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INFERENCE IN TIME SERIES 
REGRESSION WHEN THE ORDER 

OF INTEGRATION OF A 
REGRESSOR IS UNKNOWN 

GRAHAM ELLIOTT AND JAMES H. STOCK 
Harvard University 

The distribution of statistics testing restrictions on the coefficients in time series 
regressions can depend on the order of integration of the regressors. In prac- 
tice, the order of integration is rarely known. We examine two conventional 
approaches to this problem - simply to ignore unit root problems or to use unit 
root pretests to determine the critical values for second-stage inference -and 
show that both exhibit substantial size distortions in empirically plausible sit- 
uations. We then propose an alternative approach in which the second-stage 
critical values depend continuously on a first-stage statistic that is informative 
about the order of integration of the regressor. This procedure has the correct 
size asymptotically and good local asymptotic power. 

1. INTRODUCTION 

The asymptotic theory of classical inference in multivariate time series mod- 
els when regressors have one or more unit roots is well understood (Chan and 
Wei [7], Park and Phillips [16], Phillips [19], Phillips and Durlauf [24], Sims, 
Stock, and Watson [29]). This theory has been developed under the assump- 
tion that the number and location of unit roots in the system is known a pri- 
ori. Many inferences, such as inferences on the number of lags to include in 
a system, are typically unaffected by the presence of unit roots in the system. 
However, the null distribution of statistics testing certain quantities of eco- 
nomic interest, such as long-run effects of one variable on another, can 
depend on whether the regressor has a unit root. This poses difficulties in 
applied work in which it is rarely known whether a series actually has a unit 
root. This in turn can lead researchers either to ignore the problems that arise 
if a regressor is integrated or to use pretests (tests for unit roots or cointe- 
gration) to check if the regressors are integrated or cointegrated. 

This article studies inference in a special case of this general problem, in 
which there is a single lagged regressor x,_1 which is suspected, but not 
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known, to have a unit root, that is, in which the researcher is unsure whether 
the regressor is integrated of order 0 or 1 (is I(0) or I(1), respectively). One 
motivating example is an empirical relation that has recently received con- 
siderable attention is the finance literature in which the lagged dividend yield 
(the dividend-price ratio) appears to be useful in predicting excess stock 
returns; see, for example, Fama and French [10], Campbell [3] and, for a 
review of this literature, Fama [9]. A typical regression in this literature is 
monthly (or longer) excess returns on a portfolio of stocks against a constant, 
lags of excess returns, and lags of the log dividend yield for the portfolio; 
the finding is that the lagged level of the log dividend yield enters as a sig- 
nificant predictor of excess returns. As emphasized in Campbell [3] and in 
Fama's [9] review, the importance of this regression arises from its appar- 
ently strong evidence against the "random walk" theory of stock prices. As 
several econometricians have noted, although finance theories typically pre- 
dict that the dividend yield will be I(0) even though stock prices are I(1), for 
actual portfolios the dividend yield is only slowly mean reverting and the evi- 
dence that it does not have a unit root is weak. Although our primary moti- 
vation is this dividend yield regression, this regression is similar to regressions 
in the empirical consumption literature in which the growth rate of consump- 
tion is regressed against the lagged level of labor income or its logarithm (Fla- 
vin [11]; see Mankiw and Shapiro [13] and Stock and West [32] for 
discussions of the unit root issues in this context). It is also closely related 
to money-income causality regressions, although unlike the stock return and 
consumption examples, in the money-income case the null hypothesis (that 
money is not a useful predictor of income) does not imply that the depen- 
dent variable (income growth) is I(0). 

The purpose of this article is twofold. The first is to examine difficulties 
with conventional approaches to inference in this regression in light of the 
lack of asymptotic similarity of the t-test of the significance of xt-1. If the 
largest autoregressive root of the regressor is nearly one, then ignoring unit 
root issues altogether can result in Granger causality tests with asymptotic 
sizes that far exceed their nominal levels. One reaction to this problem is to 
pretest for a unit root in the regressor and, depending on whether a unit root 
is rejected or not, respectively to adopt Gaussian or nonstandard critical val- 
ues for inference in the second-stage regression. We show in Section 2, how- 
ever, that this two-stage approach also can produce large distortions in the 
size of the second-stage test. For example, when a Dickey-Fuller [8] t-statistic 
is used to pretest for a unit root in xt, a two-sided second-stage test with 
nominal level of 100o can have a size that exceeds 30Wo for sample sizes 
encountered in econometric practice. 

The second purpose of the article is to propose an alternative approach 
to this problem, referred to as the Bayesian mixture approximation. In the 
proposed approach, critical values for the second-stage test depend on a sta- 
tistic OT that is informative about the order of integration of xt. The condi- 
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tional distribution of the test statistic given OT is computed as a mixture of 
two asymptotic conditional distributions for the test statistic, conditional on 
x. being I(O) or I(1), with the mixture probabilities being given by posterior 
probabilities that x, is I(O) or I(1), respectively, p (I(0) I OT) and p (I(1) | lkT) 
The proposed procedure has three desirable features. First, under the null 
that the regressor has no predictive content, asymptotically the mixture dis- 
tribution will provide the correct critical values, that is, for any fixed I(O) 
or I(1) model, the test has the correct size. Second, the (second-stage) test 
has good power against local Granger causality alternatives. Specifically, if 
the order of integration d is zero, then the local asymptotic power of the pro- 
posed test is the same as the likelihood ratio test that imposes d = 0 a pri- 
ori. If d = 1, the proposed test can be compared with the test based on the 
same regression, but using the correct I(1) unconditional (on OT) critical 
values; although neither test dominates the other, the proposed test has 
higher power against most local alternatives. Finally, the proposed procedure 
avoids the difficulties of defining priors over parametric representations of 
x, within the I(O) or I(1) classes (e.g., see the debate between Phillips [21] 
and his discussants) and instead entails defining priors over the point hypoth- 
eses "I(1)" and "1(0)." Because priors are not specified over the entire 
parameter space, this is not a fully Bayesian treatment of inference in the 
second-stage regression. From a classical perspective the proposed procedure 
can be seen as a device for approximating the distribution of the t-statistic 
when the researcher has no a priori information on whether x, is I(O) or 
I(1). From this perspective, the argument in favor of the approximation is 
that it provides an asymptotically similar test with desirable power proper- 
ties, thereby circumventing the pitfalls of unit root pretesting in this appli- 
cation. The prior on I(1) can be considered a tuning parameter to be chosen 
by the researcher, for example, based on a Monte-Carlo study of the effect 
of the choice of prior on size or power in leading finite-sample models.' 

The outline of the article is as follows. Section 2 sets out the model under 
investigation and documents the size distortions introduced by the two con- 
ventional second-stage test procedures just described. The Bayesian mixture 
approximation, the construction of the posterior probabilities p (I() I OT) 

and p (I() I OT), and the asymptotic properties of the Bayesian mixture 
approximation are given in Section 3. Section 4 presents results on the pos- 
terior probabilities when x, has large, but not unit autoregressive or moving 
average (MA) roots, respectively, the local-to-I(1) and local-to-I(O) cases; 
these results are then used to examine the performance of the Bayesian mix- 
ture approximation when x, is local-to-I(1). The asymptotic power of this 
procedure against local Granger causality alternatives is studied in Section 
5. Numerical issues are reported, and a Monte-Carlo experiment is discussed 
in Section 6. Section 7 concludes. 

Throughout the paper, it is assumed that a constant is included in the 
second-stage regression and that x, is a driftless process. The results for 
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Granger-causality tests are developed for the special case of demeaned data, 
that is, when the only deterministic regressor in the second-stage regression 
is a constant. However, to facilitate extensions to higher-order detrending, 
the theory of the first-stage Bayesian classifier is developed in Sections 3.1 
and 4.1 for general polynomial detrending. 

2. THE MODEL AND PROBLEMS WITH CONVENTIONAL 
SECOND-STAGE INFERENCE TECHNIQUES 

2.1. The Model 

The data are assumed to be generated by the bivariate autoregressive system, 

Xt = A, + a(L)xt-I + 3(L)yt-I + qlt (la) 

Yt = Iy + YXt- I + 172t, (lb) 

where L is the lag operator, t = (n1,,f2t)' is a martingale difference 
sequence with E(17t77t I 71t-i, 7t-2,...) = E and with suptE7 4t < oo, i = 1,2, 
and at (L) and 1 (L) have finite orders. If xt is I(1), then one of the roots of 
(1 - a (L)L) equals one and the remaining roots are assumed to be fixed and 
greater than one in modulus. If x, is I(0), then all the roots of (1 - a(L)L) 
are fixed and exceed one in modulus. The null hypothesis to be tested is that 
-y = 0. It is assumed that xt has no drift in its univariate representation, that 
is, jAx = 0, where Ax = ,-x + a (l),ty. 

The specification in (lb) ignores the possibility of multiple lags of xt, or 
of lagged Y,, being useful in predicting Yt given xt-1. Our reason for focus- 
ing on this restricted system is that the conceptual difficulties are associated 
with estimating the levels effect of the possibly integrated regressor xt. It 
follows from results in Chan and Wei [7], Park and Phillips [16], and Sims, 
Stock, and Watson [29] that, if additional lags of x, are included in this 
regression, then Wald tests on these additional lags will have conventional 
chi-square asymptotic distributions whether x, is I(0) or I(1); moreover, if 
x, is I(1), then the test on additional lags is asymptotically independent of 
the test of the levels effect of x,. Thus, only inference concerning the levels 
effect is affected by the order of integration of xt. 

The local-to-I(1) model studied below nests the largest root of 1 - a (L)L 
as being in a 1/T neighborhood of 1. We therefore reparameterize (1) to iso- 
late this largest root. Factor (1 - a (L)L) as (1 - pL)(I - &(L)L), where 
p is the largest real root of (1 - a (L)L) and let a = (1 - pL). By rewriting 

Yt-I in (la) as deviations from its mean under the null, we have 

axt = Ax + &(L)axt + njt (L)(yt_.- y) + -1lt (2a) 

Yt = /ly + 7Xt-1 + 72t- (2b) 
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In terms of (2), the I(1) hypothesis is that p = 1 and the I(0) hypothesis is 
that I p I < 1. Define Q to be 27r times the spectral density matrix of (Axt, -i2t) 

at frequency zero, and let 6 = 021/(011022) 

2.2. Size Distortions Introduced by Using Gaussian Critical 
Values or Unit Root Pretests 

Two conventional approaches to inference in this problem are either to use 
a standard normal approximation to the distribution of tw, regardless of any 
information about the degree of persistence in x, or to use conventional 
unit root pretests to determine second-stage critical values. This subsection 
examines the consequences of these approaches. To simplify exposition, the 
problems with these two procedures are illustrated in the special case of (2a) 
in which there is no feedback and x, follows an AR(1) process. Specifi- 
cally, let 

xt = /ux + PXt-l + n1t (3a) 

Yt = tty + YXt-1 + "12t, (3b) 

where -1t satisfies the conditions stated following (1). The assumption A3x = 0 
here simplifies to ,ux = 0. In this simple model, Q = E so 6 = corr( OqIt, 2t) 
and the asymptotic distribution of te is determined by p and, if p is local to 
one, by 6. 

Under the null hypothesis that zy = 0, it can be shown that the de- 
meaned Dickey-Fuller t-statistic testing p = l(tj ) and the Granger cau- 
sality t-statistic testing oy = 0, t,,, are related by the expression, 

T 1/2 

/T-2 Z(X 
1 ) 20 

t = 6T( P) ttDF+ (1 62)7ZT+ oP(M) (4) 

where ZT = fZt== Xt1(?12t - Proj (i,27tI )1/(Zt=1 (XT-1) )E22) , S11 = 

T1 ZT=1 ET I, S22 = 122 
E l2' xA' =xt -X, and Proj(q2t I tIt) = E21 E121NIt 

If p = 1, (tDF,ZT) * (", z), where +t denotes the asymptotic representation 
of the demeaned Dickey-Fuller t-statistic, z is a standard normal random vari- 
able, i" and z are independent, and > denotes weak convergence of random 
elements of D [0,1 ]. If p = l and 6 = +1, then tz = 6tDF; if p = 1 and 6 = 0, 
then asymptotically t, is normally distributed and is independent of tDF; and 
if p = 1 and O < 161 < 1, then t, is asymptotically distributed as a linear com- 
bination of independent it and z statistics. 

The distribution of t,, can be obtained by using (4) when p is nearly one, 
in the sense that p = 1 + c/T where c is a constant. This local-to-unity nest- 
ing has been studied extensively by Bobkoski [2], Cavanagh [4], Chan and 
Wei [6], Chan [5], Nabeya and Tanaka [15], Perron [17], and Phillips [20], 
(see Nabeya and Tanaka [15] for a recent review of theoretical results). 
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If p = 1 + c/T, then T .2(xrT.]- x) E l1/2B'(.), where Br(s) = Bc(s) - 

fl Bc(r) dr, where Bc(s) is a diffusion process that satisfies dBc(s) = 

cBc(s)ds + dW(s) (e.g., Phillips [20]), where [c] denotes the greatest lesser 
integer function, W is a standard Brownian motion on the unit interval, and 
Bc(0) = 0. Under this local-to-I(1) nesting for x,, 

l IB{(s) d(W(s) \ 

(t-~ tD ) |6 ?1/2 + 1-6)Z, 

ItA B(S)2 ds3 

c( Bg(S)2dS) + {f[Sis] ) (5) 

where z is asymptotically independent of the functionals of B". Thus, when 
p is local to one and fy = 0, the qualitative results concerning the distribution 
of t, are similar to the p = 1 case: asymptotically, when 6 = 0, t,, is normally 
distributed independently of tDF, but for nonzero 6, t has a nonstandard 
distribution and in general t,, and tDF are dependent. 

The representations in (4) and (5) permit the analysis of the sizes of the 
two conventional approaches to inference in this problem. First, consider 
the case in which standard Gaussian critical values are used to evaluate the 
significance of t^. If 6 = 0 or if p is fixed and less than one, then t, has an 
asymptotic N(0, 1) distribution and this inference is justified. However, if 
p = 1 and 6 ? 0, the distribution is nonstandard. Equally important, the 
local-to-unity result in (5) indicates that if p is large and 6 * 0, then the dis- 
tribution of t. will be nonstandard and the normal distribution will provide 
a poor approximation. 

Table 1 presents evidence on the magnitude of these effects, specifically re- 
jection rates of the t-test of the null hypothesis y = 0 when data are generated 
according to (3) with ey = 0, t, is computed by regressing Yt onto (1,x x1), 
and rejection occurs when ty falls outside the standard Gaussian 5'% and 
95W0o critical values. (Because the distribution of t, is symmetric in 6, Table 1 
and subsequent tables present only results for 6 c 0.) As the theory predicts, 
there are no appreciable size distortions when 6 = 0, even if p is large. How- 
ever, for nonzero 6, the size distortions can be substantial. For example, 
when 6 = -.9, p = .95, and T = 50, the rejection rates are under I No in the 
left tail and 220%o in the right tail. 

A second approach to inference on -y is to pretest for a unit root in xt by 
using a one-sided test. If the unit root null is rejected, then the I(0) standard 
normal distribution is used, whereas if the unit root null is not rejected, then 
the I(1) distribution obtained from (5) with c = 0 is used. A natural unit root 
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TABLE 1. Size of t-tests of ay = 0 with standard Gaussian critical values: 
One-sided tests with nominal level 5%Wo0 

Pr(t,, < -1.645), p = Pr(t, > 1.645), p= 

6 T .6 .8 .9 .95 .975 1 .6 .8 .9 .95 .975 1 

-.9 50 .02 .01 .01 .00 .00 .00 .10 .13 .16 .22 .28 .38 
100 .03 .02 .01 .00 .00 .00 .08 .10 .13 .17 .23 .39 

-.5 50 .04 .03 .02 .02 .01 .01 .07 .09 .11 .13 .14 .18 
100 .03 .03 .03 .02 .01 .01 .06 .08 .09 .12 .12 .19 

0 50 .05 .06 .06 .06 .05 .06 .06 .05 .05 .05 .06 .06 
100 .06 .05 .05 .05 .05 .05 .05 .06 .06 .05 .05 .05 

aThe entries are rejection rates when te is compared with ? 1.645. The pseudodata were generated according 
to (3) with i.i.d. N(O,) errors, with Ell = E22 = 1 and E12 = 3. t., is the t-statistic testing y = 0 in a 
regression of y, onto (1,x,_1). Based on 5,000 Monte-Carlo replications. 

pretest is the demeaned Dickey-Fuller t-statistic, tDF. The difficulty with 
this two-stage procedure arises when p is one or local-to-one and 6 * 0, so 
that t and tDF are asymptotically dependent; then inference on t., condi- 
tional on tDF, differs from unconditional inference. Consider the extreme 
case (p,6) = (1,-i), so that ty, = ~-tl. Then one-sided (left-tail) failure to 
reject at the a1 level in the first stage ensures one-sided (right-tail) accep- 
tance at the a2 level in the second stage for any a2 < a1. First-stage rejec- 
tion of p = 1 by using tDF at the ai1 level (with critical value CDF;a,) leads to 
using standard normal critical values. As long as -cDF;O,I > cZ; a2 (typically 
true because of the skewness of the i-" asymptotic distribution), first-stage 
rejection implies a second-stage rejection with probability one. Thus, the 
asymptotic size of a second-stage right-tailed test of nominal level a2 iS in 
fact a,, as long as a!2 < a 1 and -CDF;x11 > CZ;C02. 

This size distortion is found more generally when p is large and 6 * 0, and 
it is present in two-sided as well as one-sided tests. Monte-Carlo evidence on 
sizes obtained by using this sequential testing procedure for various values 
of p, 6, and T are summarized in Table 2. The first-stage test is a 20% one- 
sided Dickey-Fuller [8] t-test for a unit root with a constant and no lags of 
Axt in the regression; the second-stage test is equal-tailed with nominal size 
10Vo, that is, the 5%7o and 95Wo quantiles of the I(0) or I(1) distribution are 
used, depending on the outcome of the first-stage Dickey-Fuller test. As the 
theory predicts, when 6 = 0, there is no size distortion introduced by the pre- 
test. (When 6 = 0, t, has an asymptotic normal distribution in both the I(0) 
and I(1) cases, so the same critical values (? 1.645) are used whether or not 
tDF rejects.) However, when 6 * 0, the I(0) and I(1) asymptotic distribu- 
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TABLE 2. Size of t-tests of ey = 0 with critical values selected by pretesting 
with a Dickey-Fuller t-statistic: Equal-tailed two-sided tests 
with nominal level 0lfoa 

p 

6 T .6 .8 .9 .95 .975 1.0 

-.9 50 .17 .29 .30 .26 .24 .22 
100 .11 .15 .30 .32 .28 .23 

-.5 50 .13 .16 .16 .17 .15 .14 
100 .10 .12 .16 .17 .16 .15 

0 50 .11 .11 .10 .10 .10 .10 
100 .10 .10 .10 .11 .10 .10 

aEntries are rejection rates in the second-stage test of -y = 0 when critical values are chosen either from the 
standard Gaussian distribution or from the appropriate 1(1) asymptotic distribution, given 6, depending on 
the outcome of a preliminary Dickey-Fuller test for a unit root in xt (from a regression of Axt on (1,xt-1)). 
The first-stage test is one-sided against the stationary alternative at the 20% level; the second-stage test is 
two-sided based on the nominal 507% and 95%7o percentiles of the marginal I(0) or I(1) distributions of t'. 
The data were generated according to (3) with i.i.d. N(0, E) errors. Based on 20,000 Monte-Carlo replications. 

tions of rT differ, and the size distortions can be large, with rejection rates 
exceeding 30% for large values of I p I even with T = 100.2 

A source of the size distortions in Table 2 is that the critical values in the 
first stage are fixed, so the Dickey-Fuller test does not consistently select the 
true order of integration. A theoretical solution to this problem is to consider 
sequences of unit root pretests in which the critical values are indexed to the 
sample size such that the type I and type II error rates simultaneously tend 
to a limit of zero. Thus, asymptotically, the correct null distribution for t. 
would be selected with probability one, and the second-stage test would have 
the correct size, at least for p fixed. But this device, although theoretically 
attractive, has little practical value: without further refinement, it fails to 
specify the first-stage critical values to use in samples of the size typically 
found in empirical work, so the difficulties outlined in the preceding para- 
graphs would remain an accurate description of the pitfalls facing applied 
researchers. 

3. THE BAYESIAN MIXTURE APPROXIMATION 

Our proposed approach to this problem is to consider the distribution of tL 
conditional on a statistic OT that is informative about the root p or (less 
parametrically) about whether x, is I(0) or I(1). Because of the asymptoti- 
cally different distributions under the I(1) and I(0) cases, it is useful to treat 
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the order of integration d as a dichotomous unknown parameter. Instead of 
performing a pretest on this unknown parameter, a Bayesian procedure is 
used to construct posterior probabilities for d given XT. This approach can 
be developed for general XT as long as these posterior probabilities can be 
computed. In this article, however, we focus on a specific class of OT statis- 
tics developed by Stock [30]. Before turning to the proposed Bayesian mix- 
ture procedure, we briefly review the construction and properties of these 
statistics. The theory for OT is set out for general detrending, although only 
the results for the demeaned case are used in the subsequent analysis of infer- 
ence on y. 

3.1. Construction of Posterior Probabilities for /(1) and 1(0) 

The construction of the proposed approximation relies on a class of statis- 
tics OT = O(VT), introduced by Stock [30], that permit computing the pos- 
terior probability that x, is I(1) or I(O) when prior probabilities are placed 
solely on the point hypotheses I(1) and I(O), that is, without reference to a 
specific prior distribution over parametric representations of the x, process. 
(For an alternative approach see Phillips and Ploberger [25].) Write x, as 

xt = dt + ut, (6) 

where dc is deterministic and ut is stochastic. In the general case, the I(O) and 
I(1) hypotheses are taken to refer to properties of partial sums of ut. Let 
UOT(X) = T-1/2 ZVI T 

us and U1T(X) = T 1/2U[TX], let 'yx(i) = cov(xt,xt-j) 
for a second-order stationary process xt. Throughout it is assumed that ini- 
tial conditions have finite variance. The I(O) and I(1) models are respectively 
defined by: 

00 

I(O): UOT > WOW, where w 2 = E a(j), 0 < W2 < 0, (7) 
j=-00 

I(1): 
UlT=>WIW, 

where4D2= 2 V'U(f) 0<4<o (8) 
j=-00 

The VT statistic is constructed by using detrended data xt. Let xt = xt- 
dt, where dt is an estimator of dt. Let VT(X) = cV1 T-12 X, [xi' where 
@ E m--ET k(MlfT) xd (Im |) and jxd(m) = T E t=m+-?1Xt t-m. The ker- 
nel k (*) is assumed to satisfy k (w) = O for I w I 1; k (w) = k (-w); 0 < k (w) ' 1 
for I w < 1; k(O) = 1; and fe ,e=1 k(u/f) ?- Kfor all f > 1, whereK > O. 
It is assumed that the sequence of lag truncation parameters, 2T, satisfies 
f2 ln T/T --0, eT 0o. Let NT= T/EfT_Tk(m/fT). Let the trend esti- 
mation error be cI = dt- dt. Let IIztII = T' ZtT= z7 for a time series 
Zt, DOT(X) = T-1/2 ZT=LI ds, and DIT(X) = T1l2d[Tx]. The estimated trend 
is assumed to satisfy the following conditions. 



TESTING WITH AN UNKNOWN ORDER OF INTEGRATION 681 

Detrending Condition A. If u, is I(0), then 

(i) (UOT,DOT) * &.0(W,DO), where Do E C[0,1], and 
(i 2 11 d7t 11 P 0. 

Detrending Condition B. If u, is I(1), then 

(i) (UIT,DIT) v 1(W,D1), where D1 E C[0,1], and 
(ii) 11 A di 11 = Op (1) . 

The properties of specific functionals of VT under the I(1) and I(0) mod- 
els for several detrending processes have been studied by Kwiatkowski et al. 
[12], Phillips [22], and Perron [18]. These results are extended to the general 
Detrending Conditions A and B in Stock [30, Theorem 1], where it is shown 
that if x, is I(0), then VT => Wo, whereas if xt is I(1), then NT-1/2 VT =:> 

where Vd'(X) =foW Wd(s)ds/{f0 lWd (S)2 ds 12 , where Wod(s) = W(s)-DO (s) 
and Wld(s) = W(s) -D (s). 

The general detrending conditions are satisfied by polynomial detrending 
by ordinary least squares (OLS) and by piecewise linear ("broken-trend") 
detrending. We will focus on the case of constants included in the regression 
so that a mean is subtracted from the data. Accordingly, denote the demeaned 
processes Wod and Wld by WJ' and WI, respectively, where Woy(s) = W(s) - 

sW(l) and Wt'(s) = W(s) - f W(r)dr. 
These results permit computing the posteriors that xt is I(1) or I(0). Let 

o(-) be a functional such that (i) o is a continuous mapping from D [0,1] 
(R1; (ii) /(ag) = ?(g) + 21na, where a is a scalar and g E D[0,1]; and 
(iii) Q(Wod) and O(Vrd), respectively, have continuous densities fo and f1 
with support (-oo,oo). Let XT = O(VT); under these conditions, if xt is I(0), 
then XT O(WOg), whereas if xt is I(1), OT- lnNT O((Vd ) . The posterior 
probability that the series is I(d), given the statistic XT, iS p(I(d) I kT) = 
P(0T I(d))HId/p(T), where Hd = p(I(d)) is the prior probability that the 
process is I(d), d = 0, 1. In large samples, p (XT II(O)) and P (XT I(1)), 
respectively, can be approximated by fo (5T) and fi (4T - ln NT). 

With these asymptotic approximations, the posterior probabilities can be 
computed as 

p(I(O ) = = fo(,T)Ho (9a) 
P (OT) 

p ((1) OT) = fl(kT lnNT)Hl (9b) 
P (kT) 

A consequence of Theorems 1 and 2 in Stock [30] is that the posteriors 
asymptotically converge to zero or one: if 0 < Ho, H1 < 1 and if xt is I(0), 
then p (I(0) T) -+ 1 and p (I(l) I OT) + 0, whereas if xt is I(1), then 
p(I(O) IT) 4 0 and p(I(l) IkT) 

P 1. 
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3.2. Bayes Mixture Approximation to the Distribution of tz 

The consistency of the posteriors in (9) suggests their use for constructing 
the asymptotic approximation to the distribution of t,Y conditional on ?T 
specifically, 

P (t-y I OT) = P (t-y I OT, d = O)p (I(O) |lOT) + P (ty I OT, d = I)p (IM1 |lXT) . 
(10) 

As is made precise in Theorem 1, under (2), with -y = 0, the conditional 
distributions p ( t, I OT, d = 0) and p ( t, I OT, d = 1) asymptotically depend 
on only one nuisance parameter in the system in (2), 6, and so are readily 
computed. 

The formulation in (10) has three parallel motivations. The first comes 
from its asymptotic properties. Because the posterior probabilities are con- 
sistent for zero or one, depending on d, p(t, OT) constructed by using (10) 
has the property that, for fixed p, the correct distribution for ta is used 
asymptotically. 

The second motivation comes from recognizing (10) as a mixture of the 
I(O) and I(1) distributions with weights given by the posteriors p(I(d) I T); 
the greater the posterior weight on d = 1 for a realization of XT say, the 
greater the weight given to the d = 1 conditional distribution. 

The third motivation comes from drawing an analogy between (10) and the 
Bayesian posterior distribution for -y. Suppose that we had available statis- 
tics Sp and S.,, where Sp is informative for p and (Sp, Se) are informative for 
-y. Let 0 denote the vector of nuisance parameters so that ('y, p, 0) comprise 
the complete parameter vector. From a Bayesian perspective, one might be 
interested in the posterior distribution of -y given (SP, S), 

p(I I Sp s,) = f (Sp, s, Ie P, Op ( p a, dO dp/p(SP,S). (11) 

Next make three assumptions: (i) the dependence of p(S,, Sp,y,p,0) on 
p reduces to whether p = 1 or IpI < 1, specifically, p(S ISp,y,p,0) = 

p(S, I Sp,y,d = 1,0)1(p = 1) +p(SI I Sp, y,d=0,0)1(Ip I < 1); (ii)p(Sp |y,p,6) 
does not depend on 0 or -y, and depends on p only through p = 1 or p I < 1, 
specifically, p(S, Iy,O,p) =p(Sp d = 1)1(p = 1) +p(Sp d = 0)1(IpI < 1); 
and (iii) the priors on ey are flat and p (-y, p, 0) satisfies p (, p, 0) ocp (0)p (d = 
)6*(p - 1) +p(O)p(p)1(Ip < 1), where f p(0) dO = 1, 3*(.) is the Dirac 

delta function, and fI pI<1p(p) dp = p(d = 0), where 0 ? p(d = 0) c 1 and 
p (d = 0) + p (d = 1) = 1. (An implication of Theorem 1 is that assumptions 
(i) and (ii) are satisfied asymptotically for (Sp, S7) = (OT, te).) With these 
assumptions, (11) simplifies to 
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p( IJ SP I SlS) {f p(SI I Sp,'y,d = O,6)p(f) d63 p(d = 0? Sp) 

+ P (S71 Sp, y, d = 1, 6)p (O) d63 p(d = I Sp). (12) 

Except for the integration over 0, if (Sp, Sy) = (T, ty), then the right- 
hand side of (12), evaluated at ty = 0, is the same as the right-hand side of 
(10) evaluated under the y = 0 null. This leads to the motivation of (10) as 
a large-sample approximation to the posterior in (12). For the system in (2), 
the dependence of the asymptotic approximation of p (S. I Sp,I y, d = O, 0) on 
0 is limited to the single parameter &. Although in principle one could inte- 
grate over a prior on this parameter, in general prior beliefs about 6 are likely 
to be weak, and in any event 6 is consistently estimable, so in keeping with 
previous appeals to first-order asymptotic approximations, we treat a as 
known. The analogy between (12) and (10) would be more compelling were 

(SP, S,) sufficient for (p, ,y), which (XT, tY) are not. For tractability, how- 
ever, we restrict attention to the statistics (5r, ty-). 

The value of (10) is that it provides an approximation to the conditional 
distribution of t,, which is readily computable, depends on only one nui- 
sance parameter 6, and asymptotically delivers the correct null distribution 
of tL whether xt is I(0) or I(1) as determined by the fixed parameter p. 
These properties are implied by the following theorem. 

THEOREM 1. Let (xt,yt) be generated according to (2) and let t. be the 
t-statistic that tests -y = 0 in (2) (with a constant included in the regression). 
Suppose that y = 0. 

(a) If xt is I(O), then 
(i) (t-y, XT) * (ZO, ( WO)), where zo is a standard normal random variable 

distributed independently of O(WO); and 
(ii) p(I(O) Io,) p 1 and p(I(l) I OT) ? 0. 

(b) If xt is I(1), then 
(i) (te, XT-ln NT) (6fOl W'"(s) d W(s) /{ fO Wk,(S)2 dsJ 12 + (1 - 62)1/2Z 

k(VP)), where V(X) = fox Wr(s)ds/Ifo Wtt(s)ds3 12 andzd isastand- 
ard normal random variable distributed independently of WI; and 

( ii ) p (I I (O) T) 
O 

and p (I (l1) I XT) 1 . 
Proof. All proofs are given in the Appendix. 

Although the results in Theorem 1 are presented for x, generated accord- 
ing to (2a), in fact they apply more generally to x, satisfying either the I(0) 
or I(1) conditions in (7) and (8), of which the parametric model (2a) is a 
special case. In addition, the results are readily extended to more general 
deterministic terms than the constant considered here. For example, if x, 
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is linearly detrended by OLS, then Theorem 1 holds, except that WI, W0, 
and WI are replaced by their linearly detrended counterparts. 

These results provide a straightforward mechanism for computing asymp- 
totic approximations to the conditional distributions p (t, I V,, d = 0) and 
p (t, I XT, d - 1). In the I(0) case, t,, and XT are asymptotically independent, 
so this conditional distribution is simply a standard normal. In the I(1) case, 
the limiting conditional distribution is nonstandard but can be computed as 
p(te, T - ln NTI d = 1)/P(OT - ln NT| d = 1), where the joint distribution 
is computed by using the limiting representation in Theorem l(b). Despite 
the presence of nuisance parameters in (2), only the long-term correlation 6 
between (1 - pL)x, and r,22 enters the asymptotic distributions of (ti,,T), 

and then only in the I(1) case. 
The dependence of the joint limiting distribution of (tv, 9'T) on 6 means 

that in practice 6 must be estimated to implement the Bayes mixture approx- 
imation in (10). However, this joint distribution is continuous in 6 and, more- 
over, 6 is a function of the spectral density matrix at frequency zero, Q, which 
in turn is consistently estimable (see, e.g., Andrews [1]). For the first-order 
asymptotic treatment here, we therefore treat 6 as known. 

4. PERFORMANCE UNDER LOCAL-TO-I(1) AND 
LOCAL-TO-I(O) MODELS 

One might suspect that the first-order asymptotic results of Section 3, which 
hinge on whether p is equal to or less than one, might provide poor approx- 
imations when x, is I(0) but p is large or, alternatively, when xt is I(1) with 
a large moving average root. This section provides some theoretical results 
for the case that xt is local to I(1) (I(0) with a large autoregressive root) or, 
alternatively, is local to I(0) (I(1) with a large moving average root). This 
is done by first examining the properties of the oT-based posteriors and de- 
cision rules when x, is local to either I(1) or I(0). Next, the performance of 
the Bayesian mixture approximation (10) is studied when xt is local to I(1). 

4.1. First-Stage Posterior Probabilities Under Local-to-I(O) and 
Local-to-I(1) Models (General Detrending) 

The results of this subsection are developed for general polynomial trends 
with OLS detrending; this contains the demeaning procedure considered in 
Section 3 as a special case. The trend component dc is given by 

dt = zt', (13) 

where Zt = (1, t, t2,. .t q), where the unknown parameters f are estimated 
by regressing xt onto Zt to obtain the OLS estimator f3 of S. Thus, q = 0 cor- 
responds to subtracting from x, its sample mean and q = 1 corresponds to 
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linear detrending by OLS. For general q, under (13) the detrended data are 
xtd = xt -z z' = ut - d, where d-t = Zt (T=l Z/)' ETZI ZtUt. 

The local-to-I(O) model considered here combines the I(0) model with the 
I(1) model, with a weight on the I(1) component that vanishes at rate T. 
Specifically, let 

xt = d, + ut, ut = uot + HTult, (14) 

where u0t and ult are, respectively, I(0) and I(1) as defined in (7) and (8) 
and where HT = h/T, where h is a constant. This representation has a nat- 
ural interpretation as an unobserved components time series model in which 
the I(1) component is small relative to the I(0) component. Because of this 
analogy to unobserved components models, the two components here are 
taken to be independent, although the results below are readily extended to 
the case of a nonzero cross-spectrum between Ault and u0t. 

The local components model can be rewritten as a moving average model 
in first differences where the largest MA root approaches one at the rate T. 
In the special case that Ault and uot are serially uncorrelated, the stochas- 
tic element in the local-to-I(O) model in (14) has the MA(1) representation 
Z Ut = 7t- OTt-l, where OT = 1 - (h?yu0(0)/'yU (0))/T + O(T-2). 

The local-to-I(1) model is given by 

xt = dt + ut, Ut = PTUt-I + Vt, where PT = I + c/T, (15) 

where c is a constant and vt is I(0) with spectral density at frequency 
zero equal to 2rw2 (say). Under this local-to-I(1) specification, UIT(e) = 

T-112UI[T.] converges to a diffusion process, that is, U1T * co, Bc, where 
BC(s) satisfies dB,(s) = cBc(s) ds + dW(s) with B,(0) = 0. 

Theorem 2 summarizes the behavior of VT under these local processes 
with polynomial time trends of the form in (13) detrended by OLS. Because 
the local-to-I(0) specification is a combination of both I(0) and I(1) pro- 
cesses, we make the distinction between the limiting representations of these 
two processes, that is, in the I(0) case UOT => COO WO, whereas in the I(1) case 
UIT => WI W1, where W0 and WI are independent standard Brownian motions. 

THEOREM 2. Let dc be given by (13) and detrending by OLS. 

(a) if xt is local to I(O) as specified by (14), then VT = W0 r, where WOdr(X) 
Wod(X) + rfx Wd(s) ds, where r = hwl/c0o, Wd(X) = WO(X)-v(X)'M-'b, 
Wd(X) = WI(X) -(X)'M- 1f; M, v, and t are, respectively, (q + 1) x 
(q + 1), (q + 1) x 1, and (q + 1) x 1, with elements Mjj = 1/(i + j - 1), 
vi (X) = X'/i, and (i(X) = Xj, and 4, 'if are (q + 1) x 1 with (i = Wo(1) - 
(i- I)f'0si-2 Wo(s) ds, i =1 . q + and T = fJ 1 (s) WI (s) ds. 

(b) If xt is local to I(1) as specified by (15), then NfT'2 VT => VP, where Vd(X) = 

f"Bcd(s) dsl I fo&02 dr} I/2, where Bcd(X) = Bc (X)- (X)'M - 1 f (s)Bc(s) ds. 

This theorem permits studying the posteriors under the local models. Con- 
sider the local-to-I(0) model. For functionals 0 discussed in Section 3A, 
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+(VT) =O (WO,r) = Op(1), sofo(4)(VT)) = Op(1) butf1 (4)(VT) - lnNT) + 0. 
For priors 0 < Ho, HI < 1, p(I(O) IjT) + 1 and p(I(l) I 4T) 2 0, that is, 
under the local-to-I(O) alternative, x, will be classified as I(O) with probabil- 
ity tending to one. Similarly, under the local-to-I(1) alternative, O(VT) - 

lnNT= (Vc) = Op(l), so thatp(I(O) IT) 4 O andp(I(1) I T) 4 1 andxt 
will be classified as I(1) asymptotically. 

It is instructive that this asymptotic misclassification of these local pro- 
cesses contrasts with the behavior of classical hypothesis tests based on 4)T 

To be concrete, suppose that a one-sided test with asymptotic level a of the 
I(O) hypothesis is performed by rejecting if XT > Co, where c, is the upper 
100(1 - a)th percentile of the distribution of 4)(Wd). Then the asymptotic 
probability of rejecting the local-to-I(O) alternative is Pr[O(WO r) > Cj. 

Because O(Wo r) = Op(l) in general, this probability will exceed the level 
but will be less than one.3 Classical tests will have nontrivial-indeed, pos- 
sibly high -power against these local-to-I(O) alternatives, but in large sam- 
ples the Bayesian decision rules will classify them as I(O) with probability one 
for any nontrivial choice of priors. The same conclusions apply to the local- 
to-I(1) model for the same reasons: classical tests will have nontrivial power 
against this alternative, even though asymptotically the Bayesian decision 
rules will classify a local-to-I(1) process as I(1) with probability one. 

This contrast with classical tests highlights the source of the asymptotic 
misclassification by this Bayesian procedure. Because the rate of convergence 
of 4(VT) differs by lnNT under the null and alternative hypotheses, one 
could perform classical hypothesis tests of (for example) the I(O) null against 
the I(1) alternative by using a sequence of critical values ca, T indexed to the 
sample size such that Ca,T -+ oo but that Ca,T - lnNT -+ -oo. If u, is truly 
I(O), the test would reject with asymptotic probability 0; but if u, is truly 
I(1), it would reject with unit asymptotic probability, so that this too would 
form a consistent classifier. Because O(VT) = Op(l) under the local-to-I(O) 
alternative, this classifier would also reject the local-to-I(O) model with prob- 
ability zero asymptotically, although it would reject the local-to-I( 1) model 
with asymptotic probability one. The cost of eliminating the type I error is 
to introduce asymptotic misclassification in a vanishingly small neighborhood 
of the I(O) and I(1) models. 

4.2. The Bayesian Mixture Approximation Under 
Local-to-I(1) Models 

The results of Theorem 2 permit analyzing the distribution of t. for x, gener- 
ated according to a local-to-I( 1) process, so that the largest root of x, is local- 
to-I( 1). Specifically, let p in (2a) be nested as p = 1 + c/T, where c is a constant, 
and let A, in (2a) be given by the sequence A,,T =-C( -o (1))-,I/T where 
AX is a constant. Asymptotic representations for the various statistics are 
given in the next theorem. 
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THEOREM 3. Suppose that (xt, yt) are generated according to (2) with 
p = 1 + c/T and that the null hypothesis Ho: -y = 0 is true. Then: 

(a) (t-,0T_ In NT) * (6Xf0 B'(s) dW(s)/tft B'(s)2 dsj 1/2 + (i _62)1/2z -(v) 

where Vl Ac(X) = JfOBu(s) ds/lfOl BIt(s)2 ds 1/2, zisastandard normal random 
variable distributed independently of (B j, W), and Bj = - flo Bc (s) ds, 
where Bc (s) satisfies dBc(s) = cBc (s) ds + d W(s). 

(b) p(I(1) IT) + 1 and p(I(O) IkT) . 0. 

The result (a) implies that the asymptotic joint distribution of (ti, OT), 

and therefore the distribution of t-, given XT, is different when c * 0 than in 
the unit root case c = 0 (given in Theorem 1(b)). The result (b) implies that 
the local-to-I(1) process will be misclassified as I(1) with probability one, 
so that the mixture distribution in (10) will asymptotically place all weight 
on the I(1) conditional distribution. Taken together, these two results imply 
that, when p is local to one, the Bayesian mixture approximation will yield 
the incorrect asymptotic distribution. The magnitude of the resulting size dis- 
tortions in local-to-I(1) models is investigated numerically in the Monte- 
Carlo analysis in Section 6. 

5. POWER OF THE PROPOSED TESTS AGAINST 
LOCAL ALTERNATIVES 

We turn to an investigation of the theoretical power properties of the test of 
e = 0 against a local sequence of _YT ? 0, performed by using the Bayesian 
mixture approximation in (10). As a simplification, the local power is ana- 
lyzed for a special case of (1) in which only the first lag of x, and Yt enter 
the equation for x,. That is, (x,, yt) are assumed to be generated by 

xt = ALx + pxt- I + /Yt- I + q I t (16a) 

Yt = Iy + JTXt-I + n72t, (16b) 

where Hx + flty = 0. Although there are no deterministic terms in (16), the 
statistics are computed by including a constant in both (16a) and (16b) to 
maintain comparability to the results in Section 2. 

Because of the different orders in probability of xt, the local alternatives 
in the I(O) and I(1) cases differ: for some constant g, 

If IPI < 1: YTy=g/Tl/2 (17) 

If IPI = I yT = g/T. (18) 

The asymptotic representations of the relevant statistics are summarized in 
the next theorem. 
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THEOREM 4. Suppose that (x,, Yt) are generated according to (16). 

(a) If IpI < 1 and eT is given by (17), then 
(i) tY 

= Z + [Yx(O)/22 l/2g, where z is a standard normal random 
variable; and 

(ii) p(I(O) IkT) 1 and p(I(1) I XT) ? 0 
(b) If p = 1 and 'YT is given by (18), then 

(i) (te, - lnNT) =* (gfI2fflJ Bu(s)2ds/E22 12 + 6 fl Bg(s)dW(s)!/ 

[fC B (S)2 dS 1/2 + (1 _ 62)1/2Z, k(VUc)), where Vr c(X) = f B(s) ds/ 

{fO Bj(s) ds1'l2, Q = ElI + 213EI2 + E32E22, z isastandard normal ran- 
dom variable distributed independently of (B', W) and Bj = Bc(s) - 
fl Bc(s) ds, where Bc(s) satisfies dBc(s) = cBc(s) ds + d W(s) with c = 

fg; and 
(ii) p(I(1)M T) P 1 andp(I(O) I T) ? 0- 

The result in the p I < 1 case is conventional. Because the posterior probabil- 
ities asymptotically place all mass on the I(0) distribution, the local asymp- 
totic power function for a two-sided level a test with Gaussian critical values 
?ca/I2 is 4)(-Ca2 - gYex(o)/E22Jl/2) + 4(-C,/2 + g9Y(O)/E22J1/2), 

where 4 is the cumulative normal distribution, the same local power func- 
tion that would arise were it known a priori that I p I < 1, so that Gaussian 
critical values would be used at the outset for the ta test. In this sense, if 
I p I < 1, the use of the Bayesian mixture distribution results in no asymptotic 
loss in power of the second-stage test regardless of the priors nto and H,. 

The results for the p = 1 case are more unusual and arise from the main- 
tained possibility of feedback from yt to xt, which results in xt being local 
to 1(1). This implies that the mixture distribution asymptotically places all 
weight on the I(1) conditional distribution. In addition, in this case yt is 
local-to-I(0). The results of Section 4 imply that a posterior odds ratio based 
on OT would, with high probability, classify Yt as I(0). Thus finite-sample 
evidence based on the OT classifier that yt is 1(0) does not imply that 'y = 0 
but merely that -y is not too large. 

For I 61 < 1 in the p = 1 case, the local asymptotic power function of the 
two-sided equal-tailed test of -y = 0 is given by 

P [Reject Ho: -y = ? | OYT = g/T] 

[ 
I C 

_, 1/2 
I 

+ E4[) Cu, 1/2c$(6 + Tc + 1TH 1 

(19) 

where k = o(V c), Oc = Q11 fC B,(s)2ds/E221 12, H - If 1 Br(s) dW(s)1/ 

f1o B" (s)2 dsJ 1/2, and ce,a72(4) and Cu,a/2(k) are, respectively, the lower 
and upper I ath quantiles of the conditional distribution p ( t I OT = 0, d = 1). 
The difference between (19) and the local power function of the test based 
on tz when it is known a priori that x, is I(1) is that the critical values of the 
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latter test do not depend on XT, that is, the critical values in (19) are 
replaced by the constant critical values Cf, a/2 and Eu, a/2 taken from the 
marginal I(1) asymptotic distribution of t.. For 6 = 0, these two tests have 
the same critical values and thus the same local asymptotic power, but for 
6 ? 0 their power functions will differ and must be compared numerically. 

The local asymptotic power functions of these two tests - the proposed 
conditional test and the test based on t,, when p = 1 is known a priori-are 
plotted in Figure la for 6 = -.5 and in Figure lb for 6 = -.9, in both cases 
for ,B = 0 and S I = E22 (SO QII1/E22 = 1). Neither test dominates the other, 
although for most values of g the proposed test has higher power than the 
test based on the unconditional d = 1 critical values. If p = 1 is known a pri- 
ori, then neither test based on te is optimal relative to the system likelihood 
ratio test, which imposes the p = 1 restriction. The power function of the sys- 
tem likelihood ratio test, computed for ,B = 0, is also plotted in Figure 1 (the 
short-dashed curve).4 For 6 =-.5, the power loss of the proposed proce- 
dure is moderate relative to the system likelihood ratio test; for 6 = -.9, it 
is substantial. In summary, if p = 1 and 161 is large, substantial power is lost 
by not imposing this restriction a priori; but if this restriction is not imposed 
and tests are based on the single equation (2b), the proposed procedure often 
outperforms the test based on the marginal I(1) null distribution of ty. 

6. NUMERICAL ISSUES AND MONTE-CARLO RESULTS 

6.1. The Specific VT Statistic and Numerical Issues 

The specific OT statistic used here is one of the statistics studied in Stock [30]: 

1(VT) = In{ VT(S)2ds} In =n{ T1 Z (xt,)2}. (20) 

With some modifications, this statistic appears in different literatures vari- 
ously as a test for random coefficients (Nabeya and Tanaka [14]), as a test 
of the null of a unit MA root against an MA root less than one (Saikkonen 
and Luukkonen [27]), as test of the I(O) hypothesis against the I(1) alterna- 
tive (Kwiatkowski et al. [12]), and as a test for breaks in deterministic trend 
components in an I(O) time series (Perron [18]), and it is also related to the 
Sargan-Bhargava [28] test of the unit root null. See Stock [30] and Perron 
[18] for further discussion. 

All computations reported here place equal weight on the I(1) and I(O) hy- 
potheses, that is, Hlo = I = 0.5. The spectral density of x, at frequency zero, 
w2, used to construct VT, was estimated by using a Parzen kernel with lag 
truncation parameter QT = min( 'T, 4max(T/10) 9), where eT is Andrews's 
[1] data-dependent estimated lag length for the AR(1) model for the Parzen 
kernel. (Note that eT satisfies the rate conditions for the asymptotic repre- 
sentations of VT.) For the results reported here, fmax was set to 10. Given 
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FIGURE 1. Asymptotic power of tests of -y = 0 against the local alternative 'YT = g/T 
when XT iS I(1), ElI = E22, and ,B = 0 for (A) 6 = -.5 and (B) 6 = -.9. Solid line: 
Bayesian mixture approximation test; long-dashed line: test based on t,, by using the 
I(1) marginal null distribution of tr; short-dashed line: system likelihood ratio test 
that imposes p = 1. 
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priors -Io and Il1, the posteriors p(I() I T) and p(I(l) |T) were com- 
puted by using kernel density estimates of the asymptotic distributions fo 
and f1 for a given functional 4. For additional discussion, see Stock [30]. 

The conditional distributions of p(t1 | T, I(0)) and p (t7 | T, I ()) were 
computed by using the limiting representations in Theorem 1. In the I(0) 
case, the limiting conditional distribution is simply N(O, 1). In the I(1) case, 
t,, and XT-ln NT are asymptotically dependent random variables for 6 ? 0. 
The conditional distribution p (ty I 'kT = O, d = 1) for a value of 0 was com- 
puted by using a nearest-neighbor algorithm that was implemented by using 
16,000 Monte-Carlo replications of (OT -lnNT, t), generated under the 
I(1) model with T = 400. The mixture distribution was computed by draw- 
ing randomly from the independent N(0, 1) I(0) distribution and this nearest- 
neighbor estimate of the I(1) conditional distribution.5 

The quantiles of the mixture distribution p ( I |T = ) for the case HI = 

JII, = 0.5, 6 = -0.9, and NT = 26.65 (corresponding to QT = 5 and T= 100 
for the Parzen window) are plotted in Figure 2 as a function of 0. For low 
X, the posteriors place most weight on I(0), and the critical values are close 
to the N(0, 1) critical values. As 4 increases, more weight is placed on the 
I(1) distribution, and the critical values shift up sharply. 

As discussed in Section 3, the mixture distribution depends on one nui- 
sance parameter, the long-run correlation 8. In practice, 8 is unknown and 
would need to be estimated. As noted in Section 3, however, 6 can be esti- 
mated consistently whether xt is I(0) or I(1). In Monte-Carlo analysis, we 
therefore adopt the expedient of treating 6 as known. An extension for future 
research is to study the effect of estimating 6 on the finite sample perfor- 
mance of (10). 

6.2. Monte-Carlo Results 

The Monte-Carlo experiment studies the model examined in Section 2.2 for 
which the two naive procedures were found to work poorly. Specifically, 
the data were generated according to (3) with ELI = E22 = 1 and E12 = 6. The 
performance of the statistic XT is examined in Table 3, which reports the 
mean posterior probabilities from the first-stage estimation. These results 
support several of the theoretical predictions in the preceding sections. For 
p < 8, the posteriors tend to zero monotonically as T increases, so that the 
series are being correctly classified as I(0). For p = 1, the mean I(1) poste- 
rior increases to .899 for T = 400, again correctly classifying the series. The 
procedure has difficulty for large p when the mean I(1) posterior initially 
increases with T rather than decreases (p = .90, .95, and .975), although in 
each case for sufficiently large T the posteriors eventually decline. 

Table 4 summarizes size results for the equal-tailed 100o-level test of 'y = 0 
for various values of 6, p, and T by using the Bayes mixture approximation 
conditional critical values. For T = 100, the largest discrepancy is the size of 
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in Section 2 indicates that conventional approaches to the choice of critical 
values for second-stage inference, by either ignoring unit root problems alto- 
gether or pretesting with a unit root test, can lead to substantial overrejec- 
tions when the null -y = 0 is true. 

Second, the proposed Bayesian mixture approach has the desirable prop- 
erty that it asymptotically selects the correct 1(0) or I(1) distribution for fixed 
I(0) or I(1) models. The use of the first-stage statistic 4T has no effect on 
the local asymptotic power of the second-stage test if x, is I(0), and the 
numerical results of Section 5 indicate that the proposed procedure has bet- 



TESTING WITH AN UNKNOWN ORDER OF INTEGRATION 693 

TABLE 3. Mean posterior probabilities p (() I T) for first-stage inference I 

p 

T 0 .6 .8 .9 .95 .975 1.0 

50 .089 .437 .471 .490 .489 .486 .488 
100 .027 .334 .405 .514 .588 .629 .655 
200 .006 .193 .262 .404 .576 .694 .815 
400 .001 .102 .146 .261 .471 .675 .899 

'The xt pseudorandom data were computed according to (3a) with the indicated value of p. The 'T 
functional used is given in (20). The process VT was computed by using demeaned data as described in 
Section 3.1. The Parzen kernel was used to estimate the spectral density with lag truncation parameter 
fT= min[fT, l0(T/100) 49], where eT is Andrews's [1] automatic lag truncation estimator (details are given 
in Section 6.1). For a given value of XkT, the posterior probabilities were computed by using a kernel density 
algorithm (based on 16,000 pseudorandom realizations of the limiting Brownian motion functional) 
described by Stock [30]. Prior probabilities are p(I(O)) = p(I(l)) = 0.5. Based on 5,000 Monte-Carlo 
replications. 

ter power against most alternatives than the test of ey = 0 based on critical 
values from the marginal I(1) distribution of t.7 

Third, the Monte-Carlo evidence is encouraging and suggests good size 
properties for two-sided tests based on these procedures for a wide range of 
values of p, including p close to, but less than, one. This is somewhat sur- 
prising because our theoretical results show that the size of the second-stage 
test will be incorrect, even asymptotically, when x, is local to I(1). For the 
)T statistic and models studied here, these initial results suggest that this 

might not pose an important problem in practice. 
The results presented here suggest several directions for future research. 

Throughout, we have treated the important nuisance parameter 6 as known. 
Although 6 can be estimated consistently, in finite samples its estimation pre- 
sumably will affect the performance of the proposed procedure and this 
remains to be investigated. The Monte-Carlo analysis has focused on a sin- 
gle 0 functional and uses only flat priors; the use of a different functional 
or informative priors might improve the finite sample performance. In addi- 
tion, the performance of the second-stage statistic should be investigated for 
a wider range of x, processes than the AR(1) specifications considered here. 
More difficult is the extension to include additional potentially integrated and 
cointegrated variables in the second-stage regression. This increases the 
Bayesian selection procedure nontrivially and introduces additional nuisance 
parameters to the problem. The second of these difficulties has been exam- 
ined by Toda and Phillips [33]. Finally, the extension to include additional 
lags of x, or Yt as regressors in the second-stage regression, although concep- 
tually straightforward, is of considerable practical importance because such 
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TABLE 4. Size of t-tests of ay = 0 with critical values computed by using 
the Bayesian mixture approximation (10): Nominal level 10%/o 

p 

6 T 0 .6 .8 .9 .95 .975 1.0 

-0.9 50 .077 .057 .054 .057 .060 .070 .105 
100 .093 .071 .072 .069 .068 .083 .168 
200 .089 .075 .079 .093 .098 .094 .141 
400 .102 .089 .091 .105 .135 .167 .160 

-0.5 50 .101 .082 .085 .096 .101 .095 .119 
100 .108 .087 .095 .088 .093 .095 .121 
200 .093 .083 .094 .099 .096 .094 .110 
400 .101 .098 .098 .110 .119 .122 .116 

0.0 50 .106 .114 .110 .109 .122 .111 .115 
100 .100 .105 .106 .106 .103 .108 .102 
200 .101 .099 .107 .106 .097 .103 .103 
400 .098 .105 .097 .103 .101 .105 .110 

aThe data were generated according to (3). The first-stage 4T statistic was computed as described in the notes 
to Table 3. The critical values for ty (the t-statistic on xt- in the regression of y, onto (l,xt-1)) were 
computed as described in Section 6.1. Based on 5,000 Monte-Carlo replications. 

lags are typically included in empirical practice. These and related problems 
are areas of ongoing research. 

NO TES 

1. The results in this paper complement those in Toda and Phillips [33], who considered the 
problem of sequential inference when some of the variables are cointegrated. Toda and Phil- 
lips's [33] theory maintains that the series are cointegrated, and they studied sequences of Wald 
tests of the null of no Granger causality in a vector autoregression, and inference is always x2. 
Their problem differs from the one considered here: our second-stage regression always exam- 
ines a levels effect of the regressor, and the issue is whether standard or nonstandard distribu- 
tions should be used to evaluate the significance of the estimated coefficient. 

2. Similar results are obtained for a 10% pretest and a 10% equal-tailed second-stage test. For 
example, for T= 100 and 6 = -.9, if p = .9, the rejection rate is .34, whereas if p = .95, it is .27. 

3. The nonstandard distribution of VT under the null and the alternative make it difficult 
to make general statements about the power function of such a test against the local alterna- 
tive without resorting to numerical calculations. An illustrative case, however, is for the sta- 
tistic k(VT) = ln(VT(1)2) in the case of no detrending. Under the I(O) null, this statistic has 
representation ln(W(1)2), which has a critical value of ln(x2a, where X?2;, is the a-level x 2 

critical value. Under the local alternative, k(VT) = ln((WO(l) + rf WI (S) dS)2 }, which is dis- 
tributed as the logarithm of (I + r2/3) times a standard x1. The power of this test of I(O) 
against the local-to-I(O) alternative is therefore Pr[X1 > X 2;ae/(1 + r2/3)]. This power function 
has its minimum at r = 0 and is monotone, increasing to one as r increases. 
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4. This power function is derived as follows. The Gaussian MLE for 'y in (16) with p = 1, 
f = 0, and an intercept in (16b) can be obtained by using the triangularized system, Ax, = , 
and y, = lA + -yxt, + KAXt + '2t, where K = E21lEII SO KAXt = Proj(ti2t7ii) and 2t = 

ti2t - Proj(i2t tInI,); see Phillips [23], Saikkonen [26], and Stock and Watson [31]). Then ta 
is asymptotically N(0, 1) and the local asymptotic power against -YT = g/T is El 4b( -Ca/2 - 

g(l - 62)-1/200) + '(-C,-,2 + g( - 62)-1/200)1, where 0o = Oc evaluated at c = 0 as defined 
following (19), and ca!2 is the 'Ca standard normal critical value. The power functions in Fig- 
ure 1 were computed by Monte-Carlo integration of the relevant expression (e.g., (19)) over 
( C I ,A ) for c = 0 with 5,000 Monte-Carlo replications. 

5. Specifically, 16,000 pseudorandom realizations from the limiting joint distribution were 
computed by using pseudodata that was generated from (2) with p = 1, ,8(L) = 0, & (L) = 0, 
11I = F22 = 1, 12 = 6, and eT = 1. With the exception of 6, from Theorem 1(b) the choice of 
parameter values does not affect the asymptotic distribution of (1T - lnNT, t,). These can be 
interpreted as discretized approximations (discretized to 400 equispaced points) to the limiting 
Brownian motion functionals in Theorem 1(b). For a given value X, the mixture conditional dis- 
tribution (10) was estimated by drawing K realizations, p (I(0) I 1kT = 1)K from a standard nor- 
mal distribution and p(I(M) I T= =)K from the conditional distribution p(t, I = =k, d = 1); 
these latter p (I(1) I 1 T)K draws were computed as those t- for which the associated 1kT were the 
p (I(1) I 5t )K nearest neighbors of 1. Critical values of t,, given 1kT = 1k were computed by using 
the resulting Monte-Carlo mixture c.d.f. for a grid of X (grid size .05), which was then smoothed 
by Gaussian kernel regression to reduce Monte-Carlo error. Critical values for arbitrary 1 were 
computed by linear interpolation of the resulting table. These tables were constructed for var- 
ious values of 6. The results reported here use K = 750. 
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APPENDIX 

Proof of Theorem 1. (a) First write xt in the form of (6). By assumption, 
(1 - a (L)L) is invertible, so under Ho, xt = (1 - a(I))-A, + (1 - a(L)L) -(-1It + 

(L)q2t_) O= -, + v,, say. Because the roots of $3(L) are outside the unit circle and 
77t is a martingale difference sequence, standard arguments imply that VT * WO. In 
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addition, tL has an N(0, 1) marginal distribution. To show the asymptotic indepen- 
dence of ty and kT, note that (1) is a special case of the system analyzed by Chan and 
Wei [7], so that their Theorem 2.2 implies (T-1'2 EST;] Z 7s, T-l E= l XI2s) 
(E'72B(.), ), where B is a standard bivariate Brownian motion, P is distributed 
N(0,E22yxY(0)) and where W(.) and P are independent. With this result, the asymp- 
totic independence of tL, and XT follows by the consistency of 02 t22 (where t22 iS 
the OLS estimator of var(712t)), T-1 ZT-1 x1t l, and from writing VT(t) in terms of 
the partial sum process T- EST;] X5. Part (ii) follows from Stock [301. 

(b) Write x, as xt = x0 + vt, where x0 is an initial condition and Avt = (1 - 
&(L)L)-1(-1It + 13(L)7n2t_1). Now vt is I(1) as defined in (8), so 7(VT) ' k(VO&) 
[30, Theorems 1 and 2]; this also follows, with minor modifications, from Kwiat- 
kowski et al. [12], Perron [18], and Phillips [22]. 

The joint representation of (OT, t) is obtained by using now-conventional fre- 
quency zero projection arguments. Note that T- 1/2 V[T.] = T- 1/2 Z[T.] As + op( l), 
where A = (1 - &())-1(7lt + 3(l)q2t), and that Q is the variance-covariance ma- 
trix of (t, 72t). Define W to be the limiting standard Brownian motion such that 
T-'/2 Lsi1' s Q W(I). In addition, decompose 2t as q2t = Proj(q2t I ~t) + 2t = 

Q21 Q21 At + i22t, so that (<, ~2t) are a martingale difference sequence, and E( ttl2t) = 0 
and var(i/2t)-- 822 = Q22 - ~Q1Ql2j . With this notation, te can be written: 

Now, (T-'X2VIT T-'/2 z[I;' ~2s) (01K2 W(.),422fG(.)), where W(.) and G(.) 
are independent standard Brownian motions. In addition, 22 P 22 = Q22, SO 

6fSW8(s) dW(s) (1 - ~2 )1/2fSwt(s) dG(s) 

t'f 1 + 1 /2(A-l) 

The argument in Phillips [23] or Saikkonen [26] imply that term in (A. 1) 
is independent of the first term and has an N(0, 1) marginal distribution, which leads 
to the representation given in the statement of the theorem. Part (ii) follows from 
Stock [30]. U 

Proof of Theorem 2. Throughout, let TT = diag(1,T,.. Tq) and let MT = 

T-' T ' EZT I ztz T-1. The nonstochastic q x q matrix MT has typical element 
MT,ij = T-' ETZ[ (t/T)i+i-2, which has the limit MT,ij - I/(i + j- 1) = Mij whether 
xt is I(0) or I(1). 

(a) Let UT(X) = T- 1/2 E zTX7 ut, and let DT(X) =T- 1/2 E [TX dJ. The desired 
result will follow if it can be shown that (i) (UT,DT) satisfies detrending condition 
A(i), and (ii) &2 w o These are shown in turn. 

(i) Bydirect calculation, UT= UOT+ THTUT, where UlT(X) =-' Z[TXI UlT(t/T). 
Because THT=h, UT= wO Wr, where W, (X) = W0 (X) + r WI (s) ds, where r= 
hwoI/cIo. Now, DT(X) = UT(X) MT rT, where PT(X) = T- [IT T lz5 and 
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rT= T- /2 ET 1 
TTlztu, 

= 4T + h'IT, where 
(IT 

= T -/2 ET= 
IT lz,uot 

and 
=T t=T l = jo TT(s)Uo T(s) ds, where T(X) = Ti'Z[TX]. 

From Stock's [30] Theorem 2 (OT,'IT,PVT,MT) > (c04), w 'I', v, M), where 4) 
is (q + 1) x 1 with 4?i = WO(l) - (i - I)fJs 2Wo(s)ds, i = 1,...,q + 1, 
'I = fl (s) W1 (s) ds, where (j (X) = X'-1, and v is (q + 1) x 1 with vi (X) = 
X'/i, i = 1,. . . ,q + 1. Thus, FT * wo 0(4 + r'f) and DT(e) * coD(.), where 
D(X) = IJ(X)'M-1(4) + rI) . This verifies Detrending Condition A(i). Let 
XgT(x) = T 

- 
X = UT(X) - DT(X), so that VT(X) =(c Xd (X). 

Define Wod(X) = WO(X) - v(X)'M'4) and W(s) = W1(s) -(XM-1. 

It follows that XOT(*) O WO r (*), where WO r (X) = Wo (X) + rfO W1 (s) ds - 

v(X)'M-1(4) + rT) = Wod(X) - rfX Wd(s) ds, where the second equality uses 
V (X) = fox t(s) dS. 

(ii) Let 32 = EIT Tk(M/fT)T-1 ZT-mi+ UtUtEm and c0 = 
> IT k(M/fT) 

T-1 T= m I +I UOtUot_m . Now, 

(t,2 - (;J < ' ( '12 - 'xo |<2_ 

eT T 

= Z k(m/fT)T-1 Z [HTUitUit_1m1 + HT(UltUO,t_m1 
M=-fT t= ml+l 

+ UotUi,t-i mi) 

eT T 
+ Z k(m/fT)T-1 > tdtdt-1m, - (dtut-Hm + utdt-1m)) 

m=-fT t=iml+1 

_ (2f + 1)1TH2jIT'1/2U1,tj + 2TI12HT IT-112U1tllll2llU t1ll2 

+ (2QT + 1) ( 211ut 1/2 11dt 1 1/2 + 11dt AI 1. (A.2) 

Because flT-'I2u1tI f W1(s)2ds, and 1 uotIi yu (jO), the first term 
in (A.2) P 0 if (2QT + I)TH2 -* 0 and (2QT + l)T1/ HT -- 0. These in 
turn follow from the rate condition f2 ln T/T--+ 0. Because u- uot I 
HT I Ui1I + 2HT I1 uot II2Il t I'2 A 0, || ut || P -yu(O), the second term in 
(A.2) P 0 if Q2TII A 0, which is Condition A(ii). 

To show A(ii), write T IdTII = rTMT-IrT, from which it follows that 

TIldTIl > W 2 (4 + r4I)'M-(4) + rI). This result and the rate condition 
T2 ln T/T -O 0 together imply that Q2I I T P 0, thereby verifying A(ii) so 

that both terms in (A.2) P 0. Because co A wo, it follows that w2 A 00. Thus 
VT (X ) = r-1XT (X) > Wodr(*), the desired result. 

(b) It is first demonstrated that Conditions B(i) and B(ii) hold for ut given 
by (15). Concerning Condition B(i), write DIT(X) = (T(X)'MTF4'T, where the 
terms are defined in the proof of part (a). Now, (QT,MT,IT) Q (S,M,coI), where 
t = fJOl(s)B,(s)ds. Thus, D1T(-) w w1 D, (.), where D1(X) = (X)'M'4', which 
verifies B(i). Let XdT(X) = T-2 X[TX] = UIT(X) - DIT(X), so that VT(X) = 

O1f f0XXdT(s) ds. It follows that XdT(e) c w1Bgd(.), where B d(X) = BC (X) 
t())'M -' fOl t(s) Bc (s) ds. 

Condition B(ii) follows from writing IIT'f2AdoII = foST(X)d where ST(X) = 

TMf1` j(X)ST(X)'MT T' where ZT(X) = T XT 1zrTxj. Direct calculation shows 
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that ST=* S, where S(X) = w2I'M'- I(X) -(X)'M'4M , where S-(X) = (0,1,2X, 

,q q- ), so 11JAd, 11 P 0, thereby verifying B(ii). 

Next write NT 12 VT(X) = BT 1/2AT(X), where AT (X) = T-32 I X and BT- 

T- EMT=_ kT(m/MT) (ImI)/Zr--CTk(m/lT). Now AT(X) w1fiBd(s)ds. To 
show that BT has the desired limit, it remains only to show that BT -T2 T T-1 (Xt')2 P 

0. This was shown in Stock's [301 Lemma A. 1 when ut is I(1). The only part of the 

proof of that lemma that requires modification for the local-to-I( 1) case is demon- 

strating that the term D3T (as defined in that proof) P 0. From (A. 1) in Stock [30], 

D3T P 0 if 1AJt 11 -P 0 (just shown) and if 11 Aut = OP (1). This final relation is now 
shown. Because (1 - PTL)Ut = Vt, 

fAUt,J - VtJI = ||Vt + (PT - l)Ut-.I t- ||vtI 

' 2PT - I IjUt1 1112j1vt 1 1/2 + (PT- 1)2 11Ut4. 

Now (PT-1)2 IlUtI = C2T-frO UIT(S)2dS P 0 and 1I Pt 11 
P 

yU (0) by assumption. 
Thus, 11 AutJl -* -yv(O), so D3T -P+ 0 and Lemma A.1 in Stock [30] holds, thereby com- 

pleting the proof. U 

Proof of Theorem 3. (a) Under the stated assumptions, algebraic manipulations per- 

mit rewriting xt as x, = ft + vt plus initial conditions, where ft is constant and vt satisfies 

(1 - pL)(l - &(L)L)v, = f3(L)(yt,1 - nty) + ,It, where vo = 0. Thus, T7/2V[T.I = 

T-(I2 [T1] p1TLI-S(l-&(L)L)-1( qlt + 3(L)iq2t-l) = T'12 S[T.11 p[T.)ss + op(l), 
where ~t = (1 - &( lO) (71 t + (M1)X2,)d. Note that ( t,q2t is a martingale difference 

sequence with variance-covariance matrix U. As in the proof of Theorem 1(b), let 

fl2t = fl2t - (Q21/Ql1)t. Then (T-1/2 [T--]P T_1/2 [T1 N2) * (91/2B (.) 

221/2G (.)), where dBc(s) = cBc (s) ds + d W(s) and G is a standard Brownian motion 
distributed independently of W. The argument leading to (A. 1), applied here, yields, 

6 fBs(s) d W(s) (1 _ 62)1/2 jB (s) dG (s) 
+~~~~~~~ 

t'Y 1/2 + 1/2 (A.3) 

(fBS(S)2ds)B2 (fB(s)2ds) 

As in (A. 1), the independence of G and (W, Bc, Br), and the N(0, 1) distribution of 

the second term in (A.3) conditional on Bc yield the representation given in the state- 

ment of the theorem. (b) It was shown in the proof of (a) that xt has the local-to-I( 1) 

representation (15), so the results of Theorem 2(b) apply. The consistency of the pos- 

terior probabilities follows according to the remarks following the statement of Theo- 

rem 2. U 

Proof of Theorem 4. Substitute (16b) into (16a) to obtain (1 - pL - 1YTL2)xt = 

v,, where v, = -t + 0772t-1I 
(a) (i) For T sufficiently large, if I p I < 1, then for any finite g the roots of (1 - 

pL - IYTL 2) will both be outside the unit circle, so that x, is I(0) in the sense of (7) 
and in particular T` r (xt1)2 P yx(O). Thus, under the local nesting in (17), 

tV= t Et=I Xt_I ( YTXt-l + 2t,)3/{ E1 (xi' 1)- 221 3-=g[T- t-1 (x=t-1 )t/222312 + 

IT T I (Xt- )2 I2/2 /2 + Z, the stated result. 
(ii) Because xt is I(0) in the sense of (7) for T sufficiently large, the results of Stock 
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[301 apply and, for the reasons discussed in Section 3. 1, the posteriors are consistent 
as stated. 

(b)(i) When p = 1, (1 - pL - frYTL2) can be factored, (1 - r,L)( -r2L), 
where r, = 1 + VT and r2 = -VT, where VT - 2(l + 4I7T)1/2 - 1}. Let Tt = 

(1 - VTL) (-qlt + 03t2t-1). Then, with xo 0, T-172XT.1 = T-' 2ZI (1 + 

VT) [T , S`TS. Now VT = 3g/T + O(T 2), so T- 1/2 (1 + VT).1sT,- 

T-1/2 E[; explog([T.] - s)/TI A P 0, where = mlt + 13t2t. Thus T-1/2X[T} 

EII2B,(.), where B, is defined in the statement of the theorem, and where W is 
defined by T-1/2 T; ? > 1/2 W 

To obtain the representation for t., note that Q is the covariance matrix of (~t, r2t) and 
write t =g{T 2 ET (t)2 21/2 + IT-' E~iTit2,/ 2 ETI (At1)2 1/f2. wrt t=gl t= l (X 0f_ 2/ t22 I T1Et Xt4 1712 ]/t T Lt= l t-1)2 

The first term has the limit g{I 1 fo B j(s)2ds/l22} 1/2, where Ql1 = El, + 203I2 + 
32E22. The behavior of the second term is the same as in Theorem 3(a). By combin- 

ing this result for the first term with (A.3), we have 

g f 1()2d1 1/2 6 B(s) dW(s) (i - 62)1/2 BA (s) dG (s) 

te g 1/2 / 1/2 

)Bc"(s )2ds) T(B"(S)2dS) 

(A.4) 

As in Theorem 3, G is distributed independently of (Bj, W), so the final term in 
(A.4) has a standard normal distribution and is independent of the other terms, 
which yields the representation stated in the theorem. (ii) It was shown in the 
proof of b(i) that xt is local-to-I(1), so the results of Theorem 2(b) apply and 

p(I(M) IT) A Iandp(I(O) I T) O. U 
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