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K. Opwis

Instrumental Variables in Statistics and
Econometrics

The method of instrumental variables (IVs) is a general
approach to the estimation of causal relations using
observational data. This method can be used when
standard regression estimates of the relation of interest
are biased because of reverse causality, selection bias,
measurement error, or the presence of unmeasured
confounding effects. The central idea is to use a third,
‘instrumental’ variable to extract variation in the (IV)
variable of interest that is unrelated to these problems,
and to use this variation to estimate its causal effect on
an outcome measure. This article describes IV esti-
mators, discusses the conditions for a valid instrument,
and describes some common pitfalls in the application
of IV estimators.

1. The Method of Instrumental Variables

1.1 Common Problems with Standard Regression
Analysis of Observational Data

In many cases in the social and behavioral sciences,
one is interested in a reliable estimate of the causal
effect of one variable on another. For example,
suppose a mayor is considering increasing the size of
the police force; what is the effect of an additional
police officer on the crime rate? Or, what is the effect of
an additional year of schooling on future earnings?
What will happen to economic growth if the central
bank raises short-term interest rates by one percentage
point? What is the effect of a new medical procedure
on health outcomes? These and many other questions
require estimates that are causal, in the sense that they
are externally valid and can be used to predict the
effect of changes in policies or treatments, holding
other things constant.

In theory, such causal effects could be estimated by
a suitably designed randomized controlled experi-
ment. Very often, however, as in the first three
questions, such an experiment could be prohibitively
expensive, could be unethical, and/or could have
questionable external validity. Even when randomized
controlled experiments are available, such as clinical
trials of medical procedures, it is of interest to validate
the experimental predictions using information on
outcomes in the field. Thus, to address such questions
empirically typically entails the use of nonexperi-
mental, i.e., observational, data.

Unfortunately, standard regression analysis of ob-
servational data can fail to yield reliable estimates of
causal effects for many reasons, four of which are
particularly salient. First, there could be additional
unmeasured effects, leading to ‘omitted variable bias’;
for example, the educational attainment of parents is
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correlated with that of their children, so if parents’
education facilitates learning at home but is unob-
served then the correlation between years of school
and earnings could overstate the true, causal effect of
school on earnings. Second, there might be reverse
causality, or ‘simultaneous equations’ bias; for ex-
ample, more police officers might reduce crime, but
cities with higher crime rates might demand more
police officers, so standard regression analysis of crime
rates on the number of police confounds these two
different effects. Third, there could be selection bias, in
which those most likely to benefit from a treatment are
also most likely to receive it; for example, because
ambition is one reason for success both at school and
in the labor market, the measured correlation between
years of school and earnings could simply reflect the
effect of unmeasured ambition. Fourth, standard
regression estimates of the causal effect are biased if
the regressor is measured with error (see Measurement
Error Models).

1.2 1V Regression

IV regression provides a way to handle these problems.
The main early application of IV methods was for
estimating the parameters of a system of linear
simultaneous equations, and this remains a good
expositional framework. Let y, denote the outcome
variable of interest (say, log future earnings), let Y,
denote the r treatment variables (years of education),
let X, denote K, additional observed control variables,
and let Z, denote the K, instrumental variables, where
these are all observed for observations i =1,..., N.
Also let f and y be unknown parameter vectors Tet @
and IT be matrices of unknown parameters, and let '
denote the transpose of . Suppose that these variables
are linearly related as

=pY,+yX +uy, (1
Yi=0X +I1Z,+V, (2

where u, and V, are ‘error terms’ that represent
additional unobserved effects, measurement error, etc.
The coefficient of interest is f; in the schooling
example, this is the percentage change in future
earnings caused by attending school for an additional
year.

In this notation, the four problems listed in the
preceding paragraph have a common implication, that
the correlation between Y, and u, is nonzero, and in
consequence the ordinary least squares (OLS) es-
timator of f will be biased and, in large samples,
inconsistent. It is assumed that corr (X, ©;) = 0; at this
level, this assumption can be made without loss of
generality, for if this is suspected to be false for some
element of X, then it should be listed instead in Y. In
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the terminology of simultaneous equations theory, y
and Y are endogenous variables and X is exogenous.

The key idea of IV methods is that although Y is
correlated with u, if Z is uncorrelated with u (that is, if
Z is exogenous), then Z can be used to estimate /.
Intuitively, part of the variation in Y is endogenous
and part is exogenous; IV methods use Z to isolate
exogenous variation in Y and thereby to estimate f.
More formally, consider the simplest case, in which
there is no X'in (1) or (2) and which Y and Z are single
variables (i.e., K, =0 and r = K, = 1). Then cov(},
Z)=p cov(Y, Z)+cov(u, Z) = f cov(Y, Z). Thus,
p=cov(y, Z)/cov(Y, Z). This leads to the IV
estimator, "V =s,,/s,,, where s, , is the sample co-
variance between y and Z. Evidently, if these two
sample covarlances are consistent and if cov(Y,
Z) « 0, then "V 5. The availability of the instrument
Z thus permits consistent estimation of £.

If more than r instruments are available, it makes
sense to use the extra instruments to improve pre-
cision. There are, however, many ways to do this, since
each subset of r instruments will produce its own
estimate of . The most common way to combine
instruments is to use two stage least squares (2SLS). In
the first stage, Eqn. (2) is estimated by OLS, producing
the predicted values Y. In the second stage, y is
regressed against Y and X, yielding the 2SLS estimator
B>, With only one instrument, this reduces to '
given above. Under Gaussian disturbances, this pro-
vides an asymptotically efficient method for weighting
the various instruments that is easy to understand and
to implement.

1.3 Conditions for Valid Instruments

The question of whether a candidate set of instruments
can be used to estimate f§ is a special case of the more
general problem of identification of parameters in
multivariate econometric and statistical models. In the
context of (1) and (2), when there is a single Y, the
requirements for instrument validity are simple. Then
a potential instrument Z must satisfy two conditions:
(a) Z is uncorrelated with u; and (b) the partial
correlation between Y and Z, given X, is nonzero. The
first condition states that the instrument is exogenous.
The second condition is that the instrument is relevant.
Together, these conditions permit using Z to isolate
the exogenous variation in Y and thus to identify f.
For example, when r = K, = | and there are no X, if
Z satisfies the two conditions then f is identified by the
moment condition derived above, f = cov(y, Z)/
cov(Y, 7).

When Y is a vector (i.e., r > 1), the exogeneity
condition (a) remains but the relevance condition (b) is
somewhat more complicated. For identification of the
independent effects of each Y (all elements of f), a
sufficient condition for instrument validity is that the
covariance matrix of Z has full rank and that IT has
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full row rank. Clearly, a necessary condition for IT to
have full row rank is that there are at least as many
instruments as Ys (K, > r). The number of excess
instruments, K,—r, is referred to as the degree of
overidentification of f.

When y is a vector, so that (1) is itself a system of
multiple equations, the conditions for identification
become intricate (see Simultaneous Equation Esti-
mation: Quverview; Statistical Identification and Esti-
mability). For a rigorous and complete treatment in
the linear simultaneous equations framework, see
Rothenberg (1971) and Hsiao (1983).

2. IV Estimators and their Distributions

2.1 Linear Models

In addition to two stage least squares, other estimators
are available for IV estimation of a single equation
that is linear in the unknown parameters. The leading
alternative estimator is the so-called limited infor-
mation maximum likelihood (LIML) estimator. The
LIML estimator minimizes the Anderson—Rubin
(1949) statistic,

F(ﬁ) _ ~/)7/(]‘4);7 _M[X Z])ﬁ/K2

y [XZ]Jj/(NiKliKZ)

(©)

y= ()71 e s )7N)/’ where sz = yz_ﬁ/Yiﬂ and MX =
I-X(X’X)'X’, where X = (X, ..., X,)". This can be
solved analytically as an eigenvalue problem. Many
other single-equation IV estimators have been pro-
posed, but these are rarely used in empirical appli-
cations; see Hausman (1983) for expressions for the
LIML estimator and for a discussion of other esti-
mators.

Under standard assumptions (fixed numbers of
regressors and instruments, validity of the instru-
ments, convergence of sample moments to population
counterparts, and the ability to apply the central limit
theorem), the LIML and 2SLS estimators are asymp-
totically equivalent and have the same asymptotic
normal distribution. That is, +/N(f""""—f) and
v/ N(f** — p) both have asymptotic normal distribu-
tions with the same covariance matrix. However, their
finite sample distributions differ. There is a large
literature on finite sample distributions of these esti-
mators (see Simultaneous Equation Estimates ( Exact
and Approximate), Distribution of’). Because these
exact distributions depend on nuisance parameters,
such as II, that are unknown and because few IV
statistics are (exactly) pivotal, this literature generally
does not provide approximations that are useful in
empirical applications. However, some general guid-
elines do emerge from these studies. Perhaps the most
important is that when there are many instruments

and/or when IT is small in a suitable sense, LIML
tends to exhibit less bias than 2SLS and LIML
confidence intervals typically have better coverage
rates than 2SLS.

These methods extend naturally to the case that y is
a vector and (1) is a system of equations. This entails
imposing restrictions on the coefficients in (1) and (2)
that are implied by the model, and then using the
available instruments to estimate simultaneously all
these coefficients with these restrictions imposed. The
system analog of 2SLS is three stage least squares, in
which all the unknown coefficients are estimated
simultaneously using an estimate of the variance-
covariance matrix of u obtained from the 2SLS
estimates. The system analog of LIML is full infor-
mation maximum likelihood. For further discussion,
see Simultaneous Equation Estimation: QOverview;
Simultaneous Equation Estimates (Exact and Appr-
oximate), Distribution of.

2.2 Nonlinear Models

Many details of the foregoing discussion hinged on the
system being linear in the parameters and variables. In
many settings, however, theory suggests models that
are nonlinear rather than linear. A leading class of
examples is consumption-based models of asset prices,
in which the equations contain nonlinearities inherited
from posited utility functions of representative agents.
In such settings, Eqn. (1) is usefully extended and
recast to incorporate these nonlinearities. Specifically,
suppose that the model at hand implies,

Ely,Y,X,0|X,Z]=0 4)
where as before y, and Y, are endogenous variables, X
and Z, are exogenous variables, and 6 is a vector of
parameters. For example, in the linear system (1) and
(2), (4) is implied by E(u,| X,, Z,) =0 upon setting
Wy, Y, X, 0)=y—pY—yX and 0 = (B, p).

The orthogonality condition (4) corresponds to the
first condition for a valid instrument, that Z is
exogenous. If in addition Z is relevant, then (4) can be
exploited to estimate the unknown parameters 0. The
issue of relevance of Z is equivalent to whether 6 is
identified. The question of identification in nonlinear
models is complex and little can be said about global
identification at a general level, although conditions
for local identification sometimes yield useful insights
(see Statistical Identification and Estimability).

Given a model (4) and a set of instruments, in
general a variety of estimators of # are available.
Estimation is typically undertaken by minimization of
a quadratic form in h(y, Y, X, 0), times the
instruments; 2SLS and LIML estimates obtain as
special cases when / is linear. In practice, the choice of
the weighting matrix in this quadratic form is im-
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portant, and if there is serial correlation and/or
heteroskedasticity this weighting matrix (and the
standard errors) must be computed in a way that
accounts for these complications. Such estimators are
referred to as generalized method of moments (GMM)
estimators. For discussions of identification and es-
timation in GMM, see Newey and McFadden (1994).

3. A Brief History of IV Methods

S. Wright (1925) and his father P. Wright (1928)
introduced the estimator ' (defined in Sect. 1.2) and
used it to estimate supply and demand elasticities for
butter and flaxseed; this work, however, was neglected
(see Goldberger 1972). The development of IV
methods in the 1940s stemmed from the attempts of
early statisticians and econometricians to solve what
appeared to be two different problems: the problem of
measurement error in all the variables, and the
problem of reverse causality arising in a system
of simultaneous equations that describe the macro-
economy. The term ‘instrumental variables’ was first
used in print by Reiersel (1945), who developed IV
estimation for the errors in variables problem and
extended work by Wald (1940) which, in retrospect,
also can be seen as having introduced IV estimation.
Concurrently, work by Haavelmo (1944) and the
Cowles Commission emphasized likelihood-based
methods of analyzing simultaneous equation systems,
which implicitly (through identification conditions)
entailed the use of instrumental variables; Anderson
and Rubin (1949) developed LIML as part of this
research program.

An important breakthrough came with the devel-
opment of 2SLS by Basmann (1957) and Theil (1958),
which permitted computationally efficient estimation
in single equations with multiple instruments. Sargan
(1958) introduced I'V estimation for multiple equation
systems and Zellner and Theil (1962) developed three
stage least squares.

The extension of these methods to nonlinear models
was undertaken by Amemiya (1974) (nonlinear
2 SLS) and by Jorgenson and Laffont (1974) (non-
linear three stage least squares). The modern form-
ulation of GMM estimation is due to Hansen (1982).
GMM constitutes the dominant modern unifying
framework for studying the issues of identification,
estimation, and inference using IVs.

4. Potential Pitfalls

In practice, inference using IV estimates can be
compromised because of failures of the model and/or
failures of the asymptotic distribution theory to
provide reliable approximations to the finite sample
distribution. Much modern work on IV estimation

7580

entails finding ways to avoid, or at least to recognize,
these pitfalls. This section discusses three specific
potentially important pitfalls in linear IV estimation.
These problems, as well as additional problems asso-
ciated with estimation of standard errors, also arise in
nonlinear GMM estimation, but their sources and
solutions are less well understood in the general
nonlinear setting.

4.1 Some Instruments Are Endogenous

If an instrument is endogenous then corr(Z,, u,) + 0,
and reflection upon the derivation " and its prob-
ability limit in Sect. 1.2 reveals that 'V is no longer
consistent for f. More generally, if at least one
instrument is endogenous then the 2SLS and LIML
estimators are inconsistent. If at least  instruments are
exogenous, however, then it is possible to test the null
hypothesis that all instruments are exogenous against
the alternative that at least one (but no more than
K, —r) is endogenous. In practice, a researcher might
have at least r instruments that he or she firmly
believes to be exogenous, but might have some
additional instruments which are more questionable.

Testing the null that all the instruments are ex-
ogenous entails checking empirically the assumption
that the instruments are uncorrelated with u,. This can
be done by regressing the IV residual (estimated by
2SLS or LIML) against Z. The R® of this regression
should be zero; if NR* exceeds the desired y} _, critical
value, the null hypothesis of joint exogeneity is
rejected.

Although this statistic provides a useful diagnostic
and rejection suggests that the full instrument list is
(jointly) invalid, failure to reject is not necessarily
reassuring since the maintained hypothesis is that at
least r of the instruments are valid. Moreover, this test
can only be implemented if f is overidentified (K, > r).
The hypothesis that at least r instruments are ex-
ogenous is both essential and untestable, and thus
must be contemplated carefully in IV applications.

4.2 Weak Instruments

The condition for instrument relevance states that Z
and Y must have nonzero partial correlation (given
X). In practice, this correlation, while arguably
nonzero, is often small, a situation sometimes referred
to as the problem of weak instruments. When the
instruments are weak, the usual large sample approxi-
mations provide a misleading basis for inference: the
2SLS estimator in particular is biased towards the
OLS estimator, and asymptotic LIML and 2SLS
confidence regions have coverage rates that can differ
substantially from the nominal asymptotic confidence
level. When r = 1, an empirical measure of the strength
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of the instruments is the F-statistic testing the hy-
pothesis IT = 0 in the first stage regression (2). The risk
of weak instruments is especially relevant when there
are many instruments, for even if some instruments
have a large partial correlation with Y, if there are
many instruments quite a few of them could be weak
so taken together this first-stage F-statistic could be
small.

Although no single preferred way to handle weak
instruments has yet emerged, one solution is to
construct confidence intervals by inverting the
Anderson—Rubin statistic (3). This is readily done
because F(f5,) has an asymptotic y% distribution
under the joint null hypothesis that °= f8, (a fixed
vector) and corr(X, u) = corr(Z, u) =0 (the instru-
ment relevance condition is not needed for this result).

4.3 Heterogeneity of Treatment Effects in Micro
Data

Many modern applications of IV are to microdata sets
with cross-sectional or panel data, that is, data sets
where the observation units are individuals, firms, etc.
An important consideration that arises in this context
is the role of heterogeneity in interpreting what it is
that IV methods measure. To make this concrete,
consider a modification of (1) and (2), where for
simplicity it is assumed that » = K, = 1 and the only X
is a constant. Suppose, however, that there is het-
erogeneity both in the responses of each individual to
the ‘treatment’ Y and in the influence of the instrument
on the level of treatment received. In equations, this
can be written as,

yf:y+ﬂiYi+ui Q)
Y, = O+11,Z+V, (©6)

where 5, and II, vary randomly across individuals.
Suppose that the instrument is distributed indepen-
dently of (u,, V, f, II), and technical conditions
ensuring convergence of sample moments hold. Then
f12 BT B]/ENL,

Evidently, with heterogeneity of this form 2SLS can
be thought of as estimating E[ILf]/ETI,, which
differs from the usual estimand f = Ef, if 5, and I, are
correlated. For example, suppose that IT, = 0 for half
the population, that IT, = IT (which is fixed) for the
other half, and that the sample is drawn randomly. If
p, differs systematically across the two halves of the
population, then 2SLS estimates the mean of f, among
that half for which I1, = IT; this differs from the mean
of f3, over the full population. More generally, 2SLS
can be thought of as estimating a weighted average of
the individual treatment effects, where the weights
reflect the influence of Z, on whether the individual
receives the treatment. This has been referred to as the

‘local average treatment effect’; see Angrist et al.
(1996).

5. Where Do Valid Instruments Come From?

In practice the most difficult aspect of I'V estimation is
finding instruments that are both exogenous and
relevant. There are two main approaches, which reflect
two different perspectives on econometric and stat-
istical modeling. The first approach is to use a priori
theoretical reasoning to suggest instruments. This is
most compelling if the model being estimated is itself
derived from a formal theory. An example of this
approach is the estimation of intertemporal consump-
tion-based asset pricing models, mentioned in Sect. 2.2
in which previously observed variables are, under the
model, uncorrelated with certain future expectational
errors. Thus previously observed variables can be used
as instruments.

The second approach to constructing instruments,
more commonly found in program evaluation studies
(broadly defined), is to look for some exogenous
source of variation in Y that either derives from true
randomization or, in effect, from pseudo-randomiza-
tion. In randomized experiments in the social sciences,
compliance with experimental protocol is usually
unenforceable, so a subject’s decision whether to take
the treatment introduces selection bias; assignment to
treatment, however, can be used as an instrument for
receipt of treatment. In nonexperimental settings, this
reasoning suggests looking for a variable that plays a
role similar to random assignment in a randomized
experiment. For example, McClellan, McNeil and
Newhouse (1994) investigated the effect of the intensity
of treatment (Y) on mortality after four years ()
using observational data on elderly Americans who
suffered an acute myocardial infarction (heart attack).
Standard regression analysis of these data would be
subject to selection bias and omitted variables bias, the
former because the decision to pursue an intensive
treatment depends in part on the severity of the case,
the latter because of additional unobserved health
characteristics. To avoid these biases, they used as
instruments the distance of the patient from hospitals
with various degrees of experience treating heart
attack patients, for example, the differential distance
to a hospital with experience at cardiac catheter-
ization. If distance to such hospitals is distributed
randomly across potential heart attack patients, then
it is exogenous; if this distance is a factor in the
decision whether to move the patient to the distant
hospital for intensive treatment, then it is relevant. If
both are plausibly true, then 2SLS provides an
estimate of the average treatment effect for the
marginal patients, where the marginal patients are
those for whom the effect of distance on the decision to
treat is most important.

From the humble start of estimating how much less
butter people will buy if its price rises, IV methods
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have evolved into a general approach for estimating
causal relations throughout the social and behavioral
sciences. Because it requires valid and relevant instru-
ments, [V regression is not always an option, and even
if it is, the practitioner must be aware of its potential
pitfalls. Still, when they can be applied, IV methods
constitute perhaps our most powerful weapon against
omitted variable bias, reverse causality, selection bias,
and errors-in-variables in our efforts to estimate
causual relations using observational data. For recent
textbook treatments of instrumental variables issues
see Hayashi (2000, Chaps. 3 and 4) and Ruud (2000,
Chaps. 20-2 and 26).

See also: Causal Inference and Statistical Fallacies;
Selection Bias, Statistics of
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Insurance

There is insurance when one party agrees to pay an
indemnity to another party in the event of the
occurrence of a predefined random event generating a
damage for the latter. The most standard example is
the insurance contract where the first party—the
insurer— is compensated by being paid a premium by
the second party, the policyholder. But many other
contracts involve some forms of insurance. For ex-
ample, in share-cropping contracts, the landlord
agrees to reduce the rent of land in case of a bad crop.
In many instances, employers agree to pay their
employees more than the competitive wage in bad
years. In cost-plus contracts, the buyer accepts to pay
a larger price if the producer incurred an unexpected
increase in cost. In the case of income taxes, the state
partially insures the losses of taxpayers by reducing
the tax payment when incomes are low.

The shifting of risk is of considerable importance
for the functioning of our modern economies. In-
surance is desirable for risk-averse agents as a risk-
reduction device through the use of the Law of Large
Numbers. Moreover, insurance allows for disentang-
ling investment decisions from risk-taking decisions.
Without it, there would certainly not have been the
experience of the historical economic growth of the
twentieth century. Ford, Solvay, Rockefeller, and the
others would not have taken the investment risks that
they actually took without the possibility to share the
risk with shareholders and insurers. Similarly, most
consumers would not purchase new expensive cars or
houses if they would not be able to insure them.

However, various informational problems (obser-
vation of the risk, solvency issues, of the prevention
efforts and/or of the loss by the insurer) can make
competitive insurance markets inefficient by not pro-
viding enough coverage at an acceptable price.

Copyright © 2001 Elsevier Science Ltd. All rights reserved.

International Encyclopedia of the Social & Behavioral Sciences

ISBN: 0-08-043076-7



