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VARs, SVARs, and the Identification Problem 

 

Sims (1980): 

Structural MAR: 

Yt = D1t-1 + D2t-2 + … = D(L)t 

 Reduced form VAR: 

A(L)Yt = t,  where A(L) = I – A1L - … - ApL
p 

 Innovations: 

t = Yt – Et–1Yt = A(L)Yt 

Structural errors t: 

η = Ht  and t = H
–1t 

 Structural MAR: 

    Yt = A(L)
–1t = A(L)

–1
Ht  = C(L)Ht 

  

C(L)H is structural impulse response function (dynamic causal effect) 

  



Last revised 9/6/12        3 

 

SVAR estimands (focus on shock 1) 

 

Partitioning notation: 

ηt = Ht =  
1

1

t

r

rt

H H





 
 
 
 
 

 =   1

1

t

t

H H







 
 
 

  

 Structural MAR: 

Yt = C(L)Ht = C(L)H11t + C(L)Ht 

 

Structural MAR for j
th

 variable: 

Yjt = , 1 1 ,

0 0

k j t k k j t k

k k

C H C H 
 

   

 

   

 

Ck,j is a 1r row vector 
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SVAR estimands (focus on shock 1), ctd. 

 

(1) Structural IRF of variable j to shock 1 at lag h: 

   

IRF = Ch,jH1 

 

(2) Historical contribution (decomposition): 

 

Yjt = , 1 1 ,

0 0

k j t k k j t k

k k

C H C H 
 

   

 

   

 

  Historical contribution of shock 1 to variable j over horizon h: 

HD = , 1 1

0

h

k j t j

k

C H  
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SVAR estimands (focus on shock 1), ctd. 

 

(3) Forecast error variance decomposition:   

    Yj,t – Yj,t|t-h  = , 1 1 ,

0 0

h h

k j t k k j t k

k k

C H C H    

 

   

Suppose 
 
 t tE   

 
=  = D = 

1

2 2( ,..., )
r

diag     (uncorrelated 

shocks).  Then  

FEVD = 

, 1 1

0

,

0

var

var

h

k j t k

k

h

k j t k

k

C H

C H













 
 
 

 
 
 




= 

, 1 1

0

,

0

var

var

h

k j t k

k

h

k j t k

k

C H

C













 
 
 

 
 
 




  

= 
1

2

, 1 1 ,

0

, ,

0

h

k j k j

k

h

k j k j

k

C H H C

C C
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The structural VAR identification problem 

r innovations:    
1r

t


 = 
r r

H
 1r

t


 =  
1

1

t

r

rt

H H





 
 
 
 
 

 

System ID: What is H? 

Assume E(tt) = Diag = D:     r
2
 + r  parameters 

 = HDH:     - r(r+1)/2  equations 

normalization (e.g. D = Ir): - r    normalization restrictions  

Need:         r(r–1)/2   “theory” restrictions  

 

Single IRF (single shock) ID:  What is H1? 

 

Two approaches: 

1. Internal restrictions: 

Short run restrictions (Sims (1980)), long run restrictions, 

identification by heteroskedasticity, bounds on IRFs) 
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The structural VAR identification problem, ctd. 

 

2. External information (“method of external instruments”) 

Romer and Romer (1989) 

Ramey and Shapiro (1998) 

Selected empirical papers 

 Monetary shock: Cochrane and Piazzesi (2002), Faust, Swanson, and Wright 

(2003. 2004), Romer and Romer (2004), Bernanke and Kuttner (2005), 

Gürkaynak, Sack, and Swanson (2005) 

 Fiscal shock: Romer and Romer (2010), Fisher and Peters (2010), Ramey 

(2011) 

 Uncertainty shock: Bloom (2009), Baker, Bloom, and Davis (2011), Bekaert, 

Hoerova, and Lo Duca (2010), Bachman, Elstner, and Sims (2010) 

 Liquidity shocks: Gilchrist and Zakrajšek’s (2011), Bassett, Chosak, Driscoll, 

and Zakrajšek’s (2011) 

 Oil shock: Hamilton (1996, 2003), Kilian (2008a), Ramey and Vine (2010) 
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Outline 

 

1. Introduction 

2. Method of external instruments: identification  

3. Method of external instruments: estimation  

4. Strong instrument asymptotics 

5. Weak instrument asymptotics – setup and distributions 

6. Inference for IRFs 

7. Inference for historical decompositions 

8. Extensions 

9. Empirical results 

10. Conclusions 
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2. The method of external instruments: Identification 

 

Methods/Literature 

 Nearly all empirical papers use OLS & report (only) first stage 

 However, these “shocks” are best thought of as instruments (quasi-

experiments) 

 Treatments of external shocks as instruments: 

Hamilton (2003) 

Kilian (2008 – JEL) 

Stock and Watson (2008, 2012) 

Mertens and Ravn (2012) – same setup as here (and as in Stock 

and Watson (2008)), executed using strong instrument asymptotics 
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Identification of H1 

A(L)Yt = t,   t = Ht =  
1

1

t

r

rt

H H





 
 
 
 
 

 

 

Suppose you have an instrumental variable Zt (not in Yt) such that 

(i)  1t tE Z   =    0 (relevance) 

(ii)  jt tE Z   = 0, j = 2,…, r (exogeneity) 

(iii)  t tE   
 
=  = D = 

1

2 2( ,..., )
r

diag     

Under (i) and (ii), you can identify H1 up to sign & scale 

E(tZt) = E(HtZt) =  
1

1

( )

( )

t t

r

rt t

E Z

H H

E Z





 
 
 
 


 

 =  1 0

0

rH H

 
 
 
 
 

= H1  
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Identification of H1, ctd. 

 

E(tZt) = E(HtZt) =   1

1

( )

( )

t t

t t

E Z
H H

E Z








 
 
 
 

 = H1 

 

Normalization 

 The scale of H1 and 
1

2

  is set by a normalization subject to  

 = HDH    where D = 
1

2 2( ,..., )
r

diag     

 Normalization studied here: a unit positive value of shock 1 is 

defined to have a unit positive effect on the innovation to variable 

1, which is u1t.  This corresponds to: 

 

(iv) H11 = 1  (unit shock normalization)  

 

where H11 is the first element of H1 
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Identification of H1, ctd. 

 

Impose normalization (iv): 

E(tZt) = 
1t t

t t

E Z

E Z





 
 
 
 

  = H1
11

1

H

H




 
 

 


1

1

H




 
 

 


So  

1 1t t

t t

H E Z

E Z









 
 
 
 

 
1

1

H

H









 
  

 

or 

1 1t tH E Z
 = t tE Z

 

 

  If Zt is a scalar (k = 1):  1H  = 
1

t t

t t

E Z

E Z
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Identification of 1t 

t = H
–1t = 

1

t

r

H

H



 
 
 
 


 

 

 Identification of first column of H and  = D identifies first row 

of H
–1

 up to scale (can show via partitioned matrix inverse 

formula). 

 Alternatively, let  be the coefficient matrix of the population 

regression of Zt onto t: 

 = 1( )t tE Z     = 
1

1 ( )H HDH    = 
1 1 1

1H H D H      = (/
1

2

 )H
1
 

because H
–1

H1 = (1 0 … 0)  Thus 1t is identified up to scale by 

t = 

1

2






H

1
t

1

2






t 
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Identification of 1t, ctd 

 

t is the predicted value from the population projection of Zt on t: 

 

 1t  = t = 1( )t tE Z    t  

1

2






t 

  has rank 1 (in population), so this is a (population) reduced 

rank regression 

 2 instruments identify 2 shocks.  Suppose they are shocks 1 and 

2, identified by Z1t and Z2t.  Then 

 

E( 1t 2t ) = 1

1 2( ) ( )t t t tE Z E Z    

     

which = 0 if both instruments satisfy (i) – (iii) 
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“Reduced form” VARX (single Z case) 

 

VAR:  A(L)Yt = t,   t = Ht 

Additionally assume: 

 

(v)  t k tE Y Z
  = 0, k = 1,… (Z lag dynamics restriction) 

 

Then   Proj(ηt|Zt,Yt—1) = Proj(ηt|Zt) = Zt,  

where  = 2( ) /t t ZE Z   = (/
2

Z )H1 

 

Thus under (i) – (iii) and (v), Yt follows the VARX: 

 

A(L)Yt = Zt + t,  (“Reduced form” VARX) 

 

where t is the projection residual so corr(Zt,t) = 0. 
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“Reduced form” distributed lag 

 

A(L)Yt = Zt + t,  (“Reduced form” VARX) 

so 

Yt = A(L)
-1
Zt + A(L)

-1t,  (“Reduced form” DL) 

 

where E(Ztt) = 0. 

 A(L)
-1
 are the (reduced form) IRFs with respect to the instrument 

 Ratios of elements of A(L)
-1
 are the structural IRFs. 

 

Empirical practice – what is done in the literature? 

 Many things: estimation of VARX, of DL, of ADL (single 

equation) 

 In almost cases inference is reported for the IRF with respect to Zt, 

not the structural IRF.  Exceptions: Hamilton (2003), Kilian 

(2009), Mertens-Ravn (2012) 
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3. Estimation 

 

Recall notation:  H1 = 
11

1

H

H 

 
 
 

,  t = 
1t

t





 
 
 

 

 

Impose the normalization condition (iv)  H11 = 1, so 

 

E(tZt) = H1 = 
1

1

H 

 
 
 

  or  E(t  Zt = 
1

1

H 

 
 
 

  

 

High level assumption (assume throughout) 

 

 1

1

1
[ ] [ ]

T

t t

t

Z H
T

 


    d N(0,)      
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Estimation of H1 

Efficient GMM objective function: 

S(H1,;̂ ) 

 =  
1

1 11 1

1 11 1ˆˆ ˆ( ) ( ) ( ) ( )
T T

t t t t

t t

Z Z
H HT T

   

  

      
            

      
   

k = 1 (exact identification):    E(tZt) = H1= 
1H



 

 
 
 

 

so GMM estimator solves,   1

1
ˆ

T

t tt
T Z

  = 
1

ˆ

ˆˆH



 

 
 
 

 

GMM estimator:    
1Ĥ 

 = 

1

1

1

11

ˆ

ˆ

T

t tt

T

t tt

T Z

T Z
















  

  

IV interpretation:     ˆ
jt  = H1j 1̂t  + ujt,  

       1̂t  = jZt + vjt 
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GMM estimation of H
1
 and 1t 

 

Recall    1t  = 1( )t tE Z    t = t   

Estimator: 

 k = 1: 

  1̂t  is the predicted value (up to scale) in the regression of Zt on ˆ
t  

 

 k > 1(no-HAC): 

Absent serial correlation/no heteroskedasticity, the GMM 

estimator simplifies to reduced rank regression: 

 

Zt =  ˆ
t  + t        (RRR) 

 

 If Zt is available only for a subset of time periods, estimate (RRR) 

using available data, compute predicted value over full period 
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4.  Strong instrument asymptotics 

 

 k = 1 case: 

 

 1 1
ˆT H H   d N(0, ), where  = 1

1r

H

I





 
 
    

 

 Overidentified case (k > 1):  

o usual GMM formula 

o J-statistics, etc. are standard textbook GMM 
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5.  Weak instrument asymptotics: k = 1 

 

(a) Distribution of 
1Ĥ    

1Ĥ 
 = 

1

1

1

11

ˆ

ˆ

T

t tt

T

t tt

T Z

T Z
















   

 

Weak IV asymptotic setup – local drift (limit of experiments, etc.): 

 

 = T = a/ T  

so 

 1

1

1
( ) ( )

T

t t

t

Z H
T

 


    d N(0,)   (*) 

becomes 

 
1

1 T

t t

t

Z
T




  d N(H1a, )   (*-weakIV) 
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Weak instrument asymptotics for H1, ctd 

 

Estimation of A(L) under (i) – (v) (serially uncorrelated 

instruments case) 

 

Let  = [-A1 … -Ap] so ηt = A(L)Yt = Yt  -  Yt-1.  Then 

 

 
1/2

1
ˆ

T

t tt
T Z

  = 1/2

1

T

t tt
T Z

  + 1/2

1
ˆ( )

T

t t tt
T Z 


   

= 1/2

1

T

t tt
T Z

  + 1/2

11
ˆ( )

T

t tt
T Y Z 


  

= 1/2

1

T

t tt
T Z

  + 1/2 1

11
ˆ( )

T

t tt
T T Y Z  


   

= 
1/2

1

T

t tt
T Z

  + op(1) 
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Weak instrument asymptotics for H1, ctd 

Under (iv), 

1Ĥ 
 = 

1

1

1

11

ˆ

ˆ

T

t tt

T

t tt

T Z

T Z
















  =  

1/2

1

1/2

11

T

t tt

T

t tt

T Z

T Z
















 + op(1)  

Standardize (*): 

 1 1/2

1

1
( )

T

Z t t

t

diag Z
T

  



     + z,   (**) 

where    = 
1 1/2

1( ) ( )Z diag H a      

 and   z = 
1z

z

 
 
 

 ~ N(0,W), W = 2 1/2 1/2( ) ( )Z diag diag         

 Thus, in k = 1 case,  1Ĥ  =  

1

1

1

11

T

t tt

T

t tt

T Z

T Z
















   

1 1

z

z




 


 = 

*

1H  

Comments 

1.  In the no-HAC case,  =
2

Z  so Wij = corr(it,jt) 
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Weak instrument asymptotics for H1, ctd 

1Ĥ  =  

1

1

1

11

T

t tt

T

t tt

T Z

T Z
















  + op(1)  

1 1

z

z




 


 = 

*

1H  

Comments, ctd. 

2.  In the no-HAC case, convergence to strong instrument normal is 

governed by  
2

1  = 
1

2 2 2/ Za     = noncentrality parameter of first-stage F 

  For the HAC case, see Montiel Olea and Pflueger (2012) 

3.  Consider unidentified case: a = 0 so  = 0 so 

1
ˆ

jH  =  

1

1

1

11

T

jt tt

T

t tt

T Z

T Z
















   

1

jz

z
 ~ 2

1

2

2

1

( , )
j

j z
N dF

z


  

  where j = plim of OLS estimator in the regression, jt = j1t + jt 

o 1Ĥ  is median-biased towards  = E(t1t)/
1

2

   = the first column 

of the Cholesky decomposition whit 1t ordered first 
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Weak instrument asymptotics for structural IRFs 

  

Structural IRF:    C(L)H1  

where       C(L) = A(L)
–1

  = C0 + C1L + C2L
2
 + … 

Effect on variable j of shock 1 after h periods: Ch,jH1 

 

Weak instrument asymptotic distribution of IRF    

ˆ( )A L  is identified from the reduced form: 

ˆ( ( ) ( ))T A L A L  = Op(1) (asymptotically normal) 

so 

1
ˆ ˆ( )C L H    C(L)

*

1H  

Estimator of h-step IRF on variable j:  
, 1

ˆ ˆ
h jC H   *

, 1h jC H  

 This won’t be a good approximation in practice – need to incorporate 

Op(T
–1/2

) term! 
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Numerical results for IRFs – asymptotic distributions 

 

DGP calibration:  r = 2 

 Y = (lnPOILt, lnGDPt), US, 1959Q1-2011Q2 

 Estimate A(L), , and H1, then fix throughout 

o A(L), : VAR(2)  

o H1: estimated using Zt = Kilian (2008 – REStat) OPEC supply 

shortfall (available 1971Q1-2004Q3) 

 

Weak instrument asymptotic distribution: 

h-period IR, shock 1 on variable j:  because r = 2, 

*

, 1h jC H  = 
*

, 1 , 2 12h j h jC C H , 
*

12H  = 2 2

1 1

z

z








 

 where 1

2

1

122

1/

/

Z

Z

a
H





 

 

  
   

   
 and 

1

2

z

z

 
 
 

 ~ 
1 21 ( , )

0,
. 1

corr
N
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Effect of oil on oil growth:  
2

1  = 100 
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Effect of oil on GDP growth:  
2

1  = 100 
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Effect of oil on oil growth:  
2

1  = 1 
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Effect of oil on oil growth:  
2

1 = 10 
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Effect of oil on oil growth:  
2

1  = 20 
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Effect of oil on oil growth:  
2

1  = 50 
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Effect of oil on oil growth:  
2

1  = 100 
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Effect of oil on oil growth:  
2

1  = 1000 
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Effect of oil on GDP growth:  
2

1  = 1 
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Effect of oil on GDP growth:  
2

1  = 10 
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Effect of oil on GDP growth:  
2

1  = 20  
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Effect of oil on GDP growth:  
2

1  = 50 
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Effect of oil on GDP growth:  
2

1  = 100 
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Effect of oil on GDP growth:  
2

1  = 1000 
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Weak instrument asymptotics for cross-shock correlation 

   

Correlation between two identified shocks: 

 

Let Z1t and Z2t be scalar instruments that identify 1t and 2t: 

 

1̂t  = 1 1

1

1

ˆˆ
T

t t t

t

T Z   



 
 

 
  

2
ˆ

t  = 1 1

2

1

ˆˆ
T

t t t

t

T Z   



 
 

 
  

r12 = 

1

1 2

1 2 1 2

1 2

ˆ ˆ

ˆ ˆ

t t

t t

T

T T

 

 



 


 

 

 

What is the null distribution (when (i)-(ii) hold for both 

instruments and  = I)? 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

Expression for no-HAC case:   = 
2

Z , so 

1/2

1
ˆ

t tT Z 

  = 
1/2

1t tT Z 

  + op(1)  d N(0, 
2

Z ) 

so    r12 = 

1

1 2

1 2 1 2

1 2

ˆ ˆ

ˆ ˆ

t t

t t

T

T T

 

 



 


 

 

= 
   

       

1/2 1 1/2

1 2

1/2 1 1/2 1/2 1 1/2

1 1 2 2

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

t t t t

t t t t t t t t

T Z T Z

T Z T Z T Z T Z



 

 

   

  

     




 
 

 

   

 

 

 1 1 2 2

1 1 1 1 2 2 2 2

( ) ( )

( ) ( ) ( ) ( )

   

       

 

      

 

 Function of noncentral Wishart r.v.s (Anderson & Girshick (1944)) 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

r12  1 1 2 2

1 1 1 1 2 2 2 2

( ) ( )

( ) ( ) ( ) ( )

   

       

 

    
 

 

where     = 
1

2





 
 
 

 ~ N(0,I),    = 
1 2

1 2

1 ( , )

( , ) 1

corr Z Z

corr Z Z

 
 
 

 

    11 = 
1 1

2 2 2

1 / Za   , 22 = 
2 2

2 2 2

2 / Za    

12 = 0  under (i) – (iii)   

 

Comments 

1. Nonstandard distribution – function of noncentral Wishart rvs 

2. Normal under null as 11 and 22   

3. Strong instruments under alternative:  r12 
p 1 2

1 1 2 2
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

Numerical results 

 

Asymptotic null distribution is a function of  

11 = 
1 1

2 2 2

1 / Za   ,  

22 = 
2 2

2 2 2

2 / Za    

corr(Z1, Z2) 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

 
 

Weak instrument asymptotic null distribution of r12: |Corr(Z1,Z2)| = 0 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

 
 

Weak instrument asymptotic null distribution of r12: |Corr(Z1,Z2)| = 0.4 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

 
 

Weak instrument asymptotic null distribution of r12: |Corr(Z1,Z2)| = 0.8 
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Weak instrument asymptotics for cross-shock correlation, ctd. 

 

Sup critical values (worst case over 11 and 22):  

 

|corr(Z1, Z2)| 95 % critical value 

0 .5705 

.2 .6253 

.4 .7327 

.6 .8406 

.8 .9231 
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6.  Weak-instrument robust inference for structural IRFs 

 

IRF = Ch,jH1 

Consider null hypothesis Ch,jH1 = 0 and a single Z. 

Use (iv) to write the null as, 

    Ch,jH1 = (Ch,j1   Ch,j)H1 = Ch,j1 + Ch,j  

  or 

  Ch,j Ch,j1 

   Recall moment restriction: 

H1 1( )t tE Z  – E(tZt) = 0 

   so  

Ch,jH1 1( )t tE Z  – Ch,jE(tZt) = 0 

   Thus under the null, 

(0 – Ch,j1) 1( )t tE Z  – Ch,jE(tZt) = 0 
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Weak-instrument robust inference for IRFs, ctd  

 

Under null that IRF = Ch,jH1 0, 

 

(0 – Ch,j1) 1( )t tE Z  – Ch,jE(tZt) = 0 

or 

E 0

1

1 T

t t

t

Z
T

 


   = 0 where 0 = 
0 , 1

,

h j

h j

C

C





 
 
  

 

 

Test:   reject 0 if 

2

0 0 0

1

1 T

t t

t

Z
T

   


   
 

  > 
2

1;.95    

 

 Note: Under weak instrument nesting, C(L) is known  
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Weak-instrument robust inference for IRFs, ctd  

 
2

0 0 0

1

1 T

t t

t

Z
T

   


   
 

  > 
2

1;.95    

Comments 

 This is one degree of freedom test (not r-1 d.f. AR set for H1) 

 Conf. int. inversion can be done analytically (ratio of quadratics) 

 Strong-instrument efficient (asy equivalent to standard GMM test) 

 Scalar Z: this test is UMPU in limit experiment using the sufficient 

statistic 
1

1 T

t t

t

Z
T




   in sense of Müller (2011) (proof: rotate so 

that you are testing mean of first element of independent normal), 

so confidence intervals are (limit experiment) UMAU 
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Weak-instrument robust inference for IRFs, ctd  

 

 Multiple Z: The testing problem of H0:  = 0 can be rewritten as 

H0:  = 0 in the standard IV regression form, 

 

Ch,jt – (0 – Ch,j1)η1t = 0 η1t + ut 

η1t = Zt + vt 

 

so for multiple Zt the CLR confidence interval can be used.  

(Working on efficiency improvements) 
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7.  Inference for Historical Decompositions 

 

HD = , 1 1

0

h
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8.  Extensions 

 

8.1  When Zt is serially correlated 

Let  ˆ
tZ   = residual from regression of Zt onto 1tY   

and  t = Zt – Proj(Zt| 1tY  ) 

 

 
1/2

1
ˆ

T

t tt
T Z

  = 1/2

1

ˆT

t tt
T Z

   

= 
1 1 1

1/2 1 1

11

ˆ ˆ( )
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t t t Y Y Y Zt
T Z Y

  

  


     

= 
1 1 1

1/2 1 1

11
( )

T

t t t Y Y Y Zt
T Z Y

  

  


    + op(1) 

= 1/2

1

T

t tt
T 

   

     d N(H1,),    

 

where  = 2Sη(0).  Under the no-HAC assumption,  = 2

    so 

all goes through as above with t replacing Zt 
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8.2 When Zt is a generated instrument 

 

 For example, Zt is the residual from a preliminary regression 

 Additional adjustment to the variance formula  
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8.3 Dynamic Factor Models 

 

Dynamic factor model (Geweke (1977), Sargent & Sims (1977)): 

 

Xt = Ft + et  (Ft = 6 factors, et = idiosyncratic disturbance) 

 

A(L)Ft = t  (factors follow a reduced form VAR) 

 

t = Ht, H invertible (same as in SVAR setup) 

 

Moving average representations: 

 

Xt = A(L)
–1t + et  (reduced form) 

 

Xt = A(L)
–1

Ht + et  (S-DFM, MA form) 
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Extension to DFMs, ctd. 

 

Xt = A(L)
–1

Ht + et  (S-DFM, MA form) 

 

IRF of variable j with respect to shock 1:  jC(L)H1 

Extension of foregoing results to S-DFM requires: 

 Estimation of Ft’s (e.g. principal components);  

 no “generated regressor” problem under Bai-Ng (2006) conditions 

 Modification for normalization condition (iv):  1t has positive unit 

impact effect on Xjt:  because C0= I, 

 

(iv) jH1 = 1 

 

 If you renormalize Ft so that  is lower triangular on r variables with 

“variable 1 first” then the foregoing formulas apply directly (no 

modifications)  
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9.  Empirical Results 

 

Empirical framework 

 

Dynamic factor model: 

 

Xt = Ft + et  (Ft = 6 factors, et = idiosyncratic disturbance) 

 

(L)Ft = t  (factors follow a VAR) 

 

Notes: 

 Large n beneficial for estimation of factor space 

 Only 132 series are used to estimate factors (disaggregates only) 

 Estimate Ft by principal components, then treat Ft as data 

 Factor space is identified, factors aren’t: Ft = HH
-1

Ft 
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Data  

 U.S., quarterly, 1959-2011Q2, 200 time series 

 Almost all series analyzed in changes or growth rates 

 All series detrended by local demeaning – approximately 15 year 

centered moving average: 

 
Quarterly GDP growth (a.r.)   Quarterly productivity growth 

Trend:    3.7%  2.5%         2.3%  1.8%  2.2%  
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Instruments 

 

1. Oil Shocks 

a. Hamilton (2003) net oil price increases 

b. Killian (2008) OPEC supply shortfalls 

c. Ramey-Vine (2010) innovations in adjusted gasoline prices 

2.  Monetary Policy 

a. Romer and Romer (2004) policy 

b. Smets-Wouters (2007) monetary policy shock 

c. Sims-Zha (2007) MS-VAR-based shock 

d. Gürkaynak, Sack, and Swanson (2005), FF futures market 

3. Productivity 

   a. Fernald (2009) adjusted productivity 

   b. Gali (200x) long-run shock to labor productivity 

   c. Smets-Wouters (2007) productivity shock  
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Instruments, ctd. 

 

4.  Uncertainty 

  a. VIX/Bloom (2009) 

  b. Baker, Bloom, and Davis (2009) Policy Uncertainty 

 

5. Liquidity/risk 

  a. Spread: Gilchrist-Zakrajšek (2011) excess bond premium  

  b. Bank loan supply: Bassett, Chosak, Driscoll, Zakrajšek (2011)  

c. TED Spread 

 

6. Fiscal Policy 

  a. Ramey (2011) spending news  

     b. Fisher-Peters (2010) excess returns gov. defense contractors 

  c. Romer and Romer (2010) “all exogenous” tax changes. 
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“First stage”: F1: regression of Zt on t, F2: regression of 1t on Zt  

 
 

Structural Shock F1 F2 

1. Oil   

   Hamilton  2.9 15.7 

   Killian  1.1 1.6 

   Ramey-Vine 1.8 0.6 

2.  Monetary policy   

   Romer and Romer 4.5 21.4 

   Smets-Wouters  9.0 5.3 

   Sims-Zha  6.5 32.5 

   GSS 0.6 0.1 

3.  Productivity   

   Fernald TFP 14.5 59.6 

   Smets-Wouters 7.0 32.3 

   

   

Structural Shock F1 F2 

4.  Uncertainty   

   Fin Unc (VIX) 43.2 239.6 

   Pol Unc (BBD) 12.5 73.1 

5.  Liquidity/risk   

   GZ EBP Spread 4.5 23.8 

   TED Spread  12.3 61.1 

   BCDZ Bank Loan  4.4 4.2 

6.  Fiscal policy   

   Ramey Spending 0.5 1.0 

   Fisher-Peters 
Spending 

1.3 0.1 

   Romer-Romer 
Taxes 

0.5 2.1 
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Correlations among selected structural shocks 

OilKilian oil – Kilian (2009) 

MRR  monetary policy – Romer and Romer (2004) 

MSZ  monetary policy – Sims-Zha (2006) 

PF  productivity – Fernald (2009) 

UB  Uncertainty – VIX/Bloom (2009) 

UBBD uncertainty (policy) – Baker, Bloom, and Davis (2012) 

LGZ  liquidity/risk – Gilchrist-Zakrajšek (2011) excess bond premium 

LBCDZ liquidity/risk – BCDZ (2011) SLOOS shock 

FR  fiscal policy – Ramey (2011) federal spending 

FRR  fiscal policy – Romer-Romer (2010) federal tax 

 OK MRR MSZ PF UB UBBD SGZ BBCDZ FR FRR 

OK 1.00            

MRR 0.65   1.00           

MSZ 0.35   0.93   1.00          

PF 0.30   0.20   0.06   1.00         

UB -0.37   -0.39   -0.29   0.19   1.00        

UBBD 0.11   -0.17   -0.22   -0.06   0.78   1.00       

LGZ -0.42   -0.41   -0.24   0.07   0.92   0.66   1.00      

LBCDZ 0.22   0.56   0.55   -0.09   -0.69   -0.54   -0.73   1.00   

FR -0.64   -0.84   -0.72   -0.17   0.26   -0.08   0.40   -0.13   1.00    

FRR 0.15   0.77   0.88   0.18   0.01   -0.10   0.02   0.19   -0.45   1.00 
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IRFs: strong-IV (dashed) and weak-IV robust (solid) pointwise bands 

 
Kilian (2008) oil shock (F2 = 1.6)  
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Hamilton (1996, 2003) oil shock (F2 = 15.7) 
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Ramey-Vine (2010) oil shock (F2 = 0.6) 
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Romer and Romer (2004) monetary policy shock (F2 = 21.4) 
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Smets-Wouters (2007) monetary policy shock (F2 = 5.3) 
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Sims-Zha (2006) monetary policy shock (F2 = 32.5) 

  



Last revised 9/6/12        70 

 

 
Fernald (2009) productivity shock (F2 = 59.6) 
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Smets-Wouters (2007) productivity shock (F2 = 32.3) 

  



Last revised 9/6/12        72 

 

 
Bloom (2009) (VIX) uncertainty shock (F2 = 239.6) 
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Baker, Bloom, Davis (2012) policy uncertainty shock (F2 = 73.1) 
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Gilchrist and Zakrajšek (2011) excess bond premium liquidity/risk shock  

(F2 = 23.8)  
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Bassett, Chosak, Driscoll, and Zakrajšek (2011) bank loan supply 

liquidity/risk shock (F2 = 4.2) 
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Ramey (2011) fiscal (spending) shock (F2 = 1.0) 
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Fisher and Peters (2010) fiscal (spending) shock (F2 = 0.1) 

  



Last revised 9/6/12        78 

 

 
Romer and Romer (2010) fiscal (tax) schock (F2 = 2.1) 
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Decomposition (estimated common component) for composite 

uncertainty/liquidity shock 

Contribution to 4-Q GDP growth (1959-2011Q2) of first principal 

component of two term spread shocks & two uncertainty shocks 
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Contribution to 4-Q Employment growth (1959-2011Q2) of first principal 

component of two term spread shocks & two uncertainty shocks 
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10. Conclusions 

 

Work to do includes 

 Inference on correlations and on tests of overID restrictions in general 

 Efficient inference for k > 1 (beyond CLR confidence sets) – exploit 

equivariance restriction to left-rotations (respecify SVAR in terms of 

linear combination of Y’s – this should reduce the dimension of the 

sufficient statistics in the limit experiment) 

 Inference on variance decomps – via the reduced form MARX? 

 Inference in systems imposing uncorrelated shocks 

 Formally taking into account “higher order” (Op(T
—1/2

)) sampling 

uncertainty of reduced-form VAR parameters (conjecture: work via 

the (asymptotically normal) reduced form VARX but continue to use 

the “Fieller” trick) 

 HAC (non-Kronecker) case: (a) robustify; (b) efficient inference? 

 


