingly, it is useful to write (1.1) in standard augmented Dickey-Fuller 
(Dickey and Fuller, 1979) (ADF) form: 

Axt = Ax + Oxtx1 + a(L)Axt-1 + c1t, (1.3) 

where six = (1 - a)b(1)Ax, ,3 = (e - 1)b(1), and aj = dik=1?1 d1, where 
a(L) = L-1[1 -(1 -aL)b(L)]. 

We consider the problem of testing the null hypothesis that Py = yo or, 
equivalently, constructing confidence intervals for y. For this problem, the 
root oa is a nuisance parameter. In the motivating application to tests of 
the linear rational expectations hypothesis, yoO = 0, although the theoretical 
results here hold for general 'yo. 

Limiting representations are presented for the case that a constant is 
included when (1.2) and (1.3) are estimated (the "demeaned" case). These 
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results can be extended to regressions that include polynomials in time of gen- 
eral order, using the techniques in, for example, Park and Phillips (1988) and 
Sims, Stock, and Watson (1990). In practice, much empirical work includes 
a linear time trend in the specification. For this reason, although formulas 
are only given for the demeaned case, some numerical results are also pre- 
sented for the "detrended" case, in which a constant and linear time trend 
are included in the regressions of (xt,y,) on xt-1. 

The paper is organized as follows. The asymptotic size of the conventional 
t-test of 'y = 'yo based on a consistent pretest of ce = 1 is derived and com- 
puted in Section 2. Section 3 describes several procedures for the construc- 
tion of tests and confidence intervals that are asymptotically valid, in the 
sense that size is controlled for local-to-unity sequences of ae as well as for 
ae fixed. The asymptotic power of these tests against local alternatives of the 
form -y = yo + g/T is also derived in this section. These tests are based on 
bounds that generally result in asymptotically conservative tests. Bounds tests 
are a classical device that has been used in related time series problems (e.g., 
Dufour, 1990), and these tests are applied here to handle the nuisance param- 
eter c. Numerical results on the asymptotic size and power are presented in 
Section 4. Section 5 concludes the paper. 

2. ASYMPTOTIC REPRESENTATIONS AND SIZES OF 
PROCEDURES WITH A CONSISTENT PRETEST 

2.1. Asymptotic Representations of Test Statistics 

Let ty denote the t-statistic testing y = yo in (1.2), and let to denote the ADF 
t-statistic testing ,B = 0 in (1.3). The joint limiting distribution of (t,, to) is 
obtained by applying the theory of local-to-unity asymptotics developed by 
Bobkoski (1983), Cavanagh (1985), Chan (1988), Chan and Wei (1987), and 
Phillips (1987). Let B = (B1,B2)' be a two-dimensional Brownian motion 
with covariance matrix , where E_ II = = 1 and 12 = E21 = 6; let J, be the 
diffusion process defined by dJV(s) = cJ,(s) ds + dB, (s), where J,(0) = 0; 
and let Jrl(s) = Jr(s) -foJ,(r) dr. Also, let denote equality in distribution, 
let * denote weak convergence on D [0,1], and let [.] denote the greatest 
lesser integer function. Under the local-to-unity model ae = 1 + c/T, 

[T.] [T-] 
or1/2T T-1/2 P 1/2 T- 1/2 v -1 T- 1/2 it( 

11~ ~~ c- I ts "22 1 62t CO 1 IXT-]( 
t=1 t=l 

( BI(*),B2(9),Jc'(*)1 

jointly, where c2 = lIl/b(1)2, xt/ = X-(T- 1)-i Et=2 xt_1 (cf. Chan and 
Wei, 1987; Phillips, 1987). It follows that to and tL have the joint limiting 
representation 

(tfl,t,) * V1rc + COc,7T2c= 7-Tic + COc, 6ric + (1 - 62)1/2zi, (2.1) 
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where T ia - (fjCu2)1--l2fJ B, (Jg2)-i/2f jcdB2 oc = (f jCx2)1/2, h (rJU2 )~~ -l2Jc dBI, 'r2c = (f -- c ) -lX1 dB2, e J 

and z is a standard normal random variable distributed independently of 
(B1,.J) (cf. Stock, 1991, Appendix A). The final expression in (2.1) is ob- 
tained by writing B2 = 6B1 + (1- _62)1/2B2, where B2 is a standard Brown- 
ian motion distributed independently of B1. 

The limiting distribution of tz depends on both c and 6; however, 6 is 
consistently estimated by the sample correlation between (l, and C2t, so we 
can treat 6 as known for the purposes of the asymptotic theory. 

A joint test of c and -y can be performed using an appropriate Wald statistic 
for the system (1.2) and (1.3). Let T(70,CO) = [ITO - COb(1), T(j -o)] 
where b (1) = 1- Zk aj-1, where aj [ are the estimators of t aj ) from the 
OLS estimation of (1.3). Also, let E be the 2 x 2 matrix with typical element 
,ij = (T- 1)- ZT=1 eitej,, where e1, and e2, are the residuals from (1.3) and 

(1.2), respectively. Consider the test statistic 

W( YO,CO) = - T('YO,CO)'( TE Xt I ) T (YO ,CO)- (2.2) 2 = 

Extensions of the calculations in Stock (1991) show that, under the null 
hypothesis (y,c)= (=yo,co), 

W(_yo,CO) > 
I 

(,r2 + z2). (2.3) 

The key difficulty for tests of the hypothesis -y = y using either tl or 
W(,yo, co) is that the limiting distributions of these statistics depend on the 
local-to-unity parameter c. (The exception is if 6 =.0, in which event tz has 
a standard normal distribution for all values of c, as well as for ae fixed, 
I a I < 1.) Although ae is consistently estimable, c is not, so that asymptotic 
inference cannot in general rely on simply substituting a suitable estimator 
c' for c when selecting critical values for tests of -y. 

2.2. Asymptotic Size Distortions of Pretest-Based Procedures 

This section illustrates the size distortions of two-step tests of -y = 'Yo when 
the critical values are selected using a consistent first-stage pretest. To make 
the discussion concrete, consider pretesting using the ADF t-statistic. Let 

dt-c', denote the 100,qo quantile of the distribution of 6-rlc + (1 - 62)1/2z 

for a given value of 6. Consider the following sequential testing procedure 
based on a consistent ADF pretest, with an equal-tailed second-stage test with 
nominal level 5?lo: 

if to < b, - b2 ln T, reject y = yo if I t7l > 1.96, (2.4) 

if to > b - b2In T, reject -y -yif tL , (d, 0.025, dtc .975), 

where b1 and b2 are constants with b2 > 0. The asymptotic size of this test 
of oy = yo is limTJLO. sup1OdI<1 Pr[(2.4) rejects y = 'yolyo is truej]. 
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To compute a lower bound on this size, consider three possibilities: a = 1, 
a fixed and a a I < 1, and a = 1 + c/T. Evidently, if ce = 1 the first-stage test 
asymptotically rejects with probability 0 and the second-stage test asymptot- 
ically rejects with probability 5 o. If a is fixed and Ia I < 1, then Ito I = 
Op(T1"2); it follows that the first-stage test asymptotically rejects with prob- 
ability 1, so again the correct critical values are used and the second-stage 
asymptotic rejection rate is 5G/o. If, however, at = 1 + c/T, the probability of 
rejecting a = 1 goes to 0 because, from (2.1), to is Op(l) for c finite. Thus, 
asymptotically the ae = 1 second-stage critical values are used. In this event, 
the rejection probability is Pr [ 6rlI c + ( 1 _ 62)1/2Z I ? (dt-,A.025A tA.975 ) 

Numerical evaluation reveals that, given 6, this is monotone increasing in -c 
for c < 0. In the limit c-k -oo, 6rlc + (1 _ 62)1/2Z is distributed as a stan- 
dard normal random variable (this follows from the normality of fJg dB, / 
f(Jg)2 for c << 0; see Nabeya and S0rensen, 1994). It follows that the size 
of procedure (2.4) is at least 

size(2.4) ? 4'(d,,0,.025) + I(-d_t_,0.975) (2.5) 

Asymptotic rejection rates for (2.4) and their limit, the size (2.5), are given 
in Table 1 for various values of 6 for tests of purported level 5 %o. When 
6 = 0, ty has a standard normal asymptotic distribution for all c so the size 
is the asymptotic level. For 6 c 0.3, the asymptotic size distortions of the two- 
step procedure are small and are arguably negligibly important for empirical 
work. However, for larger values of 6, the size distortions can be substan- 
tial. For example, for 6 = 0.9 in the detrended case, the rejection rate for test 
(2.4) with "level" 5?0o is 37%o when c = -20, and the maximal rejection rate 
over all c (the size) is 64%o. 

To provide additional evidence of the dependence of the distribution of 
t', as a function of c, the median and upper and lower 5%o quantiles of this 
distribution are plotted in Figure 1 for 6 = 0.7. Evidently, the critical distri- 
bution of t, is shifted most negatively in the region of c = 0, although a neg- 
ative shift is evident even for c = -20. Evidently, if c < -10, the c = 0 
percentiles will provide poor critical values for testing y = 'yo, which is the 
source of the size distortions in Table 1. 

Whether or not the issues addressed in this paper are important in a par- 
ticular application evidently depends on the correlation 6. In many applica- 
tions to financial markets, this correlation can reasonably be expected to be 
large. For example, the innovations in stock returns plausibly will be (neg- 
atively) correlated with the innovation in the log dividend yield, because the 
log stock price enters each of these variables. 

These distortions are not an artifact of using an ADF-based procedure 
but, rather, arise because local-to-unity processes are classified as I(1) with 
asymptotic probability 1. Thus, these size distortions are present in other 
sequential procedures that share this feature. It is worth noting that one such 
class of procedures are the Bayesian selection rules proposed by Phillips and 
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TABLE 1. Asymptotic rejection rates and size of two-step procedure 
with consistent Dickey-Fuller pretest 

c 6 = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A. Demeaned case 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
-2.5 0.050 0.051 0.051 0.052 0.053 0.056 0.058 0.062 0.065 0.066 0.069 
-5.0 0.050 0.051 0.052 0.056 0.060 0.066 0.073 0.084 0.094 0.103 0.117 

-10.0 0.050 0.052 0.054 0.060 0.068 0.079 0.092 0.110 0.134 0.154 0.178 

-15.0 0.050 0.052 0.054 0.062 0.073 0.085 0.102 0.128 0.156 0.181 0.215 
-20.0 0.050 0.053 0.055 0.065 0.076 0.091 0.109 0.137 0.169 0.199 0.235 
-25.0 0.050 0.053 0.056 0.066 0.077 0.095 0.114 0.144 0.177 0.210 0.251 
-30.0 0.050 0.053 0.056 0.067 0.078 0.097 0.119 0.151 0.185 0.221 0.263 

Limit 0.050 0.053 0.060 0.075 0.095 0.126 0.162 0.211 0.269 0.329 0.400 
Size 0.050 0.053 0.060 0.075 0.095 0.126 0.162 0.211 0.269 0.329 0.400 

B. Detrended case 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 
-2.5 0.050 0.051 0.052 0.055 0.058 0.063 0.068 0.077 0.088 0.102 0.115 
-5.0 0.050 0.051 0.054 0.059 0.067 0.077 0.090 0.110 0.137 0.169 0.205 

-10.0 0.050 0.052 0.058 0.069 0.084 0.103 0.129 0.165 0.211 0.268 0.335 

-15.0 0.050 0.054 0.061 0.075 0.096 0.120 0.154 0.201 0.259 0.333 0.407 
-20.0 0.050 0.054 0.063 0.079 0.102 0.130 0.172 0.225 0.291 0.373 0.457 
-25.0 0.050 0.055 0.064 0.081 0.107 0.139 0.184 0.241 0.311 0.399 0.491 
-30.0 0.050 0.055 0.065 0.084 0.111 0.147 0.193 0.254 0.331 0.420 0.513 

Limit 0.050 0.055 0.074 0.107 0.158 0.226 0.310 0.414 0.527 0.644 0.748 
Size 0.050 0.055 0.074 0.107 0.158 0.226 0.310 0.414 0.527 0.644 0.748 

Notes: Rejection rates of the two-step procedure in (2.4) are based on asymptotic representation (2.1). "Limit" 
is computed for c <c 0, so ty - N(0, 1). Size is the maximum of the preceding rows and this limit. In the 
demeaned case, regresssions (1.2) and (1.3) contain a constant. In the detrended case, they contain a con- 
stant and a linear time trend. Based on 20,000 Monte Carlo replications of the limiting representations, sim- 
ulated with T = 500. 

Ploberger (1991) and Stock (1994), which both classify local-to-unity pro- 
cesses as 1(1) with probability 1 asymptotically (see Elliott and Stock, 1994). 

3. ASYMPTOTICALLY VALID CONFIDENCE 
INTERVALS AND TESTS 

This section describes several alternative procedures for the construction of 

asymptotically valid tests of y = To and confidence intervals for y. Because 

the size distortions found in Section 2 occur when these first-stage procedures 
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FIGURE 1. The 5, 50, and 95'1o percentiles of t,, demeaned case, 6 = 0.7. 

classify the process as I(1), but Ol is in fact large but less than 1, this section 
focuses on asymptotically valid inference on 'y in the local-to-unity case. This 
provides an alternative to the second line of (2.4) while leaving the first line 
unchanged. While the procedures apply to general c, the analysis focuses on 
the mean-reverting case c < 0 for two reasons. First, the economic debate in 
the unit roots area has, in general, focused on the stationary vs. unit root 
model. Second, unit root tests typically have high power against close explo- 
sive alternatives, so with high probability the 1(1) specification would be 
rejected in these cases against an explosive model, which would take us out- 
side the range of applicability of the dichotomous treatment in (2.4). 

Three types of procedures are considered: sup-bound intervals, Bonferroni 
intervals, and Scheffe-type intervals. Without subsequent adjustment, each 
can be shown to produce asymptotically conservative tests of y = 'yo. How- 
ever, the critical values for each procedure can be adjusted so that its nom- 
inal size equals its level asymptotically. 

3.1. Sup-Bound Intervals 

A simple asymptotically valid test or confidence interval can be constructed by 
using the extrema of the asymptotic local-to-unity critical values of t,. Let 

(d,,d3) = (inf dtc,4,C,SUPd1t,C,47 (3.1) 
C C 

A conservative test of -y = yo with asymptotic level at most N can be per- 
formed by rejecting if ty i (dl'/2r, d1 -1/23). An asymptotically conservative 
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confidence interval with confidence level at least 100(1 - j) Olo can be con- 
structed by inverting the acceptance region of this test, that is, as 

,y: e-dll12,qSE() -y) ' - -d1/2,SE( A)), (3.2) 

where SE(e) = [a22/(ET=2 xtt 1)]/ 

In contrast, if t,, E (dj/2,,dl- 1/2,), a test of 7y = -yo with asymptotic level 
71 will accept for any value of c. Thus, a confidence interval with confidence 
level of at most 100(1 - ) %o can be constructed by inverting this test statis- 
tic. Values of t^, within the conservative acceptance region, (d1/2., d1 1/2), 
but outside the acceptance region, (dl/2n,,d1-1/2,), constitute an indetermi- 
nate region in which ambiguity remains about whether a test of exactly size 
71 would accept or reject. 

The actual size of the test of y = yo using the upper and lower bounds is 

Pr [ t y (dl1, dl1/2), -) Pr[bil c + (1 _ 62)1122z 0 W1/2,, di- 1/24 )] 

= S*(c,O), (3.3) 

where S,(c, q) c q. Because the size depends on only one asymptotically 
unknown nuisance parameter (c), it is possible to construct alternative sup- 
bound confidence intervals with the correct size asymptotically. Specifically, 
a test of y = Yo with an asymptotic rejection rate of, say, N can be con- 
structed by choosing q to satisfy supcS,(c,,q) = r. Evidently, the resulting 
value of q, say ', will be at least iR. The sup-bound confidence interval (test) 
with this additional size adjustment will be referred to as the size-adjusted 
sup-bound confidence interval (test). Note that the critical values used to con- 
struct the size-adjusted sup-bound confidence intervals depend on 6. 

For the numerical work, the size-adjusted upper and lower bounds were 
computed by Monte Carlo simulation with T = 1,000 and 20,000 replications 
over a grid of c, -40 c c c 10; sup,S,(c,r,') = i7 was solved numerically for 
-q', and the resulting bounds, as a function of 6, were stored in a lookup table. 

3.2. Bonferroni Intervals 

The sup-bound confidence regions do not use sample information on a. An 
alternative, potentially more powerful approach is to construct intervals by 
inverting Bonferroni tests, where the bounds are determined by taking the 
extrema of the critical values of t^, evaluated over a first-stage confidence 
interval for a. Let Cc(,ql) denote a 100(1 - ) Wo confidence region for c, 
and let CYlC(q2) denote a 100(1 - q2)O/ confidence region for y, which 
depends on c. Then, a confidence region for -y that does not depend on c can 
be constructed as 

C4yB) = U CyIc( 2). (3.4) 
ceC.(q1) 
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By Bonferroni's inequality, the region CB(n) has confidence level of at least 
100(1 - q)Wo, where il = qI + 772 

Asymptotically valid confidence intervals for c can be constructed by 
inverting the Dickey-Fuller t-statistic as developed in Stock (1991), which 
produces an equal-tailed confidence interval of the form, cl(t1l) c c c 

CU(771). Given the upper and lower limits of this confidence interval, the 
confidence region of (3.4) can be computed by inverting t,. Let 

(d'B(-l q2), dB(_1,q2))=( min dt max dt ll/2X2) (3.5) 

The Bonferroni confidence interval is given by 

- duB('q1,q2)SE(j) ' 'Y ? 7 - dB(iq1,q2)SE(y). (3.6) 

In principle, this confidence interval can be constructed using graphical 
methods. First, the interval (cl, cu) is obtained by the method of confidence 
belts using to as in Stock (1991). Next, given this confidence interval for c, 
d00(n1002) and duB('1,2) are read off a plot of the asymptotic critical val- 
ues of ty, such as Figure 1. In practice, this is more efficiently implemented 
using computerized lookup tables. 

The asymptotic size of Bonferroni test (3.6) is 

Pr[te ? (0010q2),4010q2M 

Pr[6i-lc + (1 _ 62)1/2Z 0 (dPB( 1,, '2),duB( q1, q2))] =SB(C, r1, r2) 

(3.7) 

where, by Bonferroni's inequality, SB(C,q1,qj2) < r1 + n2. Due to the corre- 
lation between the tests, these intervals can be quite conservative. As is the 
case with the sup-bound intervals, asymptotically valid size-adjusted confi- 
dence intervals can be constructed by choosing q, and q2 (where q2 C ?) SO 

that they achieve some desired level, say i-. In practice, this size-adjustment 
computation is lengthy because of the need to compute first-stage confidence 
intervals for each realization of a Bonferroni test statistic. After some exper- 
imentation, it was found that letting 'q2 = 0 = lO0o and choosing q to solve 
SB(C,q1,,l) = I, so that ql depends on 6, yielded a test with size 10o% for 
6 = 0, 0.5 (Nq = 30%), 0.7 (,ql = 240%o), and 0.9 (q1l = 130%o). 

3.3. Scheffe-Type Intervals 

A Scheffe-type confidence interval, say C?( s), can be constructed by pro- 
jecting an asymptotically valid 100(1 - qj) % joint confidence set for (-y, c), 
say C,,,c(,), onto the y axis; that is, 

Cs,(-q) = ly: 3c such that (-y,c) E C7,(n)1 (3.8) 



1140 CHRISTOPHER L. CAVANAGH ET AL. 

This set will have asymptotic confidence level at least 100(1 - q) No. The joint 
confidence set C7,,i1) can be constructed by inverting a level-a test of the 
joint hypothesis, (,y,c) = (7y0,co). 

The Wald statistic W('y, c) in (2.2) is a natural statistic to use to perform 
this test. For c finite, the limit distribution of W based on (2.3) is nonstan- 
dard, although for c << 0, ric approaches a normal distribution so the dis- 
tribution of W(yo, co) becomes well approximated by a X2/2. Let wc0,I_ 
denote the 100(1 - 7) 0 quantile of the distribution of the limiting random 
variable in (2.3). Selected critical values are presented in Table 2. 

The set of (yo, co) for which W(yo, cO) < wco, 1 constitutes a confidence 
set with asymptotic confidence level 100(1 - i7) %o. To construct a Scheffe- 
type confidence interval for -y, it is not necessary to construct this region 
for (-y, c) but, rather, simply to find the set of yo for which there exists 
some co such that (Y,o co) is not rejected. Thus, the Scheffe interval is con- 
structed as 

Cft,q) = [ yo: min [ W(yo, co) - wco,1_] < 0. (3.9) 
Co 

If the critical value did not depend on co, solving (3.9) would reduce to 
manipulating a quadratic in co. However, because of the nonlinear depen- 
dence of wco,1_ on co, in our numerical work (3.9) is solved on a grid. Note 
that, like the Bonferroni interval, interval (3.9) does not restrict the range of 
c and so implicitly admits positive values of c. 

An advantage of this Scheffe-type interval over the Bonferroni intervals 
is that, because 6 does not appear in the limit in (3.9), the critical values for 
the Scheffe interval do not depend on 6. Like the other intervals, the Scheffe 
tests are conservative, and size adjustment can be expected to increase power. 
Let Ss(c, -) be the asymptotic size of the Scheffe test of -y = 'yo; then, a size- 
adjusted Scheffe test can be constructed by using critical values wco,I - I, 
where q is chosen such that supc Ss(c, 77) = i1. Note that although wco0, In 
does not depend on 6, the size Ss(c, q) does, so the critical values of the size- 
adjusted Scheffe test will depend on 8. Because a practical advantage of the 
unadjusted Scheffe test is that the critical values do not depend on 6, the 
numerical work focuses on the unadjusted (conservative) test. 

3.4. Local Asymptotic Power 

A natural way to compare these tests is to compare their power against local 
alternatives. Because ZT=2 x7-l is Op(T2) in the local-to-unity setting, we 
consider the local alternative 

= 'Yo + g/T, (3.10) 

where g is a constant. The limiting representation of tl, under (3.10) is 

t= > g&c + 8Trc + (1 - 82)1/2Z, (3.11) 
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TABLE 2. Asymptotic critical values WcO,I_,l of W('yo Ico) 

CO WCO,.90 WCO,95 Wco,975 WC0,99 

A. Demeaned case 
0.0 4.07 4.98 5.79 6.81 

- 1.0 3.69 4.57 5.43 6.50 
-2.5 3.33 4.18 5.05 6.13 
-5.0 3.03 3.84 4.63 5.75 
-7.5 2.82 3.66 4.44 5.54 

-10.0 2.69 3.50 4.31 5.41 
-12.5 2.64 3.41 4.25 5.33 
-15.0 2.59 3.35 4.19 5.25 
-17.5 2.55 3.33 4.13 5.19 
-20.0 2.52 3.29 4.11 5.11 
-22.5 2.50 3.26 4.06 5.08 
-25.0 2.48 3.26 4.02 5.08 
-27.5 2.47 3.24 4.00 5.08 
-30.0 2.45 3.24 3.98 5.06 
Limit 2.31 3.00 3.65 4.62 

B. Detrended case 
0.0 5.58 6.55 7.53 8.68 

-1.0 5.11 6.07 7.04 8.18 
-2.5 4.59 5.55 6.53 7.62 
-5.0 4.04 4.96 5.89 7.00 
-7.5 3.65 4.57 5.46 6.67 

-10.0 3.39 4.30 5.23 6.37 
-12.5 3.25 4.09 4.99 6.17 
-15.0 3.13 3.94 4.86 6.01 
-17.5 3.02 3.83 4.73 5.87 
-20.0 2.93 3.75 4.63 5.73 
-22.5 2.88 3.67 4.54 5.65 
-25.0 2.83 3.60 4.45 5.55 
-27.5 2.79 3.57 4.37 5.49 
-30.0 2.75 3.53 4.30 5.45 
Limit 2.31 3.00 3.65 4.62 

Notes: Entries w,O, - are the 100 (1 - q)% quantiles of the limiting null distribution of W(-yo, co). "Limit" 
refers to the case co << 0 and is computed using the x2/2 distribution. Entries for co 2 -30 are computed 
by asymptotic simulation with T = 1,000 and 20,000 Monte Carlo replications. 

where g = (co2/U22)1/2g. Because there is no feedback from Yt to x, by 
assumption, the distribution of to is the same under the local alternative as 
under the null. 

Let di and du generically denote the lower and upper critical values used 
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to construct the sup-bound and Bonferroni tests. For 6 < 1, the local asymp- 
totic power of the test based on these critical values is 

P[Reject H0: e = yo lye= yo + g/T] 

= Ef[(dl - 0- 6-1c)/(1 _ 62)1/2] 

+ cJ[(_du + goc + 6r1C)/(l - 62)1/2]) (3.12) 

The derivation of the asymptotic power function of the Scheffe test pro- 
ceeds similarly. Suppose that the true value of a is 1 + c'/T. Under local 
alternative (3.10), W(-yo, co) has the limiting representation 

W(yOco)> 
I 

(1 -62)-1[T1C' + (C'- co)Oc,]2+ [T2C'+gOc]2 

- 26[,r1c' + (C' - CO) 0A' [72c'+90 I='] -Wc',R(7O,CO), (3.13) 

where TIc', T2c', and Oc, are as defined following (2.1), evaluated for c = c'. 
Thus, the asymptotic power of the Scheffe test with level q against the alter- 
native ('y,c) = (,yo + g/T,c') is 

P[Reject Ho: y = yo ly = Oyo + g/T, a =1 + c'/T] 

= P[min ( Wc,g (yo, co) - wco,l) I 0]. (3.14) 
Co 

4. NUMERICAL RESULTS: SIZE AND POWER 

This section evaluates the performance of the procedures in Section 3. Re- 
sults are reported in terms of asymptotic size and power of tests of ey = o; 
coverage rates for the corresponding confidence intervals for -y are 1 minus 
the size. For the cases in which the distributions are nonstandard, asymptotic 
size and power results were computed by numerical evaluation of (3.12) and 
(3.14) using the asymptotic representations, which in turn were computed by 
Monte Carlo simulation of the various functionals of Brownian motion with 
T = 500. All asymptotic results are based on 20,000 Monte Carlo replications 
for each set of parameters. 

Asymptotic rejection rates of the various procedures as a function of the 
true values of c and of 6 are summarized in Table 3 for tests with asymptotic 
level lO'o. For a given value of 6, the size is the maximum (over c) rejection 
rate. Because the distribution of t,, tends to a N(0, 1) for c << 0, rejection 
rates for this limiting case can be computed using the standard normal c.d.f., 
and these results are reported in the row labeled "limit." (The Scheffe limit 
is computed using the X2/2 limit for W(-yo, cO).) For each 6, the size is com- 
puted as the maximum rejection rate in the preceding rows for that procedure. 

A striking feature of Table 3 is that the rejection rates of the size-adjusted 
procedures (the sup-bound and Bonferroni tests) do not drop below 5'o and 
often are close to 10%o. For cc -5, the size-adjusted Bonferroni test rejec- 
tion rates exceed 90qo. Because the Scheffe test is not size-adjusted, its re- 
jection rates are substantially below 100/o. Interestingly, the rejection rates 
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TABLE 3. Asymptotic null rejection rates of tests of y = 'yo 
with asymptotic size <lO0Vo: Demeaned case 

Procedure c 0 0.5 0.7 0.9 

Sup-bound 0 0.100 0.090 0.081 0.080 
-5 0.100 0.075 0.055 0.042 

-10 0.100 0.078 0.059 0.046 
-20 0.100 0.082 0.066 0.055 
-30 0.100 0.085 0.071 0.061 

Limit 0.100 0.100 0.100 0.100 
Size 0.100 0.100 0.100 0.100 

Bonferroni 0 0.100 0.084 0.081 0.067 
-5 0.100 0.091 0.096 0.093 

-10 0.100 0.096 0.100 0.099 
-20 0.100 0.100 0.100 0.099 
-30 0.100 0.100 0.099 0.098 

Limit 0.100 0.100 0.100 0.100 
Size 0.100 0.100 0.100 0.100 

Scheffe 0 0.027 0.028 0.039 0.052 
-5 0.036 0.024 0.031 0.041 

-10 0.043 0.026 0.031 0.038 
-20 0.051 0.029 0.031 0.037 
-30 0.066 0.036 0.036 0.035 

Limit 0.032 0.032 0.032 0.032 
Size 0.066 0.036 0.036 0.052 

Notes: See the text for definitions of the various procedures. The column 6 = 0 was computed using 
the N(0, 1) distribution of t.'. Entires for 6 > 0, c 2 -30 were computed by numerical evaluation of the 
limiting representations with 20,000 Monte Carlo replications and T = 1,000. "Limit" refers to c << 0, and 
entries in those rows are computed using the N(0, 1) approximation for t and the x2 /2 approximation for 
W(yo,co). "Size" is the maximum rejection rate in the column for the indicated test. 

of the sup-bound test decline for moderate c, as the distribution moves from 
a Dickey-Fuller type distribution with rejections in the lower tail to a nor- 
mal with rejections in the upper tail. 

Local asymptotic power functions of the various procedures against alter- 
native (3.10) with g < 0 are plotted in Figure 2 for various values of &. As 
points of reference, Figure 2 includes two additional power functions of 
infeasible tests in which c is taken as known. The first is the "simultaneous 
equations" test, which is asymptotically most powerful unbiased. This test 
is implemented using the cross-equation restrictions available if c is known, 
which, when b (L) = 1, amounts to including x, - csx,I as a regressor in 
(1.2). The second, termed "t,, with c known," is the equal-tailed test of y = yo 
based on t,, which uses critical values for the true c, that is, the test with 
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FIGURE 2. Local asymptotic power of 10% level tests of ey =y0 against ey = 7'o + g/T, 
demeaned case, 6 = 0. Top: c = -5, 6 = 0.5. Middle: c = -20, 6 = 0.5. Bottom: c = 

-5, 6 = 0.9. Key: Simultaneous equations test (solid line); t" with c known (long 
dashes); sup-bound (dots); Bonferroni (short dashes); Scheffe (dashes and dots). 
g = (W2/022) 1/2g, 

acceptance region d1>a,.05 c t, c dtz,c,.95. For 6= 0, these two tests are 
asymptotically equivalent, but for 6 * 0 the power function of the simulta- 
neous equations test (the Gaussian power envelope) lies above the power 
function of the c-known test. Because these tests are infeasible when c is 
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unknown, the relative power loss of the other procedures indicates the cost 
of lack of knowledge of c. As can be seen in Figure 2, as 6 increases the rel- 
ative performance of the infeasible simultaneous equations test improves. For 
c = -5, the sup-bound test has higher power than the Bonferroni or Scheffe 
test, although for c = -20 the Bonferroni has the highest power of these 
three. The relatively better performance for c < 0 of the Bonferroni test is 
to be expected, because in this case the quantiles of ty depend only weakly 
on c (cf. Figure 1). In no case does the Scheffe test have power as high as 
the sup-bound test, which is not surprising considering the sup-bound test is 
size-adjusted, whereas the Scheffe test is not. Although the power functions 
are not, in general, symmetric in g, the qualitative results for g > 0 are similar. 

In practice, 6 is typically unknown. Table 4 therefore reports test rejection 
rates found in a Monte Carlo experiment with T = 100 and 2,000 replica- 
tions. The data are generated according to (1.2) and (1.3) with EII = 122 = 1, 

E12 = 6, y = 0, and b(L) = (1 + OL)-', so (1 - aL)vt is an MA(1). The esti- 
mated system was (1.2) and (1.3), where the lag length in (1.3) was chosen 
by the Bayes information criterion with a maximum of four lags. The tests 
were implemented using an estimated value of 6, 6 = corr('1,, '2t); given 6, 
the relevant critical values were interpolated from a lookup table of critical 
values as a function of 6 and, for the Bonferroni tests, c. Results are reported 
for 0 = -0.5, 0, 0.5, a = 1, 0.95, 0.90, 0.80, and 6 = 0.5, 0.9. 

TABLE 4. Monte Carlo results: Finite sample rejection rates, 
6 estimated, demeaned case 

6=0.5 6=0.9 

c 0=-0.5 0=0 0=0.5 0=-0.5 0=0 0=0.5 

Sup-bound 0 0.095 0.101 0.100 0.086 0.099 0.106 
-5 0.073 0.076 0.077 0.044 0.044 0.045 

-10 0.081 0.072 0.077 0.048 0.047 0.047 
-20 0.091 0.082 0.079 0.073 0.063 0.063 

Bonferroni 0 0.099 0.094 0.102 0.110 0.082 0.100 
-5 0.094 0.092 0.091 0.092 0.093 0.096 

-10 0.100 0.088 0.091 0.097 0.106 0.104 
-20 0.104 0.092 0.099 0.102 0.103 0.108 

Scheffe 0 0.042 0.031 0.038 0.076 0.066 0.082 
-5 0.034 0.030 0.030 0.044 0.044 0.050 

-10 0.052 0.032 0.036 0.052 0.040 0.041 
-20 0.281 0.035 0.053 0.411 0.039 0.050 

Notes: Results are based on 2,000 replications with T= 100. The design is described in the text. 
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The Monte Carlo results suggest that the asymptotic results in Table 3 pro- 
vide a good guide to finite sample rejection rates in almost all cases. The 
Bonferroni and sup-bound procedures have Monte Carlo sizes close to 10'/7. 
The Scheffe procedure is somewhat less conservative in this finite sample 
experiment than it is asymptotically and has rejection rates less than 10o in 
all cases except 0 =-0.5, c = -20. Because T = 100, this case corresponds 
to ax = 0.8, 0 = -0.5, so the AR and MA roots are approaching cancella- 
tion. This is a case in which it is known that the asymptotics provide a poor 
approximation in the univariate model (cf. Pantula,1991), and those dif- 
ficulties evidently carry over to (2.3), particularly as the univariate case is 
approached for I 6 large. 

5. DISCUSSION AND EXTENSIONS 

This paper has investigated several procedures for handling the dependence 
of the distribution of tests of -y = 'yo on c. The Monte Carlo simulations sug- 
gest that these procedures control size in finite samples with 6 unknown, even 
though they are based on asymptotic analysis in which 6 is consistently esti- 
mated. When 6 is small or moderate, the cost of using these procedures is 
small, relative to infeasible tests that use knowledge of c. However, for 6 
large, the relative cost of not knowing c can be large. 

The model considered here is simple and stylized. One extension is to 
include lags of Yt and additional lags of x, in (1.2). The asymptotic distribu- 
tion theory for this extension is straightforward under the null that x, does 
not enter; the calculations use the techniques in Park and Phillips (1988) and 
Sims et al. (1990), as adapted in Stock (1991) for the local-to-unity case. The 
qualitative feature of the current results -that the test statistics have non- 
standard distributions that depend on c-will continue to hold under this 
generalization, although the critical values for the F-statistic testing the co- 
efficients on xt-1 and its lags will depend on the number of lags of x. An- 
other extension is to nonrecursive models in which (1.2) continues to hold, 
but in which there is feedback from y to x in (1.1) and (1. 3). After suitable 
modification of 6 and the covariance matrix in the W-test, the distributions 
of the sup-bound and W(,yo,co) statistics obtained for the current model 
also hold for this extension under the null -y =0. A third extension is to infer- 
ence about cointegrating vectors. Although the focus here has been on the 
null -yo = 0, if yo is nonzero then yt and xt are cointegrated, except both xt 
and Yt have local-to-unit roots in their univariate representation. This exten- 
sion is pursued by Elliott (1994), who also considers the behavior of efficient 
estimators of cointegrating vectors and their test statistics in this model. Even 
though these extensions are possible, however, considerable work remains to 
generalize this approach to higher dimensional models with possibly multi- 
ple unit roots and cointegrated regressors. 
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