Inference in Structural VARs with External Instruments

José Luis Montiel Olea, Harvard University
James H. Stock, Harvard University
Mark W. Watson, Princeton University

September 2012

VARs, SVARs, and the Identification Problem

Sims (1980):

Structural MAR:

$$
Y_{t}=D_{1} \varepsilon_{t-1}+D_{2} \varepsilon_{t-2}+\ldots=D(\mathrm{~L}) \varepsilon_{t}
$$

Reduced form VAR:

$$
A(\mathrm{~L}) Y_{t}=\eta_{t}, \quad \text { where } A(\mathrm{~L})=\mathrm{I}-A_{1} \mathrm{~L}-\ldots-A_{p} \mathrm{~L}^{p}
$$

Innovations:

$$
\eta_{t}=Y_{t}-E_{t-1} Y_{t}=A(\mathrm{~L}) Y_{t}
$$

Structural errors ε_{t} :

$$
\eta=H \varepsilon_{t} \text { and } \varepsilon_{t}=H^{-1} \eta_{t}
$$

Structural MAR:

$$
Y_{t}=A(\mathrm{~L})^{-1} \eta_{t}=A(\mathrm{~L})^{-1} H \varepsilon_{t}=C(\mathrm{~L}) H \varepsilon_{t}
$$

$C(\mathrm{~L}) H$ is structural impulse response function (dynamic causal effect)

SVAR estimands (focus on shock 1)

Partitioning notation:

$$
\eta_{t}=H \varepsilon_{t}=\left[\begin{array}{lll}
H_{1} & \cdots & H_{r}
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{1 t} \\
\vdots \\
\varepsilon_{r t}
\end{array}\right)=\left[\begin{array}{ll}
H_{1} & H_{\bullet}
\end{array}\right]\binom{\varepsilon_{1 t}}{\varepsilon_{\bullet t}}
$$

Structural MAR:

$$
Y_{t}=C(\mathrm{~L}) H \varepsilon_{t}=C(\mathrm{~L}) H_{1} \varepsilon_{1 t}+C(\mathrm{~L}) H_{\cdot} \varepsilon_{\bullet t}
$$

Structural MAR for $j^{\text {th }}$ variable:

$$
Y_{j t}=\sum_{k=0}^{\infty} C_{k, j} H_{1} \varepsilon_{1 t-k}+\sum_{k=0}^{\infty} C_{k, j} H_{\bullet} \varepsilon_{\bullet t-k}
$$

$C_{k, j}$ is a $1 \times r$ row vector

SVAR estimands (focus on shock 1), ctd.

(1) Structural IRF of variable j to shock 1 at lag h :

$$
I R F=C_{h, j} H_{1}
$$

(2) Historical contribution (decomposition):

$$
Y_{j t}=\sum_{k=0}^{\infty} C_{k, j} H_{1} \varepsilon_{1 t-k}+\sum_{k=0}^{\infty} C_{k, j} H_{\bullet} \varepsilon_{\bullet t-k}
$$

Historical contribution of shock 1 to variable j over horizon h :

$$
H D=\sum_{k=0}^{h} C_{k, j} H_{1} \varepsilon_{1 t-j}
$$

SVAR estimands (focus on shock 1), ctd.

(3) Forecast error variance decomposition:

$$
Y_{j, t}-Y_{j, t \mid t-h}=\sum_{k=0}^{h} C_{k, j} H_{1} \varepsilon_{1 t-k}+\sum_{k=0}^{h} C_{k, j} H_{\bullet} \varepsilon_{\bullet t-k}
$$

Suppose $E\left(\varepsilon_{t} \varepsilon_{t}{ }^{\prime}\right)=\Sigma_{\varepsilon \varepsilon}=D=\operatorname{diag}\left(\sigma_{\varepsilon_{1}}^{2}, \ldots, \sigma_{\varepsilon_{r}}^{2}\right)$ (uncorrelated shocks). Then

$$
\begin{aligned}
F E V D & =\frac{\operatorname{var}\left(\sum_{k=0}^{h} C_{k, j} H_{1} \varepsilon_{1 t-k}\right)}{\operatorname{var}\left(\sum_{k=0}^{h} C_{k, j} H \varepsilon_{t-k}\right)}=\frac{\operatorname{var}\left(\sum_{k=0}^{h} C_{k, j} H_{1} \varepsilon_{1 t-k}\right)}{\operatorname{var}\left(\sum_{k=0}^{h} C_{k, j} \eta_{t-k}\right)} \\
= & \frac{\sum_{k=0}^{h} C_{k, j} H_{1} H_{1}^{\prime} C_{k, j}^{\prime} \sigma_{\varepsilon_{1}}^{2}}{\sum_{k=0}^{h} C_{k, j} \Sigma_{\eta \eta} C_{k, j}^{\prime}}
\end{aligned}
$$

The structural VAR identification problem

r innovations:

$$
\stackrel{r \times 1}{\eta_{t}=} \stackrel{r \times r \times \times 1}{H} \varepsilon_{t}=\left[\begin{array}{lll}
H_{1} & \cdots & H_{r}
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{1 t} \\
\vdots \\
\varepsilon_{r t}
\end{array}\right)
$$

System ID: What is H ?
Assume $E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\operatorname{Diag}=D: \quad r^{2}+r \quad$ parameters
$\Sigma_{\eta \eta}=H D H^{\prime}: \quad-r(r+1) / 2$ equations
normalization (e.g. $D=\mathrm{I}_{r}$): -r normalization restrictions
Need: $\quad r(r-1) / 2$ "theory" restrictions

Single IRF (single shock) ID: What is H_{1} ?

Two approaches:

1. Internal restrictions:

Short run restrictions (Sims (1980)), long run restrictions, identification by heteroskedasticity, bounds on IRFs)

The structural VAR identification problem, ctd.

2. External information ("method of external instruments")

Romer and Romer (1989)
Ramey and Shapiro (1998)

Selected empirical papers

- Monetary shock: Cochrane and Piazzesi (2002), Faust, Swanson, and Wright (2003. 2004), Romer and Romer (2004), Bernanke and Kuttner (2005), Gürkaynak, Sack, and Swanson (2005)
- Fiscal shock: Romer and Romer (2010), Fisher and Peters (2010), Ramey (2011)
- Uncertainty shock: Bloom (2009), Baker, Bloom, and Davis (2011), Bekaert, Hoerova, and Lo Duca (2010), Bachman, Elstner, and Sims (2010)
- Liquidity shocks: Gilchrist and Zakrajšek's (2011), Bassett, Chosak, Driscoll, and Zakrajšek's (2011)
- Oil shock: Hamilton (1996, 2003), Kilian (2008a), Ramey and Vine (2010)

Outline

1. Introduction
2. Method of external instruments: identification
3. Method of external instruments: estimation
4. Strong instrument asymptotics
5. Weak instrument asymptotics - setup and distributions
6. Inference for IRFs
7. Inference for historical decompositions
8. Extensions
9. Empirical results
10. Conclusions

2. The method of external instruments: Identification

Methods/Literature

- Nearly all empirical papers use OLS \& report (only) first stage
- However, these "shocks" are best thought of as instruments (quasiexperiments)
- Treatments of external shocks as instruments:

Hamilton (2003)
Kilian (2008 - JEL)
Stock and Watson $(2008,2012)$
Mertens and Ravn (2012) - same setup as here (and as in Stock and Watson (2008)), executed using strong instrument asymptotics

Identification of \boldsymbol{H}_{1}

$$
\mathrm{A}(\mathrm{~L}) Y_{t}=\eta_{t}, \quad \eta_{t}=H \varepsilon_{t}=\left[\begin{array}{lll}
H_{1} & \cdots & H_{r}
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{1 t} \\
\vdots \\
\varepsilon_{r t}
\end{array}\right)
$$

Suppose you have an instrumental variable Z_{t} (not in Y_{t}) such that

$$
\begin{aligned}
& \text { (i) } E\left(\varepsilon_{1 t} Z_{t}^{\prime}\right)=\alpha^{\prime} \neq 0 \text { (relevance) } \\
& \text { (ii) } E\left(\varepsilon_{i t} Z_{t}^{\prime}\right)=0, j=2, \ldots, r \text { (exogeneity) } \\
& \text { (iii) } E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\Sigma_{\varepsilon \varepsilon}=D=\operatorname{diag}\left(\sigma_{\varepsilon_{1}}^{2}, \ldots, \sigma_{\varepsilon_{r}}^{2}\right)
\end{aligned}
$$

Under (i) and (ii), you can identify H_{1} up to sign \& scale
$E\left(\eta_{t} Z_{t}^{\prime}\right)=E\left(H \varepsilon_{t} Z_{t}^{\prime}\right)=\left[\begin{array}{lll}H_{1} & \cdots & H_{r}\end{array}\right]\left(\begin{array}{c}E\left(\varepsilon_{1 t} Z_{t}^{\prime}\right) \\ \vdots \\ E\left(\varepsilon_{r t} Z_{t}^{\prime}\right)\end{array}\right)=\left[\begin{array}{lll}H_{1} & \cdots & H_{r}\end{array}\right]\left(\begin{array}{c}\alpha^{\prime} \\ 0 \\ 0\end{array}\right)=H_{1} \alpha^{\prime}$

Identification of $\boldsymbol{H}_{\mathbf{1}}$, ctd.

$$
E\left(\eta_{t} Z_{t}^{\prime}\right)=E\left(H \varepsilon_{t} Z_{t}^{\prime}\right)=\left[\begin{array}{ll}
H_{1} & H_{\bullet}
\end{array}\right]\binom{E\left(\varepsilon_{1 t} Z_{t}^{\prime}\right)}{E\left(\varepsilon_{\bullet t} Z_{t}^{\prime}\right)}=H_{1} \alpha^{\prime}
$$

Normalization

- The scale of H_{1} and $\sigma_{\varepsilon_{1}}^{2}$ is set by a normalization subject to

$$
\Sigma_{\eta \eta}=H D H^{\prime} \quad \text { where } D=\operatorname{diag}\left(\sigma_{\varepsilon_{1}}^{2}, \ldots, \sigma_{\varepsilon_{r}}^{2}\right)
$$

- Normalization studied here: a unit positive value of shock 1 is defined to have a unit positive effect on the innovation to variable 1 , which is $u_{1 t}$. This corresponds to:

$$
\text { (iv) } H_{11}=1 \text { (unit shock normalization) }
$$

where H_{11} is the first element of H_{1}

Identification of $\boldsymbol{H}_{\mathbf{1}}$, ctd.

Impose normalization (iv):

$$
E\left(\eta_{t} Z_{t}^{\prime}\right)=\binom{E \eta_{1 t} Z_{t}^{\prime}}{E \eta_{\bullet t} Z_{t}^{\prime}}=H_{1} \alpha^{\prime}=\binom{H_{11}}{H_{1 \bullet}} \alpha^{\prime}=\binom{1}{H_{1 \bullet}} \alpha^{\prime}
$$

So

$$
\binom{H_{1 \cdot} E \eta_{1 t} Z_{t}^{\prime}}{E \eta_{\bullet t} Z_{t}^{\prime}}=\binom{H_{1 \cdot}, \alpha^{\prime}}{H_{1 \cdot}, \alpha^{\prime}}
$$

or

$$
H_{1 \bullet} E \eta_{1 t} Z_{t}^{\prime}=E \eta_{\bullet t} Z_{t}^{\prime}
$$

If Z_{t} is a scalar $(k=1): \quad H_{1 \bullet}=\frac{E \eta_{\bullet t} Z_{t}}{E \eta_{1 t} Z_{t}}$

Identification of $\varepsilon_{1 t}$

$$
\varepsilon_{t}=H^{-1} \eta_{t}=\left[\begin{array}{c}
H^{1^{\prime}} \\
\vdots \\
H^{r^{\prime}}
\end{array}\right] \eta_{t}
$$

- Identification of first column of H and $\Sigma_{\varepsilon \varepsilon}=D$ identifies first row of H^{-1} up to scale (can show via partitioned matrix inverse formula).
- Alternatively, let Φ be the coefficient matrix of the population regression of Z_{t} onto η_{t} :

$$
\Phi=E\left(Z_{t} \eta_{t}^{\prime}\right) \Sigma_{\eta}^{-1}=\alpha H_{1}^{\prime}\left(H D H^{\prime}\right)^{-1}=\alpha H_{1}^{\prime} H^{\prime-1} D^{-1} H^{-1}=\left(\alpha / \sigma_{\varepsilon_{1}}^{2}\right) H^{1,}
$$

because $H^{-1} H_{1}=\left(\begin{array}{lll}1 & 0 & \ldots\end{array}\right)^{\prime}$. Thus $\varepsilon_{1 t}$ is identified up to scale by

$$
\Phi \eta_{t}=\frac{\alpha}{\sigma_{\varepsilon_{1}}^{2}} H^{1} \eta_{t}=\frac{\alpha}{\sigma_{\varepsilon_{1}}^{2}} \varepsilon_{1 t}
$$

Identification of $\varepsilon_{1 t}$, ctd

$\Phi \eta_{t}$ is the predicted value from the population projection of Z_{t} on η_{t} :

$$
\tilde{\varepsilon}_{1 t}=\Phi \eta_{t}=E\left(Z_{t} \eta_{t}^{\prime}\right) \Sigma_{\eta}^{-1} \eta_{t}=\frac{\alpha}{\sigma_{\varepsilon_{1}}^{2}} \varepsilon_{1 t}
$$

- Φ has rank 1 (in population), so this is a (population) reduced rank regression
- 2 instruments identify 2 shocks. Suppose they are shocks 1 and 2 , identified by $Z_{1 t}$ and $Z_{2 t}$. Then

$$
E\left(\tilde{\varepsilon}_{1 t} \tilde{\varepsilon}_{2 t}\right)=E\left(Z_{1 t} \eta_{t}^{\prime}\right) \Sigma_{\eta}^{-1} E\left(\eta_{t} Z_{2 t}\right)
$$

which $=0$ if both instruments satisfy (i) - (iii)

"Reduced form" VARX (single Z case)

VAR: $\quad \mathrm{A}(\mathrm{L}) Y_{t}=\eta_{t}, \quad \eta_{t}=H \varepsilon_{t}$
Additionally assume:

$$
\text { (v) } \left.E\left(Y_{t-k} Z_{t}^{\prime}\right)=0, k=1, \ldots \text { (} Z \text { lag dynamics restriction }\right)
$$

Then

$$
\begin{aligned}
& \operatorname{Proj}\left(\eta_{t} \mid Z_{t}, Y_{t-1}\right)=\operatorname{Proj}\left(\eta_{t} \mid Z_{t}\right)=\Gamma Z_{t}, \\
& \quad \text { where } \Gamma=E\left(\eta_{t} Z_{t}\right) / \sigma_{Z}^{2}=\left(\alpha / \sigma_{Z}^{2}\right) H_{1}
\end{aligned}
$$

Thus under (i) - (iii) and (v), Y_{t} follows the VARX:

$$
A(\mathrm{~L}) Y_{t}=\Gamma Z_{t}+v_{t},(\text { "Reduced form" VARX })
$$

where v_{t} is the projection residual so $\operatorname{corr}\left(Z_{t}, v_{t}\right)=0$.

"Reduced form" distributed lag

$$
A(\mathrm{~L}) Y_{t}=\Gamma Z_{t}+v_{t},(\text { "Reduced form" VARX })
$$

so

$$
Y_{t}=A(\mathrm{~L})^{-1} \Gamma Z_{t}+A(\mathrm{~L})^{-1} v_{t},(\text { "Reduced form" } \mathrm{DL})
$$

where $E\left(Z_{t} \nu_{t}\right)=0$.

- $A(\mathrm{~L})^{-1} \Gamma$ are the (reduced form) IRFs with respect to the instrument
- Ratios of elements of $A(\mathrm{~L})^{-1} \Gamma$ are the structural IRFs.

Empirical practice - what is done in the literature?

- Many things: estimation of VARX, of DL, of ADL (single equation)
- In almost cases inference is reported for the IRF with respect to Z_{t}, not the structural IRF. Exceptions: Hamilton (2003), Kilian (2009), Mertens-Ravn (2012)

3. Estimation

Recall notation: $\quad H_{1}=\left[\begin{array}{l}H_{11} \\ H_{1 \bullet}\end{array}\right], \quad \eta_{t}=\left[\begin{array}{l}\eta_{1 t} \\ \eta_{\bullet t}\end{array}\right]$

Impose the normalization condition (iv) $H_{11}=1$, so

$$
E\left(\eta_{t} Z_{t}^{\prime}\right)=H_{1} \alpha^{\prime}=\binom{1}{H_{1 \bullet}} \alpha \text { or } E\left(\eta_{t} \otimes Z_{t}\right)=\binom{1}{H_{1 \bullet}} \otimes \alpha
$$

High level assumption (assume throughout)

$$
\begin{equation*}
\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\left[\eta_{t} \otimes Z_{t}\right]-\left[H_{1} \otimes \alpha\right]\right) \xrightarrow{d} \mathrm{~N}(0, \Omega) \tag{*}
\end{equation*}
$$

Estimation of $\boldsymbol{H}_{\mathbf{1}}$

Efficient GMM objective function:
$\mathrm{S}\left(H_{1}, \alpha ; \hat{\Omega}\right)$
$=\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\left(\hat{\eta}_{t} \otimes Z_{t}\right)-\left(\left[\begin{array}{c}1 \\ H_{1 \bullet}\end{array}\right] \otimes \alpha\right)\right)^{\prime} \hat{\Omega}^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\left(\hat{\eta}_{t} \otimes Z_{t}\right)-\left(\left[\begin{array}{c}1 \\ H_{1 \bullet}\end{array}\right] \otimes \alpha\right)\right)$
$k=1$ (exact identification): $\quad E\left(\eta_{t} Z_{t}^{\prime}\right)=H_{1} \alpha^{\prime}=\binom{\alpha}{\alpha H_{1 \bullet}}$
so GMM estimator solves, $\quad T^{-1} \sum_{t=1}^{T} \hat{\eta}_{t} Z_{t}=\binom{\hat{\alpha}}{\hat{\alpha} \hat{H}_{10}}$
GMM estimator:

$$
\hat{H}_{1 \bullet}=\frac{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{\bullet t} Z_{t}}{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{1 t} Z_{t}}
$$

IV interpretation:

$$
\begin{aligned}
& \hat{\eta}_{j t}=H_{1 j} \hat{\eta}_{1 t}+u_{j t}, \\
& \hat{\eta}_{1 t}=\Pi_{j}^{\prime} Z_{t}+v_{j t}
\end{aligned}
$$

GMM estimation of $\boldsymbol{H}^{1,}$ and $\varepsilon_{1 t}$

Recall

$$
\tilde{\varepsilon}_{1 t}=E\left(Z_{t} \eta_{t}^{\prime}\right) \Sigma_{\eta}^{-1} \eta_{t}=\Phi \eta_{t}
$$

Estimator:

- $k=1$:
$\hat{\varepsilon}_{1 t}$ is the predicted value (up to scale) in the regression of Z_{t} on $\hat{\eta}_{t}$
- $k>1$ (no-HAC):

Absent serial correlation/no heteroskedasticity, the GMM estimator simplifies to reduced rank regression:

$$
\begin{equation*}
Z_{t}=\Phi \hat{\eta}_{t}+v_{t} \tag{RRR}
\end{equation*}
$$

- If Z_{t} is available only for a subset of time periods, estimate (RRR) using available data, compute predicted value over full period

4. Strong instrument asymptotics

- $k=1$ case:

$$
\sqrt{T}\left(\hat{H}_{1 \bullet}-H_{1 \bullet}\right) \xrightarrow{d} \mathrm{~N}\left(0, \Gamma^{\prime} \Omega \Gamma\right), \text { where } \Gamma=\left[\begin{array}{c}
-H_{1}{ }^{\prime} \\
I_{r-1}
\end{array}\right]
$$

- Overidentified case $(k>1)$:
o usual GMM formula
$\circ J$-statistics, etc. are standard textbook GMM

5. Weak instrument asymptotics: $k=1$

(a) Distribution of \hat{H}_{1}.

$$
\hat{H}_{1 \bullet}=\frac{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{\bullet t} Z_{t}}{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{1 t} Z_{t}}
$$

Weak IV asymptotic setup - local drift (limit of experiments, etc.):

$$
\alpha=\alpha_{T}=a / \sqrt{T}
$$

so

$$
\begin{equation*}
\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\left(\eta_{t} \otimes Z_{t}\right)-\left(H_{1} \otimes \alpha\right)\right) \xrightarrow{d} \mathrm{~N}(0, \Omega) \tag{*}
\end{equation*}
$$

becomes

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\eta_{t} \otimes Z_{t}\right) \xrightarrow{d} \mathrm{~N}\left(H_{1} \otimes a, \Omega\right)
$$

Weak instrument asymptotics for H_{1}, ctd

Estimation of $\boldsymbol{A}(\mathrm{L})$ under (i) - (v) (serially uncorrelated instruments case)

Let $\alpha=\left[-A_{1} \ldots-A_{p}\right]$ so $\eta_{t}=A(\mathrm{~L}) Y_{t}=Y_{t}-\alpha^{\prime} \underline{Y}_{t-1}$. Then

$$
\begin{aligned}
T^{-1 / 2} \sum_{t=1}^{T} \hat{\eta}_{t} Z_{t} & =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} Z_{t}+T^{-1 / 2} \sum_{t=1}^{T}\left(\hat{\eta}_{t}-\eta_{t}\right) Z_{t} \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} Z_{t}+T^{-1 / 2} \sum_{t=1}^{T}(\hat{\alpha}-\alpha) \underline{Y}_{t-1} Z_{t} \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} Z_{t}+T^{1 / 2}(\hat{\alpha}-\alpha) T^{-1} \sum_{t=1}^{T} \frac{Y_{t-1}}{} Z_{t} \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} Z_{t}+o_{p}(1)
\end{aligned}
$$

Weak instrument asymptotics for H_{1}, ctd

Under (iv),

$$
\hat{H}_{1 \bullet}=\frac{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{\bullet t} Z_{t}}{T^{-1} \sum_{t=1}^{T} \hat{\eta}_{1 t} Z_{t}}=\frac{T^{-1 / 2} \sum_{t=1}^{T} \eta_{\bullet t} Z_{t}}{T^{-1 / 2} \sum_{t=1}^{T} \eta_{1 t} Z_{t}}+o_{p}(1)
$$

Standardize (*):

$$
\begin{equation*}
\sigma_{Z}^{-1} \operatorname{diag}\left(\Sigma_{\eta \eta}\right)^{-1 / 2} \frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\eta_{t} \otimes Z_{t}\right) \Rightarrow \lambda+z \tag{**}
\end{equation*}
$$

where $\quad \lambda=\sigma_{Z}^{-1} \operatorname{diag}\left(\Sigma_{\eta \eta}\right)^{-1 / 2}\left(H_{1} \otimes a\right)$
and $\quad z=\left[\begin{array}{c}z_{1} \\ z_{\bullet}\end{array}\right] \sim \mathrm{N}(0, \mathrm{~W}), W=\sigma_{Z}^{-2} \operatorname{diag}\left(\Sigma_{\eta \eta}\right)^{-1 / 2} \Omega \operatorname{diag}\left(\Sigma_{\eta \eta}\right)^{-1 / 2^{\prime}}$
Thus, in $k=1$ case, $\hat{H}_{1 \bullet}=\frac{T^{-1} \sum_{t=1}^{T} \eta_{\bullet t} Z_{t}}{T^{-1} \sum_{t=1}^{T} \eta_{1 t} Z_{t}} \Rightarrow \frac{\lambda_{\bullet}+z_{\bullet}}{\lambda_{1}+z_{1}}=H_{1 \bullet}^{*}$
Comments

1. In the no-HAC case, $\Omega=\Sigma_{\eta \eta} \sigma_{Z}^{2}$ so $W_{i j}=\operatorname{corr}\left(\eta_{i t}, \eta_{j t}\right)$

Weak instrument asymptotics for H_{1}, ctd

$$
\hat{H}_{1 \bullet}=\frac{T^{-1} \sum_{t=1}^{T} \eta_{\bullet \bullet} Z_{t}}{T^{-1} \sum_{t=1}^{T} \eta_{1 t} Z_{t}}+o_{p}(1) \Rightarrow \frac{\lambda_{\bullet}+z_{\bullet}}{\lambda_{1}+z_{1}}=H_{1 \bullet}^{*}
$$

Comments, ctd.
2. In the no-HAC case, convergence to strong instrument normal is governed by

$$
\lambda_{1}^{2}=a^{2} / \sigma_{\eta_{1}}^{2} \sigma_{Z}^{2}=\text { noncentrality parameter of first-stage } F
$$

For the HAC case, see Montiel Olea and Pflueger (2012)
3. Consider unidentified case: $a=0$ so $\lambda=0$ so

$$
\hat{H}_{1 j}=\frac{T^{-1} \sum_{t=1}^{T} \eta_{j t} Z_{t}}{T^{-1} \sum_{t=1}^{T} \eta_{1 t} Z_{t}} \Rightarrow \frac{z_{j}}{z_{1}} \sim \int N\left(\delta_{j}, \frac{\tau_{j}^{2}}{z_{1}^{2}}\right) d F_{z_{1}^{2}}
$$

where $\delta_{j}=$ plim of OLS estimator in the regression, $\eta_{j t}=\delta_{j} \eta_{1 t}+v_{j t}$

- \hat{H}_{1} is median-biased towards $\delta=E\left(\eta_{t} \eta_{1 t}\right) / \sigma_{\eta_{1}}^{2}=$ the first column of the Cholesky decomposition whit $\eta_{1 t}$ ordered first

Weak instrument asymptotics for structural IRFs

Structural IRF:
where
$C(\mathrm{~L}) H_{1}$
$C(\mathrm{~L})=A(\mathrm{~L})^{-1}=C_{0}+C_{1} \mathrm{~L}+C_{2} \mathrm{~L}^{2}+\ldots$
Effect on variable j of shock 1 after h periods: $\quad C_{h, j} H_{1}$

Weak instrument asymptotic distribution of IRF
$\hat{A}(L)$ is identified from the reduced form:

$$
\sqrt{T}(\hat{A}(L)-A(L))=O_{p}(1) \text { (asymptotically normal) }
$$

so

$$
\hat{C}(L) \hat{H}_{1} \Rightarrow C(\mathrm{~L}) H_{1}^{*}
$$

Estimator of h-step IRF on variable $j: \hat{C}_{h, j} \hat{H}_{1} \Rightarrow C_{h, j} H_{1}^{*}$

- This won't be a good approximation in practice - need to incorporate $O_{p}\left(T^{-1 / 2}\right)$ term!

Numerical results for IRFs - asymptotic distributions

DGP calibration: $r=2$

- $Y=\left(\Delta \ln\right.$ POIL $\left._{t}, \Delta \ln G D P_{t}\right)$, US, 1959Q1-2011Q2
- Estimate $A(\mathrm{~L}), \Sigma_{\eta \eta}$, and H_{1}, then fix throughout $\circ A(\mathrm{~L}), \Sigma_{\eta \eta}: \operatorname{VAR}(2)$
$\circ H_{1}$: estimated using $Z_{t}=$ Kilian (2008 - REStat $)$ OPEC supply shortfall (available 1971Q1-2004Q3)

Weak instrument asymptotic distribution:
h-period IR, shock 1 on variable j : because $r=2$,

$$
\begin{gathered}
C_{h, j} H_{1}^{*}=C_{h, j 1}+C_{h, j 2} H_{12}^{*}, H_{12}^{*}=\frac{\lambda_{2}+z_{2}}{\lambda_{1}+z_{1}} \\
\text { where }\binom{\lambda_{1}}{\lambda_{2}}=a\binom{1 / \sigma_{Z} \sigma_{\eta_{1}}}{H_{12} / \sigma_{Z} \sigma_{\eta_{2}}} \text { and }\binom{z_{1}}{z_{2}} \sim N\left(0,\left[\begin{array}{cc}
1 & \operatorname{corr}\left(\eta_{1}, \eta_{2}\right) \\
. & 1
\end{array}\right]\right)
\end{gathered}
$$

Impulse:Oil; Response:Oil
Centrality Parameter=100

Effect of oil on oil growth: $\lambda_{1}^{2}=100$

Impulse:Oil; Response:Output
Centrality Parameter=100

Effect of oil on GDP growth: $\lambda_{1}^{2}=100$

Impulse:Oil; Response:Oil Centrality Parameter=1

Effect of oil on oil growth: $\lambda_{1}^{2}=1$

Effect of oil on oil growth: $\lambda_{1}^{2}=10$

Impulse:Oil; Response:Oil
Centrality Parameter=20

Effect of oil on oil growth: $\lambda_{1}^{2}=20$

Effect of oil on oil growth: $\lambda_{1}^{2}=50$

Impulse:Oil; Response:Oil
Centrality Parameter=100

Effect of oil on oil growth: $\lambda_{1}^{2}=100$

Impulse:Oil; Response:Oil
Centrality Parameter=1000

Effect of oil on oil growth: $\lambda_{1}^{2}=1000$

Impulse:Oil; Response:Output
Centrality Parameter=1

Effect of oil on GDP growth: $\lambda_{1}^{2}=1$
mpulse:Oil; Response:Output
Centrality Parameter=10

Effect of oil on GDP growth: $\lambda_{1}^{2}=10$
mpulse:Oil; Response:Output
Centrality Parameter=20

Effect of oil on GDP growth: $\lambda_{1}^{2}=20$
mpulse:Oil; Response:Output
Centrality Parameter=50

Effect of oil on GDP growth: $\lambda_{1}^{2}=50$

Impulse:Oil; Response:Output
Centrality Parameter=100

Effect of oil on GDP growth: $\lambda_{1}^{2}=100$

Impulse:Oil; Response:Output
Centrality Parameter=1000

Effect of oil on GDP growth: $\lambda_{1}^{2}=1000$

Weak instrument asymptotics for cross-shock correlation

Correlation between two identified shocks:

Let $Z_{1 t}$ and $Z_{2 t}$ be scalar instruments that identify $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$:

$$
\begin{aligned}
& \hat{\varepsilon}_{1 t}=\left(T^{-1} \sum_{t=1}^{T} Z_{1 t} \hat{\eta}_{t}\right) \hat{\Sigma}_{\eta \eta}^{-1} \eta_{t} \\
& \hat{\varepsilon}_{2 t}=\left(T^{-1} \sum_{t=1}^{T} Z_{2 t} \hat{\eta}_{t}\right) \hat{\Sigma}_{\eta \eta}^{-1} \eta_{t} \\
& r_{12}=\frac{T^{-1} \sum \hat{\varepsilon}_{11} \hat{\varepsilon}_{2 t}}{\sqrt{T^{-1} \sum \hat{\varepsilon}_{1 t}^{2}} \sqrt{T^{-1} \sum \hat{\varepsilon}_{2 t}^{2}}}
\end{aligned}
$$

What is the null distribution (when (i)-(ii) hold for both instruments and $\Sigma_{\varepsilon \varepsilon}=I$)?

Weak instrument asymptotics for cross-shock correlation, ctd.

Expression for no-HAC case: $\Omega=\sigma_{Z}^{2} \Sigma_{\eta \eta}$, so

$$
\begin{aligned}
& \quad T^{-1 / 2} \sum Z_{1 t} \hat{\eta}_{t}=T^{-1 / 2} \sum Z_{1 t} \eta_{t}+o_{p}(1) \xrightarrow{d} \mathrm{~N}\left(0, \sigma_{Z}^{2} \Sigma_{\eta \eta}\right) \\
& \text { so } \quad r_{12}=\frac{T^{-1} \sum \hat{\varepsilon}_{1 t} \hat{\varepsilon}_{2 t}}{\sqrt{T^{-1} \sum \hat{\varepsilon}_{1 t}^{2}} \sqrt{T^{-1} \sum \hat{\varepsilon}_{2 t}^{2}}} \\
& =\frac{\left(T^{-1 / 2} \sum Z_{1 t} \hat{\eta}_{t}\right)^{\prime} \hat{\Sigma}_{\eta \eta}^{-1}\left(T^{-1 / 2} \sum \hat{\eta}_{t} Z_{2 t}\right)}{\sqrt{\left(T^{-1 / 2} \sum Z_{1 t} \hat{\eta}_{t}\right)^{\prime} \hat{\Sigma}_{\eta \eta}^{-1}\left(T^{-1 / 2} \sum \hat{\eta}_{t} Z_{1 t}\right)} \sqrt{\left(T^{-1 / 2} \sum Z_{2 t} \hat{\eta}_{t}\right)^{\prime} \hat{\Sigma}_{\eta \eta}^{-1}\left(T^{-1 / 2} \sum \hat{\eta}_{t} Z_{2 t}\right)}} \\
& \Rightarrow \frac{\left(\gamma_{1}+\zeta_{1}\right)^{\prime}\left(\gamma_{2}+\zeta_{2}\right)}{\sqrt{\left(\gamma_{1}+\zeta_{1}\right)^{\prime}\left(\gamma_{1}+\zeta_{1}\right)} \sqrt{\left(\gamma_{2}+\zeta_{2}\right)^{\prime}\left(\gamma_{2}+\zeta_{2}\right)}}
\end{aligned}
$$

Function of noncentral Wishart r.v.s (Anderson \& Girshick (1944))

Weak instrument asymptotics for cross-shock correlation, ctd.

$$
r_{12} \Rightarrow \frac{\left(\gamma_{1}+\zeta_{1}\right)^{\prime}\left(\gamma_{2}+\zeta_{2}\right)}{\sqrt{\left(\gamma_{1}+\zeta_{1}\right)^{\prime}\left(\gamma_{1}+\zeta_{1}\right)} \sqrt{\left(\gamma_{2}+\zeta_{2}\right)^{\prime}\left(\gamma_{2}+\zeta_{2}\right)}}
$$

where

$$
\begin{aligned}
& \varsigma=\binom{\zeta_{1}}{\zeta_{2}} \sim \mathrm{~N}(0, \bar{\Sigma} \otimes \mathrm{I}), \bar{\Sigma}=\left[\begin{array}{cc}
1 & \operatorname{corr}\left(Z_{1}, Z_{2}\right) \\
\operatorname{corr}\left(Z_{1}, Z_{2}\right) & 1
\end{array}\right] \\
& \gamma_{1}^{\prime} \gamma_{1}=a_{1}^{2} / \sigma_{\varepsilon_{1}}^{2} \sigma_{Z_{1}}^{2}, \gamma_{2}^{\prime} \gamma_{2}=a_{2}^{2} / \sigma_{\varepsilon_{2}}^{2} \sigma_{Z_{2}}^{2} \\
& \gamma_{1}^{\prime} \gamma_{2}=0 \text { under (i) }- \text { (iii) }
\end{aligned}
$$

Comments

1. Nonstandard distribution - function of noncentral Wishart rvs
2. Normal under null as $\gamma_{1}^{\prime} \gamma_{1}$ and $\gamma_{2}^{\prime} \gamma_{2} \rightarrow \infty$
3. Strong instruments under alternative: $r_{12} \xrightarrow{p} \frac{\gamma_{1}^{\prime} \gamma_{2}}{\sqrt{\gamma_{1}^{\prime} \gamma_{1}} \sqrt{\gamma_{2}^{\prime} \gamma_{2}}}$

Weak instrument asymptotics for cross-shock correlation, ctd.

Numerical results

Asymptotic null distribution is a function of

$$
\begin{aligned}
& \gamma_{1}^{\prime} \gamma_{1}=a_{1}^{2} / \sigma_{\varepsilon_{1}}^{2} \sigma_{Z_{1}}^{2}, \\
& \gamma_{2}^{\prime} \gamma_{2}=a_{2}^{2} / \sigma_{\varepsilon_{2}}^{2} \sigma_{Z_{2}}^{2}
\end{aligned}
$$

$$
\operatorname{corr}\left(Z_{1}, Z_{2}\right)
$$

Weak instrument asymptotics for cross-shock correlation, ctd.

Weak instrument asymptotic null distribution of $r_{12}:\left|\operatorname{Corr}\left(Z_{1}, Z_{2}\right)\right|=0$

Weak instrument asymptotics for cross-shock correlation, ctd.

Weak instrument asymptotic null distribution of $r_{12}:\left|\operatorname{Corr}\left(Z_{1}, Z_{2}\right)\right|=0.4$

Weak instrument asymptotics for cross-shock correlation, ctd.

Weak instrument asymptotic null distribution of $r_{12}:\left|\operatorname{Corr}\left(Z_{1}, Z_{2}\right)\right|=0.8$

Weak instrument asymptotics for cross-shock correlation, ctd.

Sup critical values (worst case over $\gamma_{1}^{\prime} \gamma_{1}$ and $\gamma_{2}^{\prime} \gamma_{2}$):

$\left\|\operatorname{corr}\left(\boldsymbol{Z}_{\mathbf{1}}, \boldsymbol{Z}_{\mathbf{2}}\right)\right\|$	$\mathbf{9 5}$ \% critical value
0	.5705
.2	.6253
.4	.7327
.6	.8406
.8	.9231

6. Weak-instrument robust inference for structural IRFs

$$
I R F=C_{h, j} H_{1}
$$

Consider null hypothesis $C_{h, j} H_{1}=\kappa_{0}$ and a single Z.
Use (iv) to write the null as,

$$
C_{h, j} H_{1}=\left(\begin{array}{ll}
C_{h, j 1} & \left.C_{h, j \bullet}\right) H_{1}=C_{h, j 1}+C_{h, j \bullet} H_{1 \bullet}=\kappa_{0}
\end{array}\right.
$$

or

$$
C_{h, j \bullet} H_{1 \bullet}=\kappa_{0}-C_{h, j 1}
$$

Recall moment restriction:

$$
H_{1} \cdot E\left(\eta_{1 t} Z_{t}\right)-E\left(\eta_{\bullet} Z_{t}\right)=0
$$

so

$$
C_{h, j \bullet} H_{1} \bullet E\left(\eta_{1 t} Z_{t}\right)-C_{h, j \bullet} E\left(\eta_{\bullet} Z_{t}\right)=0
$$

Thus under the null,

$$
\left(\kappa_{0}-C_{h, j 1}\right) E\left(\eta_{1 t} Z_{t}\right)-C_{h, j} \cdot E\left(\eta_{\bullet} Z_{t}\right)=0
$$

Weak-instrument robust inference for IRFs, ctd

Under null that $I R F=C_{h, j} H_{1}=\kappa_{0}$,

$$
\left(\kappa_{0}-C_{h, j 1}\right) E\left(\eta_{1 t} Z_{t}\right)-C_{h, j \bullet} E\left(\eta_{\bullet \bullet} Z_{t}\right)=0
$$

or

$$
E \gamma_{0}^{\prime} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \eta_{t} Z_{t}=0 \text { where } \gamma_{0}=\binom{\kappa_{0}-C_{h, j 1}}{-C_{h, j \cdot}^{\prime}}
$$

Test: \quad reject κ_{0} if $\left(\gamma_{0}^{\prime} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \eta_{t} Z_{t}\right)^{2} / \gamma_{0}^{\prime} \Omega \gamma_{0}>\chi_{1 ; 95}^{2}$
Note: Under weak instrument nesting, $C(\mathrm{~L})$ is known

Weak-instrument robust inference for IRFs, ctd

$$
\left(\gamma_{0}^{\prime} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \eta_{t} Z_{t}\right)^{2} / \gamma_{0}^{\prime} \Omega \gamma_{0}>\chi_{1,95}^{2}
$$

Comments

- This is one degree of freedom test (not r-1 d.f. AR set for H_{1})
- Conf. int. inversion can be done analytically (ratio of quadratics)
- Strong-instrument efficient (asy equivalent to standard GMM test)
- Scalar Z : this test is UMPU in limit experiment using the sufficient statistic $\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \eta_{t} Z_{t}$ in sense of Müller (2011) (proof: rotate so that you are testing mean of first element of independent normal), so confidence intervals are (limit experiment) UMAU

Weak-instrument robust inference for IRFs, ctd

- Multiple Z : The testing problem of $\mathrm{H}_{0}: \kappa=\kappa_{0}$ can be rewritten as $\mathrm{H}_{0}: \beta=\beta_{0}$ in the standard IV regression form,

$$
\begin{aligned}
& C_{h, j \bullet} \eta_{\bullet t}-\left(\kappa_{0}-C_{h, j 1}\right) \eta_{1 t}=\beta_{0} \eta_{1 t}+u_{t} \\
& \eta_{1 t}=\pi Z_{t}+v_{t}
\end{aligned}
$$

so for multiple Z_{t} the CLR confidence interval can be used. (Working on efficiency improvements)

7. Inference for Historical Decompositions

$H D=\sum_{k=0}^{h} C_{k, j} H_{1} \varepsilon_{1 t-j}=\left(\sum_{k=0}^{h} C_{k, j 1} \varepsilon_{1 t-k}\right)+\left(\sum_{k=0}^{h} C_{k, j} \varepsilon_{1 t-k}\right) H_{1}$.

Treat $\varepsilon_{1 t}, \ldots, \varepsilon_{t-h}$ as nonrandom, and $C(\mathrm{~L})$ as known. Then this is also testing a linear combination of H_{1} 。 so the approach for IRFs applies directly.

Test:

$$
\text { reject } \tilde{\kappa}_{0} \text { if }\left(\tilde{\gamma}_{0}^{\prime} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \eta_{t} Z_{t}\right)^{2} / \tilde{\gamma}_{0}^{\prime} \Omega \tilde{\gamma}_{0}>\chi_{1 ; 95}^{2}
$$

where

$$
\tilde{\gamma}_{0}=\binom{\tilde{\kappa}_{0}-\sum_{k=0}^{h} C_{k, j 1} \varepsilon_{1 t-k}}{-\sum_{k=0}^{h} C_{k, j \bullet} \varepsilon_{1 t-k}}
$$

8. Extensions

8.1 When Z_{t} is serially correlated

Let $\quad \hat{Z}_{t}=$ residual from regression of Z_{t} onto Y_{t-1} and $\quad \zeta_{t}=Z_{t}-\operatorname{Proj}\left(Z_{t} \mid \underline{Y}_{t-1}\right)$

$$
\begin{aligned}
T^{-1 / 2} \sum_{t=1}^{T} \hat{\eta}_{t} Z_{t} & =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} \hat{Z}_{t} \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t}\left(Z_{t}-\underline{Y}_{t-1} \hat{\Sigma}_{Y_{-1} Y_{-1}}^{-1} \hat{\Sigma}_{Y_{-1} Z}^{-1}\right) \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t}\left(Z_{t}-\underline{Y}_{t-1} \Sigma_{Y_{-1} Y_{-1}}^{-1} \Sigma_{Y_{-1} Z}^{-1}\right)+o_{p}(1) \\
& =T^{-1 / 2} \sum_{t=1}^{T} \eta_{t} \zeta_{t} \\
& \xrightarrow{d} \mathrm{~N}\left(\mathrm{H}_{1} \alpha^{\prime}, \Omega\right),
\end{aligned}
$$

where $\Omega=2 \pi S_{\eta \zeta}(0)$. Under the no-HAC assumption, $\Omega=\Sigma_{\eta \eta} \sigma_{\zeta}^{2}$ so all goes through as above with ζ_{t} replacing Z_{t}

8.2 When Z_{t} is a generated instrument

- For example, Z_{t} is the residual from a preliminary regression
- Additional adjustment to the variance formula

8.3 Dynamic Factor Models

Dynamic factor model (Geweke (1977), Sargent \& Sims (1977)):

$$
\begin{aligned}
& X_{t}=\Lambda F_{t}+e_{t} \quad\left(F_{t}=6 \text { factors, } e_{t}=\right.\text { idiosyncratic disturbance) } \\
& A(\mathrm{~L}) F_{t}=\eta_{t} \quad \text { (factors follow a reduced form VAR) } \\
& \eta_{t}=H \mathcal{E}_{t}, H \text { invertible (same as in SVAR setup) }
\end{aligned}
$$

Moving average representations:

$$
\begin{array}{ll}
X_{t}=\Lambda A(\mathrm{~L})^{-1} \eta_{t}+e_{t} & \text { (reduced form) } \\
X_{t}=\Lambda A(\mathrm{~L})^{-1} H \varepsilon_{t}+e_{t} \quad(\mathrm{~S}-\mathrm{DFM}, \text { MA form) }
\end{array}
$$

Extension to DFMs, ctd.

$$
X_{t}=\Lambda A(\mathrm{~L})^{-1} H \varepsilon_{t}+e_{t} \quad(\mathrm{~S}-\mathrm{DFM}, \mathrm{MA} \text { form })
$$

IRF of variable j with respect to shock 1: $\Lambda_{j}^{\prime} C(\mathrm{~L}) H_{1}$
Extension of foregoing results to S-DFM requires:

- Estimation of F_{t} 's (e.g. principal components);
- no "generated regressor" problem under Bai-Ng (2006) conditions
- Modification for normalization condition (iv): $\varepsilon_{1 t}$ has positive unit impact effect on $X_{j t}$: because $C_{0}=\mathrm{I}$,

$$
\text { (iv') } \quad \Lambda_{j}^{\prime} H_{1}=1
$$

- If you renormalize F_{t} so that Λ is lower triangular on r variables with "variable 1 first" then the foregoing formulas apply directly (no modifications)

9. Empirical Results

Empirical framework

Dynamic factor model:

$$
\begin{array}{ll}
X_{t}=\Lambda F_{t}+e_{t} & \left(F_{t}=6 \text { factors, } e_{t}=\right.\text { idiosyncratic disturbance) } \\
\Phi(\mathrm{L}) F_{t}=\eta_{t} & (\text { factors follow a VAR })
\end{array}
$$

Notes:

- Large n beneficial for estimation of factor space
- Only 132 series are used to estimate factors (disaggregates only)
- Estimate F_{t} by principal components, then treat F_{t} as data
- Factor space is identified, factors aren't: $\Lambda F_{t}=\Lambda \mathrm{HH}^{-1} F_{t}$

Data

- U.S., quarterly, 1959-2011Q2, 200 time series
- Almost all series analyzed in changes or growth rates
- All series detrended by local demeaning - approximately 15 year centered moving average:

Quarterly GDP growth (a.r.)
Trend: $3.7 \% \rightarrow 2.5 \%$

Quarterly productivity growth $2.3 \% \rightarrow 1.8 \% \rightarrow 2.2 \%$

Instruments

1. Oil Shocks
a. Hamilton (2003) net oil price increases
b. Killian (2008) OPEC supply shortfalls
c. Ramey-Vine (2010) innovations in adjusted gasoline prices
2. Monetary Policy
a. Romer and Romer (2004) policy
b. Smets-Wouters (2007) monetary policy shock
c. Sims-Zha (2007) MS-VAR-based shock
d. Gürkaynak, Sack, and Swanson (2005), FF futures market
3. Productivity
a. Fernald (2009) adjusted productivity
b. Gali (200x) long-run shock to labor productivity
c. Smets-Wouters (2007) productivity shock

Instruments, ctd.

4. Uncertainty
a. VIX/Bloom (2009)
b. Baker, Bloom, and Davis (2009) Policy Uncertainty
5. Liquidity/risk
a. Spread: Gilchrist-Zakrajšek (2011) excess bond premium
b. Bank loan supply: Bassett, Chosak, Driscoll, Zakrajšek (2011)
c. TED Spread
6. Fiscal Policy
a. Ramey (2011) spending news
b. Fisher-Peters (2010) excess returns gov. defense contractors
c. Romer and Romer (2010) "all exogenous" tax changes.
"First stage": F_{1} : regression of Z_{t} on η_{t}, F_{2} : regression of $\eta_{1 t}$ on Z_{t}

Structural Shock	$\boldsymbol{F}_{\mathbf{1}}$	$\boldsymbol{F}_{\mathbf{2}}$
1. Oil		
Hamilton	2.9	$\mathbf{1 5 . 7}$
Killian	1.1	1.6
Ramey-Vine	1.8	0.6
2. Monetary policy		
Romer and Romer	4.5	$\mathbf{2 1 . 4}$
Smets-Wouters	9.0	5.3
Sims-Zha	6.5	$\mathbf{3 2 . 5}$
GSS	0.6	0.1
3. Productivity		
Fernald TFP	$\mathbf{1 4 . 5}$	$\mathbf{5 9 . 6}$
Smets-Wouters	7.0	$\mathbf{3 2 . 3}$

Structural Shock	$\boldsymbol{F}_{\mathbf{1}}$	$\boldsymbol{F}_{\mathbf{2}}$
4. Uncertainty		
Fin Unc (VIX)	$\mathbf{4 3 . 2}$	$\mathbf{2 3 9 . 6}$
Pol Unc (BBD)	$\mathbf{1 2 . 5}$	73.1
5. Liquidity/risk		
GZ EBP Spread	4.5	$\mathbf{2 3 . 8}$
TED Spread	$\mathbf{1 2 . 3}$	$\mathbf{6 1 . 1}$
BCDZ Bank Loan	4.4	4.2
6. Fiscal policy		

Correlations among selected structural shocks

	O_{K}	$\mathrm{M}_{\text {RR }}$	$\mathbf{M s z}_{\text {sz }}$	P_{F}	U_{B}	$\mathrm{U}_{\text {BBD }}$	S_{Gz}	$\mathrm{B}_{\text {BCDZ }}$	F_{R}	$\mathrm{F}_{\text {RR }}$
O_{K}	1.00									
$\mathrm{M}_{\text {RR }}$	0.65	1.00								
$\mathrm{M}_{\text {Sz }}$	0.35	0.93	1.00							
P_{F}	0.30	0.20	0.06	1.00						
U_{B}	-0.37	-0.39	-0.29	0.19	1.00					
$\mathrm{U}_{\text {BBD }}$	0.11	-0.17	-0.22	-0.06	0.78	1.00				
L_{Gz}	-0.42	-0.41	-0.24	0.07	0.92	0.66	1.00			
$L_{\text {BCDZ }}$	0.22	0.56	0.55	-0.09	-0.69	-0.54	-0.73	1.00		
F_{R}	-0.64	-0.84	-0.72	-0.17	0.26	-0.08	0.40	-0.13	1.00	
$\mathrm{F}_{\text {RR }}$	0.15	0.77	0.88	0.18	0.01	-0.10	0.02	0.19	-0.45	1.00

Oil $_{\text {Kilian }} \quad$ oil - Kilian (2009)
$\mathrm{M}_{\mathrm{RR}} \quad$ monetary policy - Romer and Romer (2004)
$\mathrm{M}_{\mathrm{SZ}} \quad$ monetary policy - Sims-Zha (2006)
$\mathrm{P}_{\mathrm{F}} \quad$ productivity - Fernald (2009)
$\mathrm{U}_{\mathrm{B}} \quad$ Uncertainty - VIX/Bloom (2009)
$\mathrm{U}_{\text {BBD }} \quad$ uncertainty (policy) - Baker, Bloom, and Davis (2012)
$\mathrm{L}_{\mathrm{GZ}} \quad$ liquidity/risk - Gilchrist-Zakrajšek (2011) excess bond premium
$\mathrm{L}_{\mathrm{BCDZ}} \quad$ liquidity/risk - BCDZ (2011) SLOOS shock
$\mathrm{F}_{\mathrm{R}} \quad$ fiscal policy - Ramey (2011) federal spending
$\mathrm{F}_{\mathrm{RR}} \quad$ fiscal policy - Romer-Romer (2010) federal tax

IRFs: strong-IV (dashed) and weak-IV robust (solid) pointwise bands

Romer and Romer (2004) monetary policy shock ($F_{2}=21.4$)

Fernald (2009) productivity shock $\left(F_{2}=59.6\right)$

Baker, Bloom, Davis (2012) policy uncertainty shock ($F_{2}=73.1$)

Gilchrist and Zakrajšek (2011) excess bond premium liquidity/risk shock ($F_{2}=23.8$)

Bassett, Chosak, Driscoll, and Zakrajšek (2011) bank loan supply liquidity/risk shock $\left(F_{2}=4.2\right)$

Fisher and Peters (2010) fiscal (spending) shock ($F_{2}=0.1$)

Decomposition (estimated common component) for composite uncertainty/liquidity shock

Contribution to 4-Q GDP growth (1959-2011Q2) of first principal component of two term spread shocks \& two uncertainty shocks
a. GDP

Contribution to 4-Q Employment growth (1959-2011Q2) of first principal component of two term spread shocks \& two uncertainty shocks
b. Nonfarm employment

10. Conclusions

Work to do includes

- Inference on correlations and on tests of overID restrictions in general
- Efficient inference for $k>1$ (beyond CLR confidence sets) - exploit equivariance restriction to left-rotations (respecify SVAR in terms of linear combination of Y 's - this should reduce the dimension of the sufficient statistics in the limit experiment)
- Inference on variance decomps - via the reduced form MARX?
- Inference in systems imposing uncorrelated shocks
- Formally taking into account "higher order" $\left(O_{p}\left(T^{-1 / 2}\right)\right)$ sampling uncertainty of reduced-form VAR parameters (conjecture: work via the (asymptotically normal) reduced form VARX but continue to use the "Fieller" trick)
- HAC (non-Kronecker) case: (a) robustify; (b) efficient inference?

